
We would like to thank both reviewers for their helpful feedback. The revisions involve 
clarifications to the text, reordering of the sections to improve flow, and changes to the 
way the data are presented. 

Below we respond to the reviewer’s comments in detail. Reviewer comments are in 
black text while author responses are in bold purple text. Excerpts from the original 
manuscript are shown in italicized purple text. Revisions to the manuscript are shown in 
italicized red text.  

Note that reviewer #2 commented directly on a PDF version of the manuscript. To 
respond to these specific comments, we excised them and listed them as bullet points 
under the corresponding Line number.  

------------------------------------------------------------------------------------------------------------------- 

Response to Reviewer 1 

This article discusses the calibration via colocation experiments and five different calibration 
models, deployment, stability, and recolocation/post deployment check of low-cost air quality 
sensors (specifically ARISENSE measuring PM, O3, NOx, and CO) in Malawi.  Low cost sensors 
are increasing in use, specifically in areas with less infrastructure or resources for reference air 
quality monitoring stations, and long-term deployments are useful to see how they perform. 
Comparing sensor calibration robustness over time is also useful. I recommend eventual 
publication. However, there are a few large issues with this paper that must be addressed first. 
General comments first, then specific comments. 

General Comments 

This paper feels like an add-on/afterthought to another paper (on the air quality findings by the 
low-cost sensors in Malawi, which is mentioned by the authors as a separate publication in prep). 
That’s an efficient data use strategy, but means that this study was not designed to optimize it’s 
stated main goal of sensor calibration scheme comparison and robustness. There are no 
reference monitors available for comparison during deployment, so the ability of the scientists to 
really understand how their calibrations performed over time and how performance changed when 
exposed to different conditions, beyond knowing when the sensors are returning non-physical 
data (e.g., negative values), is unclear.  

➢ We did not intend to portray the main goal of this paper as an optimized sensor 
calibration scheme comparison. Our overarching goal is to get data in never-
studied regions using affordable LCS technology. The main goal of this paper is to 
fully address the methodology of deploying this specific technology in our target 
deployment site and to provide examples for approaches others may use in the 
situation where no in situ reference monitors are available. More plainly, our goal 
was to determine and share how to use and infer results from the equipment we 
deployed. 

➢ To clearly establish the goal of paper, we added the following statement in the 
Introduction:  



“Our overarching goal was to assess the viability of establishing and maintaining a small, 
temporary network of LCS monitors in Malawi until a more formal governmental regulatory 
monitoring system can be established. Given that comparison to regulatory grade 
equipment in Malawi was not possible, the objective of this work was to devise an 
alternative methodology to evaluate the ARISense technology for accuracy, precision, and 
stability over the 1-year pilot deployment.”  

Further, to establish this papers’ independence from the forthcoming paper, we 
reframed how the objectives were both defined (Section 1) and addressed (Section 
4). In the Conclusions (Section 4), we comment on the viability of using such a 
technology for our goal and provide insight on how to improve future efforts.  

➢ To improve readability, we also reorganized sections to improve the flow of the 
paper. The last paragraph of Section 1 was rewritten as:  

“In Section 2.3 and 2.4, we describe collocations of the gas sensors (in North Carolina, 
USA) and particle sensor (in Mulanje, Malawi) with reference or semi-reference 
instruments (described in Section 2.2). We use collocation data and quantitative 
assessment metrics (described in Section 2.5) to compare the performance of five 
modelling approaches to calibrate the gas sensors (Section 3.1) and estimate error in the 
particle sensor data (Section 3.2). After deployment to Malawi (described in Section 2.6), 
we qualitatively assess how the ARISense performed in the field using contextual 
information about nearby emission sources, diurnal trends, and an inter-comparison of 
calibrated gas model observations (Section 3.3 and 3.4). In Section 3.5 and 3.6, we 
compare the deployment results to remote sensing and reanalysis data products and to 
surface measurements from similar environments in SSA. Finally, in Section 3.7, we 
qualitatively assess the long-term stability of the sensor readings and calibration models 
in Malawi by comparing seasonally similar ambient data collected one year apart at the 
same location. In concluding (Section 4), we draw on these pilot results to characterize 
the benefits, limitations, and robustness of this technology and methodology for our 
application: collecting AQ data in under-studied and -resourced regions. Additionally, we 
offer guidance on considerations to improve future remote deployment efforts.”  

➢ We realize the approach we had to take to calibrate and assess the data was not 
ideal, but that was inevitable, given the lack of reference monitors in the region. We 
believe we have reframed the paper to more clearly show why we took this path and 
to clearly state when we are using quantitative vs. qualitative inference. Finally, we 
believe we sufficiently acknowledge the shortcomings of our methodology, and as 
a result, we express to the extent possible the uncertainty associated with 
quantitative values.  

A comparison of sensor data to satellite data is done; however, the authors themselves 
acknowledge past work that shows that, in Africa, comparison of satellite to ground data is non-
ideal. 

➢ For clarity, we changed the name of Section 2.7 from “Remote sensing data” to 
"Remote sensing and reanalysis data". MERRA-2 is a "reanalysis" data product, so it 
is the output of an atmospheric chemistry model that has "assimilated" other data 
(including but not limited to satellite data) in its estimations. 



➢ We believe this comparison is adding to the literature on surface-to-satellite 
comparisons over Africa. More broadly, comparison of satellite data to single-point 
ground measurements is never "ideal" but it is done all the time. We believe this 
comparison adds value to the discussion and literature on such comparisons. For 
example, this information may help inform decisions about where and why 
permanent ground-stations should be added in Africa. We added a new opening to 
the first paragraph of this section to emphasize our purpose for this comparison 
and the main outcome:  
 
“In the absence of in-situ surface data, we rely on satellites and models to estimate 
surface air quality. To contribute to the literature on surface-to-satellite comparisons over 
Africa, we compared calibrated ARISense CO observations to a satellite observation 
(MOPITT) and a model estimate (MERRA-2) for the study region. We confirmed that all 
three data sets reported similar annual qualitative trends, although they disagreed in 
magnitude.” 
 

➢ In the absence of "ideal" data from well-maintained regulatory-grade surface 
monitors, we are using what we can (low-cost sensor data), while being honest 
about the limitations.  In the absence of any in-situ data, we only have satellites and 
models; this analysis compared with both and confirmed they are all seeing the 
same trends, although they disagree on magnitudes.  

➢ We believe that we have correctly pointed out the limitations of this comparisons 
and shown the qualitative agreements, which are useful. We have added to the text 
in Section 3.3 “Comparison of ARISense CO to remote sensing data” to make this 
clearer for the reader:  
 
“Monthly mean CO ARISense values were 2 to 4 times higher than those reported by 
MOPITT and MERRA-2. We found differences of 175 to 200% between the annual mean 
CO concentration from ARISense and MOPITT, depending on the site, and even larger 
differences (up to 360%) with MERRA-2. Differences between MOPITT and MERRA-2 
were smaller (30 to 35%). There are few comparable studies available to explain these 
differences, which are greater than previously reported in the literature available for SSA. 
One study in South Africa reported relative differences of ±40% between ground-based 
CO measurements and Aura satellite observations at Cape Point station (Toihir et al., 
2015). Many studies found good agreement (within 10-20% bias) between ground 
measurements and MOPITT observations, but this was for Total Column CO, and the 
observations were not limited to comparisons over Africa (Buchholz et al., 2017; Emmons 
et al., 2009, 2004; Yurganov et al., 2008, 2010). However, these studies found negative 
satellite bias when intense biomass plumes affected observations, when CO levels were 
low in the Southern Hemisphere, or when atmospheric CO levels changed rapidly 
(Buchholz et al., 2017; Emmons et al., 2004; Yurganov et al., 2008, 2010). Each of these 
conditions could be expected to occur in the southern Africa troposphere, potentially 
explaining differences observed between the ARISense and remote sensing observations 
in this study.    
 
This comparison of low-cost sensor surface data, satellite observations, and model 
estimates in Malawi suggests each of these resources can give consistent information on 
qualitative, long-term trends in a region without ground-based reference monitoring. 
However, because of inherent differences in spatial and temporal resolution, each 
observation will likely disagree in magnitude. Satellite retrievals and real-time surface 
measurements do not result in directly comparable quantities. Satellite data are generally 



collected as a once-daily flyover observation, averaged over a ~12,000 square kilometer 
area (corresponding to 1° spatial resolution). In contrast, the ARISense data were 1 min 
resolution, fixed-site, long-term point measurements at the surface. Further, the ARISense 
data were collected near visually identified biomass emission sources and were not 
representative of background conditions. Meanwhile, the satellite observations provide an 
estimate of regional background conditions. Despite these differences, the MOPITT, 
MERRA-2 and ARISense data sets agreed on the long-term seasonal trends present in 
this region, and even corroborated site-to-site differences (e.g., higher mean CO at 
University compared to Village Mean site). These findings suggest the ARISense captured 
synoptic-scale variation in CO, but comparison to remote sensing data does not allow for 
a quantitative assessment of data collected at higher temporal resolutions.” 
 

There are mentions of ‘known emissions’ near each site, but no clear definition and numbering of 
these emissions or discussion of their distance/location from the site.  

➢ We hope the addition of Fig. 1 in the revised manuscript addresses this concern. 
➢ We also added the following context to Section 2.6:  

“ARI013 (“Village 2” site) and ARI014 (“Village 1” site) were deployed < 5 km apart in two 
rural residential villages in Mulanje, Malawi, adjacent to many households. Almost all rural 
households in Malawi (99.7%) use solid fuels (e.g., firewood, charcoal) for cooking 
(National Statistics Office, 2017). Emissions from widespread biomass cookstove use are 
known to impact local ambient air quality (Aung et al., 2016; Zhou et al., 2011; Amegah 
and Agyei-Mensah, 2017). Homes regularly using biomass cookstoves within 50 m of the 
monitoring sites were visually identified at the onset of the study (shown as red ‘X’s on 
Fig. 1).”  

If the goal of the study was really to compare long-term performances of these models, this study 
was not ideal for that.  

➢ We agree with the reviewer that this study is not ideal for that goal, and this is one 
of several objectives of the study. We did not intend to portray this paper as a 
comparison of the long-term performance of the calibration models. The goal of the 
study is to determine if measurements made during the 1-year deployment were 
reliable and consistent. Characterizing and comparing the long-term performance 
of the models was a method used to support that goal. We hope that we resolved 
this issue with changes made in our first response statement above.  

Perhaps this could still be done in part—could you also pretend the initial colocation was a full 
experiment, . 

➢ We used the initial colocation data in N.C. to develop and quantitatively assess the 
performance of the models before deployment to Malawi. We cross-validated the 
models by separating our full data set into separate testing and training data sets 
and evaluating the performance using EPA-recommended assessment metrics.  

➢ Because of the lack of reference monitors in Malawi, we were unable to 
quantitatively assess model performance during the deployment to Malawi. We 
qualitatively assessed the performance by comparing the diurnal trends predicted 
by each model.  



➢ We cannot use the post collocation data collected in N.C. to quantitatively assess 
the long-term performance of the models, because the sensors were degraded 
during the high-concentration biomass burning experiments conducted in Malawi 
after the 1-year deployment. Unfortunately, we cannot assess long term model 
performance in any other way than our 1-year in situ comparison discussed in Sect. 
3.7. 

➢ We believe we sufficiently address the limitations and shortcomings of our 
approach in the final three paragraphs of Section 3.7. To make this clearer to the 
reader, we added text in Section 3.7:  

“The Ox, NO, NO2 sensors were permanently altered by the biomass burning emission 
experiments in Malawi, leading to the poor performance during post-deployment 
collocations with reference instruments in NC. Given these dramatic changes in sensor 
responses, the models were unable to generate reasonable concentration values from 
sensor signals and consequently, we were unable to use the post-deployment collocation 
data set to quantitatively assess long-term model performance.” 

I acknowledge that this is hard in this particular region; however, another major issue is that 
there is no one from the region involved as an author on this study.  

➢ We would like to clarify that although no one from the region is listed as an author 
on this specific manuscript, the larger study involved scientists and civilians from 
the study region. We do not wish to under-emphasize the role that our local 
collaborators played and so we mention, by name, the many persons that 
contributed to this work in the Acknowledgements section.  

➢ For clarity, we explain how each author contributed to the manuscript in the ‘Author 
contribution’ section of the manuscript.  In conferring authorship, we adhered to 
the criteria given in the Vancouver recommendation (https://i.ntnu.no/wiki/-
/wiki/English/Co-authorship):  

“The person in question must have made a substantial contribution to the 
conception or design of the work; or to the acquisition, analysis, or interpretation 
of data for the work. 

1. She or he must have been involved in drafting the work or revising it critically 
for important intellectual content. 

2. She or he must have approved the version of the manuscript to be published. 
3. She or he must agree to be accountable for all aspects of the work in ensuring 

that questions related to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. In addition to being accountable for 
the parts of the work he or she has done, an author should be able to identify 
which co-authors are responsible for specific other parts of the work.” 

➢ Our local contacts at the University of Lilongwe Centre for Agricultural Research 
(CARD) are in a different research discipline and as such were not considered to 
have contributed in the ways outlined above in the development of this paper. We 
attempted and failed to identify and involve interested students at CARD, possibly 
because air quality science is not included in/or a focus of the CARD curriculum. A 
few years into this project, we established a collaboration with, and eventually a 
monitoring site at, an engineering-oriented university in Malawi, recently 



renamed the Malawi University of Business and Applied Sciences (MUBAS), but 
they were not involved with collecting or interpreting any of the data 
presented here. We will engage them further in the analysis and documentation 
of the full data set. Given the content of this initial paper in the two-paper series, 
we decided to limit authorship to those involved in the establishment of the 
sampling sites (AG, EL, and AB), developers of the technology (EC, DH) and 
developers of the calibration tools used (CM, DH, EC). Our unique contributions are 
further described in the “Author Contribution” section at the end of the manuscript.  

Involving local scientists would have greatly increased the scientific merit of this paper in a few 
ways. 

➢ We agree and we plan to engage with researchers at MUBAS and invite them to 
participate in the authoring of the second paper in this two-paper series.  

1. Better understanding of conditions on the ground and local context  

➢ Three authors (AG, EL and AB) identified and established the monitoring sites 
through on-the-ground visitations and discussions with local residents. AG and AB 
maintained contact with local staff throughout the duration of the study, listened to 
their comments and concerns, and passed information on the equipment and 
progress of the study to staff and project participants. AG and AB annually visited 
the sites. 

➢ At the onset of the study in July 2017, AG, EL, AB and CARD faculty participated in 
village-wide meetings at Village 1 and Village 2, attended by the village chiefs, their 
families, and many residents. Residents shared their comments and questions, and 
some volunteered to be study participants. During this meeting, Dominic, a resident 
in Village 2 (mentioned in the Acknowledgements) expressed his interest in helping 
our team execute the study. He was hired as our interpreter, guide, person of 
contact, and assistant for the remainder of the study (July 2017 to March 2021).  

2. Better data capture by regular maintenance  

➢ We hired two regular maintenance staff for the duration of the study: One at the 
Village 2 site (Dominic Raphael) and one at the University site (Misheck Mtaya). We 
originally identified and hired an additional maintenance assistant at the Village 1 
site but failed to retain them. After their resignation, our Village 2 assistant took on 
the role of maintenance assistant for both Village sites.  

➢ In all cases, field staff had limited technical background, and so maintenance (of 
which there is relatively little for these sensor units) was not a major role. Instead, 
they assisted with data download, checking on continued operation, and with some 
troubleshooting via remote communication with us when the monitors failed to 
operate. 

3. Better understanding of how these sensors might be used  

➢ The target user for this technology is a government or private institution. The 
technology is not intended for citizen science purposes. We held a collaborative 
planning meeting with government officials in July 2017 in Lilongwe, Malawi before 
the beginning of the study. Another collaborative, reflection workshop was planned 



in summer 2020 to mark the conclusion of the study, but it has been postponed due 
to the on-going COVID-19 pandemic. 

4. Better understanding of how well corrections factors on data might be applied. (e.g., are the 
correction factors easy to apply with limited computing power and limited software?).   

➢ In the development of this study, it was determined that the calibration of the sensor 
packages would be the combined responsibility of the product developer and 
researchers. The end user (e.g., a national research institution or governing body) 
was not expected to be involved during that stage of product development. 
Therefore, we did not consider the ease of application or computing power/software 
limitations.  

➢ While during this study, the post-processing of data was required (developing and 
validating the models was a key component of this work), the future application of 
these models/calibration factors in real-time is feasible. The models used are light-
weight, pre-trained models that run server-side and are thus not limited by 
computational power on the edge device itself. 

Understanding the actual use, by people in the region, of these sensors could have made up for 
some of the lack of reference data comparisons by discussing another essential facet of low-cost 
sensor use (the people using them).  

➢ We agree with the reviewer that documenting use cases/how these sensor 
packages will be used would be a great next step. However, this will require 
integration of efforts with national or regional-scale regulatory or research 
institutions. We have continued these conversations with representatives of such 
organizations in Malawi (e.g., via our link with MUBAS) but this is a longer-term 
effort and is outside the scope of this focused paper.  

Specific comments 

Table 1: define QR in table caption (this is now Table 2) 

➢ Original caption: “Description of the five calibration modelling approaches and data 
inputs for each gas sensor and model combination (CO = carbon monoxide, NO = nitrogen 
oxide, NO2 = nitrogen dioxide, O3 = ozone).” 

➢ Revised caption: “Table 2: Calibration modelling inputs for each gas sensor (CO = 
carbon monoxide, NO = nitrogen oxide, NO2 = nitrogen dioxide, Ox = oxidants) and model 
combination (‘All’ indicates k-nearest neighbor (kNN) hybrid, random forest (RF) hybrid, 
high-dimensional model representation (HDMR), quadratic regression (QR), and multi-
linear regression (MLR).” 

How reasonable is developing individual models for each sensor and each gas component? 

➢ The different gas sensor types (CO, NO, NO2 and Ox) require separate and 
individual calibration approaches because the physical basis of their response and 
cross-sensitivity to environmental conditions can and does vary.  

➢ The different sensor packages (ARI013, ARI014, and ARI015) could potentially be 
calibrated by a ‘group’ model. However, inter-unit variation among the sensor 
packages (Figure S9) motivated the use of individual models. Further, we 



determined that the small size of this monitoring network (N=3) made this option 
feasible. Other studies have investigated the tradeoffs of different approaches 
using larger networks (Malings et al., 2019).  

➢ In any case, we posit that it is reasonable and common to develop and use 
calibration factors unique to an analytical instrument. In the case of the U.S. Federal 
Reference Methods, it is a requirement. 

60 minute averaged data: will miss ‘events’ potentially like cooking/agricultural and trash 
burning—can you speak to the significance of these types of events? 

➢ We agree with the reviewer that 60-min averaged data is unsuitable to visualize 
trends in short/variable emission events like trash burning. We acknowledge that 
nearby emission events can impact the representativeness of ambient, background 
measurements and we feel we communicate this throughout the paper. We plan to 
quantitatively explore the impact that source emissions have on background levels 
in the second paper of this two-paper series. However, we clearly see the influences 
of village- and household-scale cooking activity, even at 60-min averaging intervals, 
at least in the aggregated CO and PM2.5 diurnal trend data (Fig. 6 and Fig. 7) for the 
villages.  

Figure 1: I found this confusing. And hard to tell if the different models worked better or worse on 
the different sensors, or there was consistent agreement from looking.  Are they the same graph 
just color-coded differently? If so you could make sure no overlaps in color on the two graphs. I 
think you are trying to convey a bit too much information on one graph for ease of interpretation. 
A table, or clearer labeling with different colors, or an extra panel, might work better to convey 
your message, which is a bit lost right now.  I think a table (like those in the supplementary nfo) 
or adding some numbers of relative performance in your text could make the determination of 
which model worked best clearer for the reader. 

➢ Based on the reviewer’s feedback, we decided to change the way information was 
presented in this figure. Given that we added a figure (map), this comment refers to 
the Figure 2 (revised Fig. 2 below). We removed panel (b) and used four panels, one 
for each gas sensor. We selected new color-blind friendly colors. 

➢ Based on Reviewer #2’s feedback, we decided to use the EPA-recommended RMSE 
metric to assess error, rather than MAE, which was previously shown on the y-axis 
of Figure 1. The RMSE and MAE values were similar, however, and did not change 
the interpretation of results or the conclusions of the paper.  

➢ To emphasize that the kNN model performed the best for all gas sensors, we used 
a darker color and increased the marker size and the border weight compared to 
the markers used to represent the other model types.  

➢ We also added the following discussion about the relative performance of the 
models in this section of the results:  

“In almost all cases, the kNN hybrid model returned higher R2 values and lower RMSE 
values than any other model. The RF hybrid model attained similar, and occasionally 
higher R2 values than the kNN hybrid, but it had higher (and therefore worse) RMSE 
values by comparison. Further, the kNN hybrid model showed the least inter-monitor 
variation in performance. In Fig. 2b-d, the kNN hybrid points are closely clustered together, 
suggesting that this model was able to attain approximately the same performance for 
each of the three ARISense. Conversely, the other models, in particular the RF hybrid and 



MLR, showed a wide range in performance across the three ARISense. Even if another 
model was able to attain performance metrics higher than the kNN hybrid (e.g., HDMR 
and MLR CO models in Fig. 2a) it was only for one of the three ARISense monitors, never 
all three. Given that we seek an approach uniformly applicable to all the gas sensors and 
all three ARISense, any model other than the kNN hybrid was unsuitable. Additionally, the 
MLR failed to meet target values for some ARISense-gas sensor combinations (Fig. 2a-
b).” 

➢ We also added summary tables of the performance metrics for all models and 
ARISense to the supplementary information (Tables S4, S5, and S6).  

 



Figure 2 (revised): Performance comparison of gas sensors (a) CO, (b) NO, (c) NO2, and (d) Ox as calibrated 

by the five types of calibration models adopted for this study (kNN hybrid, RF hybrid, HDMR, MLR, QR). 

The model type is indicated by color and marker shape.  An individual data point represents the paired metrics 

(MAE and R2) for one ARISense monitor. Since there are three ARISense (ARI013, ARI014, ARI015) 

monitors, there are three markers for each gas sensor-model combination. MAE is mean absolute error. R2 is 

the coefficient of determination (-infinity ≤ R2 ≤ 1). The lower left corner region of each panel indicates the 

highest performance based on these metrics.  

For the atmospheric pressure versus sensor performance issues: are there any studies you 
could quickly compare your work to? Maybe some done in Boulder, for extrapolation? If not, I 
don’t think that limits this work at all, as the difference in elevation is not huge. 

➢ We added an additional reference to the literature to strengthen our argument: 
“Further, others have shown no statistically significant change in electrochemical sensor 
sensitivity due to changes in pressure (Popoola et al., 2016).” 

Figure 2: These plots are somewhat confusing and hard to interpret, in my opinion. I would at 
least add a color scale bar. I think there’s likely an easier way to display this info. Also I searched 
your text and I don’t see V1,V2, Uni defined anywhere? I assume it is village 1 village 2 university, 
but I would repeat that info in the graph caption and maybe in the text when introducing the sites 
define that V1=village 1 so readers just browsing the graphs can figure out the meaning more 
quickly.  

➢ Note that this comment applies to Fig. 5 in the revised manuscript. 
➢ We removed all instances of V1, V2, and Uni and only use ‘Village 1’, ‘Village 2’ and 

‘University’ throughout the manuscript. However, to aid in interpreting this figure, 
we changed “NC” to “Colocation”, and each deployment site to “Field” to 
emphasize the point of this figure. Displaying the colocation and field data as 
bivariate histograms allows us to visualize regimes where our models are poorly 
constrained (i.e., regions where the colocation and field ‘blobs’ do not overlap). We 
added additional text to the caption (shown in red below) for clarification. We plan 
to choose a color blind friendly color scheme to denote the three sites in the revised 
manuscript.  

➢ The colorscale denotes the number of data points in that location, or the “density”. 
Because of data gaps throughout the field data, the quantitative density values are 
different for each panel, therefore a single colorscale bar would not accurately 
represent all panels. Further, we think that adding two colorscale bars (colocation 
and field) for each panel (a-i) would only further complicate this figure, especially 
since the actual density values are not relevant to our message. We only want to 
communicate data density qualitatively, and we feel the explanation in the caption 
conveys this sufficiently to the reader: “Density is reflected in the color scheme; Darker 
colors indicate more data points in that region”. 

➢ We display this information using simpler, traditional histograms in the 
supplementary information, but that presentation prevents us from identifying 
important interactions between the variables (e.g., Ox voltage and T) that might 
impact model performance. To further emphasize the focus of this figure, we added 
markers (‘x’ and ‘o’) to identify the regions discussed extensively in the text (revised 
figure below). This allows the reader to synthesize information between the text and 
figure and find the exact region that we are referring to more easily. We added to 
the text in the section (shown in red) to point the reader to the exact region we are 
referring to:  



“Figure 5e shows the maximum ARI014 CO differential voltage in Malawi (350 mV) was 
3 times higher than the maximum voltage registered in NC (100 mV). This high CO regime 
is denoted by an ‘x’ on Fig 5e. This difference was aligned with observations of nearby 
sources (Fig.1c-d). We expected higher CO in Malawi than in NC, where biomass burning 
is less common and emissions from other sources (e.g., vehicles) are controlled by strict 
federal regulation. ARI014 was deployed in a densely populated village, adjacent to more 
biomass cookstove activity than ARI013 or ARI015 (Fig. 1c).  

The Ox differential voltage ranges were the most dissimilar between the collocation and 
deployment environments (denoted by a ‘+’ on Fig. 5a-c). The most frequent regimes, the 
heaviest shaded regions in Fig. 5a-c, did not overlap for any of the ARISense. In NC, the 
relationship between the Ox sensor voltage and ambient temperature was positive and 
approximately monotonic. Generally, higher temperatures facilitate ozone production, 
therefore this relationship fit our expectation for an urban site in a single season. However, 
the positive relationship between Ox sensor voltage and temperature did not always hold 
in the deployment sites. Figure 5a-c shows a high temperature-low ozone regime in 
Malawi that was not present in the NC data (region denoted by a ‘+’ marker).” 



Figure 5 (revised): Bivariate distributions of gas sensor calibration model data inputs (RH, T, and Ox, CO, 

NO, and NO2 differential voltage) for each ARISense monitor using kernel density estimation. Density is 

reflected in the color scheme; Darker colors indicate more data points in that region. Training data collected 

during collocation in North Carolina are shown in grey; data collected during field deployment to Malawi 

are shown in color. Regions where the field deployment distributions overlap with the N.C. colocation 

distributions indicate the regimes for which the calibration models were trained. Regions where the 

deployment location distributions extend beyond the N.C. colocation distributions indicate regimes where 

the calibration models extrapolated to estimate pollutant concentrations. These regions are indicated by 

overlaid markers ‘x’ and ‘+’.  

Line 279 : would recommend you to define more what you mean by ‘well controlled’ 

➢ This statement was rephrased as: “We expected higher CO in Malawi than in NC, where 
biomass burning is less common and emissions from other sources (e.g., vehicles) are 
controlled by strict federal regulation.”   

Line 288 can you expound a bit on the ‘difference in ozone precursor regimes?’ I know a separate 
study is likely coming out about the measurements themselves, and this will be expounded on, 
but this line as it is just is hanging there begging for a bit more info. 



➢ We agree with the reviewer and in response we decided to remove discussion of 
this topic. It is not necessary to understand the main point (that we lack 
representative collocation data, particularly for the oxidant sensor). 

➢ We plan to address this topic in the second paper of the two-paper series, where 
we can do a first-order estimate of ozone precursor regimes at the collocation and 
deployment sites (using O3 to NOx ratios). 

Line 295 discussions: is calculating a diurnal trend really a way to see if the models are 
transferable, if you don’t have any nearby ground-based air quality data? How did you get your 
local knowledge of air quality? (anything to cite?) 

➢ We posit that calculating the diurnal trends is a qualitative approach to assess if 
the models are transferable, since the deployment site does not have ground-based 
air quality data for quantitative comparison.  

➢ The diurnal data show we're in the right ballpark in accordance with what we 
know about atmospheric chemistry (based on our expertise as air quality 
scientists), these specific deployment sites (based on our firsthand observations 
of diurnally variable emission sources), consistency between combustion tracer 
diurnal trends (CO and PM), and what other studies in Africa have shown. While 
this doesn't necessarily show the models are transferable perfectly, it does 
suggest they likely capture some of the major features of diurnal trends at these 
sites.  

➢ To better support our approach in this section, we rephrased the text and added 
references: 

“Since the deployment site does not have reference data for quantitative comparison, we 
calculated and compared the annual mean diurnal trends of each pollutant, at each site, 
as predicted by the five models to qualitatively assess the transferability of the calibration 
models to Malawi. Our definition of a transferable model required that it produce: (a) non-
negative concentration values and (b) diurnal trends consistent with our first-hand 
observations of nearby emission sources and their timing, previous observations of the 
ambient trends in regions with widespread biomass cookstove use (Dionisio et al., 2010; 
McFarlane et al., 2021; Subramanian et al., 2020) and atmospheric chemistry.” 

“This analysis can contribute to our confidence in the estimated concentration values and 
trends, but ultimately cannot address or estimate the quantitative error.” 

Line 319: sensor has less RH/T interference at higher concentration—can you provide a reference 
for this? It makes some logical sense but would be nice to expand this thought.  

➢ This statement was rephrased to:  

“RH/T interference induced on the CO-B4 sensor, ~0.2 mV/ppb (Lewis et al., 2016) has 
relatively less influence on overall sensor response in the higher voltage (i.e., 
concentration) regime.” 

Also, are there any chemical species co-emitted with CO that, at higher levels of CO, would also 
influence CO?  



➢ For the major emission sources near the monitoring sites (biomass cookstoves), 
CO is co-emitted with fine particulate matter (PM). We do not expect co-emitted PM 
to influence the formation of CO (chemically). Photochemical oxidation of VOCs 
(also co-emitted during biomass burning) can form CO, but this is on much longer 
time scales (hours-days), so we expect this to be a background contribution and 
not one that influences diurnal trends in the way that local  emissions do.   

➢ But it is possible, and at extremely high concentrations probable, that co-emitted 
pollutants (e.g., gas phase hydrocarbons, other reactive gases, fine particulates, 
etc.) can influence the response of the CO sensor due to cross-sensitivity. For 
example, ethylene oxide and carbon monoxide sensors share the same catalyst and 
structure (but have different pre-filters), therefore small VOCs could interfere with 
CO sensor performance. At the low ambient concentrations in Malawi, we do not 
expect this to be an issue because VOC concentrations are typically 2-5 orders of 
magnitude lower than CO in biomass burning emissions (Akagi et al., 2011) and the 
cross sensitivity of the CO-B4 sensor to an example hydrocarbon (acetylene) is less 
than 1% (https://www.alphasense.com/wp-content/uploads/2019/09/CO-B4.pdf). 

➢ However, in wildfire-like conditions, or during the high-concentration biomass 
burning fenceline experiments we conducted after the ambient deployments, 
certain sensors (even high-quality reference instruments like the 2BTech 202 
Ozone analyzer) can be rendered essentially useless due to cross-sensitivities 
(Long et al., 2021).  

How did you characterize the known CO sources? 

➢ We visually identified nearby biomass cookstoves through on-the-ground site 
walkthroughs and by spending full days in the village sites over multiple weeks.  

➢ These are now shown on Fig. 1 in the revised manuscript. 
➢ We characterized a sample of the known CO sources visually and with emission 

measurement equipment (Section 5 of SI - this is a separate paper and research 
study which will be published later).  

The grid averaged for CO surface concentration is 12,000 km2, right?. How many different CO 
sources are within an area of that size that would cause heterogenous CO measurements? 

➢ The spatial resolution is 1° (corresponding to ~12,000 km2) for the MOPITT CO 
surface concentration (Table S5) and 0.5° x 0.625 for the MERRA-2 product (Table 
S6). Every combustion site is a potential CO source, and there are quite a lot of 
them contained in each grid cell at those spatial scales. We do not know how 
many different CO sources are within each grid cell nor do we try to estimate it. 
Further, we postulate that the number of CO sources is important, but so is the 
relative proximity of the point measurement to the source. The ARISense were 
placed in the middle of a cluster of CO sources (biomass cookstoves in the 
village) while the satellite is seeing sources from those two villages, plus many 
other villages, plus the less-populated areas between them that make up the 
majority of the land cover.   

➢ We recognize that estimates from a satellite observation and measurements 
collected by a single surface instrument are not directly comparable quantities. We 
emphasize that we do not expect them to perfectly agree, since they are not 
measuring the same thing, but we can still draw qualitative conclusions by 
comparing them. And although an area-average and a point value are not directly 



comparable, they are the only measures available for comparison in this region, 
so when making this comparison, we offer educated guesses about the reasons 
for observed differences (i.e., the proximity of the ARISense to a cluster of CO 
sources – the biomass cookstoves in the villages).  

Figure 4: Label individual village sites, be consistent with naming of your sites. 

➢ Data from the individual village sites are not shown in this figure. Data from the 
individual village sites was averaged in the data points shown. To make this point 
clearer to the reader, the term “Villages” was renamed to “Village Mean” (defined in 
Section 2.7).  

➢ Previously in Fig. 4 (now Fig. 8 in the revised manuscript), the ‘Village Mean’ color 
was identical to the Village 1 color; this was misleading the reader. Now, a different 
color scheme has been selected to differentiate the Village 1, Village 2, and Village 
Mean data. Additionally, the naming convention now appears consistently 
throughout the paper (i.e., Village 1, Village 2, and Village Mean). 

Line 651: I assume the ‘relatively short’ and ‘100 hours’ is 100 hours for the whole year? Or is 
that per biomass burning episode? 

➢ Approximately 100 hours was the total duration of all biomass burning emission 
experiments conducted at the conclusion of the 1-year period of ambient sampling.  

➢ Original: “Operation beyond specified conditions, combined with repeated, although 
relatively short (< 100 hours), exposure to high concentration gases during the post-
deployment emissions monitoring experiments, made the three less robust sensors 
unsuitable for future use.” 

➢ Revised: “Operation beyond specified conditions, combined with ~100 hours of exposure 
to high concentration gases during the post-deployment emissions monitoring 
experiments, apparently damaged the three less robust sensors (NO, NO2, Ox) and made 
them unsuitable for future use.”  

Also, are you certain that O3, NO, and NO2 came from ‘fresh’ biomass burning emissions, and 
not other sources (e.g., NOx from diesel trucks with poor emission controls)? O3 from biomass 
burning not so straightforward and a result of aging of biomass burning emissions. 

➢ We did not sample near diesel vehicles. We agree that, as a secondary pollutant, O3 

was not emitted from the ‘fresh’ (primary) biomass burning emissions.  
➢ The Ox, NO, and NO2 sensors were likely indirectly affected by high concentrations 

of PM and volatile gases (hydrocarbons, formaldehyde, etc.) emitted during the 
biomass burning experiments, not necessarily high concentrations of the target 
species (O3, NOx) themselves. Very high concentrations of emissions can 
chemically degrade or contaminate the sensors, for example, the catalyst or 
electrolyte can be affected or depleted by repeated interactions with high 
concentrations of non-target species emissions. Further, if there are high 
concentrations of fine PM permeating the inlet and flow line, it can condense and 
block or attenuate the sample flow rate.  

➢ We made this point clearer to the reader by adding more explicit text in Section 3.7: 

“These ambient sensors (except for possibly the CO sensor) were affected by high 
concentrations of PM and volatile gases (e.g., hydrocarbons, formaldehyde, etc.) co-



emitted during the biomass burning experiments. Very high concentrations of emissions 
can chemically degrade or contaminate the sensors, for example, the catalyst or 
electrolyte can be affected or depleted by repeated interactions with high concentrations 
of non-target species emissions.” 

Would be helpful to have a map of the stations & a figure showing when sensors were collocated 
with and when the instruments weren’t collecting data. There are some maps in the supplement, 
but a nice and simplified summary graphic in the main paper would be good.  

➢ We agree with reviewer and we added a new first figure (Figure 1 in the revised 
manuscript). This figure was based off Fig. S10, S12, and S13 in the Supplementary 
information. Further, we provide a timeline of the project in Table 2, indicating which 
ARISense were deployed to which sites, and when they were collocated, deployed to 
the field, and used for an emissions monitoring campaign.  

➢ We also added a timeseries of the temperature data from the full year to Sect. 10 of the 
SI (Fig. S23) to show when the instruments weren’t collecting data.  

 



 

Figure 1: (a) Satellite map of Malawi in southeast Africa, (b) ARISense monitoring locations in Malawi, (c) satellite 

map of Village 1, and (d) satellite map of Village 2. Blue markers indicate ARISense monitoring sites. Red ‘X’s 

indicate the location of known biomass cookstoves within 50 m of the monitoring site. Image source: Google Earth 

Pro Version 7.3.4.8248. University, Village 1, and Village 2, Malawi, South-eastern Africa. Borders and labels layer. 

Accessed: June 5, 2020. © Google Earth 2021. 

 

 

 

 

 



Table 2: Project timeline of collocations, deployment, and emissions monitoring experiments. The description under 

each period indicates the activity conducted during that timeframe. The location of the activity is given in parenthesis.  

 aData from emissions monitoring experiments not discussed in this paper  

 

 

 

Figure S23: Timeseries of temperature data from ARI015 (top), ARI014 (middle), and ARI013 (bottom) from the 

full 1-year pilot deployment in Malawi. LUANAR = University, Makaula = Village 1, and Mikundi = Village 2. Gaps 

in the timeseries indicate periods when the ARISense were not collecting data. Text labels indicate the causes of data 

loss: ‘solar not keeping up’ refers to insufficient solar power in the winter months; ‘logging issues and unrest’ refer to 

the combination of corrupted USB devices which failed to log data, and a period of social unrest in the southern region 

of the country which created unsafe conditions for our assistant to visit the monitors; ‘collaborator visits for reset’ 

indicate when a collaborator visited the village locations to replace the USB devices and update the firmware. 

 ARISense May - June 2017 July 2017 - July 2018 July - Aug 2018 Aug 2018 - Mar 2019 

ARI013 Collocation (NC) Deployment (Village 2) Emissions monitoring (Village 2)a Collocation (NC) 

ARI014 Collocation (NC) Deployment (Village 1) Emissions monitoring (Village 2)a Collocation (NC) 

ARI015 Collocation (NC) Deployment (University) Emissions monitoring (Village 2)a n/a 

ARI023  n/a  n/a  OPC-N2 collocation (Village 2) n/a 



If possible, a map with direction of known emitters could help (would assist with the discussion in 
change in sensor performance with wind direction). As it is, emission sources are mentioned but 
are unclear where and what they are, and how information that they even existed was obtained. 

➢ We hope the addition of Fig. 1 in the revised manuscript addresses this concern. 
➢ We also added the following context to Section 2.6:  

“ARI013 (“Village 2” site) and ARI014 (“Village 1” site) were deployed < 5 km apart in two 
rural residential villages in Mulanje, Malawi, adjacent to many households. Almost all rural 
households in Malawi (99.7%) use solid fuels (e.g., firewood, charcoal) for cooking 
(National Statistics Office, 2017). Emissions from widespread biomass cookstove use are 
known to impact local ambient air quality (Aung et al., 2016; Zhou et al., 2011; Amegah 
and Agyei-Mensah, 2017). Homes regularly using biomass cookstoves within 50 m of the 
monitoring sites were visually identified at the onset of the study (shown as red ‘X’s on 
Fig. 1).”  

The conclusions could be tightened up. What are the absolute main points your study, in 
particular, found? The novel work here, as stated at least in the introduction and abstract, is the 
comparison of different correction models over time. This gets a bit lost in the weeds. 

➢ We thank the reviewer for pointing out that we missed an opportunity to reinforce 
the main messages of our paper. We restructured and rewrote the conclusions in a 
way that better connects the objectives to our main findings and takeaways (shown 
in bolded text):  

“Our experience showed that LCS networks are a viable method to collect novel 
surface AQ data in regions without reference equipment, but this approach requires 
strict data quality procedures to ensure the conclusions drawn from the resulting 
data are valid. Performance assessment in NC suggested that the ARISense sensor 
package (excluding the NO2 sensor) calibrated by four of the five calibration models 
(excluding MLR) would be appropriate for supplemental monitoring based on U.S. EPA 
guidelines. However, performance during the pre-deployment NC assessment did not 
reflect performance in Malawi.  For this deployment site, we found that detailed 
information about nearby sources and their diurnal emission patterns, ambient 
meteorological data, and a familiarity with air pollutant behavior were helpful when 
qualitatively assessing LCS performance in a region where quantitative 
assessment was not an option. A lack of coherency in diurnal trends between calibration 
model predictions and frequent non-physical concentration values (Fig. 3) showed that 
LCS measurements made in deployment environments different from the collocation 
environment can be unreliable and may lead to biased information about the deployment 
environment. For example, although the Ox sensors showed the highest performance of 
all sensor types during collocation and the measured RH, temperature, and Ox voltage 
ranges were similar in the collocation and deployment environments, the calibrated O3 
data in Malawi were unreliable. The collocation data were collected in an urban area near 
a highway and the deployment data were collected in a rural area heavily impacted by 
biomass burning emissions. This difference in ozone precursor emissions could have 
contributed to the poor performance of the calibration models in the deployment 
environment. We expect our experience in Malawi may generalize to other regions, 
suggesting that additional research is needed to address the issue of LCS calibration for 
secondary pollutants.  



Ultimately, we found that the kNN hybrid modelling approach performed the best in 
the U.S. and when applied to data collected in Malawi. However, the general lack of 
standardization in LCS calibration and assessment approaches complicated and 
extended this process for our study. Although there have been advancements in 
calibration methods, the difficulty of identifying and applying a singular best in-field 
calibration model remains a common issue among LCS users (Topalović et al., 2019; 
Lewis and Edwards, 2016; Giordano et al., 2021). From an end user perspective, the 
burden of calibration easily becomes overwhelming; there is presently no clear guidance 
on which model would be appropriate for which sensor under which circumstances. This 
limits the potential user base of LCS technologies, complicates our ability to generalize 
findings across different studies, and may even lead to poor quality measurements. Given 
the wide range in potential LCS technologies and deployment conditions, it is not possible 
to fully generalize the viability and sensitivity of the ARISense to another LCS package 
deployed in a different area. Nonetheless, we surmise LCS are most useful when they are 
carefully selected and calibrated for a single purpose and location, for which the 
environmental and pollutant conditions are at least partially characterized.  

This pilot deployment also provided lessons regarding the design and deployment 
of low-cost AQ monitoring systems for off-grid applications. The ARISense packages 
survived the 1 year deployment to Malawi and enabled collection of a large, novel dataset, 
however they suffered individual sensor failures and frequent power losses. Given that 20 
to 50% of the deployment data were lost due to insufficient power and corrupt data storage 
systems, for future solar-powered deployment efforts we suggest that the power system 
be designed to allow for primary and secondary data recovery goals (i.e., a back-up plan 
to prioritize the most desirable data in the event of insufficient power).  Further, we were 
frequently restricted in troubleshooting and repair operations by spotty cellular connection, 
limited human resources, and our inability to remotely locate and procure appropriate 
equipment. A repair kit with basic equipment (e.g., pre-programmed USB devices, 
alternate SIM cards, hand tools with attachments specific to each LCS, etc.) stored in a 
nearby, secure location would have allowed for quicker troubleshooting and repair. We 
suggest that in addition to solar power limitations, other potential confounding factors like 
extreme weather and limited technical capacity and assistance availability be considered 
before deployment to remote locations. We found that the more closely located the monitor 
was to a trained local assistant, the lower the overall data losses were. 

The responses of the LCS were not remarkably different after 1 year in the field (Fig. 
S29-30), assuming actual concentrations did not vary significantly from 2017 to 
2018. However, except for CO, repeated exposure to high-concentration biomass 
emissions completely degraded the sensors.  Key manufacturer specifications indicated 
that the CO sensor was the most robust. the CO sensor exposure limit was 40 times higher 
than that of the Ox, NO, and NO2 sensors. Further, the maximum temperature and RH 
range for the CO sensor was 50°C and 90%, respectively, and 40°C and 85% for the Ox, 
NO, and NO2 sensors. During deployment, the maximum ranges were occasionally 
exceeded for every sensor except CO. Operation beyond specified conditions, combined 
with ~100 hours of exposure to high concentration gases during the post-deployment 
emissions monitoring experiments, apparently damaged the three less robust sensors 
(NO, NO2, Ox) and made them unsuitable for future use.  We caution end users to carefully 
select an appropriate sensor package given pilot information about the emission sources 
in their target site.  



A growing body of literature highlights the potential value of LCS technologies for Sub-
Saharan Africa and other low-resource settings (Subramanian and Garland, 2021; 
Wernecke and Wright, 2021; Rahal, 2020; Sewor et al., 2021; Awokola et al., 2020). We 
found that our LCS surface observations were largely consistent with the only other 
available data sources in this region (remote sensing data and model products) and 
data from similar studies across SSA. This suggests LCS have a key role to play in 
providing reliable information on general air quality conditions and trends in 
regions without a historical record. Advancements in machine learning techniques 
show how LCS can be used for source identification and attribution in regions where little 
quantitative information currently exists on dominant emission sources (Hagan et al., 
2019; Thorson et al., 2019). While LCS in SSA show promise, many of the issues 
experienced in this study stemmed from a lack of in situ reference monitors. Additional 
reference grade monitors throughout the region may help circumvent some issues related 
to calibration modelling and quality assurance. A regional, shared facility would enable 
periodic, regionally representative collocations without requiring every country to establish 
its own regulatory network. Recent research has improved our ability to synthesize data 
from networks of LCS through computational calibration solutions which minimize the 
need to transport and collocate each individual monitor separately and increase the 
spatiotemporal resolution beyond that of reference networks (Buehler et al., 2021; Malings 
et al., 2019a; Kelly et al., 2021; Considine et al., 2021; Sahu et al., 2021).  Concurrently, 
policy-focused researchers are helping to bridge the gap between governments and AQ 
scientists by creating comprehensive frameworks which provide systematic procedures to 
establish AQ monitoring networks in low and middle income countries (Gulia et al., 2020; 
Pinder et al., 2019). In the meantime, we found support from local universities, which 
helped maintain the pilot deployment of this LCS network. We expect that any AQ program 
in SSA will benefit from building long-term, local capacity and knowledge transfer systems 
for training on-site staff and for receiving their feedback and guidance.” 
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Response to Reviewer 2 

Improved semi-conductor technology has made possible the significant evolution witnessed 

around the development and use of low cost air quality sensor in the last couple of years. The 

increased use of low-cost air quality (LCAQ) sensors in Africa, especially Sub-Saharan Africa has 

been brought about by its affordability and relative ease of deployment. However, the accuracy 

and quality of the measurement have been questionable and hugely debated in the scientific 

community. If the quality of the data from the sensors are improved, LCAQ sensors would bring 

a great revolution to air quality monitoring globally and enhance the our understanding of the 

problem, especially in low and middle income countries (LMICs) where the problem of air quality 

is endemic but reference grade instrument are not available. 

General Comments 

The study discusses an approach to enhance the quality of data obtained from units of LCAQ 

sensors (OX, NO, NO2, CO and PM) in Malawi by calibration using pre- and post-deployment 

collocations and five model approaches. The structure and layout of the manuscript makes it very 

difficult to follow through and understand.  

➢ To improve readability, we reorganized the subsections in the Results to improve 

the flow: 

o 3.1 Gas sensor performance during collocation 

o 3.2 OPC-N2 performance during collocation  

o 3.3 Gas sensor performance during deployment 

o 3.3.1 Bivariate histograms 

o 3.3.2 Diurnal trends 

o 3.4 OPC-N2 performance during deployment 

o 3.5 Comparison of ARISense CO to remote sensing and reanalysis data   

o 3.6 Comparison to other ambient measurements in SSA 

o 3.7 Performance of ARISense sensor packages over time   

➢ Further, to clearly establish the goal and objective of this paper, we added the 

following statement in the Introduction:  

“Our overarching goal was to assess the viability of establishing and maintaining a small, 
temporary network of LCS monitors in Malawi until a more formal governmental regulatory 
monitoring system can be established. Given that comparison to regulatory grade 
equipment in Malawi was not possible, the objective of this work was to devise an 
alternative methodology to evaluate the ARISense technology for accuracy, precision, and 
stability over the 1-year pilot deployment.”  

➢ We also added an overview statement of the paper’s organization in the 

Introduction. The last paragraph of Section 1 was rewritten as:  

 

“In Section 2.3 and 2.4, we discuss separate collocations of the gas sensors (in North 
Carolina, USA) and particle sensor (in Mulanje, Malawi) with reference or semi-reference 
instruments (Section 2.2). We use the collocation data and quantitative assessment 
metrics (Section 2.5) to compare the performance of five modelling approaches to 



calibrate the gas sensors (Section 3.1) and estimate error in the particle sensor data 
(Section 3.2). After deployment to Malawi (Section 2.6), we qualitatively assess how the 
ARISense performed in the field using contextual information about nearby emission 
sources, diurnal trend data, and an inter-comparison of calibrated gas model observations 
(Section 3.3 and 3.4). In Section 3.5 and 3.6, we compare the results to remote sensing 
and reanalysis data products and surface measurements from similar environments in 
SSA. Finally, in Section 3.7, we qualitatively assess the long-term stability of the sensor 
readings and calibration models in Malawi by comparing seasonally similar ambient data 
collected 1-year apart at the same location. In concluding (Section 4), we use evidence 
from this pilot study to characterize the benefits, limitations, and robustness of this 
technology and methodology for our application: collecting AQ data in under-studied 
regions. Additionally, we offer guidance on considerations to improve future remote 
deployment efforts.”  

The language also needs adequate tone up to enhance the flow.  

➢ We improved grammar and sentence structure throughout the paper. Importantly, 

we removed the excessive number of semicolons.  

The materials in the manuscript should be arranged as much as possible in the way they are 

referred to in the manuscript. This makes it easy for the reader to follow the manuscript and 

supplementary material together without having to flip through pages of the supplementary 

material haphazardly. 

➢ In revised manuscript, the supplementary information was reorganized to ensure 

that it chronologically aligns with references in the main manuscript as best as 

possible.  

Some of the figure (I have indicated these in the annotated version of the manuscript) are difficult 

to understand in their present form.  

➢ We redesigned Figures 1, 2 and 6 (Figures 2, 5, 4 in the revised manuscript) to 

improve their clarity.  

Some sub-sections could be further divided into sub-sub-section to improve the organization and 

readability of the manuscript. Overall, the manuscript needs serious reorganization, restructuring 

and editing to enhance its understanding. 

➢ We respond to the reviewer’s specific comment about subdividing the sections in 

“Specific comments” below. We hope our above response detailing the 

reorganization of the sections addresses the remaining portion of this comment.  

Specific comments   

I have included the specific comments in the annotated version of the manuscript. 

Line 17: What are the basis for selecting these five models? 

➢ We added the following text to Section 2.3 to better motivate our selections: 

 

“The five models were selected based on their performance in previous studies. The kNN 

hybrid model was found to enable accurate measurements even when pollutant levels 

were higher than encountered during calibration (Hagan et al., 2018). Given that we 



expected pollution levels to be higher in Malawi than during calibration in N.C., we 

expected kNN hybrid models to perform well for our unique data set. Further, the authors 

indicated that the kNN hybrid approach was expected to be widely applicable to a range 

of pollutants, sensors, and environments (Hagan et al., 2018). In a calibration and 

validation study conducted by Malings et al. (2019a), RF hybrid models were 

recommended for any low-cost monitor using electrochemical sensors similar to their 

sensor package, the Real-time Affordable Multi-Pollutant (RAMP) monitor. Given that the 

RAMP and ARISense monitors use the same electrochemical sensors and have similar 

integrated designs, we expected RF hybrid models to perform well for our dataset.  HDMR 

models were found to effectively model interference effects derived from the variable 

ambient gas concentration mix and changing environmental conditions over three 

seasons for the sensor types used in the ARISense package (Cross et al., 2017). Finally, 

MLR and QR are some of simplest and most popular calibration approaches and they 

were included in this study for that reason.”  

Line 34-35: Sources of air pollution in SSA are expected to increase over time given the regional 

growth in population and energy  demand, a biomass fuel dominated energy mix, and slash and 

burn agricultural practices. 

➢ Source or level?   

➢ ?????  

➢ This statement was rephrased to “Air pollution in SSA is expected to increase over time 

given regional growth in population and energy demand combined with a biomass fuel 

dominated energy mix.”  

Line 50: Given the potential applications, LCS deployments are increasingly common (Giordano 

et al., 2021). 

➢ ???? do you mean becoming common?  

➢ This statement was rephrased to “becoming common”. 

Line 96-97: The ARISense sensors were collocated with reference equipment in North Carolina 

(NC) before and after deployment to Malawi. One OPC-N2, the ARISense particle sensor, was 

collocated with a semi-reference instrument at a field site in Malawi. 

➢ Is the OPC-N2 part of the ARISense sensor package or is it a separate unit ? From Section 

2.1, I think is a part of the ARISense package. If so, reframe this sentence.  

➢ This statement was rephrased to “The ARISense were collocated with reference 

instruments in North Carolina (NC) before and after deployment to Malawi. One ARISense 

was collocated with a semi-reference PM instrument at a field site in Malawi to assess the 

performance of the integrated OPC-N2.” 

Line 126-127: Previous validation studies found the MicroPEM performed well across a wide 

range of ambient PM concentrations and the real-time nephelometer, after gravimetric correction, 

agreed with fixed-site reference monitors.  

➢ This sentence is confusing in its present state 

➢ This statement was rephrased to “In previous evaluation studies, after gravimetric 

correction, the MicroPEM real-time nephelometer agreed with fixed-site reference 



monitors across a wide range of ambient PM concentrations (Du et al., 2019; Williams et 

al., 2014a).”  

Line 132: 2.3 Gas sensor colocation and calibration 

➢ There should be a subsection here that presents the component of the sensor units and 

the source of power. It should include a picture showing parts of the unit. 

➢ Information on the sensors and power source is currently presented in “Section 2.1 

ARISense sensor packages”. External and internal photographs of the ARISense 

are given in Sect 1. of Supplementary Information. 

Line 174: 2.5 Assessment metrics 

➢ There should be a sub-section after this to discuss each of these metrics.  

➢  Quantitative descriptions for each metric are given in Sect 4. of the Supplementary 

Information. To make this easier for the reader to find, this statement: “Quantitative 

descriptions for each metric are given in Sect. 3 of the Supplementary Information.” was 

added immediately following the mention of the assessment metrics in Section 2.5.  

Line 177-178: Instead of the EPA recommended Root Mean Square Error (RMSE) metric, the 

Mean Absolute Error (MAE) was used to assess error in the estimated measurements compared 

to the true values. 

➢ Is there any reason for opting for MAE instead of RMSE proposed by US EPA 

➢ We originally preferred MAE to RMSE as MAE does not weight outlying points as 

heavily as RMSE. However, after considering the reviewer’s comment, we believe 

that adhering exactly to the EPA recommended metrics is a better approach. 

Therefore, we replaced all instances of MAE with RMSE throughout the paper. In 

our data sets, RMSE is generally <10% different from MAE, and this replacement 

did not change the interpretation of main results or the conclusions of the paper.  

Line 191: Supplementary Information, Sect. 5. 

➢ The Google map in Figure S10 should be in the manuscript. 

➢ We agree with both reviewers who requested a map in the main manuscript. We 

added a map of Malawi, denoting the monitoring sites as Figure 1 and a timeline of 

the project in Table 2.  

Line 212: RF hybrid model 

➢ The authors need to present and discuss in details in section 2 the five models used in 

the calibration. You are presenting the results from the models without proper introduction 

to the models themselves.  

➢ We agree with the reviewer. We hope we resolved this issue with our response to 

the first specific comment above.  

Line 213: sensors 

➢ The authors need to reframe this paragraph and find a way to get rid of the semi-colons. 

➢ This section was revised to remove semi-colons.  

Line 214: similarly 



➢ Similarly? How do you mean? 

➢ “performed similarly” was replaced by “returned similar performance metrics” 

Line 214: MA 

➢ What is MAE? Discuss the statistical tools used for your analyses before presenting the 

results. 

➢ Mean absolute error (MAE) is introduced as a statistical tool in  

“Section 2.5 Assessment Metrics”. The formula was given in Sect. 4 of the 

Supplementary Information (v2).  

➢ Note that we removed MAE in the revised manuscript and replaced it with Root 

Mean Square Error (RMSE). The formula for RMSE is given in Sect 3. of the SI.  

Line 215: The NO and CO sensors performed similarly, considering MAE values compared to the 

typical ambient concentration ranges; ambient CO concentrations are generally 1-2 orders of 

magnitude larger than NOx.  

➢ This sentence is confusing. Be explicit.  

➢ This sentence was rephrased to “The Ox target values for these three indicators can 

be used to compare against the CO sensor values to approximate performance, but we 

surmise the error target value (RMSE ≤ 5 ppb) cannot. The U.S. EPA National Ambient 

Air Quality Standards suggest CO concentrations are 1-2 orders of magnitude larger than 

ambient ozone or NOx concentrations. By extension, we posit that a reasonable error 

target value for the CO sensor is 50 ppb. Except for the CO-kNN hybrid model 

combination, most CO sensor-model combinations did not meet our adapted error target 

value. However, considering the magnitude differences, the CO sensor-model 

combinations performed similarly to the NO, NO2 and Ox sensors, in terms of error. The 

CO RMSE values (40-70 ppb) were correspondingly one order of magnitude larger than 

NO, NO2, and O3 RMSE values (2-7 ppb). 

Line 235: 3.2 Gas sensor performance during deployment 

➢ It should be tidier and more readable if you could breakdown the results and discussion 

for CO, NOx, Ox into 3.2.1, 3.2.2, and 3.2.3.  

➢ We divided this section (Section 3.3 in the revised manuscript) into two sub-sub 

sections (3.3.1 Bivariate histograms and 3.3.2 Diurnal trends). We believe that if we 

divide these sub-sections further by gas type, there will be too many sub-sections. 

We believe we cannot divide only by gas type, given that the discussion in this 

section often compares across gas sensor types.  

Line 246: ; 

➢ ???? 

➢ Extraneous use of semicolons was addressed throughout the paper.  

Line 221: O3, Line 282: Ox, & Line 335: O3 

➢ Have you resolved OX to get O3? Are you using Ox and O3 interchangeably? Or did you 

estimate O3 for Ox? O3 or Ox? 

➢ We do not intend to use ‘Ox’ and ‘O3’ interchangeably. ‘Ox’ is used when 

referencing the sensor itself or the raw data voltage readings. ‘O3’ is used when 



referencing the calibrated Ox measurements. All references to “’O3’ indicate a 

data+model product. All instances of O3 and Ox were corrected throughout the 

paper to match this definition. 

➢ Further, the following clarifying statement was added to Sect. 2.3: “Note that 

references to ‘O3’ indicate estimates made from calibrating the Ox data. References to 

‘Ox’ indicate raw voltage measurements from the total oxidant sensor. ‘Ozone’ is used 

when referring to the gaseous air pollutant.” 

Line 291: annual mean diurnal trends 

➢ A comparison of the observation with models on season basis could produce better 

results. Malawi has two main seasons -  the cool dry season between May and October 

with mean temperatures of around 13C and the hot season between November and April 

with temperatures between 30-35 C.  

➢ We agree with the reviewer, and we note that the diurnal trends do vary by season. 

However, we think this is beyond the scope of this specific paper, as we are only 

using the diurnal trend to assess coherency between the models. We postulate that 

we would come to the same conclusion (that the kNN hybrid and RF hybrid perform 

the best) even if we looked at the seasonal differences. Further, since we do not 

plan to use different models for different seasons (we will select one model to apply 

to all our field data), we believe that evaluation of annual trends is sufficient for this 

analysis.  

➢ We do plan to explore the impact of seasons on our findings in the second paper of 

this two-paper series.  

Line 339: LT 

➢ What is LT? 

➢ ‘LT’ was changed to “local time”  

Line 381: higher 

➢ Slightly higher 

➢ ‘higher’ was changed to ‘slightly higher’ 

Line 394: was highest during the burning season (Figure 4). 

➢ This is only obvious for the university site and not the village site. I suggest you include 

“especially at the university site”.  

➢ “especially at the university site” was added to the existing sentence. 

Line 406: Total Column CO 

➢ Can you also use total column CO? Just in case you will get better agreement. 

➢ Technically, we could use Total Column CO for comparison, but the surface CO 

mixing ratio value is most closely comparable to our ARISense surface 

observations. Both quantities are mixing ratios with the same units (ppb), 

allowing us to perform qualitative and quantitative comparisons. If we used the 

Total Column CO, we would be limited to doing a qualitative comparison (such 

as correlation). 



➢ Since we are not aiming to assess the quality of the MOPITT surface CO product 

in Africa, and only using it as a benchmark to compare the trends in our surface 

observations with, we think the surface CO product is the best choice.   

➢ Further, in absence of in-situ data, air quality managers would likely first use the 

surface mixing ratio satellite product to inform on-the-ground conditions, rather 

than the Total Column, so this makes it the logical dataset to compare with.  

Line 410: Presently,  

➢ How do you mean by presently? Do you mean more recent studies? 

➢ “Presently,” was changed to “Existing”  

Line 425: biased high compared 

➢ ???? 

➢ This statement was changed to “ARI013 PM2.5 mass concentration measurements were 

higher than measurements made by ARI014 and ARI015 (slope > 1), despite all ARISense 

being in the same location.” 

Line 437: five suggested EPA target values (m, b, MAE) 

➢ A background for this should have been set in section 2.  

➢ These metrics were introduced in Section 2.5 Assessment metrics. Their formulas 

and the recommended target values are given in Table S1 of Sect. 3 of the 

Supplementary Information.  

Line 481: Figure 6 

➢ This figure is very confusing in its present state. It is really difficult to interpret this figure 

and understand the message you intend to put across to the reader.  

➢ Note that this refers to Fig. 4 in the revised manuscript.  

➢ We made a few changes to this figure (revised version below) to aid interpretation: 

1) removed black borders on histogram blocks to eliminate an unnecessary visual 

barrier, 2) colored the text labels to facilitate matching between the histogram bin, 

its corresponding data point, and the text label (when applicable), 3) selected a 

sequential colorblind friendly palette, which was also used in another figure to 

denote RH range. Finally, we bolded the text labels, the panel labels and the figure 

text title.  



 

Figure 4:  Performance comparison of the RH-corrected Alphasense OPC-N2 compared to the MicroPEM under 

different environmental conditions: (a) wind direction, (b) ambient concentration, and (c) relative humidity during 

collocation at the Village 2 site in Mulanje, Malawi. An individual data point represents the paired metrics (RMSE 

and R2) for the OPC-N2 for a specific range of each condition. The histograms (inset) show the normalized frequency 

distributions for the ranges of each condition recorded during the collocation period. The colored markers in each 

panel correspond to the colored histogram bins. The metrics were calculated from 60-min averaged RH-corrected 

OPC-N2 PM2.5 concentrations compared to the MicroPEM mass-corrected nephelometer. RMSE is root mean square 

error, assuming the MicroPEM concentrations as the true values; R2 is the coefficient of determination. The lower left 

corner region of each panel indicates the highest performance based on these metrics 
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