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Abstract 16 

To enable chemical speciation, monitoring networks collect particulate matter (PM) on different 17 
filter media, each subjected to one or more analytical techniques to quantify PM composition 18 
present in the atmosphere. In this work, we propose an alternate approach that uses one filter 19 
type (teflon or polytetrafluoroethylene, PTFE, commonly used for aerosol sampling) and one 20 
analytical method, Fourier Transform Infrared (FT-IR) spectroscopy to measure almost all of the 21 
major constituents in the aerosol. In the proposed method, measurements using the typical 22 
multi-filter, multi-analytical techniques are retained at a limited number of sites and used as 23 
calibration standards.  At all remaining sites, only sampling on PTFE and analysis by FT-IR is 24 
performed. This method takes advantage of the sensitivity of the mid-IR domain to various 25 
organic and inorganic functional groups and offers a fast and inexpensive way of exploring sample 26 
composition. As a proof of concept, multiple years of samples collected within the Interagency 27 
Monitoring of PROtected Visual Environment network (IMPROVE) are explored with the aim of 28 
retaining high quality predictions for a broad range of atmospheric compounds including total 29 
mass, organic (OC), elemental (EC) and total (TC) carbon, sulfate, nitrate and crustal elements. 30 
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Findings suggest that models based on only 21 sites, covering spatial and seasonal trends in 31 
atmospheric composition, are stable over a three year period within the IMPROVE network with 32 
acceptable prediction accuracy (R2 > 0.9, median bias less than 3%) for most constituents.  The 33 
major limitation is measuring nitrate as it is known to volatilize off of PTFE filters.  Incorporating 34 
additional sites at low cost, partially replacing existing, more time and cost intensive techniques 35 
or using the FT-IR data for quality control, are among the potential benefits of one-filter, one-36 
method approach.   37 
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1 Introduction 38 
In the United States, filter-based chemical speciation of ambient aerosols has been in operation 39 
for decades to quantify trends, assess transport and atmospheric transformation, identify 40 
sources of air pollution, evaluate impacts of pollution regulations, assess impacts on visibility, 41 
radiative forcing, human and ecosystem health and evaluate atmospheric and climatological 42 
models.  The two federally funded speciation networks, the Interagency Monitoring of PROtected 43 
Visual Environments (IMPROVE) and the Chemical Speciation Network (CSN) collect 24-hour filter 44 
samples using three filter media:  polytetrafluoroethylene for analysis by gravimetry, hybrid 45 
integrating plate and sphere (HIPS), and x-ray fluorescence (XRF), quartz for thermal optical 46 
reflectance (TOR) and nylon for ion chromatography.  Over the decades of operation, the 47 
analytical methods have evolved with efforts to maintain consistency in trends while also 48 
adopting improved methodology and retiring obsolete equipment.  Impacts of many of these 49 
changes have been addressed in the literature (Hyslop et al., 2015, 2012; White et al., 2016; 50 
Zhang et al., 2021; Chow et al., 2007a, 2015) and in data advisories posted on the IMPROVE 51 
website (http://vista.cira.colostate.edu/Improve/data-advisories/).   52 

In this paper, we explore the use of Fourier transform-infrared spectroscopy (FT-IR) to reproduce 53 
most of the existing speciation data based on the optical activity of the components in the mid-54 
IR. The number and bands of organic compounds are numerous, but generally group frequencies 55 
can be found above 1500 cm-1 and compound-specific spectral patterns (“fingerprint region”) 56 
below this frequency; down to approximately 700 cm-1 (for example, Weakley et al., 2016; Mayo 57 
et al., 2004).  Graphitic carbon displays peaks near 1600 cm-1 due to lattice defects (Tuinstra and 58 
Koenig, 1970; Friedel and Carlson, 1971), displacement vibrations near 868 cm-1 (Nemanich et 59 
al., 1977), and a broad, sloping absorbance between 4000 and 1500 cm-1 due to the tail of the 60 
electronic transition more strongly observed in the UV (Parks et al., 2021). Inorganic substances 61 
containing polyatomic ions such as sulfate, nitrate, and ammonium have strong vibrational 62 
modes above 600 cm-1 (Mayo, 2004). Crystalline and amorphous geological minerals in the form 63 
of oxides (which include hydroxides and oxyhydroxides) have distinct internal vibrational modes 64 
influenced by the electronegativity of the metal to which the oxygen is bonded (Busca and Resini, 65 
2006; Chukanov and Chervonnyi, 2016; Margenot et al., 2017).   66 

FT-IR spectra with partial least squares (PLS) calibrations have been shown to reproduce OC and 67 
EC concentrations using organic and graphitic carbon absorption bands, respectively,  at a limited 68 
number of sites in the IMPROVE network (Dillner and Takahama, 2015a, b; Reggente et al., 2016), 69 
CSN (Weakley et al., 2016, 2018a) and FRM (Weakley et al., 2018b).  Takahama et al. (2019) 70 
reviews these findings and the overall framework to be used for the two phases of such statistical 71 
calibrations: model building (sample selection, spectral preparation, model generation, model 72 
selection, model evaluation, and model understanding) and operation (error anticipation and 73 
model updating).   Inorganic ions and geological mineral absorption bands have been used for 74 
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chemical speciation of these substances using FT-IR in prior studies (e.g., Cunningham et al., 75 
1974; McClenny et al., 1985; Pollard et al., 1990; Bogard et al., 1982; Foster and Walker, 1984).   76 

Organic absorption bands are useful for measuring OC but also provide spectral information 77 
needed to add detailed knowledge of composition not currently measured in air quality 78 
monitoring networks – such as organic matter (OM) and organic functional group composition – 79 
which is the subject of other work (Reggente et al., 2019; Boris et al., 2019, 2021; Burki et al., 80 
2020). Such calibrations, also combined with factor analytic approaches, can provide source 81 
characterization on par with more costly mass spectrometric techniques (Boris et al., 2021; 82 
Yazdani et al., 2021a; Hawkins et al., 2010; Takahama et al., 2011; Liu et al., 2012; Corrigan et al., 83 
2013). 84 

Although FT-IR shows promise for measuring many constituents in aerosol, it is not without its 85 
challenges.  One limitation is that not all PM constituents can be measured, or measured with 86 
high sensitivity, from the FT-IR spectrum. For instance, NaCl and MgCl2 do not have IR-active 87 
substituents.  While a multitude of spectral signatures associated with mineral dust arise from 88 
their constituent bonds – e.g., the metal-oxygen bonds in oxides (the oxide form is explicitly 89 
assumed in estimating dust mass concentrations from elemental composition for the IMPROVE 90 
network), some must be predicted from correlation with other constituents (e.g., some forms of 91 
iron) if IR-activity is lacking. Other substances are IR-active but have weak responses, such as 92 
graphitic carbon (Niyogi et al., 2006; Parks et al., 2021).   The absorption and scattering by the 93 
PTFE filter also pose challenges for quantitative analysis. The PTFE-based material changes over 94 
time due to change in manufacturer or manufacturing process, and is difficult to fully characterize 95 
a priori or treat with simple blank subtraction techniques. PTFE absorption limits full access to 96 
the range of spectroscopic information in the mid-IR, for instance in the region of carbon-oxygen 97 
bonds that can lead to less than full recovery of OM mass. Additionally, scattering leads to 98 
broadly-varying slope in the group frequency region. This scattering artifact is minimized by 99 
baselining (Kuzmiakova et al., 2016) and using many standards that have a range of scattering 100 
and absorption observed in the network (Debus et al., 2019), yet these techniques can still lead 101 
to errors in quantification.  Weakley et al., (2018b) demonstrated that calibrations built using one 102 
brand of filter can be accurately extended to another brand of PTFE filter with numerically 103 
marginal but statistically significant increase in method error (e.g., +2% error for α=0.05). 104 
However, these studies are insufficient to generalize findings to all types of sampling filters.     105 

The goal of this work is to assess the capability of using FT-IR to measure the aerosol chemical 106 
composition at all IMPROVE sites.  FT-IR quickly and non-destructively collects information-rich 107 
spectra from routinely collected PTFE filter samples.  Ambient samples from strategically-108 
selected IMPROVE sites are used for calibration and reasonably mimic the composition, matrix 109 
effects and substrates of the unknowns, all of which theoretically lead to accurate estimations of 110 
concentrations.  Using all samples from selected sites reduces maintenance, shipping, processing 111 
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and coordinating required to maintain intermittent quartz and nylon filter sampling at every site.  112 
Sites are selected using data from 2015 and are used for calibrating samples from 2015-2017.  113 
Samples from all other (non-calibration) IMPROVE sites are predicted and compared to routine 114 
IMPROVE data to assess the quality of prediction.  Aerosol components to be measured include 115 
TC, OC, EC, inorganic ions, soil elements, particulate mass, and light absorption.    116 

2 Methods 117 

2.1 Network data 118 
IMPROVE samples collected every third day at all North American sites (Section S1) from January 119 
2015 through December 2017 are included in this study.  Fine particulate matter (aerodynamic 120 
diameter less than 2.5 micrometers) is deposited on 25 mm diameter filters 121 
polytetrafluoroethylene (PTFE, Teflo, Pall Gelman) and quartz filters by sampling air at a nominal 122 
flowrate of 22.8 liters per minute from midnight to midnight local time. Parallel 37 mm nylon 123 
filters are collected at the same flow flowrate. PTFE filters are analyzed by multiple instruments 124 
and archived for future analysis.  Nylon filters and a portion of each quartz filter undergoes 125 
destructive analysis and a remaining part of the quartz filters are retained for archive.   126 

Over the period covered in this study, two different TOR instruments were employed to measure 127 
OC, EC and TC. Quartz filters sampled prior to 2016 where analyzed on a DRI Model 2001 thermal 128 
optical carbon analyzers (Chow et al., 1993) while filters collected beginning in January of 2016 129 
were analyzed on a DRI Model 2015 multi-wavelength thermal optical carbon instrument (Magee 130 
Scientific – Berkley, USA)(Chow et al., 2015). Both instruments use the IMPROVE_A protocol 131 
(Chow et al., 2007b), which outlines the temperature step, gaseous environment in the 132 
instrument and that reflectance is used to define the split point between OC and EC. To correct 133 
for gas phase adsorption onto the quartz filter, the monthly median field blank OC concentration 134 
is subtracted from each OC measurement during that sample month.  Carbon concentrations are 135 
reported in µg/m3.   136 

An in-house Hybrid Integrating Plate and Sphere (HIPS) system evaluates light absorption from 137 
the PTFE filters in the IMPROVE network (White et al., 2016). In this work, the measured 138 
absorption coefficient (Fabs) is converted into a TOR EC equivalent concentration assuming a 139 
Fabs / EC ratio of 10 m2g-1 (Malm et al., 1994). The resulting value, referred to as HIPS Black 140 
Carbon (HIPS BC), is used as part of a quality control procedure to evaluate potential outliers in 141 
TOR EC measurements.  142 

Data from gravimetry and X-ray fluorescence (XRF) analysis obtained from PTFE filters and ion 143 
chromatography from the nylon filters are also used in this study.  Additional information on 144 
routine IMPROVE methods can be found on the IMPROVE website 145 
(http://vista.cira.colostate.edu/Improve/).  IMPROVE data are available online at 146 
(http://views.cira.colostate.edu/fed). 147 

http://vista.cira.colostate.edu/Improve/
http://views.cira.colostate.edu/fed


6 
 
 

 

 

2.2 Outlier removal 148 
Data were screened for outliers to eliminate their influence on the results.  Out of the ~61,500 149 
total number of samples in the three-year period, fewer than 800 were excluded from the 150 
analysis due sampling issues or missing TOR, XRF or IC data. In addition, 65 samples collected at 151 
the Wheeler Peak Wilderness (New Mexico) site between November 2015 and April 2016 were 152 
excluded due to an EC contamination caused by a diesel-powered ski lift.   153 

Potential outliers in TOR measurements were investigated by regressing TOR EC against HIPS BC 154 
concentrations. Samples with differences exceeding a predefined threshold value (0.68 µg/m3) 155 
were flagged as potential outliers (section S2). The status of these samples was confirmed by 156 
building separate TOR EC and HIPS BC calibrations. The poor agreement between TOR EC and FT-157 
IR EC concentrations contrasts with the nearly 1:1 relationship HIPS BC and FT-IR BC predicted 158 
values indicating that TOR EC concentrations were likely compromised (Section S2). For the 159 
period considered in this study, 112 samples with faulty TOR EC values were identified and 160 
excluded from further analysis. The number of valid sample spectra retained in this study is 161 
61,462. 162 

2.3 Fourier-transform infrared (FT-IR) analyses 163 
Since 2015, all PTFE in the IMPROVE network have been analyzed by infrared spectroscopy for 164 
research and evaluation purposes. FT-IR measurement occurs after gravimetric analysis and prior 165 
to XRF and HIPS to prevent possible loss of volatile species under the mild vacuum in XRF. Three 166 
FT-IR spectrometers including one Tensor 27 and two Tensor 2 instruments (Bruker Optics, 167 
Billerica, MA) equipped with a pre-aligned mid-IR source and a liquid nitrogen-cooled wide-band 168 
mercury cadmium telluride (MCT) detector were used for spectra acquisition in the range 4000 - 169 
420 cm-1 by averaging 512 scans at a nominal resolution of 4 cm-1. The single beam signal 170 
associated with each PTFE filter was converted to an absorbance spectrum using the most recent 171 
zero reference signal, updated hourly. 172 

Previously, it was determined that calibration transfer between multiple FT-IR instruments is not 173 
required as long as their spectral response is carefully matched by controlling a set of key 174 
environmental and instrumental parameters (Debus et al., 2019). Briefly, each mercury cadmium 175 
telluride (MCT) detector is connected to an automatic liquid nitrogen micro dosing system 176 
(NORHOF, Ede, Netherlands) designed to improve signal stability and maintain a high signal to 177 
noise ratio. The repeatability and reproducibility of the filter position relative to the IR beam is 178 
controlled via a house-built sample chamber (4.0 × 5.1 × 4.5 cm) mounted inside the instrument 179 
sample compartment. Details regarding the chamber design have been published elsewhere 180 
(Debus et al., 2019). Finally, the contribution of water vapor and carbon dioxide to the signal was 181 
minimized by continuously purging both the sample chamber and the optical bench with a VCD 182 
Series CO2 adsorber / dryer system (PureGas LLC, Broomfield, CO). For each sample, the 183 
acquisition procedure involves a 4 minutes purge period followed by a spectrum collection lasting 184 
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about 1 minute. An in-house macro interfaced to the OPUS software (Bruker Optics, Billerica, 185 
MA) controls each step. PTFE filters were measured in transmission mode without sample 186 
preparation.  No interpolated data (from zero-filling) are included in the final raw spectra. 187 
Collected spectra are subjected to weekly quality control procedures detailed in (Debus et al., 188 
2019). Duplicate and replicate measurements were also performed to evaluate instrument 189 
stability and found to be within +/- 10%.   190 

2.4 Multivariate Calibration Model - Partial Least Squares (PLS) Regression 191 
While the presence of certain category of atmospheric compounds can be identified qualitatively 192 
from an FT-IR spectrum, an accurate quantification of their concentration requires calibration. 193 
PLS is a commonly used algorithm to relate a multi-wavenumber measurement to any particular 194 
sample properties such as concentration (Wold et al., 2001). In brief, PLS maximizes the co-195 
variance between a set of response variables (species measurements) and a reference 196 
measurement (FT-IR spectra) from which equivalent predicted values are desired. In so doing, 197 
the optimal combination of response variables best describing the reference measurement is 198 
identified and the selected features are used to build a multivariate calibration.  With all least-199 
squares calibration methodologies, concentration-dependent biases in residuals that are 200 
determined by the quality of fit (R2) and dynamic range of the data are expected due to the nature 201 
of least-squares estimation (Besalú et al., 2006; Draper and Smith, 1998, pp. 63-64,173,638).  For 202 
further discussion of these biases, see Section S1. 203 

The applicability of PLS to quantify carbonaceous aerosol species (Reggente et al., 2016; Weakley 204 
et al., 2016, 2018a) or functional groups (Boris et al., 2019; Ruthenburg et al., 2014) collected on 205 
PTFE filters in various monitoring networks and field campaigns has been successfully 206 
demonstrated. A complete review of the implementation of PLSR calibration in the framework 207 
of atmospheric particulate matter characterization has been recently published (Takahama et al., 208 
2019).   209 

To evaluate model performance, FT-IR predicted concentrations were regressed against their 210 
reference measurement to quantify residuals and a series of metrics. Reported figures of merit 211 
include the coefficient of determination (R2), bias, error and the method detection limit (MDL). 212 
Residuals are defined as the difference between predicted and reference concentrations, bias 213 
corresponds to the median residual while error is the median absolute residual. To facilitate inter-214 
model comparison, relative performance metrics were calculated by normalizing the values by 215 
their reference value. FT-IR PLSR calibration MDL was estimated from field blank predicted 216 
concentrations as the 95th percentile minus the median residuals, as is done for other species in 217 
the IMPROVE network http://vista.cira.colostate.edu/improve/wp-218 
content/uploads/2021/07/IMPROVE-SOP-351_Data-Processing-and-Validation_2021_final.pdf. 219 
Performance is reported for all samples together regardless if the samples were included in the 220 
calibration. This enables comparison between models with different samples used for calibration. 221 
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For further insight into model prediction accuracy, the distribution in FT-IR residuals is 222 
qualitatively compared with residuals from collocated measurements. Collocated quartz filters 223 
are collected at the Everglades (FL), Hercules-Glades (MO), Medicine Lake (MT) and Phoenix (AZ) 224 
sites. Similarly, collocated Teflon filters are sampled at Mesa Verde (CO), Proctor Maple Research 225 
Facility (VT), Saint Marks National Wildlife Refuge (FL), Yosemite (CA) and Phoenix (AZ) sites while 226 
collocated nylon filters are featured at the Phoenix (AZ), Frostburg Reservoir (MD), Mammoth 227 
Cave (KY) and San Gabriel (CA) sites. 228 

Data handling and analysis was performed in Matlab R2018a (The MatWorks, Inc, Natick, MA, 229 
United States) using the statistics and signal processing toolboxes. PLS was computed via the 230 
libPLS Matlab package (v1.9) (Li et al., 2018). 231 

2.5 FT-IR Calibrations for Predicting PM Composition 232 
This section presents the design of calibrations for quantifying the concentration of major 233 
atmospheric species by taking advantage of the composition-based information embedded 234 
within an FT-IR spectrum. In practice, spectra are calibrated against reference measurements 235 
from TOR, XRF, IC, HIPS and gravimetric analysis with the aim of predicting concentrations of 236 
atmospheric constituents using only spectra of PTFE filters as input.   237 

A multilevel model (Snijders and Bosker, 2011; Takahama et al., 2019) is proposed in which 238 
dedicated calibration models for subgroups of samples are constructed, and applied according 239 
to a predetermined selection criterion for each sample. This model considers two subgroups: i) 240 
samples determined to be dominated by biomass burning, which are calibrated with similar 241 
samples, and ii) the remaining samples, which are calibrated with samples from a limited number 242 
of sites.  243 

To establish baseline performance metrics for comparison, a “Global model” in which a single 244 
calibration (for each species) is constructed from all samples considered together is described in 245 
Section S1 (Supplement). 246 

The first step in the development of the Multilevel model consists of screening for biomass 247 
burning samples. These samples are removed from consideration during the site selection 248 
process.  A simple detection method combining estimates of key functional group spectral peak 249 
areas and spectral dissimilarity metrics were used to segregate biomass burning samples from all 250 
other samples. Next, a Gaussian Mixture Model (GMM) was applied to the spectra of all non-251 
biomass burning samples.  The GMM exploits the specificity of the infrared signal for organic and 252 
inorganic species.  The GMM was implemented with the aim of clustering the non-biomass 253 
burning FT-IR spectra into groups sharing similar spectral features (Section 2.5.2). Those groups 254 
were later used as part of the methodology for selecting sites with representative atmospheric 255 
composition. Spectra from the year 2015 were used as a benchmark to validate the biomass 256 
burning detection strategy, build the GMM and establish the list of representative sites where 257 
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multi-filter collection/multi-analyses should be retained (section 2.5.2).  The identified biomass 258 
burning samples are used to build a calibration for biomass burning samples (Section 2.5.1).  259 

2.5.1 Biomass burning model 260 
FT-IR spectra were used to estimate functional group areas and calculate spectral dissimilarities 261 
metrics to segregate biomass burning samples from all other samples.  Although this paper 262 
focuses on using FT-IR to measure the major aerosol components in routine speciated aerosol 263 
monitoring networks, FT-IR is more frequently used to measure organic functional groups (e.g. 264 
(Russell et al., 2011; Ruthenburg et al., 2014; Boris et al., 2019).  Specific regions in the IR spectra 265 
correspond to specific functional groups.  Peak areas, calculated from baseline corrected spectra 266 
(see Section S3 for baseline procedure), for carbonyl, OH and CH were used rather than functional 267 
group calibrations for simplicity.  Because the relative functional group peak area tends to 268 
increase significantly as the cumulative peak area decreases, typically for low mass deposition 269 
samples, an estimate of spectral dissimilarities, the squared Mahalanobis distance (𝐷𝐷𝑖𝑖2), for each 270 
site is also considered to minimize false detection.  The Mahalanobis distance (Mahalanobis, 271 
1936; Cios et al., 1998) is a measure of the spectral dissimilarity between a given spectrum at a 272 
site and the mean spectrum at the site. Taking advantage of 𝐷𝐷𝑖𝑖2 and relative functional group 273 
areas, a set of criteria were established from observations at known wildfire sites during wildfire 274 
season (O’Dell et al., 2019). First, samples collected under heavy smoke conditions whose spectra 275 
fulfill C–H ≥ 2 %, C=O ≥ 15 % and 𝐷𝐷𝑖𝑖2 ≥ 3 𝐷𝐷2���� were detected (Section S3). This group of spectra 276 
tend to have large 𝐷𝐷𝑖𝑖2 values and, consequently, the 3 𝐷𝐷2���� threshold often excludes samples with 277 
low to moderate biomass burning contributions. For a more inclusive detection, spectra from the 278 
first group were removed from consideration, the  𝐷𝐷𝑖𝑖2 values are updated for each sample and 279 
the plots were regenerated. The cut-off value for the relative carbonyl functional group area was 280 
lowered to 8 % while other parameters were not changed. Spectra identified by the first and 281 
second rounds are considered biomass burning samples. This procedure is performed for each 282 
site and for each year of sample collection (Section S.3) 283 

Recent work has shown that smoke samples may be identified using techniques such as cluster 284 
analysis and labeling (Burki et al., 2020) similar to the GMM used here and through detection of 285 
molecular markers – levoglucosan and lignin – or peak profiles in FT-IR spectra (Yazdani et al., 286 
2021a, b).  For the large data set in this work (~20,000 samples in 2015), cluster analysis 287 
resulted in multiple clusters that could be associated with smoke-impacted samples likely due 288 
to the variations in fuel, oxidation conditions, and contributions from other sources. Therefore, 289 
for this work we selected a single group of smoke-impacted samples based on specific organic 290 
features known to be present in FT-IR spectra. While the criteria for smoke-impact labeling can 291 
be defined differently according to each intended purpose, the method presented here is 292 
demonstrated to sufficiently partition the samples for building accurate submodels to predict 293 
concentrations of PM constituents.  294 
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While ions and crustal species are not necessary correlated with wildfire emissions, the Biomass 295 
Burning sub-model accounts for interferences that are necessary to track in order to maintain 296 
high prediction accuracy for samples collected on smoky days.   297 

2.5.2 Limited Sites Model 298 
To assess major PM2.5 composition regimes in the network and to identify representative sites to 299 
use as calibration standards in the Limited Sites model, screening of all FT-IR spectra (except 300 
samples identified as biomass burning samples) across all locations and seasons was performed 301 
by building a Gaussian Mixture Model (GMM) (Bilmes, J. A., 1998; Hastie, T et al., 2009). The basic 302 
idea behind GMM is to group FT-IR spectra into clusters of similar spectral shape using a 303 
probabilistic approach describing the likelihood that any given spectrum belongs to a particular 304 
class. To minimize the concentration dependence and emphasize composition, raw spectra were 305 
transformed to second derivative spectra using a 2nd order, 21 point, Savitzky-Golay filter 306 
(Savitzky and Golay, 1964), differenced with filter blank spectra and divided by their respective 307 
Euclidean norm (Bro and Smilde, 2003). Additional details about the GMM pre-processing and 308 
implementation as well as cluster interpretation are provided in Section S4. 309 

After classification, a single site per cluster was selected to represent the atmospheric 310 
composition captured in that cluster. For any given cluster, the retained location was defined as 311 
the site with the largest number of classified spectra with the highest probabilities of belonging 312 
to that cluster. To prevent misleading site selection and enhance spatial coverage, the following 313 
set of decision rules were used:  i) if the same site is representative of two clusters, it is ascribed 314 
to the cluster with the largest number of classified spectra from that site, ii) if none of the 315 
retained sites accounts for a given spatial region or known source type in the network, an 316 
additional site with the highest number of classified spectra is selected from a nearby cluster, 317 
and iii) only sites under continuous operation between 2015 and 2017 are eligible for selection. 318 
Criteria ii) was invoked once to add a site in the Midwest to improve spatial coverage in that 319 
region and to capture prescribed fire emissions in Kansas.  All non-biomass burning samples from 320 
selected sites were used as FT-IR calibration standards for all species and all non-biomass burning 321 
samples are predicted with these models.  Once established, the selected sites are not re-322 
evaluated but instead were used in all subsequent years as would occur in practice. 323 

2.5.3 Application of Multilevel Model 324 
The Multilevel model is the combined FT-IR predicted concentrations from the Limited sites and 325 
Biomass burning models.  Multilevel modeling will be discussed in the context of carbonaceous 326 
aerosols before extending the modeling to other atmospheric constituents with detectable 327 
infrared signatures. In addition to OC and EC, species evaluated for FT-IR prediction include PM2.5 328 
mass, soil elements (silicon, aluminum, calcium, titanium, iron), anions (sulfate, nitrate) and HIPS 329 
BC. As mentioned previously, NaCl is not IR active and so there is no direct measure of seasalt 330 
from FT-IR.  Next, the years 2016 and 2017 will be examined to assess the long-term stability of 331 
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the proposed Multilevel strategy by screening for smoke samples and re-calibrating each year 332 
using the sites selected using 2015 data. 333 

3 Results and discussion 334 
In the following sections, the quality of FT-IR based calibrations for quantifying aerosol 335 
composition across continental US and their long-term applicability to large speciation 336 
monitoring networks will be assessed. Section 3.1 describes the selected calibration samples for 337 
the Biomass Burning and Limited Sites models.  In Section 3.2, Biomass Burning and Limited 338 
model performance will be briefly reviewed before exploring the Multilevel FT-IR predictions for 339 
all samples. Initially focused on carbonaceous species on PTFE samples collected in 2015, FT-IR 340 
predictions will be extended to other atmospheric constituents and years. 341 

3.1 Multilevel modeling – Calibration sample selection 342 

3.1.1 Biomass burning sample selection 343 
Using the methods described above, 492 samples impacted by biomass burning emissions were 344 
identified in 2015 (2.5 % of the network), 288 samples in 2016 (1.5 %), and 817 samples in 2017 345 
(3.7 %).  The mean OC concentration of the biomass burning samples range was 5.6 – 8.3 µg/m3 346 
with maximum concentrations extending from 44 to 97 µg/m3 over the three year period. 347 
Similarly, per year, the mean EC concentration varies between 0.6 – 0.9 µg/m3 with maximums 348 
up to 2.9 – 3.9 µg/m3.  Mean OC/EC ratios are larger than 7, in agreement with past literature 349 
(Schichtel et al., 2008; Sorooshian et al., 2011). Analysis of the detected samples shows reliable 350 
spatial and seasonal distributions, consistent with biomass burning emissions predominantly in 351 
summer and fall across the Pacific North West and Northwestern US (Section S3).  Two-thirds of 352 
the identified samples were selected (Section S5) as calibration standards for the calibration and 353 
resulting model was applied to the remaining third of the smoke impacted samples.   354 

3.1.2 Limited Sites model – clusters and retained sites 355 
Figure 1 shows the spatial distribution and annual average composition (from routine IMPROVE 356 
data) of the 21 sites selected for the Limited sites model calibratoin. From a spatial standpoint, 357 
retained sites appear reasonably scattered across the network including Hawaii and the Virgin 358 
Islands.  Clusters are represented by a distribution of urban and rural sites.  One urban cluster is 359 
represented by Fresno and contains mostly urban samples from Fresno and Phoenix. All other 360 
clusters contain mostly rural and pristine sites.  However, two other urban sites were retained, 361 
Phoenix and Birmingham.  The Phoenix cluster contains samples from the southwest in the 362 
spring.  The Birmingham site along with the Tallgrass site represent a non-western cluster in the 363 
spring and summer. 364 
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Figure 1: Spatial distribution, median PM2.5 concentration and composition of the 21 367 
representative sites. The composition is obtained from routine IMPROVE (non-FT-IR) 368 
measurements and the IMPROVE reconstructed fine mass equation 369 
(http://vista.cira.colostate.edu/Improve/reconstructed-fine-mass/) to calculate soil and seasalt.  370 
Sites are identified by the four letter site code which is the first four letters of a single word site 371 
name (Fresno = FRES) or the first two letters of the first and second word for two word site names 372 
(Dome Land = DOLA).  The top left pie chart representing the median PM2.5 composition across 373 
all sites and samples is given for comparison. 374 

The clusters are also seasonally distributed (Section S6): five clusters are dominated by fall - 375 
winter samples, ten clusters containing summer samples (along with varying number of spring 376 
and fall samples), two clusters are predominately spring and one is spring - fall.  Three clusters 377 
have little seasonality.   378 

http://vista.cira.colostate.edu/Improve/reconstructed-fine-mass/
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Because FT-IR spectra are clustered based on composition, the first step in assessing the 379 
representativeness of the 21 sites is to compare the concentration ranges.  For this purpose, 380 
distributions in TOR OC and EC concentrations excluding biomass burning samples are compared 381 
for the 21 sites used for calibration and the 140 remaining sites. In Fig. 2, the two probability 382 
density functions are very similar for both OC and EC despite large differences in sample 383 
populations (2572 and 16,543, respectively). In addition to matching the range of carbonaceous 384 
concentrations observed in the rest of the network, the presence of species interfering with 385 
organic functional groups should also be accounted for by the calibration. Because ammonium 386 
absorptions overlap with carbonaceous absorptions, situations where ammonium to OC and 387 
ammonium to EC ratios are different between calibration samples and samples to be predicted 388 
were associated with additional sources of bias and error (Dillner and Takahama, 2015a, b). 389 
Although not measured in IMPROVE, ammonium concentration is approximated from nitrate and 390 
sulfate assuming both species are fully neutralized. The corresponding probability distribution in 391 
Fig. 2 confirms the equivalence between the ranges of ammonium/OC and ammonium/EC 392 
concentrations spanned by the Limited sites samples and the overall network. In section S6, Fig. 393 
S6-3 shows reasonable agreement between the selected sites and the rest of the network for 394 
PM2.5 mass, ions, elements and HIPS BC.  Together, these results suggest the list of 21 sites is a 395 
suitable representation of network variations in OC and EC and their relative proportion to 396 
ammonium, and for all other predicted constituents.  397 

Figure 2: Comparison of probability density function for OC, EC and ammonium concentrations 399 
in 2015 between the 21 sites retained for Limited calibration and the rest of the network. 400 

The spatial and seasonal as well as the urban and rural diversity supports the compositional 401 
diversity of the selected sites as shown in Fig. 1.  The three urban sites have distinct 402 
characteristics.  At the Fresno, CA site, the composition is dominated by nitrate (35 %) and organic 403 
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matter (42 %) with an autumn – winter pattern consistent with agriculture and residential wood 404 
burning activities (Ngo et al., 2010) as well as with the formation of secondary aerosols during 405 
stagnation events and a low inversion layer (Watson and Chow, 2002). Phoenix, AZ site features 406 
a strong soil component (33%) associated with spring dust storms and windblown dust and equal 407 
proportions of ammonium sulfate (25 %) and OM (24 %) occurring mostly in spring and summer. 408 
The ammonium sulfate and organic matter has been attributed to regional power production and 409 
traffic (Brown et al. 2007). In contrast, Birmingham samples show little seasonal trend with 410 
elevated OM (52 %) and EC (10 %) fractions originating from various combustion processes 411 
including vehicle exhaust, biomass burning and biogenic secondary organic aerosols (Blanchard 412 
et al. 2016). The other dominant species at this site is ammonium sulfate (26 %), characteristic of 413 
coal burning and industrial activities in the East (Watson et al. 2015).  414 

Among rural sites, four noticeable patterns in PM2.5 composition are distinguishable. The first 415 
corresponds to OM fractions accounting for more than two-thirds of the filter mass. High OM 416 
samples are encountered at four locations in Northwestern US, namely the Kalmiopsis (OR), 417 
Three Sisters (OR), Flathead (MT) and Voyageurs (MT) sites. Samples from Voyageurs (MN) and 418 
Flathead (MT) sites are from Summer-Fall and present elevated median PM2.5 concentrations 419 
(4.20 µg/m3 and 6.32 µg/m3, respectively) and very large percentage of OM consistent with 420 
biomass burning emissions. Kalmiopsis (OR) and Three Sisters (OR) samples have a lower and 421 
nearly identical median PM2.5 concentration (≈ 2 µg/m3) but differ in their monthly distribution 422 
with the former displaying more winter samples than any other season whereas the later shows 423 
little seasonality.  424 

The second type of sites have high OM and sulfate concentrations. Both Shamrock Mines (CO) 425 
and Tallgrass Prairie (KS) sites have larger OM than sulfate content. However, the Colorado site 426 
has more autumn – winter samples, represents samples in the Rockies and Alaska and an overall 427 
small median PM2.5 concentration (< 1 µg/m3). The Kansas site has a majority of spring samples, 428 
representing non-western samples and has a significantly larger PM2.5 concentration (≈ 6 µg/m3) 429 
that is attributed to prescribed burning near the Tallgrass site (Whitehill et al. 2019).   Other sites 430 
have higher median sulfate concentrations (~50%) than OM concentrations (~40%) such as Dolly 431 
Sods (WV) and Bondville (IL). The monthly sample distribution indicates seasonal influences:  432 
Bondville (IL) samples are mostly from the summer and the concentrations are relatively high 433 
while the Dolly Sods (WV) site samples are mostly not in the summer with lower concentrations.  434 
Because the spectra were normalized to minimize influence of concentration, these two clusters 435 
likely have different organic composition even though the relative amount of OM is the same. 436 
Finally, situations where sulfate and OM are present in equal proportions (≈ 36 %) are reported 437 
at the Dome Land (CA) and Chassahowitzka (FL) pristine sites mainly featuring spring – summer 438 
and winter samples, respectively. 439 
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A third group of noteworthy PM2.5 compositions at rural sites contain a large fraction of (> 20 %  440 
of the total mass). The Virgin Islands (VI) site presents the highest soil fraction across the network 441 
52 % of the total PM2.5 mass, mostly originating from long-range Sahara soil dust transport 442 
(Holmes and Miller 2004).  In addition to sulfate and OM, elevated soil contributions are observed 443 
for the Wind Cave (SD), Meadview (AZ), Medicine Lake (MT), and Great Basin (NV) sites with soil 444 
content between 20 and 40%.  Although the seasonality is somewhat different between these 445 
sites, they all have many samples from the spring suggesting the dust is due at least in part to 446 
spring dust storms and may also contain resuspended road dust and more localized dust sources.  447 

A fourth and final distinct category of PM2.5 composition includes a collection of sites with unique 448 
local atmospheric pollution sources, specific to those locations. The Hawaii Volcanoes (HI) site 449 
where sulfur emitted as part as the volcanic activity, contains 51% sulfate along with sea salt (23 450 
%). Another location with unique composition is the Point Reyes (CA) site where the sea salt 451 
contribution reaches 55% of the median filter mass for the clustered samples, larger than any 452 
other marine site in the network. Finally, the Egbert (ON) Canadian site, representing the upper 453 
Midwest in winter is dominated by nitrate (46 %), sulfate (27 %) and OM (20 %).  454 

As described above, the 21 sites retained for the Limited sites sub-calibration present seasonal, 455 
regional and compositional features consistent with known or expected trends in PM2.5 across 456 
the network. The median PM2.5 mass at those locations covers a broad range of concentrations 457 
ranging from 0.93 µg/m3 to 13.75 µg/m3 and includes both urban and rural sites. Capturing the 458 
large variability in PM2.5 composition and concentration is essential to ensure the proposed site 459 
list is a representative subset of the parent network. However, it should be mentioned that the 460 
proposed site list is not unique but is one of the many feasible solutions since sites whose samples 461 
clustered together in the GMM are likely inter-exchangeable. 462 

3.2 Evaluation of Biomass Burning Model  463 
Prior to describing the overall results from the Multilevel model, the Biomass Burning model is 464 
evaluated to determine if the biomass burning model improves predictions for those samples. 465 
To evaluate the quality of the biomass burning model, the predictions are compared to a global 466 
model (section S1) which contains a few samples from all 160 sites which are mostly non-smoke 467 
samples but does contain a few smoke samples.  Visual inspection of Fig. 3 suggests the 468 
equivalence of the biomass burning models to the global model at the lower end of the 469 
concentration range. However, improvement in prediction accuracy can be claimed at high 470 
concentrations for the Biomass Burning model. The gain in model performance is subtle for OC 471 
and TC; however, for EC, predictions benefit from having a dedicated calibration for samples 472 
impacted by wildfire emissions, with an increase in R2 from 0.747 to 0.902 (Section S7).   473 
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Figure 3: Inter-model OC (left), EC (middle), TC (right) comparison between global (section S1) 475 
and Biomass Burning predicted concentrations for the 492 samples classified as biomass burning 476 
in 2015.  EC prediction, in particular, benefit from having a dedicated Biomass Burning calibration 477 
model. 478 

Therefore, we retain the biomass burning model as part of the multilevel model and present 479 
the results for the Multilevel model below. 480 

3.3 Multilevel modeling – Performance evaluation 481 

3.3.1 Carbonaceous aerosol predictions 482 
Figure 4 shows the correspondence between FT-IR Multilevel concentrations for OC and EC and 483 
TOR measurements for 2015 (plot for TC can be found in Section S9) and Table 1 lists the 484 
prediction metrics for all 3 carbonaceous components.  The visual agreement between FT-IR 485 
and the reference measurements of OC and EC is high but EC shows higher scatter than the 486 
other measurements.  Table 1 indicates that FT-IR OC and TC has higher prediction quality than 487 
EC but both perform satisfactorily.  FT-IR OC and TC error is on par with TOR precisions (Table 1) 488 
indicating that on average FT-IR does not add significant additional error to the measurement.  489 
FT-IR EC predictions, however, have higher error than TOR precision.  With respect to reference 490 
(TOR) measurements, concentration-dependent biases in residuals that are determined by the 491 
quality of fit (R2) and dynamic range of the data are expected due to the nature of least-squares 492 
estimation (Besalú et al., 2006; Draper and Smith, 1998).  For bias defined as FT-IR predictions 493 
minus the reference (TOR) measurement, least-squares estimator causes an apparent linear 494 
bias which is positive at the low end of the concentration range and negative at the high end of 495 
the concentration range (see Section S8 for further discussion). The satisfactory agreement 496 
between FT-IR and TOR concentrations as well as the equivalence agreements using the global 497 
model (Section S1) support the validity of the proposed Multilevel modeling in the context of 498 
carbonaceous aerosols prediction from PTFE filters in large speciation networks. 499 
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Figure 4: Comparison of predicted FT-IR OC, EC, Si, Ti, SO4 and mass concentrations using the 501 
Multilevel model against their reference measurements. Each subplot contains all 19,608 502 
samples collected in the year 2015.    503 

 504 
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Table 1: Summary of Multilevel model performance for IR-active atmospheric constituents for 505 
19,608 spectra analyzed by FT-IR in the year 2015. 506 

Species R2 Bias 
[μg/m3] 

Bias         
(%) 

Error 
[μg/m3] 

Error         
(%) 

Reference 
Data 

Error1 (%) 

MDL 
[μg/m3] 

< MDL 
(%) 

OC 0.983 0.01 1.6 0.08 12 10 0.06 0.9 
EC 0.912 0 1.7 0.02 30 15 0.04 20.7 
TC 0.984 0.01 1.2 0.08 12 11 0.07 1.3 
BC 0.92 0 -0.3 0.03 23 --- 0.04 19.3 
Si 0.983 0 2.2 0.01 11 13 0.01 9.7 
Al 0.985 0 2.2 0 12 10 0 4.7 
Ca 0.979 0 1.1 0 13 9 0 6.9 
Ti 0.941 0 2.7 0 21 16 0 14.9 
Fe 0.95 0 1.1 0 25 8 0.01 19 

SO4 0.983 0 0.1 0.03 6 2 0.03 0.9 

NO3 0.927 0.02 15.3 0.07 54 8 0.07 21.8 

PM2.5  

Mass 0.985 0.03 1 0.18 6 6 0.25 1.1 

1Median relative error for TOR, XRF, IC and gravimetric analysis.  OC, EC and TC median relative error estimated 507 
from collocated sampling as measurement error/uncertainty is not reported by IMPROVE for this components.  508 
For all other components, the normalized error was calculated as the uncertainty divided by the concentration 509 
prior to selecting the median.  BC is not reported by IMPROVE so measurement error is not estimated. 510 

In addition to OC, EC and TC, light absorption which is predominantly due to black carbon, is also 511 
a measure of one fraction of the carbonaceous aerosol.  FT-IR calibrations are found to be 512 
adequate for replicating HIPS BC measurements (Section S9). As expected, the corresponding 513 
model is similar in performance to EC with R2 and relative error of 0.920 and 23.3 %, respectively 514 
(Table 1). FT-IR BC residuals have a broader interquartile range than in the HIPS BC collocated 515 
data (Section S9). We attribute this effect to a difference in signal to noise ratio and sensitivity to 516 
chemical interferents between the two analytical techniques. While HIPS exploits the strong 517 
absorption properties of refractory carbon in the visible domain, the weak absorptivity of EC in 518 
the mid-infrared domain (Niyogi et al., 2006) and the presence of overlapping species makes the 519 
quantification less accurate. 520 

Further exploration of the regional and site by site quality of data is made via contiguous United 521 
States (CONUS) maps of annual median reference method concentrations (left), difference in % 522 
below MDL between FTIR and reference method (middle) and relative error (right) are shown in 523 
Figure 5 for OC and EC.  TC is very similar to OC and BC is very similar to EC.   524 
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Maps for all constituents with annual median FTIR and reference method concentrations, as well 525 
as annual median prediction metrics are shown in Section S10.  526 

  527 
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Figure 5.  Annual median reference method concentrations (left), difference in % below MDL 529 
(middle) and normalized relative error (right) per site for OC, EC, silicon, and sulfate for CONUS 530 
for 2015. For the MDL plot, sites in green and blue indicate that the FTIR has the same of fewer 531 
samples below MDL than the reference method.  Sites in yellow and red have more samples 532 
below MDL for FTIR than for the reference method.  For the relative error maps, the median 533 
relative error of the reference method estimated using methods described in Table 1 is 534 
white.  For sites in blue, FTIR has lower relative error than the reference method and sites in 535 
red are higher. 536 
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Annual median maps of FT-IR OC and TOR OC as well as maps of FT-IR EC and TOR EC 537 
(Supplemental material S10) are nearly identical.  As shown in Figure 5, annual median OC and 538 
EC concentrations are highest at the four urban IMPROVE sites of Seattle, WA, Fresno, CA, 539 
Phoenix, AZ and Birmingham, AL than the rural sites and are higher in the east than in the west. 540 
For OC, the relative error is lower than the TOR relative error in the east (where concentrations 541 
are higher) and higher than TOR relative error in the west.  OC has an equal or lower number of 542 
samples below MDL than TOR at all sites.  For EC, FTIR relative error is higher than TOR relative 543 
error at almost all sites.  The percentage of samples of EC that are below MDL for FTIR is similar 544 
to are slightly higher than TOR in the eastern US where EC concentrations are higher and are 545 
significantly higher than TOR in the western US where concentrations are lower.  These 546 
patterns indicate that FTIR does not add error to OC measurements when concentrations are 547 

above 0.75 µg/m3 but does add some error at lower OC concentrations and for EC 548 
measurements. 549 

3.3.2 Elemental oxide predictions 550 
 551 
Taking advantage of known mineral absorbance bands in the mid-infrared range (Hahn et al., 552 
2018; Madejová and Komadel, 2001; Senthil Kumar and Rajkumar, 2013) (Section S9), Multilevel 553 
calibrations for soil elements were evaluated for the five crustal elements commonly used to 554 
estimate soil: silicon, aluminum, calcium, titanium, and iron (Table 1 and Fig. 4 for Si and Ti).  All 555 
models present a satisfactory agreement between XRF and FT-IR predicted concentrations (R2 > 556 
0.94).   The quality of prediction of the elemental oxides falls into two groups. The first group 557 
includes silicon, aluminum and calcium and is characterized by moderate relative errors (11 – 13 558 
%), similar in magnitude to the FT-IR OC model (12 %) and have similar errors to XRF 559 
measurements.  This indicates that like OC and TC, on-average FT-IR does not add additional 560 
uncertainty.  The second group includes titanium and iron which have larger relative errors (20.9 561 
– 24.8 %), analogous to HIPS BC and EC models (23.3 – 30 %). Comparing residuals to collocated 562 
XRF measurements (Section S9) shows that the FT-IR based models have a larger interquartile 563 
range. For Fe, XRF uncertainty is quite low and FT-IR adds additional uncertainty to the 564 
measurement.  XRF Ti measurements have higher error than the other elements but there is an 565 
incremental increase in error due to FT-IR.  In addition, cross plots of titanium concentrations 566 
show a bifurcation (Fig. 4). While most samples fall near their expected titanium concentration, 567 
samples collected at the Sycamore Canyon (AZ) site present a systematic negative bias, consistent 568 
across years, tentatively attributed to a site-specific soil composition not accounted for by the 569 
Limited calibration. Takahama et al. (2019) demonstrated several methods to identify the 570 
possible occurrence of anomalous predictions in OC and EC based on comparison of new sample 571 
spectra to calibration spectra based on projected PLS scores and regression residual vectors.   572 
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These samples with systematic negative bias in titanium predictions can presumably be identified 573 
using such an approach, provided that compositional differences are detected in the IR spectrum.  574 
Although distinct IR fingerprints exist, FT-IR calibrations for quantifying mineral contents should 575 
be interpreted with care as specific elements may be indirectly quantified through their 576 
correlation with another element even in the absence of clear IR signature (Hahn et al., 2018). 577 
For instance, the variable importance in projection (VIP) scores for the Si, Al, and Ti calibrations 578 
suggests use of similar spectral variables, with small differences, for prediction of these species 579 
(Section S9). However, the 21 GMM sites coverage still meet the necessary requirements for 580 
providing a reliable insight into soil composition in the IMPROVE network.  581 

Figure 5 shows the distribution of concentrations of XRF Si across CONUS.  The highest annual 582 
median concentrations are in the southwest.  Similar patterns are found for Al, Ca, Ti and Fe 583 
except that high Fe concentrations are also observed at the urban sites, particularly Fresno, CA 584 
and Birmingham, AL (Figures S10-6 through S10-9).  For Si, FTIR normalized error is lower than 585 
XRF in the west where concentrations are higher.  For Ca, Ti and Al, FT-IR normalized error is 586 
lower only in the southwest.  For Fe, FT-IR is above XRF normalized error. The percentage of 587 
samples below MDL are similar to XRF (0-10% different) in the southwest and central US and 588 
modestly higher (15-20%) in the northwest and eastern US for Si.  For Fe, the spatial pattern is 589 
similar but the FTIR % below MDL is up to 50 % higher than XRF.  However, for Al, Ca, and Ti, FTIR 590 
percent below MDL is approximately the same or lower than XRF at all sites. 591 

3.3.3 Inorganic ions 592 

The two most abundant inorganic anions quantified in the network: nitrate and sulfate can also 593 
be measured by FT-IR (absorption bands used for prediction are discussed in Section S9). FT-IR 594 
sulfate concentrations display a satisfactory agreement with the reference IR measurements 595 
(Fig. 4). Model performance metrics include R2 above 0.98 and relative error of 6 %. The relative 596 
error is the same as for FT-IR PM2.5 and lower than OC, TC, and Si (Table 1). However, IC 597 
measurements have even lower error than FT-IR sulfate.  Compared to sulfate, FT-IR nitrate 598 
concentrations (Section S9) are characterized by a moderate drop in the overall model 599 
performance (R2 = 0.927) while relative bias and error exceed 15 % and 50 %, respectively and 600 
the error far exceeds reference IC nitrate measurement error. A direct comparison against 601 
differential nitrate concentrations at collocated sites highlights the broad uncertainty in 602 
determining nitrate content from PTFE filters (Section S9, Figure S9-3). Unlike nylon filters for 603 
which nitrate is trapped on the surface, nitrate is known to evaporate from PTFE filters and the 604 
extent of volatilization is dependent on temperature and relative humidity during and after 605 
sampling. This causes a discrepancy between the mass of nitrate deposited onto the nylon filter 606 
and the mass of nitrate on the PTFE filter (Eldred and Ashbaugh, 2004), therefore FT-IR 607 
calibrations with the nitrate measurements by IC from nylon filters as the reference should be 608 
used with caution.  Although there are physical limitations to measuring ambient nitrate on 609 
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PTFE filters, a measure of nitrate on PTFE filters which corresponds to its contribution to the 610 
gravimetric mass is useful for mass closure and data validation.  FT-IR has been shown to be 611 
useful for measuring and evaluating nitrate under controlled laboratory conditions (ex.  Wu et 612 
al., 2007).  For network samples, nitrate could be measured using laboratory calibration 613 
standards and this effort will be addressed in future work. 614 

The annual median sulfate concentration by IC is shown in Figure 5.  Annual median 615 
concentrations are highest in the southeast and eastern US with a gradient in concentrations 616 
observed across the midwest.  The median relative error for sulfate by IC is only 2% and all FTIR 617 
sulfate has higher relative error.  There are however, spatial differences.  In the eastern US 618 
sulfate relative error is less than 15% but in the west, it is considerably higher, peaking in 619 
Wyoming where concentrations are very low.   The % below MDL is very similar for FTIR and IC 620 
across the continent.  Due to volatility of nitrate, the nitrate metrics for FTIR are poor compared 621 
to sulfate (Figure S10-11). 622 

3.3.4 PM2.5 mass predictions 623 
Since the major aerosol species are shown to be reasonably well measured by FT-IR, it was 624 
anticipated that PM2.5 mass calibration would perform well.  The PM2.5 model presents reliable 625 
filter mass predictions (R2 = 0.985) characterized by relative bias and error that are 1/3 to 1/2 of 626 
those for OC and on par with gravimetric error (Table 1). The cross plot of gravimetric mass and 627 
FT-IR predictions (Fig. 4) and maps of predictions metrics (Figure S10-12) show that PM2.5 mass 628 
can be accurately predicted across a broad concentration range indicating that FT-IR spectra of 629 
PTFE filters do not contain interferents or other limitations that make PM mass predictions error 630 
prone. 631 

3.4 Long term stability 632 
Finally, Multilevel calibrations are extended to 2016 and 2017 to evaluate the inter-year 633 
consistency and determine if the assumptions behind Limited Sites and Biomass Burning models 634 
remain valid over time. For each sampling year, new calibrations were developed following the 635 
framework established for 2015. Models were recalibrated with data from the 21 sites and 636 
biomass burning samples were detected by the functional group screening procedure. Fig. 6 637 
shows the median relative bias (top) and error (bottom) for the three years of data (cross plots 638 
and prediction metrics shown for all predicted species for 2016 and 2017 in Section S11).  These 639 
results indicate that the modeling methodology provided reasonably consistent results across all 640 
three years.  641 

Normalized bias for most species is below 3% and normalized error is consistent for all species 642 
across all three years.  The relative bias for EC and BC are similar to other species in 2015 and 643 
2017 but in 2016 they are larger in magnitude than the other two years and different in sign.  644 
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2016 is the first year of TOR data from the multiwavelength TOR instruments (Chow et al., 2015) 645 
so higher bias could be potentially be related to the new instruments.  However, the HIPS 646 
instrument was overhauled beginning in 2017 which provides no explanation for high bias in 2016 647 
(http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory/da0041/da0041_HIPSmodificat648 
ions.pdf).   Further, the EC and BC calibrations are independent of each other except for using 649 
the same filters for calibrations (as all species do) so the fact that the median bias is roughly equal 650 
but opposite in sign is not due to codependence of the models.   651 

In future work, calibrations models will be updated more frequently than annually with the most 652 
recent year of ambient samples which may smooth biases and errors due to changes to 653 
atmospheric condition and instrument drift.   654 

http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory/da0041/da0041_HIPSmodifications.pdf
http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory/da0041/da0041_HIPSmodifications.pdf
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  655 

 656 

Figure 6.  (top) Median Percent Bias and (bottom) Median Percent Error for each constituent 657 
measured for each year. 658 

 659 

4 Conclusion 660 
In this paper, we investigate the feasibility of an FT-IR method that uses ambient samples as 661 
calibration standards for use by a large monitoring network. In this method, all sites in the 662 
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network collect PTFE filters for FT-IR analysis.  A few select sites, used for calibration, would retain 663 
all sampling and analyses of current IMPROVE sites to enable re-calibration of the FTIR method 664 
on a routine basis. Re-calibration is especially important as atmospheric changes occur and as 665 
conditions in the network evolve over time, for example new reference instruments, new or 666 
significantly modified FT-IR instruments, changes to sampling protocol or possibly change in filter 667 
material.   The validity of such a design was evaluated with all PTFE filters collecting PM2.5 aerosols 668 
at 161 IMPROVE sites in 2015 and then tested for all filters in 2016 and 2017. 669 

A multi-level modeling algorithm was used whereby smoke impacted samples are identified and 670 
predicted by one model and the rest of the samples are predicted by another model developed 671 
from 21 selected IMPROVE sites.  The data from the two models are combined to evaluate 672 
performance of the FT-IR method.  The selection of sites was performed such that if one of the 673 
21 sites ceases to operate, another site, selected from the same compositional cluster can be 674 
used for calibration.     675 

The cross-plots and prediction metrics indicate that the Multilevel model is equivalent to 676 
conventional calibrations built from samples from every available site. Reliable performance in 677 
predicted concentrations were reported for a broad range of atmospheric constituents with 678 
detectable infrared signatures such as OC, EC,  TC, sulfate, soil elements (Si, Al, Ca, Ti, Fe), light 679 
absorption, and PM2.5 mass. Due to volatilization off the PTFE filter, nitrate measurements were 680 
found to be unsatisfactory.  The calibration method was develop using data from 2015, and the 681 
same methodology was applied to 2016 and 2017.  The model performance metrics in all three 682 
years were similar.  Results across ~61,500 FT-IR spectra highlight the suitability of the Multilevel 683 
calibration design to quantify multiple atmospheric PM2.5 species in large monitoring networks.  684 

This work presents an alternative, lower cost, filter analysis method to measure speciated aerosol 685 
in a routine monitoring network.  This could be a valuable addition to routine speciated aerosol 686 
monitoring networks, such as IMPROVE, by incorporating monitoring sites that collect samples 687 
on only a PTFE filter for subsequent analysis.  This would provide the opportunity to have a subset 688 
of less expensive monitoring site, which could be used for scoping studies to understand the 689 
aerosol composition in unmonitored locations.  It could also serve as a network cost savings 690 
method by having a subset of network sites collect aerosol samples on only a Teflon filter.  691 
However, the inability to measure particulate nitrate is a significant deficiency for using this 692 
method to replace existing monitoring sites.  The FTIR derived aerosol concentrations are also a 693 
semi-independent measurement from the routine speciated aerosol measurements.  Therefore, 694 
routine FTIR measurements would provide valuable QA/QC information for any speciated 695 
monitoring network.  In addition, FTIR derived concentrations could be used to substitute for 696 
missing concentrations in the case where the Teflon sample is valid, but filter samples or analyses 697 
on the nylon or quartz fiber filters are not.    698 
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For IMPROVE’s urban counterpart, the CSN network, after evaluation of the quality of 699 
predictions in CSN, this framework could be used to accomplish goals similar to those of 700 
IMPROVE.  Additionally, this method could be used to predict samples collected in the Federal 701 
Reference Method (FRM) network which is a PM mass only network.  In addition, this method, 702 
with appropriate ambient standards, could be applied at other regional or international 703 
monitoring networks or sites to provide low-cost comprehensive composition data.  As shown 704 
in our previous work, additional data, including an estimate of organic matter and it’s functional 705 
group composition, can also be obtained from FT-IR spectra of PTFE filters, further increasing 706 
the utility of infrared spectroscopy of aerosol samples.  707 
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