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Abstract. Low-cost gas and particulate sensor packages offer a compact, lightweight, and easily transportable solution to 

address global gaps in air quality (AQ) observations. However, regions that would benefit most from widespread deployment 

of low-cost AQ monitors often lack the reference grade equipment required to reliably calibrate and validate them. In this 15 

study, we explore approaches to calibrating and validating three integrated sensor packages before a one year deployment to 

rural Malawi using collocation data collected at a regulatory site in North Carolina, USA. We compare the performance of 

five computational modelling approaches to calibrate the electrochemical gas sensors: k-Nearest Neighbor (kNN) hybrid, 

random forest (RF) hybrid, high-dimensional model representation (HDMR), multilinear regression (MLR), and quadratic 

regression (QR). For the CO, Ox, NO, and NO2 sensors, we found that kNN hybrid models returned the highest coefficients 20 

of determination and lowest error metrics when validated. Hybrid models also were the most transferable approach when 

applied to deployment data collected in Malawi. We compared kNN-hybrid calibrated CO observations from two regions in 

Malawi to remote sensing data and found qualitative agreement in spatial and annual trends. However, ARISense monthly 

mean surface observations were 2 to 4 times higher than the remote sensing data, due to proximity to residential biomass 

combustion activity not resolved by satellite imaging. We also compared the performance of the integrated Alphasense OPC-25 

N2 optical particle counter to a filter-corrected nephelometer using collocation data collected at one of our deployment sites 

in Malawi. We found the performance of the OPC-N2 varied widely with environmental conditions, with the worst 

performance associated with high relative humidity (RH > 70%) conditions and influence from emissions from nearby 

residential biomass combustion. We did not find obvious evidence of systematic sensor performance decay after the one year 

deployment to Malawi. Overall data recovery was limited by insufficient power and access to technical resources at 30 

deployment sites. Future low-cost sensor deployments to rural Sub-Saharan Africa would benefit from adaptable power 

systems, standardized sensor calibration methodologies, and increased regional regulatory grade monitoring infrastructure.  
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1 Introduction 

Ambient air pollution is a leading cause of morbidity and premature mortality in Sub-Saharan Africa (SSA) (Murray et al., 

2020).  Air pollution in SSA is expected to increase over time given regional growth in population and energy demand 35 

combined with a biomass fuel dominated energy mix (Shikwambana and Tsoeleng, 2020; Stevens and Madani, 2016; 

Liousse et al., 2014; Amegah and Agyei-Mensah, 2017). However, regulatory air quality (AQ) monitoring is uncommon in 

many SSA countries, partially due to the high cost of reference grade equipment (Amegah, 2018; Petkova et al., 2013). 

Remote sensing is a valuable tool to address these data gaps, but satellite observations alone have various shortcomings 

relative to in situ measurements (Martin et al., 2019). Additional validation with reliable surface measurements is required, 40 

particularly in SSA (Malings et al., 2020). In the meantime, low-cost gas and particulate sensor packages provide an 

affordable, compact, and easily transportable approach to supplement air quality networks in regions where reference grade 

instrumentation is not accessible. Malawi, located in south-eastern Africa, provides a relevant context to investigate how 

low-cost sensors (LCS) can be used to address the global dearth of AQ observations. The Malawi Bureau of Standards 

published ambient air quality limits based on World Health Organization guidelines in 2005 (Mapoma and Xie, 2013; MBS, 45 

2005), but there is no regulatory air quality monitoring program in the country to date. Previous studies of AQ in Malawi 

have primarily focused on indoor air quality or were unable to capture long-term trends (Fullerton et al., 2009, 2011; Jary et 

al., 2017; Mapoma and Xie, 2013). A dependable and affordable LCS monitoring network in Malawi could provide data to 

monitor the evolution of air quality and establish baselines for future AQ management.  

 50 

Given the potential applications, LCS deployments are becoming common (Giordano et al., 2021). However, as the cost of 

LCS decreases, so may the selectivity, linearity, and accuracy. Electrochemical gas sensors are prone to interference and 

cross-sensitivities. Interference occurs when sensors respond to changes in temperature (T) and relative humidity (RH). 

Cross-sensitivities occur when sensors respond to the presence of gases other than the target analyte (Lewis et al., 2016; 

Mead et al., 2013). Failure to properly account for these during calibration can result in substantial measurement error under 55 

ambient conditions (Lewis et al., 2016; Cross et al., 2017; Castell et al., 2017; Mead et al., 2013). The calibration and 

application of LCS technologies to augment existing regulatory monitoring networks has been widely explored (Cross et al., 

2017; Hagan et al., 2018; Malings et al., 2019a, b; Mead et al., 2013; Zimmerman et al., 2018; Li et al., 2021), but 

historically there has been little standardization in calibration approach or performance evaluation (Castell et al., 2017; 

Duvall et al., 2021; Morawska et al., 2018; Rai et al., 2017). In response to this, the U.S. Environmental Protection Agency 60 

(EPA) recently released two reports outlining testing protocols, metrics, and target values to evaluate the performance of 

ozone and fine particulate matter (PM2.5) sensors for non-regulatory supplemental and informational monitoring applications 

in the U.S. (Duvall et al., 2021a, b). Unfortunately, there is no similar guidance for validating LCS for deployments in 

settings without in situ regulatory monitors. The deployment and evaluation of LCS packages in areas without existing AQ 

monitoring infrastructure is a growing research area (Chatzidiakou et al., 2019; Hagan et al., 2019; Subramanian et al., 2020, 65 
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2018). A lack of in situ regulatory monitors requires collocation, calibration, and validation at another site, potentially under 

a set of environmental conditions different from those of the target deployment environment. Advancements in laboratory 

chamber calibration may help resolve this issue. In a controlled environment, gas sensors can be exposed to and calibrated 

for a range of environmental conditions (i.e., gas concentration, RH, T, pressure, etc.), which may allow LCS cross-

sensitivity and interference to be measured and controlled for before deployment (Williams et al., 2014b; Spinelle et al., 70 

2016; Lewis et al., 2016; Spinelle et al., 2015). However, studies of low-cost particle sensors have observed better 

performance under laboratory versus field conditions (Rai et al., 2017). For example, previous long-term field assessments of 

the Alphasense OPC-N2 optical particle counter have observed large variability with changing seasons, environmental 

conditions, and background pollution levels (Bulot et al., 2019; Rai et al., 2017; Sousan et al., 2016). Low cost optical 

particle sensors can systematically overestimate mass concentrations under high RH (>75%) conditions due to hygroscopic 75 

growth of the particles (Crilley et al., 2018; Di Antonio et al., 2018), with errors ranging from 100 to 500% depending on 

aerosol hygroscopicity (Hagan and Kroll, 2020). Further, the complex chemical, physical, and optical properties of aerosol 

can complicate the field evaluation of low-cost particle sensors. For the Alphasense OPC-N2, particle composition may 

impact the sensor output by as much as a factor of 30 (Rai et al., 2017; Sousan et al., 2016). A recent modelling effort by 

Hagan and Kroll (2020) found that the optical properties and particle size distribution of the source aerosol can result in 80 

errors of up to 100% and 90%, respectively, in mass measurements made by low-cost optical particle sensors. Measurement 

errors were highest for strongly absorbing aerosol dominated by small (< 300 nm) particles. These traits can be characteristic 

of aerosol emitted by biomass-burning (Reid et al., 2005), a dominant source of ambient PM throughout SSA (Marais and 

Wiedinmyer, 2016; Queface et al., 2011; Liousse et al., 2014). Therefore, stringent quality assurance is necessary to ensure 

the validity of LCS particle measurements in this environment.  85 

 

In this study, we calibrated and evaluated the “ARISense”, a moderate-cost, integrated gas, particle, and meteorological 

sensor package (Aerodyne, Inc.) for long-term field deployment to Malawi. Our overarching goal was to assess the viability 

of augmenting and maintaining a small, temporary network of LCS monitors, until a more formal governmental regulatory 

monitoring system can be established. Given that comparison to regulatory grade equipment in Malawi was not possible, the 90 

objective of this work was to devise an alternative methodology to evaluate the ARISense technology (Section 2.1) for 

accuracy, precision, and stability over the 1-year pilot deployment. In Section 2.3 and 2.4, we describe collocations of the 

gas sensors (in North Carolina, USA) and particle sensor (in Mulanje, Malawi) with reference or semi-reference instruments 

(described in Section 2.2). We use collocation data and quantitative assessment metrics (described in Section 2.5) to compare 

the performance of five modelling approaches to calibrate the gas sensors (Section 3.1) and estimate error in the particle 95 

sensor data (Section 3.2). After deployment to Malawi (described in Section 2.6), we qualitatively assess how the ARISense 

performed in the field using contextual information about nearby emission sources, diurnal trends, and an inter-comparison 

of calibrated gas model observations (Section 3.3 and 3.4). In Section 3.5 and 3.6, we compare the deployment results to 

remote sensing and reanalysis data products and to surface measurements from similar environments in SSA. Finally, in 
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Section 3.7, we qualitatively assess the long-term stability of the sensor readings and calibration models in Malawi by 100 

comparing seasonally similar ambient data collected one year apart at the same location. In concluding (Section 4), we draw 

on these pilot results to characterize the benefits, limitations, and robustness of this technology and methodology for our 

application: collecting AQ data in under-studied and -resourced regions. Additionally, we offer guidance on considerations 

to improve future remote deployment efforts. Detailed analysis and discussion of more than three years of data collected in 

Malawi will be presented in a forthcoming complementary publication. 105 

2 Methods 

The ARISense were collocated with reference instruments in North Carolina (NC) before and after deployment to Malawi. 

One ARISense was collocated with a semi-reference PM instrument at a deployment site in Malawi to assess the 

performance of the integrated OPC-N2. Instrumentation, collocation, and calibration are covered in Sect. 2.1 – 2.4. 

Performance assessment metrics are given in Sect. 2.5.  Calibrated ARISense were deployed to Malawi (Sect. 2.6) and 110 

compared to remote sensing data products (Sect. 2.7).  

2.1 ARISense sensor packages 

The ARISense package (Fig. S1) integrated the following sensors from Alphasense Ltd., UK: carbon monoxide (CO-B4), 

nitric oxide (NO-B4), nitrogen dioxide (NO2-B43F), total oxidants (Ox-B421), and the OPC-N2 optical particle counter. 

The ARISense reported voltage readings from electrochemical gas sensor working electrodes (WE) and auxiliary electrodes 115 

(AE). Sensor differential voltage (ΔV) was calculated as WE – AE. The Alphasense OPC-N2 recorded counts in 16 size bins 

spanning particle diameters from 0.38 to 17.5 µm, coarse (> 2 µm) and some accumulation mode (0.1 to 2 µm) aerosols 

(Badura et al., 2018; Crilley et al., 2018; Sousan et al., 2016). Although the OPC-N2 has embedded algorithms to convert 

count measurements into mass concentrations of PM1.0, PM2.5 and PM10 (particulate matter with aerodynamic diameters less 

than 1.0, 2.5, and 10 µm, respectively), the bin count data were manually integrated, converted to number concentration 120 

(cm−3) assuming unity measurement efficiency across the bin range, and then to mass concentration assuming spherical 

particles with uniform density (1.65 g cm−3). The values reported for PM2.5 are PM2. The location of the adjacent bin 

separations at 2.0 and 2.99 µm did not allow for direct estimates of PM2.5. However, this was only one of many contributing 

sources of error in approximating true mass concentration with the Alphasense OPC-N2. Given the minimum cut-off 

diameter, we were unable to measure (nor did we try to estimate) the mass from particles smaller than 0.38 µm. 125 

 

We used four ARISense monitors in this study: serial numbers ARI013, ARI014, ARI015 (Version 1.0, 2017), and ARI023 

(Version 2.0, 2018). The monitors were powered by solar panels charging external batteries and recorded data to an internal 

USB device. Details and images are provided in Sect. 1 of Supplementary Information. Additional environmental and 

meteorological sensors (i.e., T, RH, pressure, solar intensity, and noise) and system design are described in Cross et al. 130 

(2017). 
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2.2 Reference instrumentation  

Gas concentration measurements for NOx/NO/NO2 (Teledyne Model T200UP), CO (Thermo Scientific Model 48i-TLE), and 

Ozone (Ecotech Federal Equivalent Method instrument) were obtained from reference instruments operated by the North 

Carolina Department of Environmental Quality (NC-DEQ) and the Environmental Protection Agency (EPA).  135 

 

The semi-reference MicroPEM (RTI International) instrument was used to assess the performance of the OPC-N2 in 

Malawi. The MicroPEM, equipped with T and RH sensors, sampled (0.50 L/min, 100% duty cycle) via a PM2.5 inlet into a 

nephelometer (0.1 Hz) and 25 mm PTFE filter. In previous evaluation studies, after gravimetric correction, the MicroPEM 

real-time nephelometer agreed with fixed-site reference monitors across a wide range of ambient PM concentrations (Du et 140 

al., 2019; Williams et al., 2014a). However, deployments observed baseline (zero) drift and poor performance at RH 

conditions above 94% (Williams et al., 2014a; Zhang et al., 2018).  To account for baseline drift, the MicroPEM was zeroed 

before each deployment using a HEPA filter. Additional details on the MicroPEM sensor, filter analysis, and quality 

assurance are provided in Sect. 1 of Supplementary Information. 

2.3 Gas sensor collocation and calibration 145 

Before deployment to Malawi, ARI013, ARI014, and ARI015 were collocated with EPA and NC-DEQ reference 

instruments (Fig. S2) at a near-highway site near Durham, North Carolina, USA (35.865°N, 78.820°W) between 29 May and 

15 June 2017 (boreal summer – warm, mild season). ARI013 and ARI014 were collocated for 17 days. ARI015 was 

collocated for only 8 days due to a defect identified early in the deployment. All data were recorded at 1 minute resolution. 

Collocation site details are provided in Sect. 2 of Supplementary Information. 150 

 

The pre-deployment collocation data were used to train, assess, and compare the performance of five calibration models to 

convert the raw voltage data to concentration units and to account for sensor interference and cross-sensitivities. Outlying 

data points in the raw ARISense gas sensor voltage data due to noise and power cycling were visually identified and 

removed. Raw NO sensor data collected within 8 hours of a power cycle were also removed due to the extended warmup 155 

time of the NO-B4 sensor. ARISense data were time aligned with the reference data and both datasets were averaged to 5-

min resolution. A random 70% of the collocation data were used for model training and the remaining 30% were withheld 

for testing. Performance assessment metrics were calculated only for the withheld data. 

 

Individual calibration models were built for each gas sensor (Ox, NO, NO2, CO) in each monitor (ARI013, ARI014, ARI015) 160 

using five modelling approaches: k-Nearest Neighbor (kNN) hybrid (Hagan et al., 2018), Random Forest (RF) hybrid 

(Malings et al., 2019a), High-Dimensional Model Representation (HDMR) (Cross et al., 2017), quadratic regression (QR) 

(Malings et al., 2019a), and multi-linear regression (MLR). The five models were selected for consideration based on their 
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performance in previous studies. The kNN hybrid model was found to enable accurate measurements even when pollutant 

levels were higher than encountered during calibration (Hagan et al., 2018). Given that we expected levels of some 165 

pollutants to be higher in Malawi than during calibration in NC, we expected kNN hybrid models to be well suited for our 

application. Further, the kNN hybrid approach is expected to be widely applicable to a range of pollutants, sensors, and 

environments (Hagan et al., 2018). In a calibration and validation study conducted by Malings et al. (2019), RF hybrid 

models were recommended for any low-cost monitor using electrochemical sensors similar to their sensor package, the Real-

time Affordable Multi-Pollutant (RAMP) monitor. Given that the RAMP and ARISense monitors use the same 170 

electrochemical sensors and have similar integrated designs, we expected RF hybrid models to perform well for our dataset. 

HDMR models were found to effectively model interference effects derived from the variable ambient gas concentration mix 

and changing environmental conditions over three seasons for the sensor types used in the ARISense package (Cross et al., 

2017). Finally, MLR and QR are simple, popular calibration approaches and they were included in this study for that reason.  

 175 

 

Table 1: Calibration modelling inputs for each gas sensor (CO = carbon monoxide, NO = nitrogen oxide, NO2 = nitrogen 

dioxide, Ox = oxidants) and model combination (‘All’ indicates k-nearest neighbor (kNN) hybrid, random forest (RF) hybrid, 

high-dimensional model representation (HDMR), multi-linear regression (MLR), and quadratic regression (QR).”ΔV is the 

voltage difference between the working electrode (WE) voltage and the auxiliary electrode (AE) voltage measured by each 180 

electrochemical gas sensor, RH = relative humidity, T = temperature, DP = dew point. 

 

Gas Sensor Data Inputs to Model Model(s) applied  

CO CO ΔV, RH, T, & DP All 

NO NO ΔV, RH, T, DP, & NO WEa All except QR 

NO2 NO2 ΔV, RH, T, & DP All except QR 

Ox Ox ΔV, DP, & NO2 ΔV b All except QR 

 

akNN hybrid only 

bRF hybrid only  

 
 
 

The modelling inputs are summarized in Table 1. O3 models were designed to account for sensor cross-sensitivity to NO2 185 

(Cross et al., 2017). Note that references to ‘O3’ indicate estimates made from calibrating the Ox sensor data. References to 

‘Ox’ indicate raw voltage measurements from the total oxidant sensor. ‘Ozone’ is used when referring to the gaseous air 

pollutant. For our study, the CO HDMR models were set to allow only first-dimensional interactions, as second-order 

interactions led to spurious results for data collected outside the bounds of training data (see Sect. 3.3 - on deployment 
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conditions). For the CO sensors, this effectively made the HDMR model equivalent to the MLR model. Therefore, the 190 

statistical metrics achieved by both models were identical and are shown as overlaid points on Fig. 2a. 

2.4 OPC-N2 collocation and calibration 

ARI023 was collocated with a MicroPEM in an ambient, combustion source-influenced environment on a house rooftop (4 

m above ground level) in Mikundi village in Mulanje District, Malawi (16.056°S, 35.535°E) between 25 July 2018 and 7 

August 2018 (austral winter – cool, dry season). We collected 130 hours of collocation data over three multi-day collection 195 

periods (i.e., 3 PTFE filters). A 75% completeness requirement was applied before the raw 1 min data were averaged to 1 h 

and 24 h intervals. Sub-daily averaging intervals were used to assess the OPC-N2 for near real-time (1 min) and diurnal 

trend (1 h) monitoring applications. A bin-wise RH-correction algorithm based on κ-Kӧhler theory was applied to correct for 

hygroscopic growth under high RH conditions, initially assuming particle density (ρ) equal to 1.65 g cm−3 and aerosol 

hygroscopicity (κ) of 0.6 (Di Antonio et al., 2018). To observe sensitivity of this correction to the assumed hygroscopicity, 200 

the density was held constant at 1.65 g cm−3 and the κ value was varied (κ = 0.15, 0.6, and 1). To observe variability due to 

the assumed source of the aerosol, the density and hygroscopicity were varied to approximate ammonium nitrate, dust, 

wildfire, and background aerosols. Aerosol property assumptions (κ and density) are based on Hagan and Kroll (2020) & 

Petters and Kreidenweis (2007).  

2.5 Assessment metrics  205 

We adapted performance metrics and target values from recently published U.S. EPA guidelines (Duvall et al., 2021a, b) to 

assess ARISense performance (Table S1). The EPA guidelines suggest using linearity, bias, precision, and error metrics to 

assess air sensor performance and they offer target values for each. We use the U.S. EPA target values as a quantitative 

marker to indicate satisfactory or unsatisfactory sensor performance, however given the differences in our study compared to 

the U.S. EPA methodology, we do not consider these categorizations to be definitive. Further, we emphasize that even if a 210 

sensor meets, or surpasses, the performance target values for each metric, this does not constitute endorsement by the U.S. 

EPA. Their guidelines were developed for Ox and PM2.5 air sensors, and we used these to assess the ARISense Ox-B421 and 

OPC-N2 sensors, respectively. Although there are no formal guidelines for CO, NO, and NO2 sensors at the time of writing, 

for coherency, we opt to assess those sensors using a similar approach.  

 215 

The coefficient of determination (R2), an indicator of the correlation between estimated and true concentrations, was used to 

assess linearity The root mean square error (RMSE) was used to assess error in the estimated measurements compared to the 

true values. The coefficient of variation (cV) was used to assess precision. Finally, to assess bias, a linear regression model 

(y = mx + b) was fit using the ARISense measurements as the dependent variable (y) and the reference measurements as the 

input variable (x), and the resulting slope (m) and intercept (b) were calculated. Quantitative descriptions for each metric are 220 

given in Sect. 3 of the Supplementary Information.  
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The same metrics were used to assess the OPC-N2 sensor. In addition, to estimate confidence in OPC-N2 measurements 

made under characteristic deployment conditions in Malawi, we calculated 68% (1-sigma) prediction intervals using the 

Malawi collocation data set (Fig. S4). The 60-min averaged observations were used to fit a linear model, which required a 225 

Box-Cox transformation (Box and Cox, 1964) to obtain normally distributed residuals (Fig. S3). Details are given in Sect. 3 

of the Supplementary Information.  

2.6 Deployment to Malawi 

ARI013, ARI014, and ARI015 were deployed to their respective monitoring locations in Malawi from July 2017 to July 

2018 (shown as blue markers on Fig. 1). The three locations were selected to provide measures of regional variation and 230 

replicates in two paired village sites. ARI013 (“Village 2” site) and ARI014 (“Village 1” site) were deployed < 5 km apart in 

two rural residential villages in Mulanje, Malawi, adjacent to private residences (Fig. S5). ARI015 (“University” site) was 

deployed >375 km northwest of the village sites at a rural university campus ~30 km from the capital city (Fig. S6).   

 

Almost all rural households in Malawi (99.7%) use solid fuels (e.g., firewood, charcoal) for cooking (National Statistics 235 

Office, 2017). Emissions from widespread biomass cookstove use are known to impact local ambient air quality (Aung et al., 

2016; Zhou et al., 2011; Amegah and Agyei-Mensah, 2017). Homes regularly using biomass cookstoves within 50 m of the 

monitoring sites were visually identified at the onset of the study (shown with red ‘X’s on Fig. 1c-d). Additional satellite 

images are given in Sect. 4 of Supplementary Information. 

 240 
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 245 

Figure 1: (a) Satellite map of Malawi in southeast Africa, (b) ARISense monitoring locations in Malawi, (c) satellite map of 

Village 1, and (d) satellite map of Village 2. Blue markers indicate ARISense monitoring sites. Red ‘X’s indicate the 

location of known biomass cookstoves within 50 m of the monitoring site. Image source: Google Earth Pro Version 

7.3.4.8248. University, Village 1, and Village 2, Malawi, South-eastern Africa. Borders and labels layer. Accessed: June 5, 

2020. © Google Earth 2021. 250 
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A timeline of the ARISense collocations and deployments is given in Table 2. After the one year ambient deployment was 

completed, the ARISense were used for high-concentration emissions monitoring experiments in rural Malawi in July and 255 

August 2018. The details of those experiments (i.e., number of experiments, duration, approximate CO concentrations) are 

discussed in Sect. 5 of the Supplementary Information. We explore the impact of these experiments on sensor operation, but 

we do not discuss the data itself in this paper.  

 

 260 

Table 2: Project timeline of collocations, deployment, and emissions monitoring experiments. The description under each 

period indicates the activity conducted during that timeframe. The location of the activity is given in parenthesis.  

 aData from emissions monitoring experiments not discussed in this paper  

 

At the conclusion of the emissions monitoring experiments, ARI013 and ARI014 were returned to NC and were collocated 265 

with reference instruments at the near-highway NC-DEQ site used in the pre-deployment collocation (described in Sect. 2.2). 

ARI015 was relocated to a new monitoring site in Malawi. 

2.7 Remote sensing and reanalysis data   

Two publicly available NASA data products were obtained from the Goddard Earth Sciences Data and Information Services 

Center (GES-DISC) Interactive Online Visualization and Analysis Infrastructure (GIOVANNI): 1) area-averaged, monthly 270 

Multispectral CO Surface Mixing Ratio (Daytime/Descending) from MOPITT and 2) CO Surface Concentration - 

ENSEMBLE from MERRA-2, henceforth referred to as “MOPITT” and “MERRA-2”, respectively. MOPITT is a calibrated 

satellite observation and MERRA-2 is a global reanalysis data product. MERRA-2 is the output of an atmospheric chemistry 

model that has "assimilated" other data, including satellite data, in making its estimations. Monthly averaged MOPITT and 

MERRA-2 observations were compared to ARISense CO surface data collected at the Village and University locations. 275 

Given the physical proximity of Village 1 and Village 2, and the similarity in monthly mean CO concentration at each site 

(Fig. S7), the average of the data sets (“Village Mean”) was used. Additional details are given in Sect. 6 of the 

Supplementary Information.  

 ARISense May - June 2017 July 2017 - July 2018 July - Aug 2018 Aug 2018 - Mar 2019 

ARI013 Collocation (NC) Deployment (Village 2) Emissions monitoring (Village 2)a Collocation (NC) 

ARI014 Collocation (NC) Deployment (Village 1) Emissions monitoring (Village 2)a Collocation (NC) 

ARI015 Collocation (NC) Deployment (University) Emissions monitoring (Village 2)a n/a 

ARI023  n/a  n/a  OPC-N2 collocation (Village 2) n/a 
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3 Results and discussion  

3.1 Gas sensor performance during collocation  280 

Raw gas sensor voltages (5-min averaged data) from all three ARISense monitors (ARI013, ARI014, ARI015), excluding 

the Ox sensor in ARI015, were highly correlated (R2 > 0.8) during the pre-deployment collocation, suggesting changes in 

sensor response were due to environmental changes, not sensor-to-sensor variability (Fig. S9). The sensors in ARI013 and 

ARI014 were most closely correlated (R2 > 0.9). The raw ARI015 Ox sensor data showed weaker temperature dependence 

and the lowest correlation (R2 < 0.6) with Ox sensors in ARI013 and ARI014. 285 

 

Figure 2 shows two performance metrics representing each sensor-model combination for the three ARISense. Results from 

all ARISense-sensor-model combinations for all five performance metrics are given in Tables S4-6. Data points toward the 

lower left corner of each Fig. 2 panel indicate better performance. We found that performance varied by ARISense monitor, 

but none of the ARISense consistently performed better than the others. Overall performance varied by gas sensor type and 290 

modelling approach. The calibrated NO2 sensors in all three ARISense were the least correlated with reference 

measurements compared to the other gas sensors. Only the ARI015 NO2 sensor, calibrated by the RF hybrid model, 

surpassed the target value for the linearity metric (R2 > 0.8). Further, no NO2 sensor-model combination met the bias target 

values for slope and intercept. For all three ARISense, the calibrated NO2 sensors underestimated the true concentration 

compared to the reference (0.26 < m < 0.71). However, all NO2 sensor-model combinations met the error target and 295 

approached or surpassed the target for precision.  

 

At the other end of the performance spectrum, the calibrated O3 sensors performed the best compared to the other gas sensors 

during pre-collocation. Nearly all O3 sensor-model approaches attained similar linearity and error metrics (0.85 < R2 < 0.99 

and 2 < RMSE < 5 ppb), well within the target values. Only the ARI015 Ox sensor calibrated by the RF model failed to meet 300 

the RMSE target value, yet it returned the highest R2 value compared to the other models. Additionally, all Ox sensor-model 

combinations met the slope and intercept target values for bias. For the kNN hybrid model, the calibrated O3 observations 

had a slope approaching 1 (m > 0.98) compared to the reference. Only the precision values (37% < cV < 54%) were outside 

the EPA guideline target range (cV < 30%).  

 305 

Most NO sensor-model combinations met the target value for the bias, error, and linearity metrics, but precision was low for 

all combinations assessed, with most cV values > 100%. The MLR model showed the worst performance for all three 

ARISense compared to the other models. However, for ARI015, all NO sensor-model combinations surpassed the target for 

every metric except precision. Again, the ARI015 NO sensor-RF hybrid model combination was the outlier compared to the 

ARI013 and ARI014 sensor-model combinations (Table S6). We hypothesize that the shorter collocation period of ARI015 310 
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(8 days compared to 17 days of collocation for ARI013 and ARI014) led some of the sensor-model combinations to be 

overfit or poorly constrained.  

 

Most CO sensor-model combinations met the target values for bias, linearity, and precision. The Ox target values for these 

three indicators can be used to compare against the CO sensor values to approximate performance, but we surmise the error 315 

target value (RMSE ≤ 5 ppb) cannot. The U.S. EPA National Ambient Air Quality Standards suggest CO concentrations are 

1-2 orders of magnitude larger than ambient ozone or NOx concentrations. By extension, we posit that a reasonable error 

target value for the CO sensor is 50 ppb. Except for the CO-kNN hybrid model combination, most CO sensor-model 

combinations did not meet our adapted error target value. However, considering the magnitude differences, the CO sensor-

model combinations performed similarly to the NO, NO2 and Ox sensors, in terms of error. The CO RMSE values (40-70 320 

ppb) were correspondingly one order of magnitude larger than NO, NO2, and O3 RMSE values (2-7 ppb).  

 

 

 

 325 
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Figure 2: Performance comparison of gas sensors (a) CO, (b) NO, (c) NO2, and (d) O3 as calibrated by the five types of 

calibration models adopted for this study (kNN hybrid, RF hybrid, HDMR, MLR, QR). The model type is indicated by color 

and marker shape. An individual data point represents the paired metrics (RMSE and R2) for one ARISense monitor. Since 

there are three ARISense (ARI013, ARI014, ARI015) monitors, there are three markers for each gas sensor-model 330 

combination. RMSE is root mean square error. R2 is the coefficient of determination (-infinity ≤ R2 ≤ 1). The lower left 

corner region of each panel indicates the highest performance based on these metrics.  
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For the suite of gas sensors in the ARISense monitors, we found the kNN hybrid model to be the best among the modelling 

approaches used in the pre-deployment collocation testing (Fig. 2). In almost all cases, the kNN hybrid model returned 335 

higher R2 values, slope values closer to one, and lower RMSE values than any other model. The RF hybrid model attained 

similar, and occasionally higher R2 values than the kNN hybrid, but it had higher (and therefore worse) RMSE values by 

comparison. Further, the kNN hybrid model showed the least inter-monitor variation in performance. In Fig. 2b-d, the kNN 

hybrid points are closely clustered together, suggesting that this model was able to attain the same performance for each of 

the three ARISense. Conversely, the other models, in particular the RF hybrid and MLR, showed a wide range in 340 

performance across the three ARISense. Even if another model was able to attain performance metrics higher than the kNN 

hybrid (e.g., HDMR and MLR CO models in Fig. 2a) it was only for one of the three ARISense monitors, never all three. 

Additionally, the MLR failed to meet target values for some ARISense-gas sensor combinations (Fig. 2a-b). Taken together, 

these findings suggest the kNN hybrid model is the best choice among these five modelling approaches, given that we sought 

an approach uniformly applicable to all the gas sensors and all three ARISense. 345 

3.2 OPC-N2 performance during collocation 

Pre-deployment collocation PM2.5 measurements in North Carolina (where no reference monitor/data were available) from 

ARI013, ARI014, and ARI015 suggest the Alphasense OPC-N2 sensors in each monitor responded similarly (R2 > 0.9) 

when in the same environment (Fig. S10). ARI013 PM2.5 mass concentration measurements were higher than measurements 

made by ARI014 and ARI015 (slope > 1), despite all ARISense being in the same location. ARI015 underestimated the mass 350 

at low concentrations compared to ARI013 and ARI014 (non-linear clustering at concentrations < 5 µg m-3 in Fig. S10a-c). 

The OPC-N2 sensors in ARI014 and ARI015 showed the highest similarity (slope = 1 ± 0.05, R2 = 0.96).  

 

Figure 3 shows scatter plots of the ARI023 OPC-N2 and MicroPEM data collected during collocation at the Village 2 site in 

Malawi. RH-correction partially mitigated the impact of overestimation due to hygroscopic growth but did not remove the 355 

artifact entirely (Fig. S12). RH-correction improved the precision and error metrics, bringing RMSE within the target value 

(≤ 7 µg m-3) for the 24 h averaged data (Table S7). Increased averaging interval had a similar effect, but alone was 

insufficient to bring RMSE within the target range. Linearity was well below the target value (R2 > 0.7) for all averaging 

intervals and RH-correction did little improve performance for this metric. For this data set, changes in bias and linearity 

appeared driven by averaging interval. For example, the OPC-N2 RH-corrected 1 minute data met the EPA target values for 360 

slope and intercept, but the 1 h and 24 h averaged data met neither. Particularly for the 24 h averaged data, the small sample 

was leveraged by a few points which drove metric values (Fig. 3c), however, close 1:1 agreement between the instruments 

was observed for four of the seven data points. These results highlight the value of longer and more representative 

collocations. At least two 30-day collocations would be needed, during the hot-dry (Sep to Oct) and warm-wet (Nov to Apr) 

seasons, to characterize this specific site.  365 
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Even after RH-correction, the OPC-N2 overestimated mass concentrations compared to the nephelometer when RH was ≥ 

70%. Conversely, the OPC-N2 often underestimated mass when RH was ≤ 30%. These effects were most noticeable at 

higher time resolutions (Fig. 3a-b). The effects of RH were tempered by a longer averaging interval, however for a 

particularly humid day at this site, the 24 h mass concentration was overestimated by a factor of three (Fig.3c). Notably, the 370 

moderate-RH outliers in the 24 h average scatter plot suggest that other factors, in addition to RH, were contributing to error 

in the OPC-N2 observations.  

 

 

 375 

Figure 3: Scatter plots of RH-corrected PM2.5 mass concentration measurements from the OPC-N2 versus mass-corrected 

PM2.5 measurements from the MicroPEM at 1 min (a), 1 h (b), and 24 h (c) averaging intervals. Data points are colored 

according to RH (%) conditions. The number of data points (N) and linear fit lines and regression coefficients (m, b) are 

given in red as Y = mx + b. Additional metric values are inset: R2 is the coefficient of determination, RMSE is root mean 

square error (units of μg m-3) assuming the MicroPEM is the reference instrument, and cV is coefficient of variation. The 380 

black, dashed line is a 1:1 line.  

 

 

To explore other contributors to variable OPC-N2 performance, Fig. 4 shows performance for RH-corrected data stratified 

by environmental conditions (wind direction, ambient concentration, and RH). Wind direction and concentration (Fig. 4a-b 385 

were selected to explore the possible effect of nearby cookstove emissions, while Fig. 4c highlights the remaining effect of 

RH after correction. We hypothesized that ambient concentration and wind direction might impact OPC-N2 performance 

given that the site was periodically exposed to cookstove emissions from the household kitchen (within 15 m to NW) and 

from adjacent residences (within 50 m to the S-SW in Fig. 1d). Figure 4a shows that wind direction was associated with 

performance variation, although to a lesser degree than RH (Fig. 4c). Slightly increased performance was observed for 390 
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northerly winds. Nearby cookstove use potentially explained the decreased performance associated with southerly winds. 

Four of the five morning cooking periods observed in the time series data were associated with wind blowing from the SE-S-

SW (Fig. S14). Figure 4b shows that ambient concentration had a modest impact on OPC-N2 performance metrics. Linearity 

was expected to increase with concentration, particularly given that the high-concentration bin (20-105 µg m-3) spanned a 

larger interval than the other bins. Precision within each concentration bin was low. The cV values were well beyond the 395 

recommended target value (cV < 30%). The OPC-N2 frequently underestimated the ambient mass concentration compared 

to the MicroPEM, particularly during higher concentration periods dominated by near-field biomass burning (i.e., slope = 0.4 

for 20 to 105 µg m-3). During periods of cookstove influence, the size distribution, hygroscopicity, and optical properties of 

the measured aerosol were altered. Assumptions about the source aerosol, used to inform the RH-correction, were found to 

affect inferred OPC-N2 performance compared to the MicroPEM, though not predictably. For example, higher linearity and 400 

lower RMSE were observed when the particle composition was assumed to be highly hygroscopic (κ = 1), yet the least bias 

was observed at the lowest hygroscopicity assessed (κ = 0.15). Further, when the aerosol was assumed to be characteristic of 

wildfire (rather than ammonium nitrate, dust, or background in origin), the bias between the OPC-N2 and MicroPEM 

disappeared (slope = 1.02), yet the error metric was among the highest in the four aerosol categories and was above the 

target value (Table S10). Summary statistics for each performance assessment metric are given in Tables S8-10 in Sect. 8 of 405 

the Supplementary Information.  

 

 

 

 410 
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Figure 4:  Performance comparison of the RH-corrected Alphasense OPC-N2 compared to the MicroPEM under different 

environmental conditions: (a) wind direction, (b) ambient concentration, and (c) relative humidity during collocation at the 

Village 2 site in Mulanje, Malawi. An individual data point represents the paired metrics (RMSE and R2) for the OPC-N2 for 415 

a specific range of each condition. The histograms (inset) show the normalized frequency distributions for the ranges of each 

condition recorded during the collocation period. The colored markers in each panel correspond to the colored histogram 

bins. The metrics were calculated from 60-min averaged RH-corrected OPC-N2 PM2.5 concentrations compared to the 

MicroPEM mass-corrected nephelometer. RMSE is root mean square error, assuming the MicroPEM concentrations as the 

true values; R2 is the coefficient of determination. The lower left corner region of each panel indicates the highest 420 

performance based on these metrics. 

 

In this deployment site, the OPC-N2 performed the best compared to the MicroPEM during dry conditions (20 to 40% RH) 

and when measuring background aerosol rather than source emissions (Fig. S14 - presumed based on time series data). 

However, this result might be partially due to the coincident effects of high RH (Fig. 7). Figure 4c shows OPC-N2 behaviour 425 

was determined by changes in ambient RH. In general, performance decreased with increasing RH, and this effect remained 

even after RH correction. For RH = 20 to 40%, RH-corrected OPC-N2 performance approached or exceeded the target 

values for the linearity, error, and precision metrics. (Table S7). After RH increased past 70%, the R2 value approached zero 

and the RMSE increased beyond the target value. Unfortunately, the inset histogram of Fig. 4c shows that an RH range of 60 

to 80% was typical for this site during collocation.  430 

 

We found that the OPC-N2 at this specific site underestimated mass concentration compared to the MicroPEM, based on less 

than unity slope values, and the performance was variable at low ambient concentrations and dependent on RH (Fig. S13). 

However, outside of very humid (RH > 70%) or very dry (RH < 20%) conditions, the RH-corrected OPC-N2 could estimate 
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PM2.5 mass concentration within about 10 μg m-3 of the MicroPEM value for real-time, hourly, and daily monitoring 435 

purposes (based on RMSE in Table S7). The findings from this section highlight the importance of quality assurance for 

low-cost optical particle sensor mass concentration measurements, especially those made in environments with highly 

variable meteorology and nearby ultrafine aerosol sources. For this site, contextual information on meteorology and 

emissions sources and their diurnal patterns helped interpret and evaluate the measurements. 

3.3 Gas sensor performance during deployment  440 

Given that RH, T, DP, and differential voltage were inputs to the calibration models, the ranges of these values during 

training and testing should mimic the ranges expected during deployment. Otherwise, the model is required to extrapolate 

beyond its training bounds, which could lead to non-physical results (e.g., negative concentration values). Further, the 

performance assessment statistics derived from the collocation cannot be expected to hold for conditions far beyond those 

experienced during the performance characterization. Overall, the collocation and deployment settings exhibited a similar 445 

range of environmental conditions (Fig. S15-16), but T and RH ranges in NC (15 to 40°C and 20 to 80%) were less extreme 

than in Malawi (10 to 45°C and 10 to 95%). While in Malawi, the ARISense experienced more time at lower temperatures 

(T < 25°C), lower gaseous concentrations (other than CO), and lower ambient pressure (5 to 15 kPa lower depending on 

site). Although the ARISense were deployed at a higher elevation in Malawi than during the collocation in North Carolina 

(625 m vs 120 m ASL), all models were built using the differential voltages (WE-AE) of each electrochemical gas sensor. 450 

Therefore, the pressure-related shifts in the WE and AE baseline were not expected to pose an issue to the calibrated Malawi 

data (Fig. S16). The variation in pressure was within the operating range given on the sensor specification sheets (80 to 120 

kPa) and was stated not to have long term impacts by the manufacturer (Alphasense FAQs, 2021). Further, others have 

shown no statistically significant change in electrochemical sensor sensitivity due to changes in pressure (Popoola et al., 

2016). Even so, we did not have the laboratory chamber data to investigate this potential issue.  455 

3.3.1 Bivariate histograms 

Figure 5 shows bivariate distributions of T, RH, and gas sensor differential voltage data collected in NC and Malawi. In 

addition to capturing interactions between variables, Fig. 5 shows that even when in the same environment during the NC 

collocation, the individual sensors in each ARISense responded differently. Compared to ARI013 and ARI014, the Ox 

sensor in ARI015 showed weaker temperature dependence (Fig. 5c). Since ARI015 had a shorter collocation period, it could 460 

be hypothesized that if ARI015 were present in the collocation environment for the same amount of time as ARI013 and 

ARI014, its response would look more like the ranges measured by the other sensors. However, this cannot fully explain the 

variation between individual sensors. For example, there is considerable variation between the ARI013 and ARI014 NO2 

differential voltage ranges (Fig. 5g-h), despite having identical collocation periods. Further, the raw CO sensor data for all 

three monitors showed much less inter-sensor variation (Fig. 5d-f), even despite the shorter collocation period of ARI015. 465 
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This inter-sensor variation, which appears largest for the NO2 sensors, may partially explain the lower performance of this 

gas sensor group during calibration model performance testing, compared to the other gas sensor types (Figure 2).  

 

   

Figure 5:  Bivariate distributions of gas sensor calibration model data inputs (RH, T, and Ox, CO, NO, and NO2 differential 470 

voltage) for each ARISense monitor using kernel density estimation. Density is reflected in the color scheme; Darker colors 

indicate more data points in that region. Training data collected during collocation in North Carolina are shown in grey; data 

collected during deployment to Malawi are shown in color. ARI013 was deployed to the Village 2 site, ARI014 to the 

Village 1 site, and ARI015 to the University site. Regions where the deployment distributions overlap with the NC 

collocation distributions indicate the regimes for which the calibration models were trained. Regions where the deployment 475 

location distributions extend beyond the NC collocation distributions indicate regimes where the calibration models must 

extrapolate to estimate pollutant concentrations. These regions are indicated by overlaid markers ‘x’ and ‘+’ and are 

discussed in the text.  
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There were notable regimes in Malawi that required the calibration models to extrapolate beyond NC training conditions. 480 

NO differential voltage responses in NC and Malawi did not completely overlap (Fig. 5g-i), especially in the low-

concentration regime (i.e., V near 0 mV) which was more frequent in Malawi. The collocation site in NC was 10 m from an 

8-lane freeway (Saha et al., 2018), therefore NOx concentrations were higher than in rural Malawi where vehicles and 

industry are rare. However, for ARI014 in Village 1, there was a higher NO2 response in the deployment environment 

compared to the collocation environment. This could be partially explained by sensor interference by RH and T, which were 485 

more extreme (i.e., beyond the training ranges) in Malawi (Fig. S17). Figure 5e shows the maximum ARI014 CO differential 

voltage in Malawi (350 mV) was three times higher than the maximum voltage registered in NC (100 mV). This high CO 

regime is denoted by an ‘x’ on Fig 5e. This difference was aligned with observations of nearby sources (Fig. 1c-d). We 

expected higher CO in Malawi than in NC, where biomass burning is less common and emissions from other sources (e.g., 

vehicles) are controlled by strict federal regulation. ARI014 was deployed in more densely populated Village 1, adjacent to 490 

more biomass cookstove activity than ARI013 or ARI015 (Fig. 1c).  

 

The Ox differential voltage ranges were the most dissimilar between the collocation and deployment environments. The most 

frequent regimes, the heaviest shaded regions in Fig. 5a-c, did not overlap for any of the ARISense. In NC, the relationship 

between the Ox sensor voltage and ambient temperature was positive and monotonic. Higher temperatures generally facilitate 495 

ozone production, therefore this relationship fit our expectation for an urban site in a single season. However, the positive 

relationship between Ox sensor voltage and temperature did not always hold in the deployment sites. Figure 5a-c shows a 

high temperature-low ozone regime in Malawi (regions denoted by a ‘+’ marker) that was not present in the NC data. 

Further, for all three Malawi sites, the minimum Ox sensor voltages were lower (-10 < Vmin < 0) than minima in the NC 

collocation.  500 

3.3.2 Diurnal trends  

Since the deployment site does not have reference data for quantitative comparison, we calculated and compared the annual 

mean diurnal trends of each pollutant, at each site, as predicted by the five models to qualitatively assess the transferability 

of the calibration models to Malawi. Our definition of a transferable model required that it produce: (a) non-negative 

concentration values and (b) diurnal trends consistent with our first-hand observations of nearby emission sources and their 505 

timing, previous observations of diurnal trends in regions with widespread biomass cookstove use (Dionisio et al., 2010; 

McFarlane et al., 2021; Subramanian et al., 2020), and atmospheric chemistry. Non-physical predictions from a given model 

may indicate that differences between the collocation and deployment environments were too large to extrapolate and 

therefore any deployment results calibrated by that model are likely not reliable. Alternatively, coherency among the 

concentration values and trends estimated by the models may suggest that the deployment results are robust against variation 510 

in the modelling approaches. This analysis can contribute to our confidence in the estimated concentration values and trends, 
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but cannot address or estimate the quantitative error. Diurnal trends in Figure 6 suggest the kNN hybrid model was the most 

transferable for interpreting deployment data for all gas sensors. However, both the kNN and RF hybrid models predicted 

similar trends and values for most sensors. The MLR and HDMR models also predicted similar trends, but frequently 

predicted negative values.  515 
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Figure 6: Diurnal trends of calibrated gas measurements (rows) at each site (columns) in the three deployment 

environments. QR model built for and applied to CO data only. The thick line indicates hourly mean, the shaded region 520 

indicates interquartile range. Midnight is the zero hour. The hours are in local time. 
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Calibrated CO data showed the highest coherency across model predictions (Fig. 6). Calibrated CO data were rarely non-

physical. All models predicted similar diurnal trends, specific to each site. Knowledge of the nearby emission sources and 

activity patterns lend support to the calibrated CO data. For example, the village monitors were adjacent to widespread 

household biomass cookstove activity, coincident with the concentration peaks seen in the diurnal trend. This diurnal 525 

cooking pattern was observed in both CO and OPC-N2 data (Fig. 6 and Fig. 7, respectively) at both village sites and was 

measured in complementary emissions monitoring work (Bittner et al, in prep). Further, ARI014 was in a more densely 

populated village than ARI013, contributing to higher CO peaks. The QR model overestimated CO peaks compared to other 

models for the Village 1 data, likely because the model training set did not include high concentration data (Fig. 5e) and the 

quadratic term was not well constrained. Despite the calibrated CO measurements in Malawi being higher than the 530 

concentrations experienced in NC, particularly for ARI014 in Village 1, we expect that the calibrated CO measurements 

from Malawi are credible. We provide the following reasons for justification: a) the manufacturers report that the sensor 

response is expected to be linear up to 500 ppm (Alphasense, LTD., 2019), b) RH/T interference induced on the CO-B4 

sensor, approximately 0.2 mV/ppb (Lewis et al., 2016), has relatively less influence on overall sensor readings in the higher 

voltage (i.e., concentration) regime c) all modelling approaches (other than QR) predicted highly similar diurnal trends and 535 

concentration values, and d) there were known CO emission sources, with diurnal usage patterns matching the observed 

trends, near the monitoring sites. This suggests, for this specific sensor under these conditions, that these modelling 

approaches (other than QR) could reliably extrapolate beyond the training data limits to provide reasonable measurements in 

the deployment environment. 

 540 

The calibrated NOx data showed less coherency than the CO data. NO2 trends were similar across the sites and 

concentrations were rarely negative, but calibrated NO trends varied across models and the lower performing models 

(HDMR and MLR) often predicted negative values. The better models identified in the NC collocation, kNN and RF hybrid, 

suggested that mean ambient NOx levels in Malawi were low (< 15 ppb). We have lower confidence in the calibrated NOx 

measurements in Malawi for the following reasons: a) the calibrated observations (5 to 20 ppb) were on the same order of 545 

the noise level reported on the sensor specification sheets (15 ppb) and b) the lack of coherency observed between model 

predictions. Low ambient NOx levels and a lack of representative data in the NC collocation data contributed to the non-

physical concentrations predicted by the models in Malawi.  

 

The calibrated Ox sensors performed the best during collocation testing compared to the other gas sensors, but in Malawi the 550 

calibration models frequently returned non-physical values and showed inconsistent annual diurnal trends between the 

models and across the sites. For ARI014 and ARI015, the O3 trends were consistent in shape and magnitude and were 

aligned with the expected diurnal trend (i.e., peaking at midday). Peaks in the mean concentration were between 10 and 30 

ppb, plateauing from 10 AM and 3 PM local time. The RF hybrid model at the ARI015 University site estimated the O3 peak 

to occur earlier in the day compared to the other models and sites. This may be the result of a spurious relationship between 555 
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Ox voltage and DP in the collocation data set on which the RF Hybrid model was trained, which held at the Village sites but 

not at the University site. At the Village 2 site (ARI013), there was a change in raw differential voltage response after 

December 2017 that caused all models to fail for the second half of the deployment. All models either consistently predicted 

negative values, values < 1 ppb, or failed to reproduce the expected diurnal trend (i.e., peaking around 9am rather than 

midday). Only Ox data collected before December 2017 resulted in reasonable calibrated values and trends (Fig. S18). 560 

Notably, Ox data collected after December 2017 corresponded with the high temperature-low ozone regime (Fig. S19) shown 

in Figure 5a-c. Despite the Ox differential voltage data spanning a similar range in both NC and Malawi, there was little 

overlap in the ozone dimension at comparable concentration, RH, and T conditions. Since ozone is a secondary pollutant 

driven by complex atmospheric processes and multiple precursors, the ambient conditions that increase or decrease ozone 

formation in one region may not hold in another environment. Although the calibrated Ox sensors performed better than the 565 

other gas sensors in NC, the models were tuned for a set of conditions that did not hold in Malawi.  This suggests that for 

these Ox sensors and these modelling approaches, a lack of environmentally similar collocation data compromised our ability 

to reliably interpret calibrated O3 measurements in this specific deployment environment. 

3.4 OPC-N2 performance during deployment  

To evaluate the long-term performance of the OPC-N2 during deployment in Malawi, we examined the representativeness of 570 

the collocation conditions for the full year of conditions experienced during deployment. Figures S20-21 show normalized 

histograms of the T, RH, and PM2.5 mass concentration observed during the collocation and the full-year deployment in 

Malawi, suggesting the two data sets spanned a similar range of environmental conditions. However, the collocation 

occurred during the cool, dry season, and RH minima and maxima (regimes associated with deficient performance during 

collocation – see Section 3.2) were more extreme during the 1 year deployment in Malawi.  575 
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Figure 1: Diurnal trends of the (left axis) integrated mean PM2.5 mass concentration measured by the OPC-N2 in each 

ARISense at each deployment site and the annual relative humidity at the Village 2 site (right axis). Error bars represent the 580 

calculated 1σ (68%) prediction interval of the hourly mean value. The red text annotation indicates the upper limit of the 

Village 1 prediction interval at 6 AM (beyond the range of shown y-axis). Thick lines indicate hourly mean and shaded 

regions indicate interquartile range. 

 

 585 

Figure 1 shows the annual diurnal trend of the mean PM2.5 mass concentration, with 1-sigma prediction intervals, using 

hourly-averaged data from each deployment location. Peak PM2.5 concentrations were observed around 6 AM local time at 

all sites, when morning biomass cookstove activity coincided with high RH (and more atmospherically stable) conditions. 

Figure 6 shows that the diurnal trends of ambient CO (also emitted by biomass burning) were similar to the PM2.5 diurnal 

trends at each site. Again, the largest peaks were observed at the more densely populated ARI014 Village 1 site. The 590 

prediction intervals were widest between 5 and 7 AM local time, indicating overall low confidence in OPC-N2 

measurements during this period. Afternoon and overnight means, coinciding with drier conditions, were similar across all 
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three sites and prediction intervals were narrowest during afternoons. These results suggest background concentrations of 

PM2.5 in rural Malawi were low (5 to 15 µg m-3), but the OPC-N2 could not reliably quantify peak concentrations that were 

high and variable, dependent on the nearby sources and covariance with ambient meteorology (RH). Despite this, qualitative 595 

data from the OPC-N2 sensors was sufficient to identify nearby source activity and indicate periods when ambient 

concentrations were high enough to be harmful to human health (and at least partially driven by cooking activities associated 

with higher exposure concentrations).  

3.5 Comparison of ARISense CO to remote sensing and reanalysis data   

In the absence of in-situ surface data, we rely on satellites and models to estimate surface air quality for comparison of our 600 

results. To contribute to the literature on surface-to-satellite comparisons over Africa, we compared calibrated ARISense CO 

observations to a satellite observation (MOPITT) and a model estimate (MERRA-2) for the study region. We confirmed that 

all three data sets reported similar annual qualitative trends, although they disagreed in magnitude. This analysis was limited 

to CO, given that the calibrated CO observations were the most dependable of the ARISense gas data and NASA remote 

sensing data products were more readily available for CO, compared to O3 or NOx.  605 

 

Figure 8 shows the mean monthly CO from the University (ARI015) and Village Mean (average of ARI013 and ARI014) 

sites compared to that from two area-averaged remote sensing products: CO surface mixing ratio from MOPITT and CO 

surface concentration from MERRA-2. All three data sets were compared from July 2017 to July 2018, focusing on 

differences between the peak agricultural burning (Sept to Oct) and non-burning (Dec to Jul) seasons. November and August 610 

were excluded from either description (peak burning or non-burning) for the following reasons: (a) a review of fire studies in 

the region consistently reported Sept and Oct as the dominant months of the burning season (Nieman et al., 2021), (b) Aug 

and Nov mark the beginning and end of the fire season, respectively, therefore cannot be considered non-burning months, (c) 

the exclusion of Aug and Nov better captures strong seasonal differences, providing a measurable benchmark to compare the 

satellite and surface data, and (d) ARISense data for the Village sites was unavailable for Nov 2017 (see Sect. 3.7 - on 615 

difficulties in deployment).The MERRA-2 data set was complete for the full year of interest, but MOPITT was missing data 

for the Village Mean region in February and March 2018. The remote sensing data sets were more similar to one another at 

the Village Mean site compared to the University site. At both sites, MOPITT reported higher CO concentrations than 

MERRA-2, especially in the peak burning season.  

 620 
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Figure 8: Monthly carbon monoxide (CO) concentration (ppb) reported by the surface ARISense (Tukey box plots) and 

remote sensing data products (lines and markers indicating mean monthly value) at the (a) Village Mean and (b) University 

sites. Top and bottom of boxes indicate 75th and 25th percentiles, whiskers show 9th and 91st percentiles, midline indicates 625 

median, and stars indicate mean. The ARISense surface data were at least 80% complete for each month except where noted 

with a percentage text label. Data for July 2017 and July 2018 were averaged. Village Mean represents the average of 

ARI014 (Village 1) and ARI013 (Village 2) data. The annual mean from each data source is given on the right axis. 

MOPITT (Multispectral CO Surface Mixing Ratio Daytime/Descending) is a satellite measurement; MERRA-2 (CO Surface 

Concentration -ENSEMBLE) is a global reanalysis product.  630 

 

All three datasets (MOPITT, MERRA-2, and ARISense) indicated that annual mean CO concentrations were slightly higher 

overall at the University site than at the Village site, although this was less pronounced in MERRA-2. Similarly, all three 

data sets showed increased ambient concentrations during the peak burning season compared to the non-burning season at 

both sites. For ARISense, MOPITT, and MERRA-2 observations, respectively, peak season means were larger than non-635 
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burning season means by 160 ppb, 130 ppb, 60 ppb (Village Mean) and 190 ppb, 115 ppb, 50 ppb (University). Although the 

ARISense indicated larger absolute differences between seasons, the relative increase at both sites was only about 50% of 

the non-burning season mean, while MOPITT and MERRA-2 reported increases of 125% and 75%, respectively. This could 

be explained by ARISense proximity to small-scale combustion activity not resolved by satellite imaging. Satellite-based 

observations approximate ambient background concentrations, which increased during the peak season due to regional 640 

agricultural burning. Meanwhile, the ARISense were exposed to ambient background concentrations as well as nearby 

biomass cookstove emissions, which presumably remained consistent throughout the year, showing a lower relative seasonal 

increase during the peak burning season. Quantitative disagreement between surface and remote CO observations was 

highest during the burning season, especially at the University site (Fig. 8). Remote sensing data suggested higher CO 

concentrations at the University compared to the Village Mean during non-burning periods, but during the peak burning 645 

season this difference shrank and similar concentrations were observed across both sites. Conversely, differences between 

ARISense differences grew by about 6% during the peak season. MERRA-2 and MOPITT concentrations were highest in 

September, consistent with ARISense data at the University site, but not the Village Mean site which peaked in October. 

However, 90% of the October CO data were missing for the Village site.  

 650 

Monthly mean CO ARISense values were 2 to 4 times higher than those reported by MOPITT and MERRA-2. We found 

differences of 175 to 200% between the annual mean CO concentration from ARISense and MOPITT, depending on the site, 

and even larger differences (up to 360%) with MERRA-2. Differences between MOPITT and MERRA-2 were smaller (30 to 

35%). There are few comparable studies available to explain these differences, which are greater than previously reported in 

the literature available for SSA. One study in South Africa reported relative differences of ±40% between ground-based CO 655 

measurements and Aura satellite observations at Cape Point station (Toihir et al., 2015). Many studies found good agreement 

(within 10-20% bias) between ground measurements and MOPITT observations, but this was for Total Column CO, and the 

observations were not limited to comparisons over Africa (Buchholz et al., 2017; Emmons et al., 2009, 2004; Yurganov et 

al., 2008, 2010). However, these studies found negative satellite bias when intense biomass plumes affected observations, 

when CO levels were low in the Southern Hemisphere, or when atmospheric CO levels changed rapidly (Buchholz et al., 660 

2017; Emmons et al., 2004; Yurganov et al., 2008, 2010). Each of these conditions could be expected to occur in the 

southern Africa troposphere, potentially explaining differences observed between the ARISense and remote sensing 

observations in this study.    

 

This comparison of low-cost sensor surface data, satellite observations, and model estimates in Malawi suggests each of 665 

these resources can give consistent information on qualitative, long-term trends in a region without ground-based reference 

monitoring. However, because of inherent differences in spatial and temporal resolution, each observation will disagree in 

magnitude. Satellite retrievals and real-time surface measurements do not result in directly comparable quantities. Satellite 

data are collected as a once-daily flyover observation, averaged over a ~12,000 square kilometer area (corresponding to 1° 
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spatial resolution). In contrast, the ARISense data were 1 min resolution, fixed-site, long-term point measurements at the 670 

surface. Further, the ARISense data were collected near visually identified biomass emission sources and were not 

representative of background conditions. Meanwhile, the satellite observations provide an estimate of regional background 

conditions. Despite these differences, the MOPITT, MERRA-2 and ARISense data sets agreed on the long-term seasonal 

trends present in this region, and even corroborated site-to-site differences (e.g., higher mean CO at University compared to 

Village Mean site). These findings suggest the ARISense captured synoptic-scale variation in CO, but comparison to remote 675 

sensing data does not allow for a quantitative assessment of data collected at higher temporal resolutions.  

3.6 Comparison to other ambient measurements in SSA  

Surface concentrations and diurnal trends of ARISense CO and PM in Malawi were comparable to studies in Kenya, 

Rwanda, Ethiopia, Uganda, and South Africa (Delmas et al., 1999; DeWitt et al., 2019; Laakso et al., 2008; McFarlane et al., 

2021; Nthusi, 2017; Scheel et al., 1998; Subramanian et al., 2020; Toihir et al., 2015). However, comparison of O3 680 

concentrations suggested the calibrated ARISense observations underestimateactual concentrations. ARISense NOx 

observations were similar to two other studies (Delmas et al., 1999; Laakso et al., 2008), but overall, there is little 

comparable data available to assess NOx concentrations in Africa. The annual median (July 2017 to July 2018) ARISense 

surface concentrations estimated by the ARISense sensors were 9 to 11 ppb for NOx, 4 to 15 ppb for O3 and 240 to 330 ppb 

for CO.  685 

 

ARISense CO observations were similar to regional CO concentrations in Central Africa (measured by aircraft), found to be 

in the range of 250-400 ppb (Delmas et al., 1999). A long-term ambient study at the Rwanda Climate Observatory found a 

mean CO concentration of 215 ppb from May 2015 to January 2017 (DeWitt et al., 2019), only slightly lower than our 

findings in Malawi. Another LCS study in Kigali, Rwanda observed a range in ambient CO concentrations, from 225 to 500 690 

ppb at their rural and urban sites (Subramanian et al., 2020), spanning the concentration range we observed at our rural and 

semi-urban sites in Malawi.  

 

Both studies of Rwanda found mean ambient O3 concentrations of 30 to 40 ppb (DeWitt et al., 2019; Subramanian et al., 

2020). The annual mean ARISense O3 values were up to a factor of ten lower, however, we identified quality assurance 695 

issues in the calibrated O3 values, particularly for the second half of the deployment data, therefore the ARISense data are 

likely to be an underestimate.  For a “relatively clean background site located in dry savannah in South Africa: the annual 

median (July 2006 to July 2007) trace gas concentrations were equal to 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO” 

(Laakso et al., 2008). Background levels of NOx and CO at this site were 2 to 5 times lower than the ARISense annual 

means, yet background O3 was in line with the Rwanda studies. This suggests regional ozone concentrations in Central and 700 

Southern Africa are about 30-40 ppb.  
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This South African ‘clean’ background site had NOx concentrations up to a factor of 10 lower (1.4 ppb) than ARISense 

measurements in Malawi (Laakso et al., 2008), but aerial measurements made during intense savanna fire activity in Central 

Africa found NOy present in the range of 4-10 ppb (Delmas et al., 1999). Together, these studies suggest that the ARISense 705 

NOx concentrations (9-11 ppb) may be reasonable for our non-background, biomass emission influenced sites in Malawi.  

 

Notably, the corresponding PM1, PM2.5 and PM10 median concentrations at the clean South Africa background site: 9.0, 10.5 

and 18.8 µg m−3, respectively (Laakso et al., 2008), were comparable to ARISense observations. The annual median 

ARISense RH-corrected PM1, PM2.5 and PM10 concentrations were 4 to 7, 6 to 10, and 13 to 20 µg m−3, respectively, 710 

depending on the site. It is possible that actual concentrations of fine PM were higher at the sites in Malawi, given that 

concentrations of gaseous emission tracer species (i.e., CO, NOx) were higher compared to regional background levels found 

by other studies. However, given the high minimum cut-off diameter of the OPC-N2, this particle sensor would have been 

unable to detect ultrafine particles emitted from biomass burning. Average ambient PM2.5 concentrations (measured with an 

Alphasense OPC-N2) were found to be 11 to 24 µg m−3 at various sites in Kenya, with higher pollution episode 715 

concentrations ranging from 35 to 51 µg m−3 (Nthusi, 2017). Median ARISense PM2.5 concentrations were also comparable 

to U.S. embassy measurements in Ethiopia and Uganda (DeWitt et al., 2019). Taken together, these comparisons suggest PM 

levels in rural Malawi are comparable to regional measurements made across SSA, but localized impacts from biomass 

cookstoves can result in higher concentrations of fine PM, which are difficult to accurately quantify with the OPC-N2. In all, 

although these comparisons are not a substitute for quantitative evaluation of the ARISense in Malawi, they provide a 720 

benchmark for comparison and suggest that the CO, NOx, and PM ARISense observations are reasonable for this region. At 

the same time, they cement our conclusion that ARISense O3 observations are likely erroneous for this environment.  

3.7 Performance of ARISense sensor packages over time   

Total data recovery for the 1 year deployment varied by site, season, and sensor, with rates ranging from 30% to 80% (Fig. 

S22). Average recovery for the 1 year deployment was around 60%, with highest recovery at the University site (~80%) and 725 

lowest at Village 1 site (~40%). Data across all sites had the highest completeness (>70%) in the cool-dry (Jun-July-Aug 

2017 and 2018) and the cool-wet season (Mar-Apr-May 2018). Data losses were mostly explained by power outages, 

software failures, and sensor equilibration times required after a power outage (Fig. S23). Power outages were common in 

the warm-wet season (Dec-Jan-Feb) due to insufficient solar intensity resulting from extended periods of heavy cloud cover. 

At the ARI014 site, insufficient power led to an unanticipated diurnal cycle wherein the monitor would shut off in the early 730 

morning hours and require a few hours of solar power before turning on again. This daily cycle, coupled with the 8-hour 

long NO sensor re-equilibration time, led to almost 0% NO data recovery in the second half of the deployment for Village 1. 

In all, nearly 50% of data losses at the ARI014 site were due to system power failure or failure to write data to file. Corrupt 

USB storage devices, which we were slow to replace due to ongoing civil unrest (The Guardian, 2017), resulted in 

significant data losses in the hot, dry season (Sept-Oct-Nov) at the two Village sites. Individual sensor failure was rare, but 735 
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two months of ARI014 Ox data were lost to electrochemical sensor drift and one OPC-N2 (ARI013) failed in the last 3 

months of deployment due to an insect nest clogging the OPC-N2 inlet. In all, we recorded 6992 hours of data at the 

University site (ARI015), 5860 hours for Village 2 (ARI013), and 4720 hours for Village 1 (ARI014). Future deployments 

should include insect screens over all sensor inlets and improved battery storage and power systems that run at a longer duty 

cycle in the case of insufficient solar (e.g., power on only once battery is fully charged) to minimize the impact of sensor 740 

equilibration times on data recovery.  

 

Since the monitors were deployed to their sites for >1 year, there was observation overlap in seasonally similar data collected 

one year apart. To gain insight into sensor stability, we compared the data collected in the first month (July 2017) to the final 

month (July 2018) of the deployment, given that ambient environmental conditions were similar in July of both years 745 

(additional details in Sect. 11 of the Supplementary Information). It is not possible to know if the range of gas concentrations 

were significantly different between July 2017 and July 2018. We explored this analysis on the assumption that inter-annual 

variability in ambient concentrations was minimal. Bivariate distributions of the raw differential voltage readings from July 

2017 and July 2018 showed that the most frequent observations (i.e., heaviest shaded regions) were approximately the same 

in both years (Fig. S25). Observable differences in the voltage measurements could be partially explained by known 750 

environmental differences. For example, the Ox sensor voltages in July 2018 were lower on average than in 2017, but this 

was consistent with lower temperatures and higher RH in 2018 compared to 2017. However, there was potential evidence of 

slightly reduced or altered responses in individual sensors, particularly the NO sensors in ARI013 and ARI015 and the CO 

sensors in ARI013 and ARI014. For these sensors, the 2018 distributions had less spread than the 2017 distributions, 

suggesting either less variation in ambient concentrations in 2018 or decreased sensitivity in the sensors. Diurnal plots from 755 

both years showed that the raw mean voltages and trends were consistent (Fig. S26). However, again the most noticeable 

differences were in the individual CO and NO sensors identified from the bivariate distributions. For example, the CO peaks 

measured at mealtimes by ARI013 and ARI014 were about 50 mV lower in 2018 than 2017. These differences could be 

explained by lower concentrations in 2018 than 2017, changes in the raw sensor response over the one year period, or by 

both. Without reference equipment, we were unable to investigate sensor drift and decay more rigorously. This qualitative 760 

analysis suggests individual sensor responses were altered during the one year deployment, but there was no unambiguous 

evidence for systematic deterioration within or across the electrochemical sensor groups used in the ARISense.  

 

In general, the calibrated observations followed the trends identified from the raw sensor voltage readings. Calibrated CO 

data trends were consistent for both years, with the model responding as expected to the lower voltage readings in 2018 765 

compared to 2017; for ARI013 and ARI014, the calibrated CO peaks at mealtimes were accordingly lower, by about 100 

ppb, in 2018 (Fig. S27). However, although the raw Ox sensor trends in 2018 and 2017 were consistent for all the ARISense 

(Fig. S26), the kNN hybrid model calibrated O3 data were highly irregular between the two years (Fig. S27). For example, 

the calibrated O3 data for July 2017 showed the expected diurnal pattern (concentration increasing with solar intensity) with 
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plateaus between 15 and 40 ppb, depending on the site. Yet in July 2018, although the raw Ox diurnal data looked similar to 770 

2017, the calibrated data for ARI013 and ARI015 showed noon-time values between 0 and 5 ppb, and the diurnal trend for 

ARI013 showed a flat line (i.e., not correlated with solar activity). This finding, that raw Ox sensor voltages were similar 

year to year while the calibrated O3 values were not, provides further evidence that the lack of comparable T/RH/ozone 

collocation data contributed to the non-physical O3 trends observed during the second half of the deployment at the ARI013 

and ARI015 sites. 775 

  

Before their return to NC, ARI013 and ARI014 were used for high-concentration emissions monitoring experiments after the 

one year ambient monitoring campaign was completed (Table 2). The reference monitor data from the post-deployment 

collocation in NC (Aug 2018 to May 2019) were intended to enable investigation of changes in ARI013 and ARI014 raw 

sensor response and model performance. However, the resulting data instead demonstrated that sensors had been severely 780 

degraded during the high-concentration exposures. In the post-collocation data, the raw differential voltage gas sensor 

responses in ARI013 and ARI014 were well correlated with each other (R2 = 0.7 to 0.9) (excluding the ARI013 Ox sensor 

which was clearly degraded: Fig. S28), but less correlated than during the pre-collocation comparison (R2 = 0.9 to 0.99). To 

facilitate comparison with the pre-collocation performance metrics shown in Fig. 2 and Tables S4-S6, the performance 

metrics for the post-deployment collocation are given in Table S11 and S12. Despite showing inter-sensor consistency, the 785 

raw differential voltage sensor measurements (other than CO) made by ARI013 and ARI014 were poorly correlated with 

reference measurements (Fig. S29-S30). Inspection of the time series showed that the ARISense NO sensors tracked some 

spikes in the time-aligned NO reference data, but the NO2 and Ox sensors did not track reference data trends (Fig. S31-S32). 

The time series of the differential voltage and temperature data suggest the gas sensors in ARI013 and ARI014 were 

responding similarly to changes in T and RH, but they were no longer sensitive to changes in the target gas (Fig. S31). This 790 

explains why the sensors in ARI013 and ARI014 were still well correlated with each other, but why they were not correlated 

with reference measurements. The calibrated CO data were the only sensor data still correlated with CO reference 

measurements, although the calibrated CO data showed aberrant features (Fig. S33-S34). These ambient sensors (except for 

the CO sensor) were affected by high concentrations of PM and volatile gases (e.g., hydrocarbons, formaldehyde, etc.) co-

emitted during the biomass burning experiments. Exceedingly high concentrations of emissions can chemically degrade or 795 

contaminate the sensors, for example, the catalyst or electrolyte can be affected or depleted by repeated interactions with 

high concentrations of non-target species emissions. Further, if there are high concentrations of fine PM permeating the inlet 

and flow line, it can condense and block or attenuate the sample flow rate. The Ox, NO, NO2 sensors were permanently 

altered by the biomass burning emission experiments in Malawi, leading to poor performance during post-deployment 

collocations with reference instruments in NC. Given these dramatic changes in sensor responses, the models were unable to 800 

generate reasonable concentration values from sensor signals and consequently, we were unable to use the post-deployment 

collocation data set to quantitatively assess long-term model performance. The partial exception to this was for the kNN 
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hybrid calibrated CO data, which was correlated with the reference data (R2 = 0.5), suggesting that the CO sensors might 

retain some function after additional collocation and recalibration.  

4 Conclusions 805 

Our experience showed that LCS networks are a viable method to collect novel surface AQ data in regions without reference 

equipment, but this approach requires strict data quality procedures to ensure the conclusions drawn from the resulting data 

are valid. Performance assessment in NC suggested the calibrated ARISense sensor packages (excluding the NO2 sensor) 

would be suitable for supplemental monitoring, based on U.S. EPA target values. However, performance during the pre-

deployment NC assessment did not reflect performance in Malawi. For this deployment site, we found that detailed 810 

information about nearby sources and their diurnal emission patterns, ambient meteorological data, and a familiarity with air 

pollutant behavior were helpful when qualitatively assessing LCS performance in a region where quantitative assessment 

was not an option. A lack of coherency in diurnal trends between calibration model predictions and frequent non-physical 

concentration values (Fig. 3) showed that LCS measurements made in deployment environments different from the 

collocation environment can be unreliable and may lead to biased information about the deployment environment. For 815 

example, although the Ox sensors showed the highest performance of all sensor types during collocation testing, and the 

measured RH, temperature, and Ox voltage ranges were similar in the collocation and deployment environments, the 

calibrated O3 data in Malawi were unreliable. The collocation data were collected in an urban area near a highway and the 

deployment data were collected in a rural area heavily impacted by biomass burning emissions. This difference in ozone 

precursor emissions could have contributed to the deficient performance of the calibration models in the deployment 820 

environment. We expect our experience in Malawi may generalize to other regions, suggesting that additional research is 

needed to address the issue of LCS calibration for secondary pollutants.  

 

We found that the kNN hybrid modelling approach performed the best in the U.S. and when applied to data collected in 

Malawi. However, the general lack of standardization in LCS calibration and assessment approaches complicated and 825 

extended this process for our study. Although there have been advancements in calibration methods, the difficulty of 

identifying and applying a singular best calibration model remains a common issue among LCS users (Topalović et al., 

2019; Lewis and Edwards, 2016; Giordano et al., 2021). From an end user perspective, the burden of calibration easily 

becomes overwhelming; there is presently no clear guidance on which model would be appropriate for which sensor under 

which circumstances. This limits the potential user base of LCS technologies, complicates our ability to generalize findings 830 

across different studies, and may even lead to inferior quality measurements. Given the wide range in potential LCS 

technologies and deployment conditions, it is not possible to fully generalize the viability and sensitivity of the ARISense to 

another LCS package deployed in a different area. Nonetheless, we surmise LCS are most useful when they are carefully 

selected and calibrated for a single purpose and location, for which the environmental and pollutant conditions are at least 

partially characterized.  835 
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This pilot deployment also provided lessons regarding the design and deployment of low-cost AQ monitoring systems for 

off-grid applications. The ARISense packages survived the 1 year deployment to Malawi and enabled collection of a large, 

novel dataset, however they suffered individual sensor failures and frequent power losses. Given that 20 to 50% of the 

deployment data were lost due to insufficient power and corrupt data storage systems, for future solar-powered deployment 840 

efforts we suggest that the power system be designed to allow for primary and secondary data recovery goals (i.e., a back-up 

plan to prioritize the most desirable data in the event of insufficient power). Further, we were frequently restricted in 

troubleshooting and repair operations by spotty cellular connection, limited human resources, and our inability to remotely 

locate and procure appropriate equipment. A repair kit with basic equipment (e.g., pre-programmed USB devices, alternate 

SIM cards, hand tools with attachments specific to each LCS) stored in a nearby, secure location would have allowed for 845 

quicker troubleshooting and repair. We suggest that in addition to solar power limitations, other potential confounding 

factors like extreme weather and limited technical capacity and assistance availability be considered before deployment to 

remote locations. We found that the more closely located the monitor was to a trained local assistant, the lower the overall 

data losses were. 

 850 

The responses of the LCS were not remarkably different after one year of deployment (Fig. S29-30), assuming actual 

concentrations did not vary significantly from 2017 to 2018. However, except for CO, repeated exposure to high-

concentration biomass emissions completely degraded the sensors. Key manufacturer specifications indicated that the CO 

sensor was the most robust. The CO sensor exposure limit was forty times higher than that of the Ox, NO, and NO2 sensors. 

Further, the maximum temperature and RH range for the CO sensor was 50°C and 90%, respectively, and 40°C and 85% for 855 

the Ox, NO, and NO2 sensors. During deployment, the maximum ranges were occasionally exceeded for every sensor except 

CO. Operation beyond specified conditions, combined with ~100 hours of exposure to high concentration gases during the 

post-deployment emissions monitoring experiments, damaged the three less robust sensors (NO, NO2, Ox) and made them 

unsuitable for future use. We caution end users to carefully select an appropriate sensor package given pilot information 

about the emission sources in their target site.  860 

 

A growing body of literature highlights the potential value of LCS technologies for Sub-Saharan Africa and other low-

resource settings (Subramanian and Garland, 2021; Wernecke and Wright, 2021; Rahal, 2020; Sewor et al., 2021; Awokola 

et al., 2020). We found that our LCS surface observations were consistent with the only other available data sources in this 

region (remote sensing data and model products) and data from similar studies across SSA. This suggests LCS have a key 865 

role to play in providing reliable information on general air quality conditions and trends in regions without a historical 

record.  

Advancements in machine learning techniques show how LCS can be used for source identification and attribution in 

regions where little quantitative information currently exists on dominant emission sources (Hagan et al., 2019; Thorson et 
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al., 2019). While LCS in SSA show promise, many of the issues experienced in this study stemmed from a lack of in situ 870 

reference monitors. Additional reference grade monitors throughout the region may help circumvent issues related to 

calibration modelling and quality assurance. A regional, shared facility would enable periodic, regionally representative 

collocations without requiring every country to establish its own regulatory network. Recent research has improved our 

ability to synthesize data from networks of LCS through computational calibration solutions which minimize the need to 

transport and collocate each individual monitor separately and increase the spatiotemporal resolution beyond that of 875 

reference networks (Buehler et al., 2021; Malings et al., 2019a; Kelly et al., 2021; Considine et al., 2021; Sahu et al., 2021). 

Concurrently, policy-focused researchers are helping to bridge the gap between governments and AQ scientists by creating 

comprehensive frameworks which provide systematic procedures to establish AQ monitoring networks in low and middle 

income countries (Gulia et al., 2020; Pinder et al., 2019). In the meantime, we found support from local universities, which 

helped maintain the pilot deployment of this LCS network. We expect that any AQ program in SSA will benefit from 880 

building long-term, local capacity and knowledge transfer systems for training on-site staff and for receiving their feedback 

and guidance.  
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