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Abstract.  16 

In air quality research, often only size-integrated particle mass concentrations as indicators of aerosol particles are 17 

considered. However, the mass concentrations do not provide sufficient information to convey the full story of 18 

fractionated size distribution, in which the particles of different diameters (Dp) are able to deposit differently on respiratory 19 

system and cause various harm. Aerosol size distribution measurements rely on a variety of techniques to classify the 20 

aerosol size and measure the size distribution. From the raw data the ambient size distribution is determined utilising a 21 

suite of inversion algorithms. However, the inversion problem is quite often ill-posed and challenging to solve. Due to 22 

the instrumental insufficiency and inversion limitations, imputation methods for fractionated particle size distribution are 23 

of great significance to fill the missing gaps or negative values. The study at hand involves a merged particle size 24 

distribution, from a scanning mobility particle sizer (NanoSMPS) and an optical particle sizer (OPS) covering the aerosol 25 

size distributions from 0.01 to 0.42 μm (electrical mobility equivalent size) and 0.3 μm to 10 μm (optical equivalent size) 26 

and meteorological parameters collected at an urban background region in Amman, Jordan in the period of 1 Aug 2016–27 

31 July 2017. We develop and evaluate feed-forward neural network (FFNN) approaches to estimate number 28 

concentrations at particular size bin with (1) meteorological parameters, (2) number concentration at other size bins, and 29 

(3) both of the above as input variables. Two layers with 10–15 neurons are found to be the optimal option. Worse 30 

performance is observed at the lower edge (0.01< Dp< 0.02 μm), the mid-range region (0.15< Dp< 0.5 μm) and the upper 31 

edge (6< Dp< 10 μm). For the edges at both ends, the number of neighbouring size bins is limited and the detection 32 

efficiency by the corresponding instruments is lower compared to the other size bins. A distinct performance drop over 33 

the overlapping mid-range region is due to the deficiency of a merging algorithm. Another plausible reason for the poorer 34 

performance for finer particles is that they are more effectively removed from the atmosphere compared to the coarser 35 

particles so that the relationships between the input variables and the small particles is more dynamic. An observable 36 

overestimation is also found in early morning for ultrafine particles followed by a distinct underestimation before midday. 37 

In the winter, due to a possible sensor drift and interference artefacts, the estimation performance is not as good as the 38 

other seasons. The FFNN approach by meteorological parameters using 5-min data (R2 = 0.22–0.58) shows poorer results 39 

than data with longer time resolution (R2 = 0.66–0.77). The FFNN approach by the number concentration at the other size 40 

bins can serve as an alternative way to replace negative numbers in size distribution raw dataset thanks to its high accuracy 41 
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and reliability (R2 = 0.97–1). This negative numbers filling approach can maintain a symmetric distribution of errors and 42 

complement the existing ill-posed built-in algorithm in particle sizer instruments. 43 

 44 
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1 Introduction 48 

Particulate matter (PM) is the principal component of air pollution. PM includes a range of particle sizes, such as coarse 49 

(1< particle diameter (Dp)<10 μm), fine (0.1< Dp<1 μm), and ultrafine particles (UFP, Dp< 0.1 μm). Through human’s 50 

inhalation, coarse particles usually are partly deposited in the head airway (5–30 μm) by the inertial impaction mechanism, 51 

and are partly deposited in the tracheobronchial region, mainly through sedimentation (1–5 μm). The particles may be 52 

further absorbed or removed by mucociliary clearance (Gupta and Xie, 2018). The remaining fine and UFP, due to their 53 

high surface area to mass ratios (Kreyling et al., 2004), penetrate deeply into the alveolar region, where removal 54 

mechanisms may be insufficient (Gupta and Xie, 2018). Evidence suggests that the adverse associations of short-term 55 

UFP exposure with acute and chronic problems ranging from inflammation, exacerbation of asthma, and metal fume fever 56 

to fibrosis, chronic inflammatory lung diseases, and carcinogenesis (Spinazzè et al., 2017) might be at least partly 57 

independent of other pollutants (Ohlwein et al., 2019). Various studies have demonstrated that inhaled or injected UPF 58 

could enter systemic circulation and migrate to different organs and tissues (Londahl et al., 2014; Xing et al., 2016).  59 

 60 

Other than health effects, particles of various sizes also contribute to Earth’s ecosystem and climate differently. For 61 

instance, fine and UFP are capable of growing up to diameters of 0.02–0.1 μm within a day (Kulmala et al., 2004; 62 

Kerminen et al., 2018) where they constitute a fraction of cloud condensation nuclei; thus, indirectly affecting the climate 63 

(Kerminen et al., 2012). The drivers behind aerosol particles vary between natural and anthropogenic as well as primary 64 

and secondary. Primary particles are emitted to the atmosphere as particles, such as sea salt or dust particles, while 65 

secondary particles form in the atmosphere through gas-to-particle transformation, which has been known as new particle 66 

formation (NPF) observed in various environments and contributing to a major fraction of the total particle number budget 67 

(Kulmala et al., 2004; Kerminen et al., 2018). In addition, while fine particles cool the climate by predominantly scattering 68 

shortwave radiation, coarse particles warm the climate system by absorbing both shortwave and longwave radiation (Kok 69 

et al., 2017). Indeed, the complexity of urban aerosols is tribute to the fact that several sources can contribute in the same 70 

particle size range (Rönkkö et al., 2017). 71 

  72 

Currently, the most commonly reported aerosol variables are particle mass concentration and particle number 73 

concentration. The former metric, which is dominated by coarser particles, is included as air quality indicators (e.g. mass 74 

concentrations of both thoracic particles PM10 and fine particles PM2.5); however, it has been argued that this might ignore 75 

the potential adverse effect of UFP on health (Zhou et al., 2020). The latter one describes better the distribution of finer 76 

particles, but it neglects the influence of coarse particles. Using either particle mass concentration or particle number 77 

concentration solely is not enough to fully review the health effects and the Earth’s climate system by aerosol particles. 78 

Therefore, in order to understand the origin of atmospheric aerosol particles and their potential impacts at a specific 79 

location, the whole size distribution of these particles needs to be studied (Zhou et al., 2020).  80 
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 81 

Recently, due to urbanization and increased population, megacities have increased their contribution to atmospheric 82 

aerosol pollution massively Lelieveld et al. (2015). Middle East and North Africa (MENA) regions, with an average 83 

annual growth rate of 1.74% in 2019 (World Bank Group, 2019), has one of the world's regions most rapidly expanding 84 

populations. With the population of 578 million, several cities in MENA regions are among the 20 most polluted cities in 85 

the world. The annual average concentrations of some pollutants, for example PM2.5 in MENA (54.0 μg m–3) often exceed 86 

5 times the WHO recommended levels (10.0 μg m–3) (World Health Organisation, 2019). Many countries in MENA are 87 

dealing with negative impacts of air pollution in terms of both economic burden and health aspect (Ahmed et al., 2017; 88 

Goudarzi et al., 2019). Air Pollution in this region is estimated to cause 133,000 premature deaths annually, almost half 89 

of which are attributed to natural sources of air pollution, such as windblown sea salt and desert dust (Gherboudj et al., 90 

2017). Apart from natural pollutants, anthropogenic activities also play a major role in driving the air quality. They include 91 

the extensive development of petrochemical industry, vehicular emissions and open burning of waste (Arhami et al., 92 

2018).  93 

 94 

However, aerosol studies in this region have not paid attention to the aerosol number size distribution so far. Among the 95 

few studies published, most report mass concentration (Goudarzi et al., 2019; Arhami et al., 2018; Borgie et al., 2016), 96 

while some focused on the total particle number in MENA regions. Studies on the size-fractionated number concentrations 97 

are, nonetheless, scarce (e.g. Hakala et al., 2019)   due to the unavailability of instruments for measuring UFP in many 98 

air quality monitoring stations (Spinazzè et al., 2017). Determining aerosol number size distribution for a wide size range 99 

in a reliable manner is a challenging task. The fact that the ambient distributions range from nanometers to several 100 

micrometers dictates the use of multiple sizing techniques. For the sub-micron size range, electrical mobility equivalent 101 

diameter is commonly used as the size parameter and the measurements are performed with Differential Mobility Particle 102 

Sizer (DMPS) or Scanning Mobility Particle Sizer (SMPS) instruments (e.g. Wiedensohler et al., 2012)  . These systems 103 

determine the aerosol size according to electrical mobility equivalent size. The larger particles (approximately > 0.3 μm) 104 

can be classified according to their aerodynamic or optical size (Kulkarni et al., 2011). In order to obtain the full aerosol 105 

size distribution, this data needs to be merged. Unfortunately this task is not trivial as the merging requires knowledge on 106 

the chemical composition (influencing the refractive index and thus the optical size), shape (influencing electrical mobility 107 

equivalent size), or effective density (influencing aerodynamic size) (Kannosto et al., 2008).  108 

In addition, the raw data from these instruments must be inverted to obtain the particle size distribution. This is not a 109 

straightforward problem. A proper inversion algorithm is required to restore the particle size distribution from the raw 110 

response (Cai et al., 2018) using recorded kernel functions which describe the probability of particles of a certain size 111 

being measured at a certain flow rate, influenced by the measured activation curves and the detection efficiencies of the 112 

instruments (Lehtipalo et al., 2014). Depending on the instruments used and the measurement environments, some use a 113 

built-in inversion algorithm in the instruments, which replace negative raw values with artificial non-negative numbers. 114 

Some develop their own inversion methods; however, they all have their drawbacks. Examples include that the least 115 

square method may magnify the random errors in the raw counts in Condensation Particle Counter (CPC) into relatively 116 

large uncertainties (Enting and Newsam, 1990), the stepwise method may cause non-negligible errors (Lehtipalo et al., 117 

2014), and that the smoothing step method may introduce bias in the shape of the inverted distribution function 118 

(Markowski, 1987). Kandlikar and Ramachandran (1999) pointed out that there is not a single universal inversion 119 

algorithm applicable to all situations. In this study, the built-in inversion algorithm was used. This algorithm can lead to 120 
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negative values when the kernel functions are not optimally configured, especially in the size range of low number 121 

concentration. These negative values have no physical meanings. Some experts in the in situ measurement community 122 

might just omit the negative values or simply use nearest neighbour linear interpolation to replace the negative values. 123 

However, the former method might cause asymmetric error for very small measured number concentration values (Viskari 124 

et al., 2012), while the latter could result in too high values concurrently. To fill this knowledge gap, statistical estimation 125 

methods can serve as an alternative to estimate of size-fractioned number concentration by using other available 126 

measurements.  127 

 128 

The main objective of the paper is to estimate particle number concentration/ fill the negative values making up for the 129 

shortcomings of the built-in inversion algorithm in particle sizer instruments. Extending from the previous study by 130 

Zaidan et al. (2020), we build our imputation method with a finer temporal and size-bin resolution. In order to do so, we 131 

place emphasis on estimating particle number concentration of a specific size bin by the interaction with other size bins 132 

and meteorological variables. In this study, we propose three approaches in terms of different input variables by means 133 

of neural networks: (1) only meteorological parameters, (2) only particle size distribution, and (3) both particle size 134 

distribution and meteorological parameters. Based on the general data analysis of the particle size distribution and the 135 

meteorological condition, we explain the source of different size bins at certain weather conditions and the correlation 136 

among the particle size distribution and meteorological parameters in Sect. 3. We evaluate the proposed neural network 137 

method and compare it with other simpler methods in Sect. 4.1. In Sect. 4.2, we further discuss the temporal pattern of 138 

the proposed method in terms of its diurnal cycle, weekend effect and seasonal variation. Besides, we examine the possible 139 

technical reasons for the pattern found and the application of the proposed method. 140 

2 Methods 141 

2.1 Measurement sites and Instruments 142 

In this study, we collected a dataset obtained from a measurement campaign in Amman, the capital city of Jordan, between 143 

1 August 2016 and 31 July 2017. The city represents an area with Middle Eastern urban conditions within the Middle 144 

East and North Africa (MENA) region. This region serves as a compilation of different aerosol particle sources including 145 

natural dust, anthropogenic pollution (e.g. generated from the petrochemical industry and urbanization), as well as new 146 

particle formation.  147 

 148 

The database includes particle size distribution and meteorological parameters, as mentioned in the first step in Figure 1Figure 1. 149 

The aerosol measurement was carried out at the aerosol laboratory located on the third floor of the Department of Physics, 150 

University of Jordan (32°00′ N, 35°52′ E) in the neighbourhood of Al Jubeiha. The campus is situated at an urban 151 

background region in northern Amman.  In particular, the campaign measured the particle number size distribution using 152 

a scanning mobility particle sizer (NanoScan SMPS 3910, TSI, MN, USA) with default settings. It monitors the particle 153 

size distributions as electrical equivalent diameter 0.01–0.42 μm (13 channels). The size range of the SMPS system can 154 

be extended to coarse particles with an additional compact instrument: an optical particle sizer (OPS 3330, TSI, MN, 155 

USA). OPS measures optical diameter 0.3–10 μm (13 channels). This optical sizing method reports an optical particle 156 

diameter, which is often different from the electrical mobility diameter measured by the SMPS technique. The 157 

measurements were combined to provide a particle size distribution of wider particle diameter range 0.01–10 μm, which 158 
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is further described in Sect. 2.2. The SMPS inlet consists of copper tubing with a diffusion drier (TSI 3062-NC). The inlet 159 

flow rate was 0.75 lpm (±20%) while the sample flow rate was 0.25 lpm (±10%). The flow rate of OPS was about 1 lpm. 160 

The aerosol transport efficiency and losses through the aerosol inlet assembly and the diffusion drier was determined 161 

experimentally in the laboratory: ambient aerosol sampling alternatively with and without sampling inlet, and the aerosol 162 

data was corrected accordingly. The penetration efficiency was ~47% for 0.01 μm, ~93% for 0.3 μm and ~40% for 10 163 

μm (Hussein et al., 2020). These deficiency of measurement at the upper and lower edges is somewhat in alignment with 164 

other literatures. Particle size measured by nanoSMPS (Tritscher et al., 2013) tended to be underestimated for spherical 165 

particles larger than 0.2 μm by up to 34% (Fonseca et al., 2016). Liu et al. (2014) clearly portrayed that the detection limit 166 

of particle size below 0.03 μm is about 80–500 cm–3, which is up to 10 times larger than that of coarser particles, for other 167 

versions of SMPS. Stolzenburg and McMurry (2018) explained that discrepancies could be resulted from Differential 168 

Mobility Analysers (DMAs) with transfer functions that were degraded (i.e., broadened) by flow distortions caused by 169 

particle deposition within the classifier tube, sizing errors due to errors in flowmeter calibrations or leaks, CPC 170 

concentration errors due to improper pulse counting, and continuity failure in the DMA high voltage connection. 171 

 172 

The meteorological measurement was performed with a weather station (WH-1080, Clas Ohlson: Art.no.36-3242, 173 

Helsinki, Finland) with a time resolution of 5 minutes. The meteorological data were comprised of ambient temperature 174 

(Temp, resolution 0.1℃), relative humidity (RH, resolution 1%), wind speed (WS), wind direction (WD, 16 equal 175 

divisions) and air pressure (P, resolution 0.3 hPa) (Hussein et al., 2019; Hussein et al., 2020; Zaidan et al., 2020). Wind 176 

direction is resolved into north and east direction, as WD-N and WD-E, respectively. The data collection process is 177 

illustrated in the first step in the database block in Figure 1Figure 1. 178 

2.2 Data pre-processing 179 

The next step in the database block in Figure 1Figure 1 is data pre-processing. Since the sampling time resolution of SMPS and 180 

OPS was 1 min and 5 min, respectively, we synchronised the data into 5-min averages. Since a part of the size ranges in 181 

both instruments are overlapping with each other, the last two size bins in SMPS and the first size bin in OPS were 182 

neglected. Finally, we merged the size range of electrical mobility diameter 0.01–0.25 μm by SMPS and optical diameter 183 

0.32–10 μm by OPS, and obtain a wider particle size distribution which covers the diameter range 0.01–10 μm. Merging 184 

electrical mobility diameter and optical diameter can be a challenge and the overlapping region is often calculated with 185 

high uncertainty (DeCarlo et al., 2004; Tritscher et al., 2015). The challenge arises because the optical diameters are 186 

measured based on the refractive index of the particles, which depends on their chemical composition. Therefore, the 187 

sizing will vary over time. There is also a slight dependency with the SMPS system that is linked to the shape of the 188 

particles, which influences their sizing. 189 

 190 

We also calculated the particle number concentration with four particle diameter modes (size-fractionated number 191 

concentration): nucleation (0.01–0.025 μm), Aitken (0.025–0.1 μm), accumulation (0.1–1 μm) and coarse mode (1–10 192 

μm). Subsequently, the total number concentration was obtained as the sum of all these fractions. The size-fractionated 193 

number concentrations were obtained by summing up the measured particle number size distribution over the specified 194 

particle diameter range. 195 

 196 
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In order to perform data imputation with neural networks, aerosol and meteorological data were first linearly interpolated 197 

in time in case of short missing data periods. For missing data over longer periods, the whole rows are eliminated. The 198 

shorter missing data occurs due to technical faults while the longer missing periods are attributed to instrument 199 

maintenance (Zaidan et al., 2020). Only 71.8% of total data was retained for the next step in the measurement period. 200 

Since the data were obtained from different measured variables with various physical units and magnitudes, it was crucial 201 

to normalise the data. The scaling factor depends on which activation function is chosen. In this case, the datasets were 202 

scaled so that it has a mean of 0 and a standard deviation of 1 to transform them into the range of the activation function. 203 

The standardised data was then separated into different months for the reason of the seasonal variation in the atmospheric 204 

condition. The data was further divided into training set (70%) and testing set (30%). The processed data were also 205 

converted to hourly and daily averages for reporting purposes. 206 

2.3 Setting of the neural network 207 

After data collection and data pre-processing procedures, the next step is method optimisation (Figure 1Figure 1). ANN models 208 

have been utilised in predicting air quality (Freeman et al., 2018; Maleki et al., 2019; Cabaneros et al., 2019; Zaidan et 209 

al., 2020; Fung et al., 2020).  Neural networks provide a robust approach for approximating real-valued target functions 210 

because they can mimic the non-linearity of the functions and their optimisation methods are well developed (Zaidan et 211 

al., 2017). The architecture of neural networks consists of nodes as activation function (Figure 2Figure 2), and the activation 212 

function in each layer determines the output value of each neuron that becomes the input values for neurons in the next 213 

hidden layer connected to it. In this paper, feed-forward neural network (FFNN) is used instead of a more sophisticated 214 

time delay neural network (TDNN) because some of the rows in the dataset were removed in the data pre-processing step 215 

due to the existence of missing data and TDNN cannot be performed without time continuity. FFNN usually consists of 216 

a series of layers. The first layer has a connection from the network input. Each subsequent layer has a connection from 217 

the previous layer. The final layer produces the network’s output. A neuron can be thought as a combination of two parts: 218 

zj
(L)

= σ(∑ wji
(L)

n

i=1

xi + bj
(L)

) 
(1), 

where zj
(L)

 and bj
(L)

 are the intermediate output and the bias term for the jth neuron at Lth layer, respectively. wji
(L)

 is the jth 219 

weight for each data points xi at Lth layer.  The second part performs the activation function (sigmoid function in this 220 

study) on zj to give out the output of the neuron: 221 

σ(zj
(L)

) =
1

1 + exp
−z

j
(L)

 
(2), 

The FFNN method was created, trained and simulated with MATLAB (version: 8.3.0.532), using Neural Network 222 

Toolbox. We initialised the weights randomly and the weights were updated through ‘‘Levenberg-Marquardt’’ algorithm 223 

optimisation that was the fastest available back-propagation training function (Chaloulakou et al., 2003). We performed 224 

several iterations within a cycle to minimise the training loss with Bayesian regularisation. These steps were done 225 

iteratively until the best combination of the number of hidden layers and the corresponding number of neurons that 226 

provided the minimum error was found. According to the review paper by Cabaneros et al. (2019), a shallow neural 227 

network with one hidden layer and enough neurons in the hidden layers can fit any finite input-output mapping problem 228 

for non-linear relationship. In the network training process, the number of neurons varied from 2 to 10 neurons per layer 229 

with an incremental factor of 2 neurons in each simulation, and from 10 to 25 per layer with an incremental factor of 5 230 

neurons in each simulation. To keep the method simple, we consider only one or two layers in the simulation process 231 
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because the computing requirements could rise exponentially with the number of layers and neurons. Once we pick the 232 

suitable method configuration, the method estimates number concentration using testing data. Finally, the selected 233 

performance metrics, described in Section 2.4, can be calculated and we evaluate which approach is the most suitable for 234 

size distribution estimation. 235 

2.4 Other methods as comparison with the neural network method  236 

In order to demonstrate the performance of the FFNN method, we perform similar procedures applying other simpler 237 

methods, which have been widely used as means of data imputation (Junger and Ponce De Leon, 2015). They include 238 

univariate and multivariate methods. The former includes unconditional mean (UM), median (MD), linear interpolation 239 

(LinI), logarithmic interpolation (LogI), next neighbour interpolation (nNI) and previous neighbour interpolation (pNI), 240 

where nNI was implemented as the next value carried backward while pNI as the previous value carried forward. The 241 

multivariate methods used in this study are conditional mean based on a linear regression of meteorological parameters 242 

and other particle size number concentrations as inputs (CM–met and CM–PSD, respectively). These methods are 243 

implemented as a comparison with the FFNN method.  244 

2.5 Performance metrics 245 

We choose the optimal combination of the number of hidden layers and the corresponding number of neurons by checking 246 

its mean absolute error (MAE), which is a simple way to illustrate the residuals of the estimated values by the estimation 247 

method. In order to identify which size bin manage to be predicted best, two metrics are used, namely coefficient of 248 

determination (R2) and normalised root-mean-square error (NRMSE). R2 measures how well the observed outcomes are 249 

replicated by the estimation method, based on the proportion of total variation of outcomes explained by the estimation 250 

method. NRMSE represents the standard deviation of the estimated errors with respect to its mean. NRMSE is used rather 251 

than commonly used RMSE because the number concentrations of the different size range are of different magnitudes. 252 

The comparison in different size range becomes different if RMSE is not normalised with its mean. 253 

MAE =
∑ |yi − yî|

n
i=1

n
 

(3) 

R2 = 1 −
∑ (yi − yî)

2n
i=1

∑ (yi − y̅)2n
i=1

 
(4) 

NRMSE =  
√∑ (yi − yî)

2n
i=1

n
y̅

 

(5) 

where yi, yî and y̅ represent the ith measurement value, the yth estimated value by the estimation method and the mean of 254 

the all the measurement data, respectively. n notates the total number of the valid measurement data.  255 

3 General data analysis 256 

3.1 Environmental condition 257 

Hussein et al. (2019) and Zaidan et al. (2020) investigated and described the effect of local weather conditions, 258 

respectively. Here we describe briefly the meteorological conditions during the measurement period as background 259 

information. Starting from August 2016, the daily temperature decreased gradually from 40℃ to its tough 0℃ in February 260 

2017. It rose gradually to 40℃ in August 2017. During the measurement period, the hourly median value was 19.9℃ 261 
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(Figure 3Figure 3a). RH varied quite a lot from 10% to 100%, with an hourly median of 52.3%, and did not seem to have a 262 

seasonal pattern (Figure 3Figure 3b). In summer months, wind appeared be stronger but the wind direction is more stable, mostly 263 

from northwest (270⁰–360⁰). In cold months, averaged wind speed was lower but wind blew from fluctuating direction. 264 

During the whole measurement period, wind speed ranged between 0–6 m s–1 and its median is 1.39 m s–1 (Figure 3Figure 3c–d). 265 

Air pressure varied in a range from 892 to 912 hPa and its hourly median was 900 hPa In spite of the narrow range of 266 

variation, winter months seem to have slightly higher air pressure than summer months (Figure 3Figure 3e).  267 

 268 

Meteorological conditions have been suggested to influence particle number concentration. Hussein et al. (2019) 269 

demonstrated that number concentration had a rather complex relationship with temperature. Furthermore, number 270 

concentration of submicron had a decreasing trend with respect to the wind speed which indicates that most of the 271 

submicron fraction is originated from local sources such as combustion processes. Meanwhile, the number concentration 272 

of coarse particles had higher concentrations at stagnant conditions and when the wind speed is higher than 5.5 m s–1. It 273 

is mainly because of road dust resuspension and might also be attributed to dust storm via long-range transport Hussein 274 

et al., 2019. In this study, we further explore how wind direction influences the particle number concentration (Figure 4Figure 4). 275 

Wind coming from the northwest (225⁰–325⁰) was generally stronger, but lower particle number concentration was 276 

detected because the measurement area is at the outskirt of downtown. Wind from East and South (45⁰–225⁰) has a lower 277 

wind speed but a more intense hourly particle number concentration can be detected. From that direction situates the 278 

urban city where all kinds of industrial activities take place. When considering only coarse particles, relatively high 279 

number concentration is found when south-westerly wind is strong. This can further serve as an evidence that the source 280 

of coarse particles in that region might come mostly from long range sea salt from Dead Sea or dust particles from nearby 281 

deserts. 282 

3.2 General pattern of particle size distribution 283 

Hourly total number concentration ranged from 1.90×103 cm–3 to 1.52×105 cm–3and its median was 1.36×104 cm–3. Figure 284 

5Figure 5a performed moderate seasonal pattern in general: lower in summer months and higher in colder months. Hussein et al. 285 

(2019) also characterised the modal structure of the particle number size distribution for the same site. Four modes have 286 

been detected by lognormal fitting, as known as DO-FIT algorithm and modal structure (Hussein et al., 2005; Hussein et 287 

al., 2019), revealed that the mode number concentrations of the nucleation, Aitken, and coarse modes were lognormally 288 

distributed around their geometric mean values: 0.022 μm, 0.062 μm, and 2.3 μm respectively. However, the accumulation 289 

mode number concentration had two distinguished modes with particle diameter centred at 0.017 μm and 0.39 μm. As 290 

seen in Table 1Table 1, the total number concentration of all particle size (1.70±1.26×104 cm–3) is mostly accounted by Aitken 291 

mode (45–80%, average: 1.09±1.01×104 cm–3), followed by nucleation mode (10–50%, average: 0.48±0.32×104 cm–3). 292 

Accumulation mode (0–15%, average: 0.13±0.08 cm–3) comes third and only less than 0.5% of the total particle number 293 

concentration contain coarse particles with an average of 2.13±2.80 cm–3 (Figure 5Figure 5b–e). Seasonal pattern of the total 294 

number concentration resembles the Aitken composition: lower proportion in summer months and higher in colder 295 

months. The ratio of nucleation mode performs in an opposite way. The seasonal variation of total number concentration 296 

is due to the more suppressed boundary layer in winter (Teinilä et al., 2019) and the elevated wood combustion (Hellén 297 

et al., 2017). The particle number of accumulation and coarse mode steadily stay at a low proportion line, which did not 298 

account for the total number concentration. It is also noticed that dust episodes occurred with the concentrations that often 299 
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exceeded 2 cm–3 and the daily concentration in the course of these episodes can rise to 20 cm–3. These episodes were often 300 

found in spring from February to May and some episodes can last for up to one week. 301 

 302 

Similar to many other urban environments, the diurnal pattern observed in this study reflects the combustion emissions 303 

from traffic activity, which is more during the workdays (Hussein et al., 2019). The two peaks of the nucleation mode 304 

and Aitken mode in the cold months are relevant for the morning and the afternoon traffic rush hours, which are similar 305 

to those noticed in most cities in other countries. In warmer months, the diurnal cycles are not as distinct, but a sharp peak 306 

of nucleation mode around noon is found, which is associated with the occurrence of new particle formation. These events 307 

occurred very often in the summer as suggested by Hussein et al. (2020). The amplitude of diurnal cycles of coarse mode 308 

is small while the patterns of accumulation are not clear (Figure 6Figure 6). 309 

3.3 Correlation analysis 310 

Figure 7Figure 7 demonstrated the interaction among the whole measured spectrum shows three range clusters based on their 311 

correlation with the number concentration at other bin sizes: 0.01–0.205 μm, 0.205–0.875 μm and 0.875–10 μm. 0.01–312 

0.205 μm and 0.875–10 μm fall entirely within the size range detected by SMPS and OPS, respectively. The 5-min number 313 

concentration of smaller size and bigger size bins have clear and strong correlation with the concentration of its 314 

neighbouring size bin. However, particles of size 0.205–0.875 μm are located in the overlapping regions by the two 315 

instruments; as a result, do not correlate well with other size bins. The correlation of 5-min particle size distribution with 316 

meteorological parameters are generally low. Temperature appears to be the most correlated parameters for all bin sizes 317 

among all the parameters we used in this study. Smaller size range have higher Pearson’s correlation coefficient (R) than 318 

larger size range for WD, WS and P. 319 

 320 

The 5-min averaged data show similar correlation for the particle size distribution except for the smallest size bin. The 321 

hourly and daily data have higher correlation with the other size bins which are also monitored by SMPS. The 5-min 322 

averaged data show different correlation from the hourly and daily averaged data performed by Zaidan et al. (2020). The 323 

correlations of 5-min size distribution with all meteorological variables are below 0.5 for all size range. However, for 324 

hourly and daily averaged data, R is much higher in specific size bins. Hourly and daily temperature, in particular, show 325 

increasing R with larger particle size for accumulation and coarse mode. Overall, the correlations increase with the longer 326 

averaging windows. This might be due to the buffer period the meteorological conditions act on the dispersion of particles. 327 

Based on this result, using data with finer temporal resolution might be considered to be less influential to the estimation 328 

accuracy. 329 

4 Evaluation of the proposed method  330 

4.1 General evaluation  331 

Figure 8Figure 8 illustrates how well the three approaches of the proposed FFNN perform in term of R2 and NRMSE. 332 

Approach 1 (Size distribution estimation based on meteorological parameters only, FFNN–met): For more than half 333 

out of the 23 size bins, 2 layers and 15 neurons is the best combination where the residuals are the lowest (Table 2Table 2). 334 

Owing to the poor correlation with meteorological condition, we expect a low correlation of determination even using the 335 

optimal configuration neural network (R2 = 0.22–0.58). The R2 are low at the nucleation mode (0.01< Dp <0.03 μm) of 336 
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the whole size distribution around nucleation mode (R2~0.2). The rest of the size bins have better and more stable 337 

performance (R2 = 0.4–0.58). This shows that the instrument might have a poor detection efficiency for particles of smaller 338 

size. The performance of FFNN method using 5-min data for all size bins (R2 = 0.22–0.58) is worse than using daily data 339 

(R2 = 0.77) performed in Zaidan et al. (2020). Compared with hourly data (R2 = 0.66), the overall performance of the 340 

method using 5-min data is comparable (R2 = 0.67). 341 

Approach 2 (Size distribution estimation based on other particle sections only, FFNN–PSD): This approach works 342 

well with most combination of number of layers and neurons. They do not show a clear difference among the combinations 343 

we choose. There is no single combination which entirely outperform the others in all size bins. We summed up the MAE 344 

for all size bins and decided to stick to 2 layers and 10 neurons with the overall lowest residuals (Table 2Table 2). R2 are all 345 

above 0.97 for all bin sizes, and NRMSE are 0.01–0.25 for all bin sizes. The results are expected because there are 22 346 

inputs and one output. Relatively worse correlation at the edges of size bins (0.01< Dp< 0.02 μm; 6< Dp< 10 μm) is found 347 

because of the lack of nearby size bins which has high correlation with the corresponding size bin. Another reason could 348 

be that the instrument has a higher detection limits for smaller particles (Liu et al., 2014). The poorer performance for 349 

smaller size might be due to a coarser sizer resolution compared to other SMPS components (Tritscher et al., 2013), so 350 

that NanoSMPS does not reflect the real enough size distribution in the atmosphere. Relatively poor estimation 351 

performance at the middle size range (0.15< Dp< 0.5 μm) in the whole measured spectrum is because of the overlapping 352 

of instruments. This also ascertain the importance of creating a better algorithm when we merge two or more size 353 

distribution by different instruments. In this study, the measuring techniques and the measuring targets are different by 354 

the SMPS and OPS. The merging of the two measuring targets, the optical particle diameter and the electrical mobility 355 

diameter, might create significant uncertainties (DeCarlo et al., 2004; Tritscher et al., 2015). The estimation of certain bin 356 

size by other bin sizes can be thought of replacing negative values in the raw data by particle sizers. While some instrument 357 

manufacturers create built-in algorithms to replace with artificial non-negative numbers, most end-users simply remove 358 

the seemingly impossible negative values from the dataset. The perfect way to do it is to have a parallel instrument that 359 

overlaps with that particle size range. However, in many cases, this is not possible as a result of financial constraints. 360 

Therefore, we shall rely on the mutual relationship between the size sections in the aerosol population. Negative values 361 

appear often at size bins with very low number concentration (usually in coarse mode). Instead of eliminating them, this 362 

alternative could maintain the symmetry of the error distribution of the number concentration (Viskari et al., 2012) and 363 

minimise the uncertainties caused. 364 

Approach 3 (Size distribution estimation based on meteorological parameters and other particle sections): The 365 

general results are similar as in PSD. However, the more input variables do not enable the approach to work better. At 366 

some bin size the R2 are even slightly smaller than PSD solely. Since meteorological data show low correlation with most 367 

portion of measured spectrum. In that approach, the addition of meteorological parameters is not beneficial to the 368 

estimation process. Due to the lack of improvement in the method development, we will only focus on the two methods: 369 

FFNN–met and FFNN–PSD from now on. 370 

 371 

In order to highlight the performance of the FFNN methods in terms of accuracy and reliability, we compare the FFNN 372 

methods with other simpler methods, the results as shown in Table 3Table 3 for R2 and Table 4Table 4 for NRMSE. The R2 of the 373 

univariate methods UM and MD are close to 0 because their imputation are over-simplified and imply the replacement of 374 

a missing value by a constant. This can be further validated by the narrow range of the estimated particle concentrations 375 

in Figure 9a–b. The remaining univariate interpolation methods LinI, LogI, nNI and pNI showed good results in general 376 
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(R2 = 0.82–0.92, NRMSE = 0.57–0.88), but failed to perform even fairly at some particle size bins. This implies that these 377 

methods are not stable for the whole spectrum of the particle size distribution. Some of the estimated particle 378 

concentrations are off from the 1:1 line, which implies that the estimation of some particle bins are not as accurate (Figure 379 

9c–f). The performance results of the multivariate methods CM–met and CM–PSD are comparable to FFNN–met and 380 

FFNN–PSD, but both CM methods show weaker performance than FFNN methods in terms of R2 and NRMSE no matter 381 

whether meteorological (CM–met: R2 = 0.52, NRMSE = 1.39; FFNN–met: R2 = 0.67, NRMSE = 1.13) or particle size 382 

distribution data (CM–PSD: R2 = 0.99, NRMSE = 0.17; FFNN–PSD: R2 = 1.00, NRMSE = 0.07) is used as inputs. The 383 

pattern of performance of the multivariate methods is also similar to those of FFNN, i.e., relatively poor performance at 384 

the edges of size bins (0.01< Dp< 0.02 μm; 6< Dp< 10 μm) and the overlapping region (0.15< Dp< 0.5 μm). When 385 

combining the whole spectrum, FFNN methods (Figure 9i–j) appear to have narrower bands than CM methods (Figure 386 

9g–h) along 1:1 line, which indicate the methods work similarly across the particle size spectrum. Although the 387 

multivariate method CM–PSD (Figure 9h) also rely on the mutual relationship between the size sections in the aerosol 388 

population, this method is not as accurate and stable as our proposed FFNN–PSDD. 389 

 390 

From the perspective of physics, particles in the nucleation mode (0.01< Dp< 0.03 μm) are more sensitive to 391 

transformation processes due to their volatility and rather unstable nature (Morawska et al., 2008). This leads to a 392 

relatively short lifetime in the atmosphere (Al-Dabbous et al., 2017), hence, the relationships between the input variables 393 

and the nucleation mode are not well established. Al-Dabbous et al. (2017) demonstrated that accumulation mode particles 394 

(0.1< Dp< 0.3 μm)  have much longer lifetimes compared to smaller particles, causing them to be transported for larger 395 

distances (Laakso et al., 2003); therefore, the mapping of the relationships between long–range transported accumulation 396 

mode particles and covariates is supposed not to well understood. However, the relative prediction ability in this study is 397 

not lower given that local meteorological variables were used as input variables. The possible reason is that this mode 398 

falls exactly in the instrumental overlapping regions, which leads to a lower predictability. The locally-produced Aitken 399 

mode particles (0.033< Dp< 0.1 μm) are less effectively removed by transformation processes (e.g. evaporation and 400 

coagulation) from the atmosphere, compared with nucleation mode (0.01< Dp< 0.033 μm), allowing the estimation methods 401 

to better understand their relationships with the input variables, which is in alignment with Al-Dabbous et al. (2017). 402 

4.2 Temporal pattern 403 

Figure 10Figure 9 shows the diurnal discrepancies during workdays and weekends. Relative particle number concentration was 404 

defined by the estimated concentration with respect to the measured concentration. Values above 1 indicates 405 

overestimation while values below 1 suggests underestimation. For approach 1 (FFNN–met), except for the overlapping 406 

size bin, which are underestimated by more than 50% at all time range, the difference between estimated and measured 407 

hourly number concentration is within 50% during both workdays and weekends. Overestimation is found in early 408 

morning before 3 a.m. during workdays for all size bins, especially for UFP. Following the overestimation, at about 6 409 

a.m. in the morning, the estimated number concentration appears to understate by up to 40%, especially at size bins below 410 

0.1 μm. Along the day, the estimation uncertainties are rather small until in the evening from 6 p.m. to 11 p.m. where 411 

estimated UFP number concentration show moderate overestimation one more time. It reveals that FFNN–met fails to 412 

catch the diurnal pattern from 6 p.m. to 7 a.m. in particular for UFP. The pattern of the performance for weekends does 413 

not appear to be as distinctive as on workdays. It shows the overestimation not only for UFP in early morning about 3 414 

a.m., but also at the upper edge larger than 5 μm from 3 a.m. to 4 p.m.. At 7.p.m. onwards until noon, an underestimation 415 
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is found at all size bins. For approach 2 (FFNN–PSD), except the overlapping size bin, which has a significant 416 

overestimation from 6 p.m. to 7 a.m., most show negligible 10% uncertainty during both workdays and weekends. The 417 

performance over weekends show relatively stronger uncertainties. The smallest bin at 0.01 μm is slightly understated for 418 

all hours of a day. Other than these, FFNN–PSD manages to catch fairly well the diurnal pattern for all size bins.  419 

 420 

Figure 11Figure 10 further shows the monthly deviation in estimation performance. For approach 1 (FFNN–met), higher R2 is 421 

found in November, February and April in the range of SMPS. Other than that, no observable variation in R2 in approach 422 

1 (FFNN–met). For approach 2 (FFNN–PSD), except in January when all the rows were eliminated because of the lack 423 

of wind information, performance in the other months is steady for most size range. At 0.21 μm, the difference in 424 

estimation performance varies across different months. R2 in winter months are 0.76, 0.36 and 0.61, in November, 425 

December and February, respectively, while R2 exceeds 0.9 in other months. This unexpectedly low R2 only occurs in the 426 

winter months at the overlapping size range. It can be speculated that the measurements by the two instruments differ in 427 

a larger extent during winter. This might be attributed to sensor drift and a number of interference artefacts for particle 428 

measurements associated with several factors, such as relative humidity, temperature and other gas-phase species, which 429 

were demonstrated by several researchers (e.g. Lewis et al., 2016; Popoola et al., 2016). Another reason for the difference 430 

in estimation performance can be that the percentage of complete rows in these months are lower than the other months. 431 

The drop in data points might impose an influence to the estimation performance. Especially in June, at the few size bins 432 

close to the larger edge, R2 ranges from 0.9 to 0.7. Besides that, some low R2 can be also found in individual month at 433 

both edges of size range, which does not appear to show any patterns.  434 

 435 

In short, the estimation ability for lower edge (0.01< Dp< 0.03 μm) is found worse in both approaches. The performance 436 

of the FFNN method in mid-range (0.15< Dp< 0.5 μm) and upper edge (6< Dp< 10 μm) are relatively worse for the 437 

approach with other fractionated size bins as input variables according to the aforementioned statistical performance 438 

indicators. All statistical estimation simulations are based on the previous history of relationships between the inputs and 439 

outputs. As a result, the estimation simulations for different size ranges have significantly unique connections. The 440 

approach by meteorological parameters considers only 6 predictor variables so the accuracy is lower than FFNN–PSD. It 441 

might not seem surprising that the deviations between the measured and estimated size distribution were not substantial 442 

(R2> 0.97, NRMSE< 0.25) because FFNN–PSD takes 22 other size bins as predictor variables. This, still, gives a clue 443 

that the proposed FFNN method can provide adequate solutions to particle size distribution prognostic demands. 444 

Furthermore, this FFNN method outperforms the other selected widely used methods in terms of its accuracy and 445 

reliability. The estimation of certain bin size by other bin sizes can be thought of replacing ‘negative’ values in the raw 446 

data by particle sizers, including SMPS we used in this paper. Instead of eliminating the negative values, they can be 447 

estimated by other size bins with a high accuracy in order to keep the symmetry in data error distribution (Viskari et al., 448 

2012). 449 

5 Conclusion 450 

This paper presents the evaluation of imputation methods by means of feed-forward neural network (FFNN) for estimating 451 

particle number concentration at various particulate size bins. Input predictors include a merged particle size distribution, 452 

by a scanning mobility particle sizer (NanoSMPS) and an optical particle sizer (OPS), which covers size range from 0.01 453 

to 10, and meteorological parameters, including temperature (Temp), relatively humidity (RH), wind speed (WS), wind 454 
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direction (WD) and ambient pressure (P). The measurements were collected in an urban background region in Amman, 455 

the capital of Jordan in the period of 1 Aug 2016–31 July 2017. The total number concentration (1.70±1.26×104 cm–3) in 456 

the measurement period show moderate seasonal variability owing to the more suppressed boundary layer (Teinilä et al., 457 

2019) and the elevated wood combustion (Hellén et al., 2017) in wintertime. Similar to many other urban environments, 458 

the diurnal pattern observed in this study reflects the traffic activity, which has a more pronounced pattern during 459 

workdays (Hussein et al., 2019). The amount of coarse particles is negligible in terms of number concentration but dust 460 

episodes were found often in spring during the measurement period. 461 

 462 

We proposed three approaches with different input variables: (1) only meteorological parameters, (2) only number 463 

concentration at the remaining size bins, and (3) both of the above. We performed optimisation to obtain the optimal 464 

configuration of the FFNN methods, which are two layers with 10–15 neurons, balancing the accuracy and the computing 465 

resources. The 5-min averaged meteorological parameters give varying number concentration estimation for various size 466 

bins (R2 = 0.22–0.58), which is outperformed by hourly and daily averaged data (R2 = 0.66–0.77), as demonstrated by 467 

Zaidan et al. (2020). The methods using the number concentration at the remaining size bins, both with or without 468 

meteorological data, show expected perfect performance (R2 > 0.97). We also compared the FFNN methods with other 469 

commonly used methods and the results highlight the high accuracy and reliability of methods by means of neural 470 

networks. 471 

 472 

Relatively poor performance of the proposed FFNN methods is found in three regions. At the lower edge (0.01< Dp< 0.02 473 

μm) and the upper edge (6< Dp< 10 μm), the number of neighbouring size bins is limited and also the detection efficiency 474 

by the corresponding instruments is lower compared to the other size bins. Another noticeable region (0.15< Dp< 0.5 μm) 475 

is the overlapping section measured by the two particle sizers and the reason is because of the deficiency of merging 476 

algorithm. For all the above approaches, the poorer performance for smaller particles in the nucleation mode could be due 477 

to the fact that it is more effectively removed from the atmosphere compared to other modes (Al-Dabbous et al., 2017). 478 

An observable overestimation is also found in early morning for ultrafine particles followed by a distinct underestimation 479 

before midday. A larger derivation between the measured and the estimated number concentration is found in the winter, 480 

which might be caused by sensor drift and interference artefacts (e.g. Lewis et al., 2016; Popoola et al., 2016). Despite 481 

the high number of input predictors, the good estimation performance provides an alternative method to fill up the negative 482 

values in size distribution raw dataset, which often exist due to misconfiguration problems. Instead of removing the 483 

factually impossible data point, this way of replacing negative numbers can maintain a symmetric distribution of errors 484 

(Viskari et al., 2012) and minimise the uncertainties caused. 485 
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Figure 1. The block diagram describing the methodology of the proposed FFNN method. 

 

Figure 2. Schematic diagram of a neural network with one hidden layer of sigmoid activation function. 
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Figure 3. Timeseries of meteorological conditions during the measurement period Aug 2016–Jul 2017. (a–e) denotes 

temperature, relative humidity, wind speed, wind direction and air pressure, respectively. Black and red represent 

hourly and daily averaged data, respectively. 

 

Figure 4. Windrose diagram of total particle number concentration at different direction (in theta axis) and different 

wind speed (in radical axis). Wind direction and wind speed data are grouped in every 10⁰ and 0.5 m s–1. Warmer color 

represent higher total particle number concentration. (a) total number concentration, log scale; (b) coarse mode, linear 

scale. Note the color scales are different. 
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Figure 5. Timeseries of total particle number concentration (in cm–3) of 0.01–10μm in (a). (b–c) indicate the 

contribution in percentage of nucleation mode and Aitken mode, respectively. (d–e) show the number concentration in 

accumulation mode and coarse mode, respectively. Black and red represent hourly and daily averaged data, 

respectively. 
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Figure 6. (a) Diurnal cycle of the (i) nucleation mode, (ii) Aitken mode, (iii) accumulation mode and (iv) coarse mode 

in warm (red) and cold months (blue) during workdays (solid) and weekends (dashed). (b) Particle size distribution in 

(i) cold and (ii) warm months, coloured by particle number concentration (cm–3). Cold and warm months refer to 

December–February and June–August, respectively. 
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Figure 7. Matrix plots showing the Pearson correlation coefficient (R) of particle size distribution of (a) 5-min, (b) 

hourly, (c) daily averaging with (i) particle size distribution itself and (ii) meteorological parameters. Darker colour 

represents a higher correlation. 
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Figure 8. Bar chart showing the evaluation of FFNN approach with (a) only meteorological parameters (Approach 1, 

FFNN–met), (b) particle size distribution itself (Approach 2, FFNN–PSD), (c) both particle size distribution and 

meteorological parameters (Approach 3) as inputs. The evaluation metrics for the proposed method include (i) 

coefficient of determination (R2) and (ii) normalised root mean squared error (NRMSE). 

 
 

Figure 9. Scatter plots showing the estimated particle concentration (y-axis, in cm–3) against the measured in situ 

particle concentration (x-axis, in cm–3). (a–f) demonstrate cases of univariate methods including unconditional mean 

(UM), median (MD), linear interpolation (LinI), logarithmic interpolation (LogI), next neighbour interpolation (nNI) 

and previous neighbour interpolation (pNI), respectively, in dark grey dots. (g–h) represent multivariate methods 

conditional mean by regression of meteorological parameters and other particle size number concentrations as inputs 

(CM–met and CM–PSD, respectively) in light grey dots. (i–j) showcase the proposed feed-forward neural network 

with meteorological parameters and other particle size number concentrations as inputs (FFNN–met and FFNN–PSD, 

respectively) in red dots. The black solid line is 1:1 line which gives a reference of perfect estimation. The coefficient 
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of determination (R2) and the normalised root-mean-square error (NRMSE) of each method for all particle size bins 

are printed on the corresponding subplots. 

 

 

Figure 109. Heatmap showing the hourly median relative particle number concentration of the approach with (a) 

meteorological parameters (Approach 1, FFNN–met) and (b) particle size distribution (Approach 2, FFNN–PSD) as 

inputs across different hours of a day (i) in workdays and (ii) in weekends. The relative particle number concentration 

is defined as estimated concentration with respect to measured concentration. Red colour show overestimation while 

blue show underestimation. 

 

Figure 1110. Heatmap showing the coefficient of determination (R2) of the approach with (a) meteorological 

parameters (Approach 1, FFNN–met) and (b) particle size distribution (Approach 2, FFNN–PSD) as inputs for different 

months at different size bins. Darker colour represents a higher R2. 

  655 
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Table 1. Table showing the descriptive statistics (in cm–3) of total number concentration, nucleation mode, Aitken mode, 656 

accumulation mode and coarse mode. The statistical values include mean, standard deviation, and percentile (10%, 25%, 657 

50%, 75% and 90%). 658 

 Mean std 10% 25% 50% 75% 90% 

Total (×104)  1.70 1.26 0.57 0.85 1.35 2.16 3.31 

Nucleation (×104) 0.48 0.32 0.16 0.26 0.41 0.63 0.90 

Aitken (×104) 1.09 1.01 0.29 0.45 0.77 1.37 2.35 

Accumulation (×104) 0.13 0.08 0.05 0.08 0.11 0.15 0.21 

Coarse 2.13 2.80 0.55 0.84 1.29 2.33 4.3 

 659 

Table 2. Table showing the best configuration in the form of (the number of layers; the number of neurons) for the 660 

approach by meteorological parameters (FFNN–met) and the number concentration at the other size bins (FFNN–PSD) 661 

as inputs. Mean absolution error (MAE, in cm–3), coefficient of determination (R2) and normalised root-mean-square error 662 

(NRMSE) are listed for different size bins on each row. The last row concludes the overall selection of the approach with 663 

the best configuration and its corresponding evaluation metrics.  664 

Particle 

size 

(μm) 

Approach 1 (FFNN–met) Approach 2 (FFNN–PSD) 

Best 

setting 

MAE  

(cm–3) R2 NRMSE 

Best 

setting 

MAE  

(cm–3) R2 NRMSE 

0.012 2; 10 2640 0.20 0.69 2; 10 334 0.99 0.11 

0.015 2; 15 4850 0.42 0.59 2; 8 216 1.00 0.031 

0.021 2; 15 6120 0.38 0.58 2; 15 97.8 1.00 0.014 

0.027 2; 15 8470 0.41 0.62 1; 25 34.0 1.00 0.0032 

0.037 2; 20 8240 0.46 0.66 2; 15 26.3 1.00 0.0024 

0.049 2; 15 6610 0.48 0.74 2; 25 33.7 1.00 0.0049 

0.066 2; 15 4690 0.46 0.83 2; 10 56.7 1.00 0.013 

0.088 2; 15 3040 0.52 0.71 2; 4 66.2 1.00 0.018 

0.12 2; 15 1810 0.52 0.54 2; 8 63.1 1.00 0.021 

0.15 2; 10 917 0.29 0.49 2; 15 72.5 0.99 0.052 

0.21 2; 6 327 0.55 0.71 2; 8 114 0.91 0.31 

0.37 2; 10 95.8 0.43 0.54 2; 20 12.9 0.99 0.072 

0.49 2; 15 12.1 0.50 0.61 2; 25 0.9630 1.00 0.043 

0.66 2; 15 3.03 0.58 0.56 2; 15 0.1995 1.00 0.029 

0.88 2; 15 5.65 0.62 1.43 2; 10 0.2202 1.00 0.040 

1.17 2; 15 1.43 0.53 0.81 2; 8 0.0680 1.00 0.026 

1.56 2; 20 1.44 0.54 0.81 2; 8 0.0816 1.00 0.031 

2.08 2; 15 1.84 0.49 0.97 2; 8 0.0825 1.00 0.028 

2.77 2; 15 1.02 0.44 1.09 1; 4 0.0573 1.00 0.037 

3.70 2; 15 0.52 0.41 1.07 1; 8 0.0329 1.00 0.046 

4.92 2; 15 0.28 0.44 1.00 1; 4 0.0254 1.00 0.068 

6.56 2; 9 0.11 0.42 0.97 1; 6 0.0206 0.99 0.13 

8.75 2; 10 0.060 0.39 0.95 2; 6 0.0169 0.98 0.20 

overall 2; 15 2120 0.67 1.13 2; 10 76.6 0.999 0.067 
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Table 3. Table showing the comparison of different estimation methods, including unconditional mean (UM, column 2), 666 

median (MD, column 3), linear interpolation (LinI, column 4), logarithmic interpolation (LogI, column 5), next neighbour 667 

interpolation (nNI, column 6), previous neighbour interpolation (pNI, column 7), conditional mean by regression of 668 

meteorological parameters and other particle size number concentrations as inputs (CM – met and CM – PSD, column 8 669 

and 9, respectively) and the feed-forward neural network with meteorological parameters and other particle size number 670 

concentrations as inputs (FFNN – met and FFNN – PSD, column 10 and 11, respectively). The coefficient of 671 

determination (R2) of each method are listed for different size bins on each row. Negative R2 are represented as ‘0’ to 672 

indicate poor accuracy at the particular particle size bin while ‘NA’ is used to represent the data is not available. The last 673 

row concludes the overall evaluation metrics. 674 

Particle 

size 

(μm) 

 Methods/ R2 

UM MD LinI LogI nNI pNI 

CM  

– met 

CM  

– PSD 

FFNN 

– met 

FFNN 

– PSD 

0.012 0 0 0 0 1.00 NA 0.04 0.91 0.20 0.99 

0.015 0 0 0.66 0.71 0 0.49 0.14 0.85 0.42 1.00 

0.021 0 0 0.92 0.91 0.62 0.33 0.1 1.00 0.38 1.00 

0.027 0 0 0.91 0.93 0.69 0.90 0.11 1.00 0.41 1.00 

0.037 0 0 0.97 0.97 0.91 0.85 0.12 1.00 0.46 1.00 

0.049 0 0 0.98 0.99 0.80 0.80 0.13 1.00 0.48 1.00 

0.066 0.14 0 0.96 0.97 0.66 0.81 0.14 1.00 0.46 1.00 

0.088 0.31 0 0.97 0.98 0.60 0.64 0.12 1.00 0.52 1.00 

0.12 0.41 0 0.92 0.96 0 0 0.07 1.00 0.52 1.00 

0.15 0 0 0 0.20 0 0 0.03 0.97 0.29 0.99 

0.21 0 0 0 0 0 0 0.24 0.65 0.55 0.91 

0.37 0 0 0 0 0 0 0.04 0.9 0.43 0.99 

0.49 0 0 0 0 0 0 0.06 0.97 0.50 1.00 

0.66 0 0 0 0 0 0 0.07 0.96 0.58 1.00 

0.88 0 0 0.20 0.19 0.23 0.11 0.09 0.76 0.62 1.00 

1.17 0 0 0 0 0 0.99 0.04 1.00 0.53 1.00 

1.56 0 0 0.97 0.97 0.99 0.85 0.04 1.00 0.54 1.00 

2.08 0 0 0.84 0.83 0.91 0.67 0.03 1.00 0.49 1.00 

2.77 0 0 0.90 0.96 0 0.60 0.02 1.00 0.44 1.00 

3.70 0 0 0.76 0.87 0 0.62 0.02 1.00 0.41 1.00 

4.92 0 0 0.85 0.94 0 0.41 0.02 1.00 0.44 1.00 

6.56 0 0 0.27 0.55 0 0.57 0.03 0.99 0.42 0.99 

8.75 0 0 0 0 NA 1.00 0.05 0.97 0.39 0.98 

overall 0.05 0 0.92 0.92 0.82 0.82 0.52 0.99 0.67 1.00 
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Table 4. Table showing the comparison of different estimation methods, including unconditional mean (UM, column 2), 676 

median (MD, column 3), linear interpolation (LinI, column 4), logarithmic interpolation (LogI, column 5), next neighbour 677 

interpolation (nNI, column 6), previous neighbour interpolation (pNI, column 7), conditional mean by regression of 678 

meteorological parameters and other particle size number concentrations as inputs (CM – met and CM – PSD, column 8 679 

and 9, respectively) and the feed-forward neural network with meteorological parameters and other particle size number 680 

concentrations as inputs (FFNN – met and FFNN – PSD, column 10 and 11, respectively). The normalised root-mean-681 

square error (NRMSE) of each method are listed for different size bins on each row. The last row concludes the overall 682 

evaluation metrics. 683 

Particle 

size 

(μm) 

 Methods/ NRMSE 

UM MD LinI LogI nNI pNI 

CM 

 – met 

CM 

 – PSD 

FFNN 

– met 

FFNN 

 – PSD 

0.012 0.84 1.24 1.62 1.73 NA 1.62 0.74 0.23 0.69 0.11 

0.015 0.92 1.26 0.45 0.42 0.79 0.55 0.72 0.30 0.59 0.03 

0.021 0.91 1.24 0.21 0.22 0.46 0.61 0.70 0.02 0.58 0.01 

0.027 1.04 1.28 0.24 0.22 0.46 0.25 0.77 0 0.62 0 

0.037 1.08 1.34 0.15 0.15 0.27 0.35 0.85 0 0.66 0 

0.049 1.09 1.43 0.13 0.12 0.46 0.46 0.95 0 0.74 0 

0.066 1.04 1.50 0.23 0.18 0.66 0.49 1.04 0.01 0.83 0.01 

0.088 0.84 1.42 0.16 0.13 0.65 0.61 0.96 0.02 0.71 0.02 

0.12 0.59 1.25 0.22 0.16 0.86 0.80 0.74 0.03 0.54 0.02 

0.15 1.59 1.13 0.66 0.53 1.64 0.96 0.58 0.10 0.49 0.05 

0.21 11.6 1.61 3.7 3.24 4.93 1.53 1.26 0.85 0.71 0.31 

0.37 23.8 1.42 1.35 1.12 3.12 1.06 0.70 0.22 0.54 0.07 

0.49 185 14.4 4.16 3.53 7.98 1.00 0.83 0.15 0.61 0.04 

0.66 672 54.5 2.42 2.32 3.62 2.79 0.82 0.17 0.56 0.03 

0.88 485 39.4 2.06 2.07 2.02 2.18 2.20 1.12 1.43 0.04 

1.17 1750 143 4.45 3.88 7.84 0.11 1.16 0.07 0.81 0.03 

1.56 1750 143 0.19 0.22 0.11 0.46 1.16 0.05 0.81 0.03 

2.08 1510 124 0.54 0.57 0.40 0.78 1.34 0.04 0.97 0.03 

2.77 2880 236 0.47 0.30 1.48 0.92 1.43 0.04 1.09 0.04 

3.70 5750 472 0.69 0.50 1.83 0.86 1.38 0.05 1.07 0.05 

4.92 11000 902 0.51 0.34 1.64 1.02 1.32 0.09 1.00 0.07 

6.56 27100 2220 1.09 0.86 2.51 0.83 1.26 0.12 0.97 0.13 

8.75 52600 4320 4.95 3.33 1.62 NA 1.2 0.21 0.95 0.20 

overall 1.95 2.23 0.58 0.57 0.88 0.88 1.39 0.17 1.13 0.07 

 684 

Formatted: Swedish (Sweden)

Formatted: Swedish (Sweden)

Formatted: Swedish (Sweden)

Formatted: Swedish (Sweden)

Formatted: Swedish (Sweden)


