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Abstract 10 

The formation of ground-level ozone (O3) is dependent on both atmospheric chemical 11 

processes and meteorological factors. Traditional models have difficulty assessing O3 12 

formation sensitivity in a timely manner due to the limitations of flexibility and 13 

computational efficiency. In this study, a random forest (RF) model coupled with the 14 

reactivity of volatile organic compound (VOC) species was used to investigate the O3 15 

formation sensitivity in Beijing from 2014 to 2016, and evaluate the relative importance 16 

(RI) of chemical and meteorological factors to O3 formation. The results showed that 17 

the O3 prediction performance using initial concentrations of VOC species (R2 = 0.87) 18 

was better than that using total VOCs (TVOCs) concentrations (R2 = 0.77). Meanwhile, 19 

the RIs of VOC species correlated well with their O3 formation potentials (OFPs). O3 20 

formation presented a negative response to NOx, PM2.5 and relative humidity, and a 21 

positive response to temperature, solar radiation and VOCs. The O3 isopleth curves 22 

calculated by the RF model were generally comparable with those calculated by the 23 

box model. O3 formation shifted from a VOC-limited regime to a transition regime from 24 

2014 to 2016. This study demonstrates that the RF model coupled with the initial 25 

concentrations of VOC species could provide an accurate, flexible, and computationally 26 

efficient approach for O3 sensitivity analysis.  27 
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1. Introduction 28 

Ground-level ozone (O3) pollution, which can cause adverse human health effects 29 

such as cardiovascular and respiratory diseases, has received increasing attention in 30 

recent decades (Cohen et al., 2017). As important precursors of O3, volatile organic 31 

compounds (VOCs) in the atmosphere are oxidized to produce peroxyl radicals (RO2) 32 

and hydroperoxyl radicals (HO2), which will accelerate the NO-O3-NO2 cycle, thus 33 

leading to the accumulation of O3 (Wang et al., 2017a). The production and loss of RO2 34 

and HO2 are highly dependent on the concentration ratio of VOCs and NOx in the 35 

atmosphere. Hence, atmospheric O3 concentrations or production rates show a 36 

nonlinear relationship with VOCs and NOx. Moreover, the O3-VOC-NOx sensitivity is 37 

readily influenced by VOC species (Tan et al., 2018), meteorological parameters (Liu 38 

et al., 2020a; Liu & Wang 2020), and even atmospheric particulate matter (Li et al., 39 

2019), thus, exhibits high temporal and spatial variability. Therefore, it is urgent to 40 

develop an accurate and highly efficient method for timely assessing the sensitivity 41 

regime of O3 production and evaluating the effectiveness of a potential measure on O3 42 

pollution control. 43 

The sensitivity of O3 formation can usually be analysed using observed indicators, 44 

such as ozone production efficiency (OPE, ΔO3/ΔNOz) (Wang et al., 2010; Lin et al., 45 

2011), HCHO/NOy (Martin et al., 2004), and H2O2/NOz (or H2O2/HNO3) (Sillman 1995; 46 

Hammer et al., 2002; Wang et al., 2017a), observation-based model (OBM) (Vélez-47 

Pereira et al., 2021) and chemical transport models including community multiscale air 48 
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quality (CMAQ) (Djalalova et al., 2015) and Weather Research and Forecasting with 49 

Chemistry (WRF-Chem) model (Wang et al., 2020a). The observed indicators can be 50 

utilized to quickly diagnose the sensitivity regime of O3 production. However, the 51 

accuracy is sensitive to the precision of tracer measurements. In addition, this method 52 

lacks the predictability of O3 concentrations for policy-making. OBMs combine in-situ 53 

field observations and chemical box models, which are built on widely-used chemistry 54 

mechanisms (e.g., MCM, Carbon Bond, RACM or SAPRC), and applied to the 55 

observed atmospheric conditions to simulate the in-situ O3 production rate (Mo et al., 56 

2018). The sensitivity of O3 production to various O3 precursors, including NOx and 57 

VOCs can be diagnosed based on the empirical kinetic modeling approach (EKMA) or 58 

quantitatively assessed with the relative incremental reactivity (RIR). Chemical 59 

transport models, which are driven by meteorological dynamics and incorporated with 60 

the emissions of pollutants and the complex atmospheric chemical mechanism, provide 61 

a powerful tool for simulating various atmospheric processes, including spatial 62 

distribution, regional transport vs. local formation, source apportionment and 63 

production rates of pollutants and so on (Sayeed et al., 2021). At present, OBMs are 64 

widely used to investigate O3 formation sensitivity in China. Previous studies indicated 65 

that O3 formation in urban areas of China is located in a VOC-limited or a transition 66 

regime and varies with time and location (Ou et al., 2016; Wang et al., 2017a; Zhan et 67 

al., 2021). 68 

Although both OBMs and chemical transport models can assess the sensitivity of 69 
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O3 production and predict the O3 pollution level in a scenario of control measures, the 70 

calculation accuracy is affected by the uncertainty of input parameters (Tang et al., 2011; 71 

Yang et al., 2021b). In addition, both of them are time-consuming and expensive when 72 

computational resources are considered. Thus, they are mostly applied to sampling 73 

cases with a short time span (days or weeks) (Xue et al., 2014; Ou et al., 2016), and 74 

identifying O3 formation sensitivity in a timely manner is difficult. Compared to 75 

traditional methods, machine learning (ML) is able to capture the main factors affecting 76 

atmospheric O3 formation in a timely manner with great flexibility (without the 77 

constraints of time and space) and high computational efficiency (Wang et al., 2020c; 78 

Grange et al., 2021; Yang et al., 2021a). Recently, ML based on convolutional neural 79 

network (CNN), random forest (RF) and artificial neural network (ANN) models has 80 

been applied in simulating atmospheric O3 and shown good performance in O3 81 

prediction (Ma et al., 2020; Xing et al., 2020). For example, Ma et al. (Ma et al., 2021a) 82 

simulated O3 concentrations in the Beijing-Tianjin-Hebei (BTH) region from 2010-83 

2017 using an RF model that considered meteorological variables and output variables 84 

from chemical transport models, and the correlation coefficient (R2) between the 85 

observed and modelled O3 concentrations was greater than 0.8. Liu et al. (Liu et al., 86 

2021) also reported a high accuracy (80.4%) for classifying pollution levels of O3 and 87 

PM2.5 at 1464 monitoring sites in China using an RF model. According to these previous 88 

studies, the RF model has shown good performance in terms of prediction accuracy and 89 

computational efficiency (Wang et al., 2016; Wang et al., 2017b). 90 
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However, many ML studies have used total VOCs (TVOCs) to simulate O3 91 

formation and rarely considered the effect of VOC species on O3 formation sensitivity 92 

(Feng et al., 2019; Liu et al., 2021; Ma et al., 2021a). Thus, they were unable to identify 93 

the chemical reactivity of a single species to O3 formation, which may lead to 94 

underestimations or even misunderstandings of the role of VOCs in O3 formation 95 

because the same concentration of TVOCs with different compositions may lead to 96 

different OPEs. In addition, VOCs react with OH radicals during atmospheric transport, 97 

which is the most important sink of VOCs (Carlo et al., 2004; Liu et al., 2020b). Makar 98 

et al. (Makar et al., 1999) reported that highly reactive species, such as isoprene, were 99 

underestimated by 40% when the OH reactions were ignored. Other studies indicated 100 

that the initial concentrations of VOCs, which account for the photochemical loss of 101 

VOCs during transport, were more representative of pollution levels in the sampling 102 

area than the observed VOCs (Yuan et al., 2013; Zhan et al., 2021). However, whether 103 

the ML model can identify the connection between the reactivity of VOC species and 104 

O3 formation sensitivity has not been clarified. 105 

In this study, we used the RF model to evaluate the prediction performance of 106 

atmospheric O3 using the TVOCs, measured VOC species and photochemical initial 107 

concentration (PIC) of VOC species. We compared the relative importance (RI) of the 108 

precursors (VOC species, NOx, PM2.5, CO) and the meteorological parameters 109 

(temperature, solar radiation, relative humidity, wind speed and direction) on O3 110 

formation in the summer of Beijing from 2014 to 2016. We also discussed the 111 
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possibility of connecting the RIs of VOCs with their OFPs and the changes in O3-VOC-112 

NOx sensitivity based on the RF model from 2014 to 2016. Our study indicates that the 113 

RF model combined with initial concentrations of VOC species can simulate O3 114 

concentrations well and provides a flexible and efficient tool for O3 modelling in a near 115 

real-time way. 116 

2. Methods 117 

2.1 Sampling site and data 118 

The sampling site (40.04°N, 116.42°E) is located at the campus of Chinese 119 

Research Academy of Environmental Sciences and was described in our previous work 120 

(Zhang et al., 2021). Briefly, the station is located two kilometers from the north 4th ring 121 

road and surrounded by a mixed residential and commercial area. The concentrations 122 

of VOCs, NOx, CO, O3 and PM2.5 were measured at 8 m above ground level at this 123 

location. Meteorological parameters, including temperature (T), relative humidity (RH), 124 

wind speed and direction (WS&WD), solar radiation (SR), were monitored at 15 m 125 

above ground level. VOCs were measured by an online commercial instrument (GC-126 

866, Chromatotec, France), which consisted of two independent analysers for detecting 127 

C2-C6 and C6-C12 hydrocarbon components. More details about the observations can 128 

be found in the Supplemental Materials (S1). The PICs of VOCs were calculated 129 

according to the method reported in our previous work (Zhan et al., 2021) and the 130 

Supplemental Materials (S2). 131 

2.2 Random forest model 132 

The random forest (RF) is a type of decision tree that can be used for classification 133 
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and regression (Breiman 2001). During the training process, the model creates a large 134 

number of different decision trees with different sample sets at each node, and then 135 

averages the scores of each decision tree as its final score to obtain more accurate results 136 

that avoid large bias and overfitting (Breiman 2001). Approximately one-third of the 137 

samples are excluded from the sample when the decision tree is built and used to 138 

calculate the out-of-bag data error. Hence, RF can evaluate the RI of variables via out-139 

of-bag (OOB) data error (Svetnik et al., 2003), 140 

RIi= ∑ (errOOB2i-errOOB1i) /N (1) 141 

where N represents the number of decision trees, and errOOB1 and OOB2 represent 142 

the out-of-bag data error of feature i before and after adding tiny data noise (Kohavi & 143 

John 1997; Breiman 2001), respectively. The RIi reflects the response of the RF model 144 

to feature i after adding tiny data noise. It was used to evaluate the importance and 145 

sensitivity of feature i to O3 formation in this study. More details about RI can be found 146 

in the Supplemental Materials (S3). To verify the stability of the model, we interrupted 147 

the continuity of the time series, fed the randomly arranged inputs to the model, and 148 

performed a significance test on the RI. The results showed that there was no significant 149 

difference among the different tests (P>0.05, R2>0.97). 150 

3. Results and discussion 151 

3.1 Overview of air pollutants and meteorological conditions 152 

Figure 1 shows the time series of air pollutants and meteorological parameters 153 

during the observations from 2014 to 2016. In 2014, 2015 and 2016, the wind direction 154 
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was dominated by northwest winds (Figure S1), with mean wind speeds of 3.1 ± 2.7 m 155 

s-1, 2.3 ± 2.2 m s-1, and 1.3 ± 1.2 m s-1, respectively, and the mean daytime temperature 156 

were 22.3 ± 5.8, 23.9 ± 5.0 and 24.0 ± 4.4 °C, respectively. The average value of SR 157 

decreased from 162.9 to 150.8 W m-2 during the observation period. As shown in Figure 158 

1F-G, in 2014, 2015 and 2016, the mean VOC concentrations were 20.3 ± 10.9, 15.8 ± 159 

8.3 and 12.1 ± 7.7 ppbv, respectively, while the mean initial VOC concentrations were 160 

28.1 ± 25.7, 27.2 ± 32.6 and 16.4 ± 16.1 ppbv, respectively. Both the measured VOCs 161 

and initial VOCs showed a decline along with a decrease in PM2.5 concentration from 162 

67.2 ± 53.5 to 61.1 ± 48.6 μg m-3 due to the Air Pollution Prevention and Control Action 163 

Plan in China (Zhao et al., 2021). However, O3 concentrations showed a slight upward 164 

trend from 38.7 ± 33.4 to 42.7 ± 27.9 ppbv from 2014 to 2015 and then to 44.0 ± 29.6 165 

ppbv in 2016. A similar trend was observed for NOx concentrations (Figure S2). As 166 

shown in Figure 1F-G, the concentrations of four types (alkanes, alkenes, alkynes, and 167 

aromatics) of VOCs showed significant differences from 2014 to 2016 due to the 168 

variations in emission sources (Zhang et al., 2021). In addition to VOC species, the 169 

variations in other parameters, such as meteorological conditions and PM2.5, should 170 

have a complex influence on O3-VOC-NOx sensitivity (Li et al., 2019; Ma et al., 2021b). 171 
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 172 

Figure 1. Time series of air pollutants and meteorological parameters during 173 

observations in Beijing. 174 

3.2 Prediction performance of the model. 175 

To build a robust model, we evaluated the prediction performance of the RF model 176 

for the ambient O3 simulation. Figure 2 shows the O3 prediction performance when 177 

chemical species (including VOCs, NOx, PM2.5, CO) and meteorological factors (i.e., 178 

WS, WD, SR, T and RH) were used as inputs in the RF model. The details of the 179 

modelling and input parameters are shown in Table S1. Figure 2A-C shows the time 180 

series of the measured and modelled O3 concentrations, which were simulated using 181 
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the TVOCs, measured VOC species and initial VOC species as input variables along 182 

with the same set of other parameters. The correlation coefficients (R2) of the training 183 

data were 0.88, 0.94 and 0.94 for the TVOCs, measured VOC species and initial VOC 184 

species, respectively. The corresponding root mean squared errors (RMSEs) for the 185 

predicted O3 concentrations were 9.9, 9.3 and 9.1. Figure 2D-F shows the prediction 186 

performance of the testing dataset under these three circumstances. When the TVOCs 187 

were split into VOC species, the R2 increased from 0.77 to 0.86 as the number of data 188 

features increased. Therefore, the VOC composition has a significant influence on O3 189 

prediction using the RF model. Thus, our model has good prediction performance (R2 190 

= 0.87) when combined with the initial VOC species. In previous studies using TVOCs, 191 

the influence of VOC composition was neglected (Liu et al., 2021; Ma et al., 2021a). 192 

Therefore, our results indicate that the RF model can accurately predict O3 193 

concentrations when the concentrations of VOC species are considered and identify the 194 

connection between the reactivity of VOC species and O3 formation in the atmosphere. 195 
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 196 

Figure 2. Comparison of the predicted and measured O3 concentrations in Beijing in 197 

the summer of 2014. (A and D: TVOC concentrations; B and E: measured 198 

concentrations of VOC species; C and F: initial concentrations of VOC species) 199 

3.3 Relative importance of major factors 200 

Figure 3A shows the RIs of different ambient factors, including chemical and 201 

meteorological variables on O3 formation. The difference in the RIs is also compared 202 

using the TVOCs and the VOC species as inputs. Chemical factors (including VOC 203 

species, NOx, PM2.5 and CO) accounted for 83.1% of the contribution to O3 production 204 

in the summer of 2016. Meanwhile, VOC species accounted for approximately 66.7% 205 

of O3 production while the RIs using TVOC concentrations accounted for only 6.5%. 206 

Ma et al. (Ma et al., 2021b) analysed the contribution of meteorological conditions and 207 

chemical factors to O3 formation on the North China Plain (NCP) using the CMAQ 208 
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model in combination with process analysis and found that chemical factors dominate 209 

O3 formation in summer. Using probability theory, Ueno et al. (Ueno & Tsunematsu 210 

2019) also found that VOCs/NOx dominate O3 production compared to meteorological 211 

variables. Thus, our results are similar to those of previous studies based on chemical 212 

models (Ueno & Tsunematsu 2019; Ma et al., 2021b), which demonstrates that the RF 213 

model can reflect the contribution of VOC species to O3 production even if the observed 214 

VOC species are used. 215 

 216 

Figure 3. Percentage of RI for O3 precursors and meteorological parameters (A) and 217 

the top 12 factors with high values of RI in 2014-2016 (B-D: using initial concentrations 218 

of VOC species). 219 

Although ML is widely used to understand air pollution, explanations of ML 220 

results (e.g., RI) are somewhat vague because ML is a black-box model (Sayeed et al., 221 

2021). Here, we compared the RIs of VOCs calculated using the initial VOC species 222 
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and the observed VOC species with the O3 formation potentials (OFPs). The OFPs were 223 

calculated by the maximum incremental reactivity (MIR) method (Carter 2010). As 224 

shown in Figure S3, the RIs showed good correlations with the OFP. Interestingly, the 225 

initial concentrations of VOC species improved the correlation coefficients between the 226 

RIs and OFPs. Furthermore, we calculated the RIs and OFPs of different species using 227 

the observed data during the campaign study in Daxing District in the summer of 2019 228 

(Zhan et al., 2021), and a strong correlation was observed between the RIs of the initial 229 

VOC species and the OFPs (Figure S4). These results indicate that the RIs of the initial 230 

VOCs species in the ML model should partially reflect the chemical reactivity of VOCs 231 

to produce O3 in the atmosphere.  232 

Although the RIs calculated using the initial VOC species slightly changed 233 

compared to those calculated using the observed VOCs (Table S2), VOCs still 234 

dominated O3 formation (Figure 3A). For example, the initial VOCs dominated O3 235 

production in 2014, 2015, and 2016, with RI values of 67.7, 64.5 and 67.7% 236 

respectively. Li et al. (Li et al., 2020a) used a multiple linear regression (MLR) model 237 

to study the contribution of anthropogenic and meteorological factors to O3 formation 238 

in China from 2013-2019 and found that meteorological factors accounted for 36.8% 239 

and anthropogenic factors accounted for 63.2%, which is similar to our results. Figure 240 

3B-D shows the top 12 factors having a strongly influence on O3 production. 241 

Interestingly, NOx, PM2.5 and RH showed negative responses to O3 formation, while 242 

other variables, including T, SR, CO and all of the VOCs, showed positive responses. 243 
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Thus, a decrease in NOx, PM2.5 or RH will lead to an increase in O3 concentration while 244 

a decrease in T, SR, CO and VOCs will lead to a decrease in O3 concentration. Although 245 

O3 formation is highly related to the photolysis of NO2, a previous study demonstrated 246 

that it is VOC-limited in summer in Beijing (Zhan et al., 2021). This finding is 247 

consistent with the observed negative response of O3 to NOx in this work. High 248 

concentrations of PM2.5 can reduce solar radiation and increase the sinks of reactive 249 

radicals (HOx and ROx) (Li et al., 2019). In addition, high RH usually coincides with 250 

low surface O3 concentrations in field observations, which can be ascribed to the 251 

inhibition of O3 formation by the transfer of NO2/ONO2-containing products into the 252 

particle phase and the promotion of dry deposition of O3 on the surface (Kavassalis & 253 

Murphy 2017; Yu 2019). These previous works can well explain the observed negative 254 

response of O3 to PM2.5 and RH in Figure 3B. Previous studies have observed a positive 255 

correlation between the O3 concentration and T or SR (Steiner et al., 2010; Paraschiv 256 

et al., 2020; Li et al., 2021). Temperature can directly affect the chemical reaction rate 257 

of O3 formation (Fu et al., 2015), and SR can promote the photolysis of NO2 (Hu et al., 258 

2017; Wang et al., 2020b), thus accelerating O3 formation. As mentioned above, O3 259 

formation is VOC-limited in Beijing; thus, a positive response of O3 concentration to 260 

VOCs is observed in Figure 3B. Interestingly, the RIs of isoprene showed an increasing 261 

trend from 2014 to 2016 because of the obvious reduction in anthropogenic VOCs 262 

(Figure 1) (Zhang et al., 2021). In the context of global warming, studies should focus 263 

on the factors that affect O3 formation, including biogenic emissions, T and SR. Thus, 264 
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additional efforts will be required to reduce anthropogenic pollutants in the future. 265 

3.4 Ozone formation sensitivity 266 

To further analyse the sensitivity of O3 to VOCs and NOx from 2014 to 2016, we 267 

plotted sensitivity curves for O3 generation using the RF model, and the results are 268 

shown in Figure 4A-C. Moreover, EKMA curves in 2015 were also obtained using the 269 

OBM (Figure 4D). As shown in Figure 4A-C, O3 formation was sensitive to VOCs in 270 

the summer of Beijing during our observations, which is consistent with previous 271 

studies that used box models (Li et al., 2020b) and chemical transport models (Shao et 272 

al., 2021). This result is also consistent with the RIs of VOCs or NOx to O3 formation 273 

(Figure 3B). Interestingly, the O3 formation sensitivity to VOCs decreases or gradually 274 

shifts from the observed point to the transition regime from 2014 to 2016 (Figure 4A-275 

C), which is similar to that reported by Zhang et al. (Zhang et al., 2021). These 276 

phenomena can be ascribed to the increased importance of meteorological factors, such 277 

as T, SR, and RH, for O3 formation and the variation in anthropogenic VOC emissions 278 

(Steiner et al., 2010; Ma et al., 2021b). 279 
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 280 

Figure 4. Ozone formation sensitivity curves from 2014-2016. (A, B, C: calculated by 281 

the RF model for 2014, 2015, and 2016, respectively. D: calculated by the OBM for 282 

2015) 283 

We compared O3 sensitivity using the RF model based on the TVOCs and the 284 

initial VOC species in 2015. As shown in Figure S5, the O3 concentrations predicted 285 

using the initial concentrations of VOC species were more accurate after correcting the 286 

reactivity during transport than those predicted using the TVOCs. Hence, a combination 287 

of the RF model and initial VOCs species (Figure 4B) can accurately depict the 288 

sensitivity regime of O3 formation in comparison to the box model (Figure 4D), 289 

although a difference is observable between the predicted O3 concentrations using these 290 

two models. In the box model, the O3 isopleth plot was drawn with the maximum O3 291 

concentrations, while in the RF model, this plot was drawn with the real O3 292 
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concentrations. 293 

4. Conclusions 294 

In summary, this work investigated O3 formation sensitivity in the summer from 295 

2014-2016 in Beijing using the RF model coupled with the reactivity of VOC species. 296 

The results show that the prediction performance of O3 by the RF model was 297 

significantly improved when VOC species were considered compared to TVOCs. 298 

Furthermore, after the photochemical loss of VOC species during transport was 299 

corrected, the RIs of the VOC species were well correlated with the OFPs of VOC 300 

species calculated using the MIR method, thus indicating that the RIs in the ML model 301 

reflect the chemical reactivity of VOCs. Meanwhile, both NOx and highly reactive 302 

species (such as isoprene, propene, benzene, and toluene) played an important role in 303 

O3 formation. An increased contribution of temperature to O3 production was observed, 304 

which implied the importance of temperature to O3 pollution in the context of global 305 

warming conditions. Both the RF model and the box model results showed that O3 306 

formation was sensitive to VOCs in Beijing, although the sensitivity regime shifted 307 

from VOC-limited regime to a transition regime from 2014 to 2016. Due to the high 308 

computational efficiency of ML, the O3 formation sensitivity plotted by the RF model 309 

coupled with the reactivity of VOC species can provide an accurate, flexible and 310 

efficient approach for analysing O3 sensitivity in a near real-time way. 311 
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