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Abstract.  17 

In air quality research, often only size-integrated particle mass concentrations as indicators of aerosol particles are 18 

considered. However, the mass concentrations do not provide sufficient information to convey the full story of 19 

fractionated size distribution, in which the particles of different diameters (Dp) are able to deposit differently on respiratory 20 

system and cause various harm. Aerosol size distribution measurements rely on a variety of techniques to classify the 21 

aerosol size and measure the size distribution. From the raw data the ambient size distribution is determined utilising a 22 

suite of inversion algorithms. However, the inversion problem is quite often ill-posed and challenging to solveinvert. Due 23 

to the instrumental insufficiency and inversion limitations, models imputation methods for fractionated particle size 24 

distribution are of great significance to fill the missing gaps or negative values. The study at hand involves a merged 25 

particle size distribution, from a scanning mobility particle sizer (NanoSMPS) and an optical particle sizer (OPS) covering 26 

the aerosol size distributions from 0.01 to 0.42 μm (electrical mobility equivalent size) and 0.3 μm to 10 μm (optical 27 

equivalent size) and meteorological parameters collected at an urban background region in Amman, Jordan in the period 28 

of 1st Aug 2016–31st July 2017. We develop and evaluate feed-forward neural network (FFNN) models approaches to 29 

estimate number concentrations at particular size bin with (1) meteorological parameters, (2) number concentration at 30 

other size bins, and (3) both of the above as input variables. Two layers with 10–15 neurons are found to be the optimal 31 

option. Lower Worse model performance is observed at the lower edge (0.01< Dp< 0.02 μm), the mid-range region (0.15< 32 

Dp< 0.5 μm) and the upper edge (6< Dp< 10 μm). For the edges at both ends, the number of neighbouring size bins is 33 

limited and the detection efficiency by the corresponding instruments is lower compared to the other size bins. A distinct 34 

performance drop over the overlapping mid-range region is due to the deficiency of a merging algorithm. Another 35 

plausible reason for the poorer performance for finer particles is that they are more effectively removed from the 36 

atmosphere compared to the coarser particles so that the relationships between the input variables and the small particles 37 

is more dynamic. An observable overestimation is also found in early morning for ultrafine particles followed by a distinct 38 

underestimation before midday. In the winter, due to a possible sensor drift and interference artefacts, the model 39 

estimation performance is not as good as the other seasons. The FFNN approachmodel by meteorological parameters 40 
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using 5-min data (R2 = 0.22–0.58) shows poorer results than data with longer time resolution (R2 = 0.66–0.77). The FFNN 41 

approachmodel by the number concentration at the other size bins can serve as an alternative way to replace negative 42 

numbers in size distribution raw dataset thanks to its high accuracy and reliability (R2 = 0.97–1). This negative numbers 43 

filling approachmethod can maintain a symmetric distribution of errors and complement the existing ill-posed built-in 44 

algorithm in particle sizer instruments. 45 

 46 

Keywords. 47 

Aerosol size distribution, feed-forward neural network, atmospheric aerosols particles, missing data,; SMPS,; OPS 48 

1 Introduction 49 

Particulate matter (PM) is the principal component of air pollution. PM includes a range of particle sizes, such as coarse 50 

(1< particle diameter (Dp)<10 μm), fine (0.1< Dp<1 μm), and ultrafine particles (UFP, Dp< 0.1 μm). Through human’s 51 

inhalation, coarse particles usually are partly deposited in the head airway (5–30 μm) by the inertial impaction mechanism, 52 

and are partly deposited in the tracheobronchial region, mainly through sedimentation (1–5 μm). The particles may be 53 

further absorbed or removed by mucociliary clearance (Gupta and Xie, 2018). The remaining fine and UFP, due to their 54 

high surface area to mass ratios (Kreyling et al., 2004), penetrate deeply into the alveolar region, where removal 55 

mechanisms may be insufficient (Gupta and Xie, 2018). Evidence suggests that the adverse associations of short-term 56 

UFP exposure with acute and chronic problems ranging from inflammation, exacerbation of asthma, and metal fume fever 57 

to fibrosis, chronic inflammatory lung diseases, and carcinogenesis (Spinazzè et al., 2017) might be at least partly 58 

independent of other pollutants (Ohlwein et al., 2019). Various studies have demonstrated that inhaled or injected UPF 59 

could enter systemic circulation and migrate to different organs and tissues (Londahl et al., 2014; Xing et al., 2016) .  60 

 61 

Other than health effects, particles of various sizes also contribute to Earth’s ecosystem and climate differently. For 62 

instance, fine and UFP are capable of growing up to diameters of 0.02–0.1 μm within a day (Kulmala et al., 2004; 63 

Kerminen et al., 2018) where they constitute a fraction of cloud condensation nuclei; , and thus, indirectly affecting the 64 

climate (Kerminen et al., 2012). The drivers behind aerosol particles vary between natural and anthropogenic as well as 65 

primary and secondary. Primary particles are emitted to the atmosphere as particles, such as sea salt or dust particles, 66 

while secondary particles form in the atmosphere through gas-to-particle transformation, which has been known as new 67 

particle formation (NPF) observed in various environments and contributing to a major fraction of the total particle 68 

number budget (Kulmala et al., 2004; Kerminen et al., 2018). In addition, while fine particles cool the climate by 69 

predominantly scattering shortwave radiation, coarse particles warm the climate system by absorbing both shortwave and 70 

longwave radiation (Kok et al., 2017). Indeed, the complexity of urban aerosols is tribute to the fact that several sources 71 

can contribute in the same particle size range (Rönkkö et al., 2017). 72 

  73 

Currently, the most commonly reported aerosol variables are particle mass concentration and particle number 74 

concentration. The former metric, which is dominated by coarser particles, is included as air quality indicators (e.g. mass 75 

concentrations of both thoracic particles PM10 and fine particles PM2.5); however, it has been argued that this might ignore 76 

the potential adverse effect of UFP on health ( Zhou et al., 2020). The latter one describes better the distribution of finer 77 

particles, but it neglects the influence of coarse particles. Using either particle mass concentration or particle number 78 

concentration solely is not enough to fully review the health effects and the Earth’s climate system by aerosol particles. 79 
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Therefore, in order to  understand the origin of atmospheric aerosol particles and their potential impacts at a specific 80 

location, the whole size distribution of these particles needs to be studied (Zhou et al., 2020).  81 

 82 

Recently, due to urbanization and increased population, megacities have increased their contribution to atmospheric 83 

aerosol pollution massively Lelieveld et al. (2015). Middle East and North Africa (MENA) regions, with an average 84 

annual growth rate of 1.74% in 2019 (World Bank Group, 2019), has one of the world's regions most rapidly expanding 85 

populations. With the population of 578 million, several cities in MENA regions are among the 20 most polluted cities in 86 

the world. The annual average concentrations of some pollutants, for example PM2.5 in MENA (54.0 μg m–3) often exceed 87 

5 times the WHO recommended levels (10.0 μg m–3) (World Health Organisation, 2019). Many countries in MENA are 88 

dealing with negative impacts of air pollution in terms of both economic burden and health aspect (Ahmed et al., 2017; 89 

Goudarzi et al., 2019). Air Pollution in this region is estimated to cause 133,000 premature deaths annually, almost half 90 

of which are attributed to natural sources of air pollution, such as windblown sea salt and desert dust (Gherboudj et al., 91 

2017). Apart from natural pollutants, anthropogenic activities also play a major role in driving the air quality. They include 92 

the extensive development of petrochemical industry, vehicular emissions and open burning of waste (Arhami et al., 93 

2018).  94 

 95 

However, aerosol studies in this region have not paid attention to the aerosol number size distribution so far. Among the 96 

few studies published, most report mass concentration (Goudarzi et al., 2019; Arhami et al., 2018; Borgie et al., 2016), 97 

while some focused on the total particle number in MENA regions. Studies on the size-fractionated number concentrations 98 

are, nonetheless, scarce (e.g. Hakala et al., 2019Hakala et al., 2019)     due to the unavailability of instruments for 99 

measuring UFP in many air quality monitoring stations (Spinazzè et al., 2017). Determining aerosol number size 100 

distribution for a wide size range in a reliable manner is a challenging task. The fact that the ambient distributions range 101 

from nanometers to several micrometers dictates the use of multiple sizing techniques. For the sub-micron size range, 102 

electrical mobility equivalent diameter is commonly used as the size parameter and the measurements are performed with 103 

Differential Mobility Particle Sizer (DMPS) or Scanning Mobility Particle Sizer (SMPS) instruments ((e.g. Wiedensohler 104 

et al., 2012)Wiedensohler et al., 2012)  . These systems determine the aerosol size according to electrical mobility 105 

equivalent size. The larger particles (approximately > 0.3 μm) can be classified according to their aerodynamic or optical 106 

size (Kulkarni et al., 2011). In order to obtain the full aerosol size distribution, this data needs to be merged. Unfortunately 107 

this task is not trivial as the merging requires knowledge on the chemical composition (influencing the refractive index 108 

and thus the optical size), shape (influencing electrical mobility equivalent size), or effective density (influencing 109 

aerodynamic size) (Kannosto et al., 2008).  110 

 111 

In addition, the raw data from these instruments must be inverted to obtain the particle size distribution. This is not a a 112 

straightforward problem. A proper inversion algorithm is required to restore the particle size distribution from the raw 113 

response (Cai et al., 2018) using the recorded kernel kernel functions which describe  the probability of particles of a 114 

certain size being measured at a certain flow rate, influenced by the measured activation curves and the detection 115 

efficiencies of the instruments (Lehtipalo et al., 2014)between the raw response and the size distribution Cai et al., 2018.  116 

Depending on the instruments used and the measurement environments, some use a built-in inversion algorithm in the 117 

instruments, which replace negative raw values with artificial non-negative numbers. Some develop their own inversion 118 

methods; however, they all have their drawbacks. Examples include that the least square method may magnify the random 119 
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errors in the raw counts in Condensation Particle Counter (CPC) raw counts into relatively large uncertainties (Enting 120 

and Newsam, 1990), the stepwise method may cause non-negligible errors (Lehtipalo et al., 2014), and that the smoothing 121 

step method may introduce bias in the shape of the inverted distribution function. (Markowski, 1987). Kandlikar and 122 

Ramachandran (1999) pointed out that there is not a single universal inversion algorithm applicable to all situations.  123 

 124 

In this study, the built-in inversion algorithm was used. Especially in the size range of low number concentration, Tthis 125 

algorithm can lead to negative values when the kernel functions are not optimally configured, especially in the size range 126 

of low number concentration. These negative values have no physical meanings. Some experts in the in situ measurement 127 

community might just omit the negative values or simply use nearest neighbour linear interpolation to replace the negative 128 

values. However, the former method might cause asymmetric error for very small measured number concentration values 129 

(Viskari et al., 2012), while the latter could result in too high values concurrently. To fill this knowledge gap, statistical 130 

estimation modelmethods can serve as an alternative to estimate of size-fractioned number concentration by using other 131 

available measurements.  132 

 133 

Similar to other air quality parameters, modelling of size-fractionated particle number concentrations have been 134 

increasingly brought into the spotlight because of its potential health hazards. One of the most commonly used data-135 

driven methods, generalised linear regression models, have been extensively utilised in modelling size-fractionated 136 

particle number concentrations, for example, in urban regions in Helsinki, Finland Clifford et al., 2011; Hussein et al., 137 

2007, in Toronto, Canada Sabaliauskas et al., 2012, in Brisbane, Australia Rahman et al., 2017, and in three cities in 138 

Germany Gerling et al., 2020. Besides linear regression models Mølgaard et al. (2013), refined the statistical model using 139 

Bayesian inference and autoregressive parameters in five European cities Reggente et al. (2014) improvised by Gaussian 140 

process based on the measurements of oxides of nitrogen in Antwerp, Belgium. These approaches are categorised as 141 

transparent machine learning (ML) processes, as known as white-box (WB) models, from which one can clearly explain 142 

how they behave, how they produce predictions and what the influencing variables are Rudin, 2019. Another data-driven 143 

approach black-box (BB) models, which refer to ML systems being viewed in terms of its inputs and outputs, without 144 

any knowledge of its internal workings or underlying principles Rudin, 2019. They are considered to work generally 145 

better in terms of accuracy, but provide limited transparency and accountability regarding the results Zaidan et al., 2019; 146 

Fung et al., 2020. One example of BB model is artificial neural network (ANN), which were applied extensively to 147 

estimate other air pollutant parameters Freeman et al., 2018; Cabaneros et al., 2019. They provide a robust approach for 148 

approximating complex functions due to its ability to mimic non-linearity of the functions and its well-developed 149 

optimisation. Al-Dabbous et al. (2017) has demonstrated the use of ANN to estimate three ranges of UPF at a roadside 150 

site in Fahaheel, Kuwait. They addressed the importance of including meteorological parameters in the modelling process, 151 

which was later validated by Zaidan et al. (2020) who estimated daily and hourly total particle number concentration by 152 

only a combination of meteorological parameters in Amman, Jordan. 153 

 154 

The The main objectives of the paper is to estimate particleaerosol total number concentration/ fill the negative values 155 

making up for the shortcomings of the built-in inversion algorithm in particle sizer instruments. Extending from from 156 

meteorological observations and to advance the previous study by Zaidan et al. (2020), we build our imputation method 157 

with a finer temporal and size-bin resolution. In order to do so, we place emphasis on to estimatinge particle number 158 

concentration of a specific size bin by the interaction with other size bins and meteorological variables. In this study, we 159 
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propose three approaches in terms of different input variables when we carry out the by means of neural 160 

networksmodelling: (1) only meteorological parameters, (2) only particle size distribution, and (3) both particle size 161 

distribution and meteorological parameters. Based on the general data analysis of the particle size distribution and the 162 

meteorological condition, we further explain the source of different size bins at certain weather conditions and the 163 

correlation among the particle size distribution and meteorological parameters in Sect.tion 3. We evaluate the proposed 164 

neural network method and compare it with other simpler methods in Sect. 4.1.Evaluation of models is discussed in 165 

Section 4 In Sect. 4.2, we further discuss the temporal pattern of the proposed ,method in terms of its diurnal cycle, 166 

weekend effect and seasonal variation. Besides, Wwe also examine the possible technical reasons for the pattern found 167 

and the application of the proposed method models. 168 

2 Methods 169 

2.1 Measurement sites and Instruments 170 

In this study, we collected a dataset obtained from a measurement campaign in Amman, the capital city of Jordan, between 171 

1 August 2016 and 31 July 2017. The city represents an area with Middle Eastern urban conditions within the Middle 172 

East and North Africa (MENA) region. This region serves as a compilation of different aerosol particle sources including 173 

natural dust, anthropogenic pollution (e.g., generated from the petrochemical industry and urbanization), as well as new 174 

particle formation.  175 

 176 

The database includes particle size distribution and meteorological parameters, as mentioned in the first step in Figure 1. 177 

The aerosol measurement was carried out at the aerosol laboratory located on the third floor of the Department of Physics, 178 

University of Jordan (32°00′ N, 35°52′ E) in the neighbourhood of Al Jubeiha. The campus is situated at an urban 179 

background region in northern Amman.  In particular, the campaign measured the particle number size distribution using 180 

a scanning mobility particle sizer (NanoScan SMPS 3910, TSI, MN, USA) with default settings. It monitors the particle 181 

size distributions as electrical equivalent diameter 0.01–0.42 μm (13 channels). The size range of the SMPS system can 182 

be extended to coarse particles with an additional compact instrument: an optical particle sizer (OPS 3330, TSI, MN, 183 

USA). OPS measures optical diameter 0.3–10 μm (13 channels). This optical sizing method reports an optical particle 184 

diameter, which is often different from the electrical mobility diameter measured by the SMPS technique. The 185 

measurements were combined to provide a particle size distribution of wider particle diameter range 0.01–10 μm, which 186 

is further described in Sect.ion 2.2. The SMPS inlet consists of copper tubing with a diffusion drier (TSI 3062-NC). The 187 

inlet flow rate was 0.75 lpm (±20%) while the sample flow rate was 0.25 lpm (±10%). The flow rate of OPS was about 1 188 

lpm. The aerosol transport efficiency and losses through the aerosol inlet assembly and the diffusion drier was determined 189 

experimentally in the laboratory: ambient aerosol sampling alternatively with and without sampling inlet, and the aerosol 190 

data was corrected accordingly. The penetration efficiency was ~47% for 0.01 μm, ~93% for 0.3 μm and ~40% for 10 191 

μm (Hussein et al., 2020). These deficiency of measurement at the upper and lower edges is somewhat in alignment with 192 

other literatures. Particle size measured by nanoSMPS (Tritscher et al., 2013) tended to be underestimated for spherical 193 

particles larger than 0.2 μm by up to 34% (Fonseca et al., 2016). Liu et al. (2014) clearly portrayed that the detection limit 194 

of particle size below 0.03 μm is about 80–500 cm–3, which is up to 10 times larger than that of coarser particles, for other 195 

versions of SMPS. Stolzenburg and McMurry (2018) explained that discrepancies could be resulted from Differential 196 

Mobility Analysers (DMAs)s with transfer functions that were degraded (i.e., broadened) by flow distortions caused by 197 
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particle deposition within the classifier tube, sizing errors due to errors in flowmeter calibrations or leaks, CPC 198 

concentration errors due to improper pulse counting, and continuity failure in the DMA high voltage connection. 199 

 200 

The meteorological measurement was performed with a weather station (WH-1080, Clas Ohlson: Art.no.36-3242, 201 

Helsinki, Finland) with a time resolution of 5 minutes. The meteorological data were comprised of ambient temperature 202 

(Temp, resolution 0.1℃), relative humidity (RH, resolution 1%), wind speed (WS), wind direction (WD, 16 equal 203 

divisions) and air pressure (P, resolution 0.3 hPa) (Hussein et al., 2019; Hussein et al., 2020; Zaidan et al., 2020). Wind 204 

direction is resolved into north and east direction, as WD-N and WD-E, respectively. The data collection process is 205 

illustrated in the first step in the database block in Figure 1. 206 

2.2 Data pre-processing 207 

The next step in the database block in Figure 1 is data pre-processing. Since the sampling time resolution of SMPS and 208 

OPS was 1 min and 5 min, respectively, we synchronised the data into 5-min averages. Since a part of the size ranges in 209 

both instruments are overlapping with each other, the last two size bins in SMPS and the first size bin in OPS were 210 

neglected. Finally, we merged the size range of electrical mobility diameter 0.01–0.25 μm by SMPS and optical diameter 211 

0.32–10 μm by OPS, and obtain a wider particle size distribution which covers the diameter range 0.01–10 μm. Merging 212 

electrical mobility diameter and optical diameter can be a challenge and the overlapping region is often calculated with 213 

high uncertainty (DeCarlo et al., 2004; Tritscher et al., 2015). The challenge arises because the optical diameters are 214 

measured based on the refractive index of the particles, which depends on their chemical composition. Therefore, the 215 

sizing will vary over time. There is also a very slight dependency with the SMPS system that is linked to the shape of the 216 

particles, which influences their sizing. 217 

 218 

We also calculated the particle number concentration with four particle diameter modes (size-fractionated number 219 

concentration): nucleation (0.01–0.025 μm), Aitken (0.025–0.1 μm), accumulation (0.1–1 μm) and coarse mode (1–10 220 

μm). Subsequently, the total number concentration was obtained as the sum of all these fractions. The size-fractionated 221 

number concentrations were obtained by summing up the measured particle number size distribution over the specified 222 

particle diameter range. 223 

 224 

In order to perform data imputation with neural networks modelling, aerosol and meteorological data were first linearly 225 

interpolated in time in case of short missing data periods. For missing data over longer periods, the whole rows are 226 

eliminated. The shorter missing data occurs due to technical faults while the longer missing periods are attributed to 227 

instrument maintenance (Zaidan et al., 2020). Only 71.8% of total data was retained for modelling the next step in the 228 

measurement period. Since the data were obtained from different measured variables with various physical units and 229 

magnitudes, it was crucial to normalise the data. The scaling factor depends on which activation function is chosen. In 230 

this case, the datasets were scaled so that it has a mean of 0 and a standard deviation of 1 to transform them into the range 231 

of the activation function. The standardised data was then separated into different months for the reason of the seasonal 232 

variation in the atmospheric condition. The data was further divided into training set (70%) and testing set (30%). The 233 

processed data were also converted to hourly and daily averages for reporting purposes. 234 
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2.3 Setting of the neural network 235 

After data collection and data pre-processing procedures, the next step is methodmodel optimisation (Figure 1). ANN 236 

models have been utilised in predicting air quality (Freeman et al., 2018; Maleki et al., 2019; Cabaneros et al., 2019; 237 

Zaidan et al., 2020).  Neural networks provide a robust approach for approximating real-valued target functions because 238 

they can mimic the non-linearity of the functions and their optimiszation methods are well developed (Zaidan et al., 2017). 239 

The architecture of neural networks consists of nodes as activation function (Figure 2), and the activation function in each 240 

layer determines the output value of each neuron that becomes the input values for neurons in the next hidden layer 241 

connected to it. In this paper, feed-forward neural network (FFNN) is used instead of a more sophisticated time delay 242 

neural network (TDNN) because some of the rows in the dataset were removed in the data pre-processing step due to the 243 

existence of missing data and TDNN cannot be performed without time continuity. FFNN usually consists of a series of 244 

layers. The first layer has a connection from the network input. Each subsequent layer has a connection from the previous 245 

layer. The final layer produces the network’s output. A neuron can be thought as a combination of two parts: 246 

zj
(L)

= σ(∑ wji
(L)

n

i=1

xi + bj
(L)

) 
(1), 

where zj
(L)

 and bj
(L)

 are the intermediate output and the bias term for the jth neuron at Lth layer, respectively. wji
(L)

 is the jth 247 

weight for each data points xi at Lth layer.  The second part performs the activation function (sigmoid function in this 248 

study) on zj to give out the output of the neuron: 249 

σ(zj
(L)

) =
1

1 + exp
−z

j
(L) 

(2), 

The FFNN methodmodel was created, trained and simulated with MATLAB (version: 8.3.0.532), using Neural Network 250 

Toolbox. We initialised the weights randomly and the weights wereare updated through ‘‘Levenberg-Marquardt’’ 251 

algorithm optimisation that was the fastest available back-propagation training function (Chaloulakou et al., 2003). We 252 

performed several iterations within a cycle to minimise the training loss with Bayesian regularisation. These steps were 253 

done iteratively until the best combination of the number of hidden layers and the corresponding number of neurons that 254 

provided the minimum error was found. According to the review paper by Cabaneros et al. (2019), a shallow neural 255 

network with one hidden layer and enough neurons in the hidden layers can fit any finite input-output mapping problem 256 

for non-linear relationship. In the network training process, the number of neurons varied from 2 to 10 neurons per layer 257 

with an incremental factor of 2 neurons in each simulation, and from 10 to 25 per layer with an incremental factor of 5 258 

neurons in each simulation. To keep the methodmodel simple, we consider only one or two layers in the simulation 259 

process because the computing requirements could rise exponentially with the number of layers and neurons. Once we 260 

pick the suitable methodmodel configuration, the methodmodel estimates number concentration using testing data. 261 

Finally, the selected performance metrics, described in Section 2.4, can be calculated and we evaluate which approach is 262 

the most suitable for size distribution estimation. 263 

2.4 Other methods as comparison with the neural network method  264 

In order to demonstrate the performance of the FFNN method, we perform similar procedures applying other simpler 265 

methods, which have been widely used as means of data imputation (Junger and Ponce De Leon, 2015). They include 266 

univariate and multivariate methods. The former includes unconditional mean (UM), median (MD), linear interpolation 267 

(LinI), logarithmic interpolation (LogI), next neighbour interpolation (nNI) and previous neighbour interpolation (pNI), 268 
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where nNI was implemented as the next value carried backward while pNI as the previous value carried forward. The 269 

multivariate methods used in this study are conditional mean based on a linear regression of meteorological parameters 270 

and other particle size number concentrations as inputs (CM–met and CM–PSD, respectively). These methods are 271 

implemented as a comparison with the FFNN method.  272 

2.54 Performance metrics 273 

We choose the optimal combination of the number of hidden layers and the corresponding number of neurons by checking 274 

its mean absolute error (MAE), which is a simple way to illustrate the residuals of the estimated values by the estimation 275 

methodmodel. In order to identify which size bin manage to be predicted best, two metrics are used, namely coefficient 276 

of determination (R2) and normalised root-mean-square error (NRMSE). R2 measures how well the observed outcomes 277 

are replicated by the estimation methodmodel, based on the proportion of total variation of outcomes explained by the 278 

estimation methodmodel. NRMSE represents the standard deviation of the estimated errors with respect to its mean. 279 

NRMSE is used rather than commonly used RMSE because the number concentrations of the different size range are of 280 

different magnitudes. The comparison in different size range becomes different if RMSE is not normalised with its mean. 281 

MAE =
∑ |yi − yî|

n
i=1

n
 

(3) 

R2 = 1 −
∑ (yi − yî)

2n
i=1

∑ (yi − y̅)2n
i=1

 
(4) 

NRMSE =  
√∑ (yi − yî)

2n
i=1

n
y̅

 

(5) 

where yi, yî and y̅ represent the ith measurement value, the yth estimated value by the estimation methodmodel and the 282 

mean of the all the measurement data, respectively. n notates the total number of the valid measurement data.  283 

3 General data analysis 284 

3.1 Environmental condition 285 

Hussein et al. (2019) and Zaidan et al. (2020) investigated and described the effect of local weather conditions, 286 

respectively. Here we describe briefly the meteorological conditions during the measurement period as background 287 

information. Starting from August 2016, the daily temperature decreased gradually from 40℃ to its tough 0℃ in February 288 

2017. It rose gradually to 40℃ in August 2017. During the measurement period, the hourly median value was 19.9℃ 289 

(Figure 3a). RH varied quite a lot from 10% to 100%, with an hourly median of 52.3%, and did not seem to have a 290 

seasonal pattern (Figure 3b). In summer months, wind appeared be stronger but the wind direction is more stable, mostly 291 

from northwest (270⁰–360⁰). In cold months, averaged wind speed was lower but wind blew from fluctuating direction. 292 

During the whole measurement period, wind speed ranged between 0–6 m s–1 and its median is 1.39 m s–1 (Figure 3c–,d). 293 

Air pressure varied in a range from 892 to 912 hPa and its hourly median was 900 hPa In spite of the narrow range of 294 

variation, winter months seem to have slightly higher air pressure than summer months (Figure 3e).  295 

 296 

Meteorological conditions have been suggested to influence particle number concentration. Hussein et al. (2019) 297 

demonstrated that number concentration had a rather complex relationship with temperature. Furthermore, number 298 

concentration of submicron had a decreasing trend with respect to the wind speed which indicates that most of the 299 
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submicron fraction is originated from local sources such as combustion processes. Meanwhile, the number concentration 300 

of coarse particles had higher concentrations at stagnant conditions and when the wind speed is higher than 5.5 m s–1. It 301 

is mainly because of road dust resuspension and might also be attributed to dust storm via long-range transport Hussein 302 

et al., 2019. In this study, we further explore how wind direction influences the particle number concentration (Figure 4). 303 

Wind coming from the northwest (225⁰–325⁰) was generally stronger, but lower particle number concentration was 304 

detected because the measurement area is at the outskirt of downtown. Wind from East and South (45⁰–225⁰) has a lower 305 

wind speed but a more intense hourly particle number concentration can be detected. From that direction situates the 306 

urban city where all kinds of industrial activities take place. When considering only coarse particles, relatively high 307 

number concentration is found when south-westerly wind is strong. This can further serve as an evidence that the source 308 

of coarse particles in that region might come mostly from long range sea salt from Dead Sea or dust particles from nearby 309 

deserts. 310 

3.2 General pattern of particle size distribution 311 

Hourly total number concentration ranged from 1.90×103 cm–3 to 1.52×105 cm–3and its median was 1.36×104 cm–3. Figure 312 

5a performed moderate seasonal pattern in general: lower in summer months and higher in colder months. Hussein et al. 313 

(2019) also characterised the modal structure of the particle number size distribution for the same site. Four modes have 314 

been detected by lognormal fitting, as known as DO-FIT algorithm and modal structure (Hussein et al., 2005; Hussein et 315 

al., 2019), revealed that the mode number concentrations of the nucleation, Aitken, and coarse modes were lognormally 316 

distributed around their geometric mean values: 0.022 μm, 0.062 μm, and 2.3 μm respectively. However, the accumulation 317 

mode number concentration had two distinguished modes with particle diameter centred at 0.017 μm and 0.39 μm. As 318 

seen in Table 1, the total number concentration of all particle size (1.70±1.26×104 cm–3) is mostly accounted by Aitken 319 

mode (45–80%, average: 1.09±1.01×104 cm–3), followed by nucleation mode (10–50%, average: 0.48±0.32×104 cm–3). 320 

Accumulation mode (0–15%, average: 0.13±0.08 cm–3) comes third and only less than 0.5% of the total particle number 321 

concentration contain coarse particles with an average of 2.13±2.80 cm–3 (Figure 5b–-e). Seasonal pattern of the total 322 

number concentration resembles the Aitken composition: lower proportion in summer months and higher in colder 323 

months. The ratio of nucleation mode performs in an opposite way. The seasonal variation of total number concentration 324 

is due to the more suppressed boundary layer in winter (Teinilä et al., 2019) and the elevated wood combustion (Hellén 325 

et al., 2017). The particle number of accumulation and coarse mode steadily stay at a low proportion line, which did not 326 

account for the total number concentration. It is also noticed that dust episodes occurred with the concentrations that often 327 

exceeded 2 cm–3 and the daily concentration in the course of these episodes can rise to 20 cm–3. These episodes were often 328 

found in spring from February to May and some episodes can last for up to one week. 329 

 330 

Similar to many other urban environments, the diurnal pattern observed in this study reflects the combustion emissions 331 

from traffic activity, which is more during the workdays (Hussein et al., 2019). The two peaks of the nucleation mode 332 

and Aitken mode in the cold months are relevant for the morning and the afternoon traffic rush hours, which are similar 333 

to those noticed in most cities in other countries. In warmer months, the diurnal cycles are not as distinct, but a sharp peak 334 

of nucleation mode around noon is found, which is associated with the occurrence of new particle formation. These events 335 

occurred very often in the summer as suggested by Hussein et al. (2020). The amplitude of diurnal cycles of coarse mode 336 

is small while the patterns of accumulation are not clear (Figure 6). 337 
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3.3 Correlation analysis 338 

Figure 7 demonstrated the interaction among the whole measured spectrum shows three range clusters based on their 339 

correlation with the number concentration at other bin sizes: 0.01–0.205 μm, 0.205–0.875 μm and 0.875–10 μm. 0.01–340 

0.205 μm and 0.875–10 μm fall entirely within the size range detected by SMPS and OPS, respectively. The 5-min number 341 

concentration of smaller size and bigger size bins have clear and strong correlation with the concentration of its 342 

neighbouring size bin. However, particles of size 0.205–0.875 μm are located in the overlapping regions by the two 343 

instruments; as a result, do not correlate well with other size bins. The correlation of 5-min particle size distribution with 344 

meteorological parameters are generally low. Temperature appears to be the most correlated parameters for all bin sizes 345 

among all the parameters we used in this study. Smaller size range have higher Pearson’s correlation coefficient (R) than 346 

larger size range for WD, WS and P. 347 

 348 

The 5-min averaged data show similar correlation for the particle size distribution except for the smallest size bin. The 349 

hourly and daily data have higher correlation with the other size bins which are also monitored by SMPS. The 5-min 350 

averaged data show different correlation from the hourly and daily averaged data performed by Zaidan et al. (2020). The 351 

correlations of 5-min size distribution with all meteorological variables are below 0.5 for all size range. However, for 352 

hourly and daily averaged data, R is much higher in specific size bins. Hourly and daily temperature, in particular, show 353 

increasing R with larger particle size for accumulation and coarse mode. Overall, the correlations increase with the longer 354 

averaging windows. This might be due to the buffer period the meteorological conditions act on the dispersion of particles. 355 

Based on this result, using data with finer temporal resolution might be considered to be less influential to the estimation 356 

accuracy of modelling. 357 

4 Model Evaluation of the proposed method  358 

4.1 General evaluation  359 

Figure 8 illustrates how well the models of the three approaches of the proposed FFNN perform in term of R2 and NRMSE. 360 

Approach 1 (Size distribution prediction estimation based on meteorological parameters only, FFNN–met): For 361 

more than half out of the 23 size bins, 2 layers and 15 neurons is the best combination where the residuals are the lowest 362 

(Table 2). Owing toSince the poor correlation with meteorological condition, we expect a low correlation of determination 363 

even using the optimal configuration neural network (R2 = 0.22–0.58). The R2 looks are lowpoor at the nucleation mode 364 

(0.01< Dp <0.03 μm) of the whole size distribution around nucleation mode (R2~0.2). The rest of the size bins have better 365 

and more stable performance (R2 = 0.4–0.58). This shows that the instrument might have a poor detection efficiency for 366 

particles of smaller size. By using FFNN, tThe model performance of FFNN method using 5-min data for all size bins 367 

(R2 = 0.22–0.58) is worse than using daily data (R2 = 0.77) performed in Zaidan et al. (2020). Compared with hourly data 368 

(R2 = 0.66), the overall model performance of the method using 5-min data is comparable (R2 = 0.67). 369 

Approach 2 (SMutual size distribution prediction estimation based on other particle sections only, FFNN–PSD): 370 

This approach works well with most combination of number of layers and neurons. They dodid not show a clear difference 371 

among the combinations we choose. There is no single combination which entirely outperform the others in all size bins. 372 

We summed up the MAE for all size bins and decided to stick to 2 layers and 10 neurons with the overall lowest residuals 373 

(Table 2). R2 are all above 0.97 for all bin sizes, and NRMSE areis 0.01–0.25 for all bin sizes. The results are expected 374 

because there are 22 inputs and one output. Relatively worse correlation at the edges of size bins (0.01< Dp< 0.02 μm; 6< 375 
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Dp< 10 μm) is found because of the lack of nearby size bins which has high correlation with the corresponding size bin. 376 

Another reason could be that the instrument has a higher detection limits for smaller particles (Liu et al., 2014). The 377 

poorer performance for smaller size might be due to a coarser sizer resolution compared to other SMPS components 378 

(Tritscher et al., 2013), so that NanoSMPS does not reflect the real enough size distribution in the atmosphere. Relatively 379 

poor modelling estimation performance at the middle size range (0.15< Dp< 0.5 μm) in the whole measured spectrum is 380 

because of the overlapping of instruments. This also ascertain the importance of creating a better algorithm when we 381 

merge two or more size distribution by different instruments. In this study, the measuring techniques and the measuring 382 

targets are different by the SMPS and OPS. The merging of the two measuring targets, the optical particle diameter and 383 

the electrical mobility diameter, might create significant uncertainties (DeCarlo et al., 2004; Tritscher et al., 2015). The 384 

estimation of certain bin size by other bin sizes can be thought of replacing negative values in the raw data by particle 385 

sizers. While some instrument manufacturers create built-in algorithms to replace with artificial non-negative numbers, 386 

most end-users simply remove the seemingly impossible negative values from the dataset. The perfect way to do it is to 387 

have a parallel instrument that overlaps with that particle size range. However, in many cases, this is not possible as a 388 

result of financial constraints. Therefore, we shall rely on the mutual relationship between the size sections in the aerosol 389 

population. Negative values appear often at size bins with very low number concentration (usually in coarse mode). 390 

Instead of eliminating them, this alternative could maintain the symmetry of the error distribution of the number 391 

concentration (Viskari et al., 2012) and minimise the uncertainties caused. 392 

Approach 3 (SMutual size distribution estimationprediction based on meteorological parameters and other 393 

particle sections): Tthe general results are similar as in PSD. However, the more input variables do not enable the 394 

approachmodel to work better. At some bin size the R2 are even slightly smaller than PSD solely. Since meteorological 395 

data show low correlation with most portion of measured spectrum. In that approach, the addition of meteorological 396 

parameters is not beneficial to the modelling estimation process. Due to the lack of improvement in the methodmodel 397 

development, we will only focus on the two methodsmodels: FFNN–met and FFNN–PSD from now on. 398 

 399 

In order to highlight the performance of the FFNN methods in terms of accuracy and reliability, we compare the FFNN 400 

methods with other simpler methods, the results as shown in Table 3 for R2 and Table 4 for NRMSE. The R2 of the 401 

univariate methods UM and MD are close to 0 because their imputation are over-simplified and imply the replacement of 402 

a missing value by a constant. The remaining univariate interpolation methods LinI, LogI, nNI and pNI showed good 403 

results in general (R2 = 0.82–0.92, NRMSE = 0.57–0.88), but failed to perform even fairly at some particle size bins. This 404 

implies that these methods are not stable for the whole spectrum of the particle size distribution. The performance results 405 

of the multivariate methods CM–met and CM–PSD are comparable to FFNN–met and FFNN–PSD, but both show weaker 406 

performance in terms of R2 and NRMSE no matter whether meteorological (CM–met: R2 = 0.52, NRMSE = 1.39; FFNN–407 

met: R2 = 0.67, NRMSE = 1.13) or particle size distribution data (CM–PSD: R2 = 0.99, NRMSE = 0.17; FFNN–PSD: R2 408 

= 1.00, NRMSE = 0.07) is used as inputs. The pattern of performance of the multivariate methods is also similar to those 409 

of FFNN, i.e., relatively poor performance at the edges of size bins (0.01< Dp< 0.02 μm; 6< Dp< 10 μm) and the 410 

overlapping region (0.15< Dp< 0.5 μm). Although the multivariate method CM–PSD also rely on the mutual relationship 411 

between the size sections in the aerosol population, this method is not as accurate as our proposed FFNN–PSD. 412 

 413 

From the perspective of physics, particles in the nucleation mode (0.01< Dp< 0.03 μm) are more sensitive to 414 

transformation processes due to their volatility and rather unstable nature (Morawska et al., 2008). This leads to a 415 
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relatively short lifetime in the atmosphere (Al-Dabbous et al., 2017), thereforehence, the relationships between the input 416 

variables and the nucleation mode are not well established. Al-Dabbous et al. (2017) demonstrated that accumulation 417 

mode particles (0.1< Dp< 0.3 μm)  have much longer lifetimes compared to smaller particles, causing them to be 418 

transported for larger distances (Laakso et al., 2003); therefore, the mapping of the relationships between long–range 419 

transported accumulation mode particles and covariates is supposed not to well understood. However, the relative 420 

prediction ability in this study is not lower given that local meteorological variables were used as input variables. The 421 

possible reason is that this mode falls exactly in the instrumental overlapping regions, which leads to a lower 422 

predictivelypredictability. The locally-produced Aitken mode particles (0.03< Dp< 0.1 μm) are less effectively removed 423 

by transformation processes (e.g., evaporation and coagulation) from the atmosphere, compared with nucleation mode 424 

(0.01< Dp< 0.03 μm), allowing the prediction modelestimation methods to better understand their relationships with the 425 

input variables, which is in alignment with Al-Dabbous et al. (2017). 426 

4.2 Temporal pattern 427 

Figure 9 shows the diurnal discrepancies during workdays and weekends. Relative particle number concentration was 428 

defined by the estimatmodelled concentration with respect to the measured concentration. Values above 1 indicates 429 

overestimation while values below 1 suggests underestimation. For approach 1 (FFNN–met), except for the overlapping 430 

size bin, which are underestimated by more than 50% at all time range, the difference between estimatmodelled and 431 

measured hourly number concentration is within 50% during both workdays and weekends. Overestimation is found in 432 

early morning before 3 a.m. during workdays for all size bins, especially for UFP. Following the overestimation, at about 433 

6 a.m. in the morning, the estimatmodelled number concentration appears to understate by up to 40%, especially at size 434 

bins below 0.1 μum. Along the day, the modelling estimation uncertainties are rather small until in the evening from 6 435 

p.m. to 11 p.m. where estimatmodelled UFP number concentration show moderate overestimation one more time. It 436 

reveals that the model with only meteorological parameters as inputsFFNN–met fails to catch the diurnal pattern from 6 437 

p.m. to 7 a.m. in particular for UFP. The pattern of the performance for weekends does not appear to be as distinctive as 438 

on workdays. It shows the overestimation not only for UFP in early morning about 3 a.m., but also at the upper edge 439 

larger than 5 μum from 3 a.m. to 4 p.m.. At 7.p.m. onwards until noon, an underestimation is found at all size bins. For 440 

approach 2 (FFNN–PSD), except the overlapping size bin, which has a significant overestimation from 6 p.m. to 7 a.m., 441 

most show trivial negligible 10% uncertainty during both workdays and weekends. The model performance over 442 

weekends show relatively stronger uncertainties. The smallest bin at 0.01 μm is slightly understated for all hours of a day. 443 

Other than these, FFNN–PSD models with the full spectrum of size distribution as inputs manages to catch fairly well the 444 

diurnal pattern for all size bins.  445 

 446 

Figure 10 further shows the monthly deviation in estimationmodelling performance. For approach 1 (FFNN–met), higher 447 

R2 is found in November, February and April in the range of SMPS. Other than that, no observable variation in R2 in 448 

approach 1 (FFNN–met). For approach 2 (FFNN–PSD), except in January when all the rows were eliminated because of 449 

the lack of wind information, performance in the other months is steady for most size range. At 0.21 μm, the difference 450 

in estimationmodel performance varies across different months. R2 in winter months are 0.76, 0.36 and 0.61, in November, 451 

December and February, respectively, while R2 exceeds 0.9 in other months. This unexpectedly low R2 only occurs in the 452 

winter months at the overlapping size range. It can be speculated that the measurements by the two instruments differ in 453 

a larger extent during winter. This might be attributed to sensor drift and a number of interference artefacts for particle 454 
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measurements associated with several factors, such as relative humidity, temperature and other gas-phase species, which 455 

were demonstrated by several researchers (e.g. Lewis et al., 2016; Popoola et al., 2016). Another reason for the difference 456 

in estimationmodel performance can be that the percentage of complete rows in these months are lower than the other 457 

months. The drop in data points might impose an influence to the estimationmodelling performance. Especially in June, 458 

at the few size bins close to the larger edge, R2 ranges from 0.9 to 0.7. Besides that, some low R2 can be also found in 459 

individual month at both edges of size range, which does not appear to show any patterns.  460 

 461 

In short, the estimationprediction ability for lower edge (0.01< Dp < 0.03 μm) is found worse in both 462 

approachemodels. The model performance of the FFNN method in mid-range (0.15< Dp< 0.5 μm) and upper edge 463 

(6< Dp< 10 μm) are relatively worse for the approachmodel with other fractionated size bins as input variables 464 

according to the aforementioned statistical performance indicators. All statistical estimationprediction simulations 465 

are based on the previous history of relationships between the inputs and outputs. As a result, the 466 

predictionestimation simulations for different size ranges have significantly unique connections. The 467 

approachmodel by meteorological parameters considers only 6 predictor variables so the accuracy is lower than 468 

the model byFFNN– PSD. It might not seem surprising that the deviations between the measured and estimated 469 
size distribution were not substantial (R2> 0.97, NRMSE< 0.25) because FFNN–PSDthe PSD model takes 22 other 470 

size bins as predictor variables. This, still, gives a clue that the proposed FFNN methodmodel can provide adequate 471 

solutions to particle size distribution prognostic demands. Furthermore, this FFNN method outperforms the other 472 

selected widely used methods in terms of its accuracy and reliability. The estimation of certain bin size by other 473 

bin sizes can be thought of replacing ‘negative’ values in the raw data by particle sizers, including SMPS we used 474 

in this paper. Instead of eliminating the negative values, they can be estimated by other size bins with a high 475 

accuracy in order to keep the symmetry in data error distribution (Viskari et al., 2012). 476 

 477 

5 Conclusion 478 

This paper presents the evaluation of imputation methods by means of feed-forward neural network (FFNN) models for 479 

estimating particle number concentration at various particulate size bins. Input predictors include a merged particle size 480 

distribution, by a scanning mobility particle sizer (NanoSMPS) and an optical particle sizer (OPS), which covers size 481 

range from 0.01 to 10, and meteorological parameters, including temperature (Temp), relatively humidity (RH), wind 482 

speed (WS), wind direction (WD) and ambient pressure (P). The measurements were collected in an urban background 483 

region in Amman, the capital of Jordan in the period of 1st Aug 2016–31st July 2017. The total number concentration 484 

(1.70±1.26×104 cm–3) in the measurement period show moderate seasonal variability owing to the more suppressed 485 

boundary layer (Teinilä et al., 2019) and the elevated wood combustion (Hellén et al., 2017) in wintertime. Similar to 486 

many other urban environments, the diurnal pattern observed in this study reflects the traffic activity, which has a more 487 

pronounced pattern during workdays (Hussein et al., 2019). The amount of coarse particles is negligibletrivial in terms of 488 

number concentration but dust episodes were found often in spring during the measurement period. 489 

 490 

We proposed three approaches with different input variables: (1) only meteorological parameters, (2) only number 491 

concentration at the remaining size bins, and (3) both of the above. We performed optimisation to obtain the optimal 492 

configuration of the FFNN methodsmodels, which are two layers with 10–15 neurons, balancing the accuracy and the 493 

computing resources. The 5-min averaged meteorological parameters give varying number concentration estimation for 494 

various size bins (R2 = 0.22–0.58), which is outperformed by hourly and daily averaged data (R2 = 0.66–0.77), as 495 

demonstrated by Zaidan et al. (2020). The methodsmodels using the number concentration at the remaining size bins, 496 
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both with or without meteorological data, show expected perfect performance (R2 > 0.97). We also compare the FFNN 497 

methods with other commonly used methods and the results highlight the high accuracy and reliability of methods by 498 

means of neural networks. 499 

 500 

Relatively poor model performance of the proposed FFNN methods is found in three regions. At the lower edge (0.01< 501 

Dp< 0.02 μm) and the upper edge (6< Dp< 10 μm), the number of neighbouring size bins is limited and also the detection 502 

efficiency by the corresponding instruments is lower compared to the other size bins. Another noticeable region (0.15< 503 

Dp< 0.5 μm) is the overlapping section measured by the two particle sizers and the reason is because of the deficiency of 504 

merging algorithm. For all the above approaches, the poorer performance for smaller particles in the nucleation mode 505 

could be due to the fact that it is more effectively removed from the atmosphere compared to other modes (Al-Dabbous 506 

et al., 2017). An observable overestimation is also found in early morning for ultrafine particles followed by a distinct 507 

underestimation before midday. A larger derivation between the measured and the estimated number concentration is 508 

found in the winter, which might be caused by sensor drift and interference artefacts (e.g. Lewis et al., 2016; Popoola et 509 

al., 2016). Despite the high number of input predictors, the good emodelstimation performance provides an alternative 510 

method to fill up the negative values in size distribution raw dataset, which often exist due to ill-511 

configuredmisconfiguration problems. Instead of removing the factually impossible data point, this way of replacing 512 

negative numbers can maintain a symmetric distribution of errors (Viskari et al., 2012) and minimise the uncertainties 513 

caused. 514 
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Figure 1. The block diagram describing the methodology of the proposed FFNN method model. 

 

Figure 2. Schematic diagram of a neural network with one hidden layer of sigmoid activation function. 
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Figure 3. Timeseries of meteorological conditions during the measurement period Aug 2016–Jul 2017. (a–e) denotes 

temperature, relative humidity, wind speed, wind direction and air pressure, respectively. Black and red represent 

hourly and daily averaged data, respectively. 

 

Figure 4. Windrose diagram of total particle number concentration at different direction (in theta axis) and different 

wind speed (in radical axis). Wind direction and wind speed data are grouped in every 10⁰ and 0.5 m s–1. Warmer color 

represent higher total particle number concentration. (a) total number concentration, log scale; (b) coarse mode, linear 

scale. Note the color scales are different. 
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Figure 5. Timeseries of total particle number concentration (in cm–3) of 0.01–10μm in (a). (b–c) indicate the 

contribution in percentage of nucleation mode and Aitken mode, respectively. (d–e) show the number concentration in 

accumulation mode and coarse mode, respectively. Black and red represent hourly and daily averaged data, 

respectively. 
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Figure 6. (a) Diurnal cycle of the (i) nucleation mode, (ii) Aitken mode, (iii) accumulation mode and (iv) coarse mode 

in warm (red) and cold months (blue) during workdays (solid) and weekends (dashed). (b) Particle size distribution in 

(i) cold and (ii) warm months, coloured by particle number concentration (cm–3). Cold and warm months refer to 

December–February and June–August, respectively. 
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Figure 7. Matrix plots showing the Pearson correlation coefficient (R) of particle size distribution of (a) 5-min, (b) 

hourly, (c) daily averaging with (i) particle size distribution itself and (ii) meteorological parameters. Darker colour 

represents a higher correlation. 



24 

 

 



25 

 

 

Figure 8. Bar chart showing the model evaluation of FFNN modelapproach with (a) only meteorological parameters 

(Approach 1, FFNN–met), (b) particle size distribution itself (Approach 2, FFNN–PSD), (c) both particle size 

distribution and meteorological parameters (Approach 3) as inputs. The  model evaluation metrics for the proposed 

method include (i) coefficient of determination (R2) and (ii) normalised root mean squared error (NRMSE). 
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Figure 9. Heatmap showing the hourly median relative particle number concentration of the models approach with (a) 

meteorological parameters (Approach 1, FFNN–met) and (b) particle size distribution  (Approach 2, FFNN–PSD) as 

inputs across different hours of a day (i) in workdays and (ii) in weekends. The relative particle number concentration 

is defined as estimatmodelled concentration with respect to measured concentration. Red colour show overestimation 

while blue show underestimation. 

 

Figure 10. Heatmap showing the coefficient of determination (R2) of the approachmodels with (a) meteorological 

parameters (Approach 1, FFNN–met) and (b) particle size distribution (Approach 2, FFNN–PSD) as inputs for different 

months at different size bins. Darker colour represents a higher R2. 
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Table 1. Table showing the descriptive statistics (in cm–3) of total number concentration, nucleation mode, Aitken mode, 683 

accumulation mode and coarse mode. The statistical values include mean, standard deviation, and percentile (10%, 25%, 684 

50%, 75% and 90%). 685 

 Mean std 10% 25% 50% 75% 90% 

Total (×104)  1.70 1.26 0.57 0.85 1.35 2.16 3.31 

Nucleation (×104) 0.48 0.32 0.16 0.26 0.41 0.63 0.90 

Aitken (×104) 1.09 1.01 0.29 0.45 0.77 1.37 2.35 

Accumulation (×104) 0.13 0.08 0.05 0.08 0.11 0.15 0.21 

Coarse 2.13 2.80 0.55 0.84 1.29 2.33 4.3 

 686 

Table 2. Table showing the best configuration in the form of (the number of layers; the number of neurons) for the 687 

approach model by meteorological parameters (FFNN–met) and the number concentration at the other size bins (FFNN–688 

PSD) as inputs. Mean absolution error (MAE, in cm–3), coefficient of determination (R2) and normalised root-mean-689 

square error (NRMSE) are listed for different size bins on each row. The last row concludes the overall selection of the 690 

approachmodel with the best configuration and its corresponding evaluation metrics.  691 

Particle 

size 

(μm) 

Approach 1 (FFNN–met) Approach 2 (FFNN–PSD) 

Best 

setting 

MAE  

(cm–3) R2 NRMSE 

Best 

setting 

MAE  

(cm–3) R2 NRMSE 

0.012 2; 10 2640 0.199620 0.6918 2; 10 334 0.99 0.11077 

0.015 2; 15 4850 0.4237 0.59868 2; 8 216 1.00 0.0310 

0.021 2; 15 6120 0.38774 0.5831 2; 15 97.8 1.00 0.01436 

0.027 2; 15 8470 0.41072 0.6210 1; 25 34.0 1.00 0.0032 

0.037 2; 20 8240 0.46568 0.6619 2; 15 26.3 1.00 0.0024 

0.049 2; 15 6610 0.48778 0.74389 2; 25 33.7 1.00 0.0049 

0.066 2; 15 4690 0.4613 0.83266 2; 10 56.7 1.00 0.01325 

0.088 2; 15 3040 0.5207 0.7114 2; 4 66.2 1.00 0.0183 

0.12 2; 15 1810 0.52193 0.54398 2; 8 63.1 1.00 0.0210 

0.15 2; 10 917 0.29836 0.49865 2; 15 72.5 0.99 0.05215 

0.21 2; 6 327 0.5536 0.7101 2; 8 114 0.91 0.3142 

0.37 2; 10 95.8 0.43297 0.54396 2; 20 12.9 0.99 0.0723 

0.49 2; 15 12.1 0.5025 0.6138 2; 25 0.9630 1.00 0.04237 

0.66 2; 15 3.03 0.5824 0.56580 2; 15 0.1995 1.00 0.0290 

0.88 2; 15 5.65 0.62190 1.4301 2; 10 0.2202 1.00 0.040398 

1.17 2; 15 1.43 0.5331 0.8134 2; 8 0.0680 1.00 0.02657 

1.56 2; 20 1.44 0.54384 0.81088 2; 8 0.0816 1.00 0.0312 

2.08 2; 15 1.84 0.49885 0.9748 2; 8 0.0825 1.00 0.02878 

2.77 2; 15 1.02 0.44352 1.0925 1; 4 0.0573 1.00 0.0372 

3.70 2; 15 0.52 0.41076 1.0719 1; 8 0.0329 1.00 0.04655 

4.92 2; 15 0.28 0.4427 10.009955 1; 4 0.0254 1.00 0.0681 

6.56 2; 9 0.11 0.4231 0.9710 1; 6 0.0206 0.99 0.13252 

8.75 2; 10 0.060 0.3903 0.9546 2; 6 0.0169 0.98 0.201980 

overall 2; 15 2120 0.67 1.1324 2; 10 76.6 0.999 0.0671 

 692 
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Table 3. Table showing the comparison of different estimation methods, including unconditional mean (UM, column 2), 694 

median (MD, column 3), linear interpolation (LinI, column 4), logarithmic interpolation (LogI, column 5), next neighbour 695 

interpolation (nNI, column 6), previous neighbour interpolation (pNI, column 7), conditional mean by regression of 696 

meteorological parameters and other particle size number concentrations as inputs (CM – met and CM – PSD, column 8 697 

and 9, respectively) and the feed-forward neural network with meteorological parameters and other particle size number 698 

concentrations as inputs (FFNN – met and FFNN – PSD, column 10 and 11, respectively). Table showing the comparison 699 

of different estimation methods, including unconditional mean (UM, column 2), linear interpolation (LinI, column 3), 700 

logarithmic interpolation (LogI, column 4), next neighbour interpolation (nNI, column 5), previous neighbour 701 

interpolation (pNI, column 6), conditional mean by regression of meteorological parameters and other particle size 702 

number concentrations as inputs (CM – met and CM – PSD, column 7 and 8, respectively) and the feed-forward neural 703 

network with meteorological parameters and other particle size number concentrations as inputs (FFNN – met and FFNN 704 

– PSD, column 9 and 10, respectively). The coefficient of determination (R2) and normalised root-mean-square error 705 

(NRMSE)of each method are listed for different size bins on each row. Negative R2T are represented as ‘0’ to indicate 706 

poor accuracy at the particular particle size bin while ‘NA’ is used to represent the data is not available. The last row 707 

concludes the overall evaluation metrics. 708 

Particle 

size 

(μm) 

 Methods/ R2 

UM MD LinI LogI nNI pNI 

CM  

– met 

CM  

– PSD 

FFNN 

– met 

FFNN 

– PSD 

0.012 0 0 0 0 1.00 NA0 0.04 0.91 0.20 0.99 

0.015 0 0 0.66 0.71 0 0.49 0.14 0.85 0.42 1.00 

0.021 0 0 0.92 0.91 0.62 0.33 0.1 1.00 0.38 1.00 

0.027 0 0 0.91 0.93 0.69 0.90 0.11 1.00 0.41 1.00 

0.037 0 0 0.97 0.97 0.91 0.85 0.12 1.00 0.46 1.00 

0.049 0 0 0.98 0.99 0.80 0.80 0.13 1.00 0.48 1.00 

0.066 0.14 0 0.96 0.97 0.66 0.81 0.14 1.00 0.46 1.00 

0.088 0.31 0 0.97 0.98 0.60 0.64 0.12 1.00 0.52 1.00 

0.12 0.41 0 0.92 0.96 0 0 0.07 1.00 0.52 1.00 

0.15 0 0 0 0.20 0 0 0.03 0.97 0.29 0.99 

0.21 0 0 0 0 0 0 0.24 0.65 0.55 0.91 

0.37 0 0 0 0 0 0 0.04 0.9 0.43 0.99 

0.49 0 0 0 0 0 0 0.06 0.97 0.50 1.00 

0.66 0 0 0 0 0 0 0.07 0.96 0.58 1.00 

0.88 0 0 0.20 0.19 0.23 0.11 0.09 0.76 0.62 1.00 

1.17 0 0 0 0 0 0.99 0.04 1.00 0.53 1.00 

1.56 0 0 0.97 0.97 0.99 0.85 0.04 1.00 0.54 1.00 

2.08 0 0 0.84 0.83 0.91 0.67 0.03 1.00 0.49 1.00 

2.77 0 0 0.90 0.96 0 0.60 0.02 1.00 0.44 1.00 

3.70 0 0 0.76 0.87 0 0.62 0.02 1.00 0.41 1.00 

4.92 0 0 0.85 0.94 0 0.41 0.02 1.00 0.44 1.00 

6.56 0 0 0.27 0.55 0 0.57 0.03 0.99 0.42 0.99 

8.75 0 0 0 0 NA0 1.00 0.05 0.97 0.39 0.98 

overall 0.05 0 0.92 0.92 0.82 0.82 0.52 0.99 0.67 1.00 
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 710 

Table 4. Table showing the comparison of different estimation methods, including unconditional mean (UM, column 2), 711 

median (MD, column 3), linear interpolation (LinI, column 4), logarithmic interpolation (LogI, column 5), next neighbour 712 

interpolation (nNI, column 6), previous neighbour interpolation (pNI, column 7), conditional mean by regression of 713 

meteorological parameters and other particle size number concentrations as inputs (CM – met and CM – PSD, column 8 714 

and 9, respectively) and the feed-forward neural network with meteorological parameters and other particle size number 715 

concentrations as inputs (FFNN – met and FFNN – PSD, column 10 and 11, respectively). The normalised root-mean-716 

square error (NRMSE) of each method are listed for different size bins on each row. The last row concludes the overall 717 

evaluation metrics. 718 

Particle 

size 

(μm) 

 Methods/ NRMSE 

UM MD LinI LogI nNI pNI 

CM – 

met 

CM – 

PSD 

FFNN 

– met 

FFNN 

– PSD 

0.012 0.84 1.24 1.62 1.73 NA 1.62 0.74 0.23 0.69 0.11 

0.015 0.92 1.26 0.45 0.42 0.79 0.55 0.72 0.30 0.59 0.03 

0.021 0.91 1.24 0.21 0.22 0.46 0.61 0.70 0.02 0.58 0.01 

0.027 1.04 1.28 0.24 0.22 0.46 0.25 0.77 0 0.62 0 

0.037 1.08 1.34 0.15 0.15 0.27 0.35 0.85 0 0.66 0 

0.049 1.09 1.43 0.13 0.12 0.46 0.46 0.95 0 0.74 0 

0.066 1.04 1.50 0.23 0.18 0.66 0.49 1.04 0.01 0.83 0.01 

0.088 0.84 1.42 0.16 0.13 0.65 0.61 0.96 0.02 0.71 0.02 

0.12 0.59 1.25 0.22 0.16 0.86 0.80 0.74 0.03 0.54 0.02 

0.15 1.59 1.13 0.66 0.53 1.64 0.96 0.58 0.10 0.49 0.05 

0.21 11.6 1.61 3.7 3.24 4.93 1.53 1.26 0.85 0.71 0.31 

0.37 23.8 1.42 1.35 1.12 3.12 1.06 0.70 0.22 0.54 0.07 

0.49 185 14.4 4.16 3.53 7.98 1.00 0.83 0.15 0.61 0.04 

0.66 672 54.5 2.42 2.32 3.62 2.79 0.82 0.17 0.56 0.03 

0.88 485 39.4 2.06 2.07 2.02 2.18 2.20 1.12 1.43 0.04 

1.17 1750 143 4.45 3.88 7.84 0.11 1.16 0.07 0.81 0.03 

1.56 1750 143 0.19 0.22 0.11 0.46 1.16 0.05 0.81 0.03 

2.08 1510 124 0.54 0.57 0.40 0.78 1.34 0.04 0.97 0.03 

2.77 2880 236 0.47 0.30 1.48 0.92 1.43 0.04 1.09 0.04 

3.70 5750 472 0.69 0.50 1.83 0.86 1.38 0.05 1.07 0.05 

4.92 11000 902 0.51 0.34 1.64 1.02 1.32 0.09 1.00 0.07 

6.56 27100 2220 1.09 0.86 2.51 0.83 1.26 0.12 0.97 0.13 

8.75 52600 4320 4.95 3.33 1.62 NA 1.2 0.21 0.95 0.20 

overall 1.95 2.23 0.58 0.57 0.88 0.88 1.39 0.17 1.13 0.07 

Table showing the comparison of different estimation methods, including unconditional mean (UM, column 2), linear 719 

interpolation (LinI, column 3), logarithmic interpolation (LogI, column 4), next neighbour interpolation (nNI, column 5), 720 

previous neighbour interpolation (pNI, column 6), conditional mean by regression of meteorological parameters and other 721 

particle size number concentrations as inputs (CM – met and CM – PSD, column 7 and 8, respectively) and the feed-722 

forward neural network with meteorological parameters and other particle size number concentrations as inputs (FFNN 723 

– met and FFNN – PSD, column 9 and 10, respectively). The normalised root-mean-square error (NRMSE) of each 724 

method are listed for different size bins on each row. The last row concludes the overall evaluation metrics. 725 

Particle 

size 

(μm) 

 Methods 

UM MD LinI LogI nNI pNI 

CM – 

met 

CM – 

PSD 

FFNN – 

met 

FFNN – 

PSD 

0.012 0.84 1.24 1.62 1.73 NaN 1.62 0.74 0.23 0.69 0.11 

0.015 0.92 1.26 0.45 0.42 0.79 0.55 0.72 0.3 0.59 0.031 
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0.021 0.91 1.24 0.21 0.22 0.46 0.61 0.7 0.02 0.58 0.014 

0.027 1.04 1.28 0.24 0.22 0.46 0.25 0.77 0 0.62 0.0032 

0.037 1.08 1.34 0.15 0.15 0.27 0.35 0.85 0 0.66 0.0024 

0.049 1.09 1.43 0.13 0.12 0.46 0.46 0.95 0 0.74 0.0049 

0.066 1.04 1.5 0.23 0.18 0.66 0.49 1.04 0.01 0.83 0.013 

0.088 0.84 1.42 0.16 0.13 0.65 0.61 0.96 0.02 0.71 0.018 

0.12 0.59 1.25 0.22 0.16 0.86 0.8 0.74 0.03 0.54 0.021 

0.15 1.59 1.13 0.66 0.53 1.64 0.96 0.58 0.1 0.49 0.052 

0.21 11.6 1.61 3.7 3.24 4.93 1.53 1.26 0.85 0.71 0.31 

0.37 23.84 1.42 1.35 1.12 3.12 1.06 0.7 0.22 0.54 0.072 

0.49 184.81 14.39 4.16 3.53 7.98 1 0.83 0.15 0.61 0.043 

0.66 671.56 54.48 2.42 2.32 3.62 2.79 0.82 0.17 0.56 0.029 

0.88 484.97 39.38 2.06 2.07 2.02 2.18 2.2 1.12 1.43 0.040 

1.17 1749.22 143.06 4.45 3.88 7.84 0.11 1.16 0.07 0.81 0.026 

1.56 1752.85 143.35 0.19 0.22 0.11 0.46 1.16 0.05 0.81 0.031 

2.08 1513.46 123.72 0.54 0.57 0.4 0.78 1.34 0.04 0.97 0.028 

2.77 2882.01 236.1 0.47 0.3 1.48 0.92 1.43 0.04 1.09 0.037 

3.70 5753.5 471.87 0.69 0.5 1.83 0.86 1.38 0.05 1.07 0.046 

4.92 
10993.5

3 
902.11 0.51 0.34 1.64 1.02 1.32 0.09 1.00 0.068 

6.56 
27068.6

5 
2222.03 1.09 0.86 2.51 0.83 1.26 0.12 0.97 0.13 

8.75 
52562.0

2 
4315.29 4.95 3.33 1.62 NaN 1.2 0.21 0.95 0.20 

overall 1.95 2.23 0.58 0.57 0.88 0.88 1.39 0.17 1.13 0.067 

 726 


