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S1 Details of monitoring equipment   28 

The ARISense sensor package is shown in Figure S1; see Cross et al. (2017) for full description. Version 2.0 added a 29 

GSM cell module and replaced the Ox-B421 with the Ox-B431 sensor (Alphasense Ltd., UK). The ARISense sensor 30 

packages used AC or DC power and drew 3 – 4 W on average. In rural Malawi, units relied on a DC power system of 31 

four 9-Watt solar panels and four 12,000mAh rechargeable batteries; batteries were in a separate weather-proofed 32 

housing with a single bus connected to the ARISense unit. Raw data were sampled every 60 seconds, integrated, and 33 

stored as daily data files on an internal USB drive. During deployment in Malawi, data files were periodically sent via 34 

email or uploaded to a shared Google Drive by an on-site local assistant using an Android phone. 35 

 36 

 37 

 38 

The MicroPEM uses a proprietary software to provide real-time mass concentration estimates from the nephelometer. 39 

We did not apply any correction factors and the internal slope was set to 1. The filters were equilibrated in a climate-40 

controlled weighing chamber for 24 hours (22 ± 2 °C, 35 ± 2.5 % RH) and charge neutralized with Polonium and 41 

electrostatic ionization sources prior to pre‐ and post‐weighing on an ultramicrobalance (Mettler Toledo UMX-2, 0.1 42 

µg readability). Field handling blanks (N= 3) were collected in Malawi and were used to correct the gravimetric PM2.5 43 

concentrations. During field data collection, the filters were stored in sealed containers and were wrapped in foil to 44 

minimize exposure to light. The filters were stored in a refrigerator while in Malawi (when possible) and in the freezer 45 

after returning to the U.S. While in transit, the filters were at ambient temperature. The field blank‐corrected 46 

gravimetric filter mass concentrations were used to post‐correct the nephelometer readings. 47 

 

Figure S1: Image of ARISense (Version 1.0) interior (left), including integrated circuit board and internal data 

logging system. Image of ARISense in deployment setting (right) with solar panel power system mounted at 

Village 2 site in Mulanje, Malawi.  

 

 

 

 



S2 Details of pre-collocation in North Carolina 48 

This study was conducted in 2017, before standardized protocols were developed. The variable collocation periods 49 

used in this study were constrained by equipment malfunction, limited field personnel in Malawi, and international 50 

travel timelines. Recent U.S. EPA guidelines for supplemental air sensor performance assessment suggest 1) a 51 

minimum of 30 days (720 hours) of collocation, 2) two collocations during two different climatic seasons OR at two 52 

different sites, 3) a 24-hour averaging interval for the sensor and reference data, and 4) a 75% completeness 53 

requirement (Duvall et al., 2021a, b). 54 

 55 

 56 

Figure S2: Image of ARISense at reference monitoring site (left) and Google Earth aerial image of location of 57 

Triple Oak monitoring site, Morrisville, North Carolina, 27560 USA. Image source: © Google Earth 2021. Google 58 

Earth Version 9.143.0.0 (May 1, 2018). NC Collocation Site, Durham, NC, USA.  35.865°N, 78.820°W. Borders and 59 

labels; places layer. Accessed: August 19, 2021. NC DEQ link to data available from: 60 

https://xapps.ncdenr.org/aq/ambient/AmbtSiteEnvista.jsp?site=371830021 61 

 

 

https://xapps.ncdenr.org/aq/ambient/AmbtSiteEnvista.jsp?site=371830021


 62 

 63 

 

Figure S3: Scatter plots of raw differential voltage data from each gas sensor (rows) in each monitor pair 

(columns) during pre-collocation in NC. Linear fit coefficients (y = mx + b) and the Coefficient of Determination 

(R2) are shown for each monitor-monitor gas sensor pair. Data points are colored by ambient temperature. 

 

 



 64 

 

 

Figure S4: Time series of PM1, PM2.5 and PM10 mass concentration measurements from ARI013, ARI014, and 

ARI015 during pre-deployment collocation in North Carolina (left); Line color indicates ARISense unit number. 

Scatter plots of PM2.5 mass concentration measurements from ARI013, ARI014, and ARI015 (right). Point color 

indicates relative humidity conditions. Linear regression coefficients (y = mx + b), fit line (red line), and the 

Coefficient of Determination (R2) are shown for each paired comparison; A one to one comparison line is shown 

as the dotted black line. 

 

 



S3 Details of OPC-N2 Collocation in Malawi  65 

 66 

 

Figure S5: Scatter plots of uncorrected PM2.5 mass concentration measurements from the Alphasense OPC-N2 

sensor in ARI023 compared to measurements made by the mass-corrected MicroPEM nephelometer during 

collocation in Malawi. Three tests were conducted over 130 hours. Point color indicates relative humidity 

conditions.  Linear regression coefficients (y = mx + b), fit line (red line), and the Coefficient of Determination 

(R2) are shown for each paired comparison; A one to one comparison line is shown as the dotted black line. 
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 68 

 69 

 

Figure S6: Scatter plots of (a) uncorrected and (b) RH-corrected PM2.5 mass concentration measurements from 

the Alphasense OPC-N2 sensor in ARI023 compared to measurements made by the mass-corrected MicroPEM 

nephelometer during collocation in Malawi (1-min resolution). Point color indicates relative humidity conditions.  

Linear regression coefficients (y = mx + b), fit line (red line), the Coefficient of Determination (R2), mean 

absolute error (MAE), and the coefficient of variation (cV) are shown for each paired comparison; A one to one 

comparison line is shown as the dotted black line. 

 

 

Figure S7: Zoom of Figure S6b.  

 



Table S1: (Top) Metrics from the MicroPEM and OPC-N2 observations (with and without RH-correction) during 70 

collocation for three averaging intervals. Metrics for RH-corrected, 1-hr averaged data stratified by ambient 71 

concentration (as measured by MicroPEM), RH, and wind direction are given in subsequent tables below.  72 

 73 

 

Averaging Interval Slope Intercept  R2 MAE Cv 

1 min 1.6 -0.07 0.1 9.0 0.7 

1 hr 0.7 8.5 0.03 8.7 0.6 

24 hr -0.9 24 0.2 8.5 0.5 

1 min RH Corrected 0.87 0.2 0.2 5.8 0.6 

1 hr RH Corrected 0.43 4.3 0.06 5.4 0.6 

24 hr RH Corrected -0.27 11 0.1 4.2 0.5 

 

Concentration (µg m-3) Slope Intercept  R2 MAE Cv 

0-5 -2.2 14 0.064 4.1 0.33 

5-10 1.3 -1.2 0.025 4.7 0.16 

10-15 0.5 4.8 0.004 8.5 0.11 

15-20 1.3 -11 0.016 9.3 0.04 

20-105 0.38 3.1 0.174 16.8 0.36 

 

RH (%) Slope Intercept  R2 MAE Cv 

10 to 20 0.47 0.5 0.356 6.2 0.67 

20 to 30 0.53 0.7 0.725 3.8 0.89 

30 to 40 0.45 1.4 0.629 3.7 0.59 

40 to 50 0.53 1.6 0.432 4.2 0.53 

50 to 60 0.47 2.1 0.379 4.9 0.50 

60 to 70 0.61 0.5 0.307 5.2 0.47 

70 to 80 0.19 9.7 0.005 7.1 0.60 

80 to 90 1.2 8.9 0.025 11 0.37 

 

Wind direction Slope Intercept  R2 MAE Cv 

N 0.41 2.5 0.125 3.31 0.55 

NE 0.57 0.7 0.489 3.83 0.69 

E 0.51 5.2 0.057 6.12 0.84 

SE 0.41 4.8 0.042 5.80 0.75 

S 0.31 5.3 0.042 5.91 0.63 

SW 0.45 2.7 0.148 4.09 0.62 

W 0.40 2.9 0.267 3.00 0.70 

NW 0.62 1.2 0.342 3.38 0.61 

 



 74 

 75 

Table S2: Performance metrics of PM2.5 mass concentration measurements from the Alphasense OPC-N2 (ARI023) 76 

compared to the mass-corrected MicroPEM nephelometer during collocation in Malawi. The number of data points in 77 

all three scenarios are identical, but the assumed kappa value, applied as part of an RH-correction algorithm, is 78 

different. This RH-correction algorithm is based on the kappa value and ‘shifting’ the bin cut-offs (Di Antonio, et al. 79 

2018). In this case, the assumed density is held constant, and the kappa value is changed. κ = 0.6 is the empirical value 80 

which achieved the best agreement between an OPC-N2 and reference data in the UK (Di Antonio (2018)). κ = 1 81 

indicates an aerosol mixture with appreciable amounts of inorganics (theoretical value, based on Petters & 82 

Kreidenweis (2007)). κ = 0.15 was reported to be the continental average value for Africa, based on Pringle et al, 2010 83 

and Pope at. al, 2018 (modelled and observed). Data are 60-min averaged. R2 = Coefficient of Determination, Cv = 84 

Coefficient of Variation, MAE = Mean Absolute Error. 85 

Kappa Slope Intercept  R2 MAE Cv 

0.15 0.589 5.44 0.051 6.54 0.59 

0.6 0.41 4.31 0.068 5.42 0.59 

1 0.32 3.57 0.076 5.40 0.59 

 86 

 87 

 

Figure S8: Times series of ARISense 023 un-corrected PM2.5 concentration during collocation in Malawi. Spikes 

in the time series are associated with widespread biomass cookstove use during the morning (5-7 AM). Data are 

colored by wind direction. Cookstove activity was largely associated with southerly winds. 

 



Table S3: Performance metrics of PM2.5 mass concentration measurements from the Alphasense OPC-N2 (ARI023) 88 

compared to the mass-corrected MicroPEM nephelometer during collocation in Malawi. The number of data points in 89 

all scenarios are identical, but the assumed kappa value, applied as part of an RH-correction algorithm, and the 90 

assumed density is different in each. This RH-correction algorithm is based on the kappa value and ‘shifting’ the bin 91 

cut-offs (Di Antonio, et al. 2018). Species data (κ and density) based on Hagan & Kroll (2020) & Petters & 92 

Kreidenweis (2007). Data are 60-min averaged. R2 = Coefficient of Determination, Cv = Coefficient of Variation, 93 

MAE = Mean Absolute Error. 94 

Aerosol source type  Kappa Density (g cm-3) Slope Intercept  R2 MAE Cv 

Ammonium Nitrate 0.67 1.72 0.42 4.17 0.076 5.32 0.59 

Dust 0.03 2.6 0.58 5.88 0.044 6.85 0.59 

Wildfire 0.1 1.58 1.02 11.8 0.033 12.7 0.59 

Background 0.25 1.45 0.35 5.84 0.025 6.69 0.59 

 95 

S4 Description of assessment metrics  96 

Table S4: EPA recommended performance metrics and target values for low-cost gas (ozone) and particle sensor 97 

evaluation. Adapted from Tables ES-2 (Duvall et al., 2021a, b). We use Mean Absolute Error in place of (RMSE). 98 

Performance Metric   O3 Target Value PM2.5 Target Value 

Precision Standard deviation (SD) OR ≤ 5 ppbv ≤ 5 µg m-3 

  Coefficient of Variation (CV) ≤ 30% ≤ 30% 

Bias Slope (m)  1.0 ± 0.2 1.0 ± 0.35 

  Intercept (b) -5 ≤ b ≤ 5 ppbv -5 ≤ b ≤ 5 µg m-3 

Linearity Coefficient of Determination (R2) ≥ 0.80 ≥ 0.70 

Error Root Mean Square Error (RMSE) ≤ 5 ppbv RMSE ≤ 7 µg m-3 or NRMSE ≤ 30% 

 99 

The correlation between estimated and true concentrations is assessed using the true predictive correlation coefficient 100 

or the “Coefficient of Determination”. For n measurements,  101 

 102 

𝑅2 = 1 −
∑ (𝑐𝑡𝑟𝑢𝑒,𝑖−𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖)

2𝑛
𝑖=1

∑ (𝛥𝑐𝑡𝑟𝑢𝑒,𝑖)
2𝑛

𝑖=1

         (1) 103 

 104 

where 𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 is the measured concentration as measured by the ARISense monitor, 𝑐𝑡𝑟𝑢𝑒,𝑖 is the corresponding 105 

actual concentration as measured by the reference instrument, and  106 

 107 

𝛥𝑐𝑡𝑟𝑢𝑒,𝑖 =  𝑐𝑡𝑟𝑢𝑒,𝑖 −
1

𝑛
∑ 𝑐𝑡𝑟𝑢𝑒,𝑗

𝑛
𝑗=1          (2) 108 



 109 

The error in the ARISense measurements compared to the reference measurements is assessed using the mean absolute 110 

error (MAE): 111 

 112 

𝑀𝐴𝐸 =
∑ |𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−𝑐𝑡𝑟𝑢𝑒,𝑖|𝑛

𝑖=1

𝑛
         (3) 113 

 114 

To assess precision:  115 

 116 

𝑐𝑉 =

√
∑ 𝛥𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖

2𝑛
𝑖=1  

𝑛
 

1

𝑛
∑ 𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑗

𝑛
𝑗=1

            (4) 117 

 118 

where 119 

  120 

𝛥𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 =  𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 −
1

𝑛
∑ 𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑗

𝑛
𝑗=1        (5) 121 

 122 

To assess bias, we fit a linear regression model to compare the slope and intercept:  123 

 124 

𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =  𝑚 ∗ 𝑐𝑡𝑟𝑢𝑒,𝑖 + 𝑏         (6) 125 

 126 

where 𝑚 is the slope and 𝑏 is the y-intercept.  127 

 128 

To estimate the interval for the average diurnal OPC-N2 measurements we applied a Box-Cox transformation (Box 129 

and Cox, 1964) to the linear regression model:  130 

 131 

𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝜆) =  (𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝜆 − 1)/𝜆         (7) 132 

 133 

with 𝜆 = -0.14 to obtain an error term in the linear regression model independent of 𝑐𝑡𝑟𝑢𝑒 and normally distributed, 134 

with zero mean and constant variance. Interval estimates for future OPC-N2 measurements were calculated as 135 

prediction intervals:  136 

 137 

𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝜆) ± 𝑡1−
𝛼

2
,𝑛−2√

1

𝑛
∑ (𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 − 𝑐𝑡𝑟𝑢𝑒,𝑖)

2
∗ (1 +

1

𝑛
+𝑛

𝑖=1  (
𝛥𝑐𝑡𝑟𝑢𝑒(𝜆))2

∑ (𝑛
𝑖=1 𝛥𝑐𝑡𝑟𝑢𝑒,𝑖)^2  

)    (8) 138 

 139 

where t is the t-statistic value for a given level of significance α. The prediction intervals were reverse-transformed 140 

and used to estimate the range for future to 𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 measurements. The ARI023 MicroPEM measurements were 141 

𝑐𝑡𝑟𝑢𝑒,𝑖 and OPC-N2 were 𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 . Outlying observations occurring between 3-6 AM were excluded for the fit to 142 



converge due to high ambient RH conditions (> 75%) coinciding with periods of fresh, biomass emissions from nearby 143 

morning cooking activity. The analysis was completed in R (version 3.6.0) using RStudio (version 1.2.5042) with 144 

MASS (version 7.3-51.4) and ggplot2 (version 3.3.2) libraries.  145 

 146 

To calculate the prediction intervals for ARI013, ARI014, and ARI015, we used collocation data from the ARI023 147 

Alphasense OPC-N2 deployed in 2018 to the Village 2 site in Malawi (Figure S8). We surmise the results from the 148 

collocation data of ARI023 can be extrapolated to the 2017 ARI013-ARI015 data set for the following reasons: a) this 149 

is the best-available in situ collocation data for our specific deployment conditions and source aerosol, b) we observed 150 

highly similar responses from the Alphasense OPC-N2 units in ARI013, ARI014, and ARI015 during collocations (R2 151 

> 0.9), and c) we only aimed to report low confidence level (1-sigma) prediction intervals with our measurements. 152 

There are caveats to this approach; review studies have reported low repeatability and reproducibility across 153 

Alphasense OPC-N2 units (Rai et al., 2017), but several studies have reported high inter-unit agreement with a cV 154 

around 0.2 (Bulot et al., 2019; Crilley et al., 2018; Badura et al., 2018). 155 

 156 

Figure S8: Alphasense OPC-N2 RH-corrected PM2.5 mass concentration versus MicroPEM PM2.5 concentration data  157 

used for the linear model; Fit line shown in blue, grey shaded area indicating 68% confidence interval in slope; Dotted 158 

red lines indicate 68% prediction interval upper and lower limits calculated from the linear model.  Data are 60-min 159 

averaged. Data collected from 3-6 AM (morning cooking periods) were removed for the fit to converge. 160 



 161 

Figure S9: RH-corrected OPC-N2 PM2.5 mass concentration (1-hr averaged) linear model residuals and fit range. 162 

Residuals = difference between OPC-N2 and MicroPEM measurements; (a) raw data, and (b) box-cox transformed 163 

data with outliers occurring from 3-6 AM LT (the morning cooking period) excluded.  164 

(a) 

 

(b) 

 

 



S5 Details of Malawi Deployments 165 

 166 

Figure S10: Satellite map of Malawi, blue markers indicate ARISense monitoring sites. Image source: © Google 167 

Earth 2020. Google Earth Pro Version 7.3.4.8248. University, Village 1, and Village 2, Malawi, Southeastern Africa.  168 

Borders and labels layer. Accessed: June 5, 2020. 169 

 170 

Figure S11: Satellite image of Mulanje “Village” sites, blue markers indicate ARISense monitoring sites. Image 171 

source: © Google Earth 2020.  Google Earth Pro Version 7.3.4.8248. Mulanje, Malawi. Borders and labels layer. 172 

Accessed: June 5, 2020. 173 



 174 

Figure S12: Satellite image of Village 2 (1000ft scale), blue markers indicate ARISense monitoring sites (ARI013). 175 

ARI013 was deployed to the Village 2 site and was mounted on the roof of the residence of the village chief (4 m 176 

above ground) in the Mikundi village of Mulanje, Malawi for 382 days from 6 July 2017 to 23 July 2018.  Image 177 

source: © Google Earth 2020. Google Earth Pro Version 7.3.4.8248. Mikundi village, Mulanje, Malawi. 36.056°S, 178 

35.535°E, eye elevation 626 m. Borders and labels layer. Accessed: June 5, 2020. 179 



 180 

Figure S13: Satellite image of “Village 1” (1000ft scale); blue markers indicate ARISense monitoring sites (ARI014). 181 

ARI014 was deployed to Village 1 site and was mounted on the roof of the residence of the village chief (4 m above 182 

ground) in the Makaula village of Mulanje, Malawi for 384 days from 11 July 2018 to 30 July 2018. Image source: © 183 

Google Earth 2020. Google Earth Pro Version 7.3.4.8248. Makaula village, Mulanje, Malawi. 16.045°S, 35.555°E, 184 

eye elevation 645 m. Borders and labels layer. Accessed: June 5, 2020. 185 



 186 

Figure S14: Satellite image of “University” (1000ft scale), blue markers indicate low-cost monitoring sites (ARI015). 187 

ARI015 was deployed to the University site and was mounted on the roof of an office building (7 m above ground) at 188 

the Bunda College of Agriculture in the Lilongwe University of Agricultural and Natural Resources near Lilongwe, 189 

Malawi for 382 days from 25 June 2017 to 13 July 2018. Image source: © Google Earth 2020. Google Earth Pro 190 

Version 7.3.4.8248. Centre for Agricultural Research, Lilongwe University of Agriculture and Natural Resources, 191 

Bunda, Malawi. 14.180°S, 33.774°E, eye elevation 1125 m. Borders and labels layer. Accessed: June 5, 2020. 192 



 193 

Figure S15: Data recovery rate (%) for the 1-year deployment for each ARISense monitor at their respective sites; (a) 194 

shows data recovery by sensor type where CO =  carbon monoxide, NO =  nitric oxide, NO2 =  nitrogen dioxide, O3 195 

=  ozone, and OPC = Optical Particle Counter, (b) shows data recovery by season (using the Temperature sensor data 196 

recovery rate) where DJF =  December-January-February, MAM =  March-April-May, JJA =  June-July-August, and 197 

SON = September-October-November. 198 

(a) 

 

(b) 

 



S6 Details of remote sensing data 199 

MOPITT and MERRA-2 data were obtained for the Village and University sites. The ARI015 data (University) was 200 

located far enough away and was dissimilar enough from the “Villages” data to be kept separate (Fig. S18). 201 

 202 

Table S5: NASA Giovanni information used to obtain MOPITT observations for two locations in Malawi.  203 
 

Data product Spatial Resolution Temporal Resolution Date Range 

MOPITT (satellite 

observation): The 

Measurement of Pollution 

in the Troposphere 

(MOPITT) sensor 

launched aboard Terra 

satellite 

Time Series, Area-

Averaged of 

Multispectral CO 

Surface Mixing Ratio 

(Daytime/Descending) 

monthly () 

1° Monthly 2017-07-01 to 

2018-07-31 

     

 
User Bounding Box 

("Villages") 

User Bounding 

Box ("University") 

Data Bounding Box 

("Villages") 

Data Bounding 

Box 

("University") 

 
35.5555°, -16.0451°, 

35.5555°, -16.0451° 

33.7744°, -14.18°, 

33.7744°, -14.18° 

36°, -16°, 36°, -16° 34°, -14°, 34°, -14° 

 204 

Table S6: NASA Giovanni information used to obtain MERRA-2 observations for two locations in Malawi.  205 
 

Data product Spatial Resolution Temporal 

Resolution 

Date Range 

MERRA-2 (global 

atmospheric reanalysis): 

The Modern-Era 

Retrospective analysis for 

Research and Applications, 

Version 2 (MERRA-2); 

MERRA-2 Model 

M2TMNXCHM v5.12.4 

Time Series, Area-

Averaged of CO 

Surface Concentration 

(ENSEMBLE) 

monthly 0.5 x 0.625 

deg. [MERRA-2 ()] 

0.5° x 0.625° Monthly 2017-07-01 to 2018-

07-31 

     

 
User Bounding Box 

("Villages") 

User Bounding 

Box ("University") 

Data Bounding Box 

("Villages") 

Data Bounding Box 

("University") 
 

35.5555°, -16.0451°, 

35.5555°, -16.0451° 

33.7744°, -14.18°, 

33.7744°, -14.18° 

35.625°, -16°, 

35.625°, -16° 

33.75°, -14°, 33.75°, 

-14° 

 206 

 207 



 208 

Figure S16: Scatter plot of Village 2 (y-axis) and Village 1 (x-axis) monthly mean CO concentration (calibrated with 209 

the kNN Hybrid model). A one-to-one line is shown as the dotted black line. 210 

 211 

 212 

Figure S17: Scatter plot of University (y-axis) and Village (average from Village 1 and 2) (x-axis) monthly mean CO 213 

concentration (calibrated with the kNN Hybrid model). A one-to-one line is shown as the dotted black line. 214 



S7 Comparison of NC collocation and Malawi deployment 215 

 216 

Figure S18: RH (left) and Temperature (right) normalized frequency histograms for the collocation (grey) and 217 

deployment (color) environments for all three ARISense monitors. Histogram color indicates ARISense unit number 218 

in deployment environment. 219 



 220 

Figure S19: NO (left) and NO2 differential voltage (right) normalized frequency histograms for the collocation (grey) 221 

and deployment (color) environments for all three ARISense monitors. Histogram color indicates ARISense unit 222 

number in deployment environment. 223 

 224 



 225 

Figure S20: Ox (left) and CO (right) differential voltage normalized frequency histograms for the collocation (grey) 226 

and deployment (color) environments for all three ARISense monitors. Histogram color indicates ARISense unit 227 

number in deployment environment. 228 

 229 



 230 

Figure S21: Dew point (left) and pressure (right) normalized frequency histograms for the collocation (grey) and 231 

deployment (color) environments for all three ARISense monitors. Histogram color indicates ARISense unit number 232 

in deployment environment. 233 



 234 

Figure S22: Bivariate distributions of ARI014 NO2 differential voltage, RH, and T data collected during collocation 235 

(blue) and deployment (orange) made using kernel density estimation. NC = North Carolina, V1 = Village 1.  236 

 237 

 238 

Figure S23: Diurnal trends of calibrated ozone data from ARI013 (Village 2 site) before Dec 2017 (left) and after 239 

Dec 2018 (right). Thick line indicates hourly mean, shaded region indicates interquartile range. Midnight is the zero 240 

hour. Line color indicates model type. Hours are in local time. 241 

 242 



 243 

Figure S24: Bivariate distributions of Ox voltage and temperature data collected during the first half of deployment 244 

(July-November 2017 - orange) and in the second half of deployment (December 2017-July 2018 – blue) for each 245 

ARISense monitor using kernel density estimation. 246 



S8 Comparison of OPC-N2 collocation and deployment in Malawi 247 

 248 

Figure S25: ARISense temperature (flow cell and box), dew point, relative humidity, pressure and flow rate 249 

normalized frequency histograms for the 130-hour ARI023 OPC-N2 collocation (grey) in Malawi and the 1-year 250 

deployment in Malawi (ARI013 in green.) 251 



 252 

Figure S26: CO differential voltage, PM2.5 mass concentration, wind speed, and wind direction normalized frequency 253 

histograms for the 130-hour OPC-N2 collocation (ARI023 in grey) in Malawi and the 1-year deployment in Malawi 254 

(ARI013 in green).  255 

S9 Comparison of first and last month of deployment data 256 

Histograms of T and RH from July 2017 and July 2018 suggest the range in conditions was the same for both years, 257 

particularly for temperature (Fig. S28). However, for the Village 2 site, the average and maximum RH were higher by 258 

10-15% in July 2018 compared to July 2017. Further, the mean temperature was 2° cooler in 2018. Conversely, at the 259 

University site in 2018, the average RH was 6% higher, while the minimum RH was 5% lower, compared to 2017 260 

suggesting more variable environmental conditions in the second year. However, for the Village 1 and University 261 

sites, the mean temperatures were identical for both years.  262 

 263 



 264 

Figure S27: Dew point (left), RH (center), and temperature (right) normalized frequency histograms from the first 265 

month of deployment (grey) and last month of deployment (colored) for ARI013, ARI014, and ARI015 at their 266 

respective deployment sites. 267 



 268 

Figure S28: Bivariate distributions of data collected during the first month of deployment (July 2017) and data 269 

collected one year later in the last month of deployment (July 2018) for each ARISense monitor using kernel density 270 

estimation. 271 



 272 

Figure S29: Diurnal trends of raw, uncalibrated voltage readings from July 2017 (left) and July 2018 (right), for each 273 

ARISense at each respective monitoring location. Thick line indicates hourly mean, shaded region indicates 274 

interquartile range. Midnight is the zero hour. Line color indicates sensor. 275 



 276 

Figure S30: Diurnal trends of kNN-hybrid model calibrated concentration readings from July 2017 (left) and July 277 

2018 (right), for each ARISense at each respective monitoring location. Thick line indicates hourly mean, shaded 278 

region indicates interquartile range. Midnight is the zero hour. Line color indicates sensor. 279 



S10 Details of high-concentration biomass burning emission experiments  280 

Emissions measurement equipment, described in Champion and Grieshop (2019), placed near the source measured 281 

mean CO concentrations of 50-300 ppb and maximum CO concentrations of 200-3800 ppm. The ARISense were 282 

placed further away (3-8 m) from the source. CO sensors saturated (at 5 ppm) for much of the testing period. 283 

Depending on the source type, these experiments ranged from 20-48 hours. ARI013 was used for 3 experiments (75 284 

hours total) and ARI014 was used for 4 experiments (100 hours total). 285 

S11 Details of Post-Deployment Collocation in North Carolina  286 

 287 

Figure S31: Scatter plots of raw differential voltage data from each gas sensor in ARI014 (y-axis) and ARI013 (x-288 

axis) measured during post-collocation in North Carolina. Linear fit coefficients and Pearson correlation coefficients 289 

are shown for each monitor-monitor gas sensor pair. Data points are colored by ambient temperature. 290 



 291 

Figure S32: Scatter plots of raw differential voltage data from each gas sensor in ARI013 (y-axis) compared to 292 

reference data (x-axis) during post-deployment collocation in North Carolina. 293 



 294 

Figure S33: Scatter plots of raw differential voltage data from each gas sensor in ARI014 (y-axis) compared to 295 

reference data (x-axis) during post-deployment collocation in North Carolina. 296 



 297 

Figure S34: Time series of raw NO2 differential voltage data from ARI013 and ARI014, NO2 reference data (black), 298 

and temperature (red) during post-deployment collocation in North Carolina. 299 

 300 

Figure S35: Time series of raw NO differential voltage data from ARI013 and ARI014 and NO reference data 301 

(black) during post-deployment collocation in North Carolina. 302 



 303 

Figure S36: Scatter plots of kNN-calibrated data from each gas sensor in ARI013 (y-axis) compared to reference data 304 

(x-axis) during post-deployment collocation in North Carolina. Linear regression coefficients (y = mx + b), fit line 305 

(red line), the Coefficient of Determination (R2) are shown for each paired comparison; A one to one comparison line 306 

is shown as the dotted black line. 307 

 308 

 309 



 310 

Figure S37: Scatter plots of kNN-calibrated data from each gas sensor in ARI014 (y-axis) compared to reference data 311 

(x-axis) during post-deployment collocation in North Carolina. Linear regression coefficients (y = mx + b), fit line 312 

(red line), the Coefficient of Determination (R2) are shown for each paired comparison; A one to one comparison line 313 

is shown as the dotted black line. 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 



 325 

Table S7: Performance metrics for ARISense 013 and 014 during post-deployment collocation with reference 326 

instruments in NC. Values are shown for each of the four gas sensors and for each calibration model assessed in this 327 

study. R2 = Coefficient of Determination, MAE = mean absolute error, CO = carbon monoxide, NO = nitric oxide, 328 

NO2 = nitrogen dioxide, O3 = ozone. 329 

Final Round (Post collocation) ARI013 ARI014 

 
MAE (ppb) R2 MAE (ppb) R2 

CO 
    

HDMR 100. 0.25 105. 0.22 

MLR 100. 0.25 105. 0.22 

kNN Hybrid  68.6 0.57 72.2 0.55 

RF Hybrid 67.7 0.55 73.6 0.51 

QR 143. -0.45 142. -0.38 
     

NO 
    

HDMR 28.0 -4.14 23.9 -2.46 

MLR 13.5 -0.39 16.0 -0.69 

kNN Hybrid  11.4 -0.39 11.6 -0.43 

RF Hybrid 10.4 -0.12 10.8 -0.10 
     

NO2 
    

HDMR 10.7 -2.27 9.29 -1.91 

MLR 13.6 -4.05 13.4 -4.58 

kNN Hybrid  6.97 -0.72 7.31 -1.06 

RF Hybrid 5.72 -0.31 5.61 -0.19 
     

O3 
    

HDMR 45.5 -28.7 82.6 -42.0 

MLR 32.4 -8.94 49.3 -13.5 

kNN Hybrid  26.9 -7.00 12.4 -0.15 

RF Hybrid 58.0 -962. 16.1 -0.80 

 330 

 331 

 332 

 333 
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