

Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign

Baike Xi¹, Xiquan Dong¹, Xiaojian Zheng¹, and Peng Wu²

¹Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA

²Pacific Northwest National Laboratory, Richland, WA, USA

Correspondence: Baike Xi (baikex@arizona.edu)

24 **Abstract.**

25 To investigate the cloud phase and macrophysical properties over the Southern Ocean (SO), the
26 Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility
27 (AMF2) was installed on the Australian icebreaker *Aurora Australis* during the MARCUS field
28 campaign [41 to 69 °S; 60 to 160 °E] from October 2017 to March 2018. To examine cloud
29 properties over the mid-latitude and Polar regions, the study domain is separated into northern
30 (NSO) and southern (SSO) parts of the SO with a demarcation line of 60 °S. The total cloud
31 fractions (*CFs*) were 77.9 %, 67.6 %, and 90.3 % for the entire domain, NSO and SSO, respectively,
32 indicating that higher *CFs* were observed in the Polar region. Low-level clouds and deep
33 convective clouds are the two most common cloud types over the SO.

34 A new method was developed to classify liquid, mixed-phase and ice clouds in single-layered
35 low-level clouds (LOW) where mixed-phase clouds dominate with an occurrence frequency (*Freq*)
36 of 54.5 %, while the *Freq* of the liquid and ice clouds were 10.1 % (most drizzling) and 17.4 %
37 (least drizzling). The meridional distributions of low-level cloud boundaries are nearly
38 independent of latitude, whereas the cloud temperatures increased ~8 K and atmospheric
39 precipitable water vapor increased from ~5 mm at 69 °S to ~18 mm at 43 °S. The mean cloud liquid
40 water paths over NSO were much larger than those over SSO. Most liquid clouds occurred over
41 NSO with very few over SSO, whereas more mixed-phase clouds occurred over SSO than over
42 NSO. There were no significant differences for ice cloud *Freq* between NSO and SSO. The ice
43 particle sizes are comparable to cloud droplets and drizzle drops, and well mixed in the cloud layer.
44 These results will be valuable for advancing our understanding of the meridional and vertical
45 distributions of clouds and can be used to improve model simulations over the SO.

47 **1. Introduction**

48 The Southern Ocean (SO) is one of the cloudiest and stormiest regions on the Earth (Mace et
49 al., 2009; Chubb et al., 2013). Over the SO, most of the aerosols are naturally produced via oceanic
50 sources given the remote environment. The uncertainties of aerosol forcing caused by natural
51 emissions have larger variances than anthropogenic emissions, especially the dimethyl sulfide
52 (DMS) flux contributes significantly to the bias (Carslaw et al., 2013). The SO is a unique natural
53 laboratory to address the natural aerosol emissions and their contributions to the biases because it
54 has rich ecosystems and is remote to human activities (McCoy et al., 2015). However, we have
55 limited knowledge about cloud formation processes within such clean environments and their
56 associated aerosol and cloud properties. The unique nature of the SO region features low-level
57 supercooled liquid and mixed-phase clouds, which is significantly different from the subtropical
58 marine boundary layer (MBL) clouds where warm liquid clouds are dominant (Dong et al., 2014;
59 Wu et al., 2020; Zhao et al., 2020), and also different to the Arctic mixed-phase clouds which are
60 featured with the liquid-topped cloud layer with ice cloud layer beneath (Qiu et al., 2015).

61 Large biases in cloud amount and microphysics over the SO in the Coupled Model
62 Intercomparison Project phase 5 (CMIP5) climate models result in a near 30 W m^{-2} shortwave
63 radiation deficit at the top of the atmosphere (TOA) (Marchand et al., 2014; Stanfield et al., 2014,
64 2015), which further leads to unrealistic cloud feedbacks and equilibrium climate sensitivity (Bony
65 et al., 2015; Stocker et al., 2013). Meanwhile, the efficiency of aerosol-cloud interaction (ACI)
66 over the SO was found to be crucial for the models' sensitivities to the radiation budget. A new
67 aerosol scheme in the Hadley Centre Global Environmental model can dampen the ACI and
68 suppress negative clear-sky shortwave feedback, both of which contribute to a larger climate
69 sensitivity (Bodas-Salcedo et a., 2019).

70 A climate sensitivity study using CMIP6 general circulation models (GCMs) shows much
71 higher temperature variations across 27 GCMs in response to doubled CO₂ than those in CMIP5,
72 which may have resulted from the decreased extratropical low-level cloud cover and cloud albedo
73 over the SO in CMIP6 (Zelinka et al., 2020). Low-level clouds are a key climate uncertainty and
74 can explain 50 % of the inter-model variations (Klein et al., 2017) because conversion from liquid
75 cloud droplets to ice cloud particles decreases the cloud albedo and reduces the reflected shortwave
76 radiation at TOA. Models, however, have difficulties accurately partitioning the cloud phase
77 (Kalesse et al., 2016). The phase changes in mixed-phase clouds over the Arctic have proved to
78 affect the cloud lifetime and radiative properties significantly, that is, converting from ice cloud
79 particles to liquid cloud droplets may increase the cloud optical depth and the reflected shortwave
80 radiation at TOA (Morrison et al., 2012). In contrast, models that allow mixed-phase clouds to
81 glaciate rapidly can produce 30% more warming from doubling CO₂ (McCoy et al., 2014).

82 Phase transition processes have been investigated by several groups using both satellite and
83 ground-based measurements. For instance, Mace and Protat (2018) found that there are more
84 mixed-phase clouds over the SO measured from the ship than retrieved from CloudSat and
85 CALIPSO measurements because the satellites cannot accurately measure clouds below ~1 km.
86 Lang et al. (2018) used a model to investigate the clouds under post cold frontal systems and found
87 large biases in model simulations and concluded that the cloud cover and radiative biases over the
88 SO are highly regime dependent. Of all cloud types, low-level clouds are primarily responsible for
89 the biases in the model simulations due to the lack of reliable measurements, which leads to a poor
90 understanding of the conditions where these clouds form and the phase(s) that result. In other
91 words, a physical representation of clouds, especially for low-level clouds, is unclear but truly
92 necessary for improving model simulations. Therefore, reliable observations of the cloud macro-

93 and micro-physical properties from ground-based active and passive remote sensors are crucial for
94 the improvement of model simulations.

95 Previous studies show that cloud phase is primarily dependent on cloud temperature, and the
96 transition from one cloud phase to another will modify the cloud optical properties, which further
97 affects the radiation budgets (Hu et al., 2010; Intrieri et al., 2002; Morrison et al., 2012). Based on
98 satellite observations and retrievals, Hu et al. (2010) found that supercooled liquid water (SLW)
99 clouds are most common in the low-level clouds over the SO, where 80% of low-level clouds
100 contain SLW in a wide range of cloud temperatures from 0°C to -40°C. The formation of SLW
101 clouds is usually related to strong boundary layer convection. However, when ice nuclei exist in
102 the mixed-phase clouds, the ice particles can grow quickly and become bigger through consuming
103 supercooled liquid water drops. The SLW is inherently unstable due to the higher vapor pressure
104 over liquid than over ice and the quicker vapor deposition on ice particles than on liquid droplets
105 (Intrieri et al., 2002). As the supercooled liquid cloud droplets glaciate to ice particles, the cloud
106 layer becomes darker because the ice particles scatter less shortwave radiation and absorb more
107 radiation in the near IR wavelength regime. It is unclear, however, what role these ice particles
108 play in the low-level clouds over the SO, which includes the impact on drizzle development.
109 During HIAPER Pole-to-Pole Observation (HIPPO) campaigns, Chubb et al. (2013) found that
110 there are rarely ice particles in non-drizzling and light drizzling clouds over the SO, which may
111 imply that the ice particles in the mixed-phase clouds may modulate the drizzle formation.

112 To investigate the aerosol and cloud properties over the SO, a field campaign called the
113 Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) was
114 conducted using the ship-based measurements between Hobart, Australia, and the Antarctic during
115 the period October 2017-March 2018. The Department of Energy (DOE) Atmospheric Radiation

116 Measurement (ARM) Mobile Facility (AMF2) was installed on the Australian icebreaker *Aurora*
117 *Australis*, which voyaged from Hobart, Tasmania to the Australian Antarctic stations of Casey,
118 Mawson, and Davis, as well as Macquarie Island as illustrated in Fig. 1. Another field campaign,
119 called South Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) field
120 campaign was conducted during austral summer from January 15 to February 26, 2018. In this
121 study, the aircraft in-situ measurements during SOCRAATES are used as the reference for the
122 analysis. The SOCRAATES domain is shown in the black dotted rectangle box in Fig. 1. The
123 objectives of the MARCUS campaign are to investigate the vertical distribution of boundary layer
124 clouds and reveal the reasons why the mixed-phase clouds are common in the warm season
125 (McFarquhar et al., 2016; McFarquhar et al., 2021). Our study will focus on cloud macrophysical
126 properties and cloud phase along the shiptracks during MARCUS.

127 MARCUS ship-based instruments include AMF2 cloud radar, lidar, microwave radiometer,
128 micropulse lidar, radiosonde sounding, precision solar pyranometer and precision infrared
129 radiometer, as well as aerosol sensors. Through these comprehensive observations over the SO,
130 we are tentatively answering the following three scientific questions:

- 131 (1) What is the total cloud fraction over the SO during MARCUS, as well as vertical and
132 meridional variations in cloud fraction?
- 133 (2) What are the dominant cloud types over the SO, their associated cloud phase and
134 macrophysical properties, as well as their vertical and meridional distributions?
- 135 (3) What are the vertical and meridional distributions of the low-level clouds over the SO?

136 This manuscript is organized as follows: the data and method and introduced in section 2. The
137 statistical results for all clouds during MARCUS are summarized in section 3. The low-level cloud

138 phase and macrophysical properties are described in section 4, followed by a summary and
139 conclusions in section 5.

140 **2. Data and Method**

141 **2.1 Ship-based measurements used in this study**

142 The AMF2 instruments, measurements, and their corresponding uncertainties and references
143 are listed in Table 1. Because AMF2 was designed to support shipboard deployments, the baseline
144 suite of instruments are marine-focused, including the 95-GHz W-band cloud radar (WACR),
145 ceilometer, micropulse lidar (MPL), microwave radiometer (MWR), aerosol observation system
146 (AOS), meteorological measurements (MET, includes the following data: temperature, pressure,
147 specific humidity, wind direction and speed) on the ship, rain gauge and the radiosonde soundings.
148 The combined cloud radar and ceilometer measurements can provide the cloud boundaries as long
149 as there are no optically thin clouds and the cloud-base heights (H_{base}) are not greater than the
150 upper limit (7.7 km) of the ceilometer. The micropulse lidar will be used to identify optically thin
151 clouds and the clouds with $H_{base} > 7.7$ km. A previous study has shown that these additional clouds
152 detected by the micropulse lidar can be a non-negligible supplement to the total cloud fraction
153 (Mace et al., 2021). A detailed description of the instruments and the cloud parameters during
154 MARCUS can be found in Mace et al. (2021) and McFarquhar et al. (2016 and 2021).

155 The cloud occurrence frequency can be determined through two steps: the column cloud
156 fraction is simply the ratio of cloudy samples to the total observations in every 5-min; the
157 occurrence frequency for each type of cloud during the entire time period equals the ratio of the
158 number where column cloud fraction is greater than zero to the total 5-min samples. In order to
159 accurately estimate the cloud temperatures, we adopted a linear interpolation method based on the
160 daily balloon soundings (4 to 5 times per day) to achieve a better temporal resolution of the vertical

161 profiles of temperature, pressure, and specific humidity. The method considers MET
162 measurements to ensure vertical continuity and adjacent soundings for temporal continuity. Using
163 these interpolated atmospheric profiles, cloud temperatures can be obtained at a 5-min temporal
164 resolution.

165 The cloud liquid water path (*LWP*) and atmospheric precipitable water vapor (*PWV*) are
166 retrieved based on a physical-iterative algorithm using observations of the microwave radiometer
167 brightness temperatures at 23.8 and 31.4 GHz with uncertainties ranging from 15 to 30 g m⁻²
168 (Marchand et al., 2003). It is important to note that the brightness temperature biases switch signs
169 among different climatological regions because a threshold of 5 °C in cloud-base temperature was
170 used in their physical retrievals. Since the retrieved LWP and PWV are based on the MWR
171 measured brightness temperatures at two frequencies, any biases on the brightness temperatures
172 will affect these retrievals. Therefore, we propose an extra step to determine the uncertainties
173 during MARCUS. Based on the temperature profiles, we can identify clouds that are not likely to
174 contain liquid (e.g., pure ice-cloud), then we can estimate the LWP uncertainty based on their
175 corresponding retrieved LWP values. From the probability density function (PDF_ analysis, the
176 LWP uncertainty is estimated as 10 g m⁻² for MARCUS.

177 To determine the precipitation status, the AOS and rain gauge measurements were used to
178 determine whether rain is reaching the surface qualitatively, but not quantitatively in this study.
179 All the measurements were averaged over 5 minutes, except the radar reflectivity, Doppler velocity,
180 and spectrum width used in Section 4.3.

181 **2.2 Cloud type classification and single-layer low cloud phases**

182 A classification method developed in Xi et al. (2010) was used to categorize different types of
183 clouds using ARM radar-lidar estimated cloud base (H_{base}) and top (H_{top}) heights and cloud

184 thickness (ΔH). A brief description of the classification of cloud types is as follows (Table 1 and
185 Figure 6 in Xi et al., 2010). The single-layered low-level clouds (LOW) is the fraction of time
186 when low clouds with $H_{\text{top}} \leq 3$ km occur without clouds above them. Middle clouds (MID) range
187 from 3 to 6 km without any clouds below and above, while high clouds (HGH) have $H_{\text{base}} > 6$ km
188 with no cloud underneath. Other types of clouds are defined by different combinations of the above
189 three types, middle over low (MOL), high over low (HOL), high over middle (HOM), and the
190 cloud column through the entire troposphere is defined as HML. Three types, MOL, HOM, and
191 HML, include both contiguous and non-contiguous cloud layers, and their thicknesses may be
192 overestimated when clear layer(s) are present between any two cloud layers.

193 Furthermore, we used the measurements of interpolated sounding, microwave radiometer
194 retrieved *LWP*, radar reflectivity, Doppler velocity and spectrum width to classify the cloud phase
195 in each radar range volume of low-level clouds during MARCUS. The detailed classification
196 method will be introduced in Section 4.1. We also used ERA-Interim reanalysis data to study the
197 environmental conditions during MARCUS. The lower tropospheric stability (LTS) is calculated
198 from the potential temperature difference between the surface and 700 hPa to assess the boundary-
199 layer stabilities when the low-level clouds appeared along the shiptracks. The relative
200 contributions of mixed-phase, liquid and ice clouds to the single-layered low-level clouds as well
201 as their drizzling status are also analyzed in this study. The latitudinal and longitudinal variations
202 of the single-layered low-level clouds as well as their vertical distributions are further explored in
203 this study.

204 **3. Statistical results for all clouds during MARCUS**

205 The occurrence frequencies of total cloud cover and different types of clouds and their
206 associated properties over the entire study domain during MARCUS are presented in Figs. 2 - 4.

207 In order to examine the cloud properties over the mid-latitude and Polar regions, we separate the
208 SO domain into northern (NSO, north of 60°S) and southern (SSO, south of 60°S) parts using a
209 demarcation line of 60°S. A total of 2,447 hours cloud samples were collected during MARCUS
210 in this study, in which 1,181 hours of samples were located in the NSO and 1,266 hours of samples
211 were collected from the SSO. It is important to note that adding micropulse lidar measurements
212 increased the total samples of non-liquid-containing clouds by ~20% because micropulse lidar is
213 more sensitive to optically thin clouds than cloud radar. However, micropulse lidar signals are
214 usually attenuated and cannot provide a meaningful signal when the liquid cloud layer is thicker
215 than a couple of hundred meters (Sassen, 1991).

216 Figure 2 shows the vertical distributions of total cloud cover over the entire domain, as well as
217 over NSO and SSO. For the vertical distributions, the occurrence frequencies of total cloud
218 increase from the first radar gate (~ 226 m) to ~700 m, then monotonically decrease with altitude
219 with a few small increments at different levels, especially over SSO. Comparing the occurrence
220 frequencies of total cloud between NSO and SSO, we can draw the following conclusions. 1) The
221 SSO has more cloudiness than the NSO under 7 km, while the NSO has more cloudiness than the
222 SSO above 7 km. 2) Below 3 km, the occurrence frequencies of clouds over the NSO decrease
223 dramatically from 37 % at an altitude of ~700 m to 16 % at 3 km and from 45 % to 28 % over the
224 SSO, which is similar to the vertical distributions of the low-level clouds over some Northern
225 Hemisphere mid-latitude regions, such as Eastern North Atlantic (ENA, Dong et al., 2014). The
226 occurrence frequencies measured during MARCUS are much lower than those shown in Fig. 8 of
227 Mace et al., (2009) throughout the entire vertical column between the same range of latitudes,
228 especially, the occurrence frequencies during MARCUS are almost half of those measured by
229 CloudSat and CALIPSO from 1 to 3 km. The reason has been explained in Xi et al., (2010), that

230 is, a comparison of occurrence frequencies between measurements of two different platforms can
231 only be performed under an equivalent spatial-to-temporal resolution. In other words, our results
232 were calculated under 5-min temporal resolution, and the results in Mace et al., (2009) were
233 statistically in the 2° gridbox. Therefore, the comparison between these two results is not
234 reasonable. To make a fair comparison, one has to know the cloud amount at each area or time
235 step, then the product of amount and frequency is independent of either temporal and spatial
236 measurement.

237 To compare with other studies, we calculated the cloud fractions (*CFs*) of total and different
238 types of clouds. The total *CFs* were 77.9 %, 67.6 %, and 90.3 % for the entire domain, NSO and
239 SSO, respectively, indicating that 22.7 % more clouds occurred in the Polar region than in the mid-
240 latitude region. The total *CF* over the entire domain is very close to the 76 % calculated by Mace
241 and Protat (2018) using ship-based measurements during the Cloud, Aerosols, Precipitation,
242 Radiation and Atmospheric Composition (CAPRICORN) field experiment. The total *CF* over the
243 SSO is close to that estimated by using the complementarity of CALIOP lidar aboard CALIPSO
244 and CPR aboard CloudSat (DARDAR version 2 data) from Listowski et al. (2019).

245 Figure 3 shows the occurrence frequencies of categorized clouds and their cloud boundaries
246 using the maximum H_{top} and the minimum H_{base} if there are two or more layers in each 5-min
247 sample. For example, the mean H_{base} and H_{top} for single-layered low-level (LOW) are 0.92 km and
248 1.62 km, respectively, listed in Table 2, which are the average values of min H_{base} and max H_{top} in
249 LOW category. As illustrated in Fig. 3a, the single-layered low-level (LOW), deep cumulus or
250 multi-layered (HML), and MOL clouds are the three dominant types of clouds over the SO.
251 Comparing the clouds between NSO and SSO, all types of clouds in SSO have higher frequency
252 of occurrence than those in NSO except HOL. The differences range from less than 1 % (LOW)

253 to more than 10 % (MOL). Comparing the clouds over mid-latitude oceans between the two
254 hemispheres, i.e., between NSO and ARM ENA site (Dong et al., 2014), we find: (1) The total
255 cloud fractions (*CFs*) are close to each other (67.6 % over NSO vs. 70.1 % at ARM ENA); (2)
256 LOW *CFs* are 22.9 % vs. 27.1 %, which is the dominant type of cloud in both regions; and (3)
257 Both MOL and HML clouds, including underneath low clouds, are 14.2 % and 16.5 % over NSO,
258 much higher than those (4.2 % and 12.1 %) at ARM ENA site, indicating that there are more MOL
259 and deep convective clouds over NSO than over ENA.

260 Figure 3b shows the vertical locations of different types of cloud layers, which represent the
261 mean H_{top} and H_{base} listed in Table 2 for any type of cloud. Nearly all H_{top} and cloud thickness (ΔH)
262 values over NSO are higher or deeper than those over SSO, presumably due to stronger solar
263 radiation and stronger convection over NSO. H_{base} values basically followed their cloud-top
264 counterparts with a couple of exceptions. These cloud macrophysical properties are closely
265 associated with large-scale dynamic patterns and environmental conditions. By analyzing the
266 ERA-Interim reanalysis (not shown), the 850 hPa geopotential heights show persistent westerlies
267 with slightly higher geopotential heights over the northwest corner of the domain, which may
268 closely relate to the higher H_{top} over NSO than over SSO. Furthermore, the boundary layer over
269 NSO is relatively more stable than over SSO based on lower troposphere stability (LTS) analysis
270 (12.2-15.32 K over NSO vs. 11.48-13.29 K over SSO).

271 When we plot the probability density functions (PDFs) of cloud *LWPs* for different types of
272 clouds, we find that the PDFs of *LWPs* for HGH and HOM peak are less than 10 g m^{-2} . These
273 results make physical sense because HGH clouds should not contain any liquid droplets, and most
274 HOM clouds, especially those over SSO, should be ice phase dominant. In addition, the 10 g m^{-2}
275 of *LWP* is close to the uncertainty of the *LWP* retrieval in Marchand et al., (2003). Therefore, this

276 value is used as a threshold for all types of clouds, which leads to less than one percent reduction
277 of the total samples. As shown in Fig. 4a, the *LWPs* ($> 10 \text{ g m}^{-2}$) for all types of clouds are much
278 higher over NSO than over SSO because the low-level and MOL clouds in the mid-latitudes
279 contain more liquid water than those in Polar regions. The mean *LWPs* for liquid containing low-
280 level and middle-level clouds over NSO, i.e. LOW, MID and HOL, range from ~ 130 to 150 g m^{-2}
281, while the mean *LWPs* for MOL and HML are two times higher ($\sim 270 \text{ g m}^{-2}$) than the mean *LWP*
282 of LOW, MID and HOL. Note that the mean *LWPs* for most types of clouds over the SSO are
283 much lower than those over the NSO, except for the LOW clouds.

284 The occurrence frequencies of *LWPs* ($> 10 \text{ g m}^{-2}$) over NSO and SSO contradict their cloud
285 *LWP* values as demonstrated in Fig. 4b. To further investigate the amount of available precipitable
286 water vapor (*PWV*), we found that mean *PWV* values in SSO are at least 2 to 3 times less than
287 those in NSO for same types of clouds (figure not shown). Note that the samples of MID, HGH,
288 and HOM clouds are excluded from this study when they have *LWPs* less than 10 g m^{-2} , since
289 these low *LWPs* are within the retrieval uncertainty of cloud *LWP* and hence may not contain any
290 liquid cloud droplets. The higher *LWPs*, larger cloud droplets, drizzle drops and ice particles, and
291 greater drizzling occurrence frequencies over NSO (which is discussed later) will lead to the quick
292 dissipation of clouds over NSO. In contrast to NSO, the SSO cloud *LWPs* and particle sizes are
293 much smaller with less drizzling events, which increases cloud lifetime relative to NSO. The 67.6 %
294 and 90.3 % *CFs* over NSO and SSO provide strong evidence for this argument. We can draw the
295 following conclusions by comparing the cloud macrophysical properties between NSO and SSO
296 in Figs. 3 and 4. The LOW fraction, thickness, and *LWP* over NSO and SSO are comparable to
297 each other. For other types of clouds, cloud thicknesses are similar to each other or slightly deeper
298 over NSO, but the cloud *LWPs* over NSO are much larger than those over SSO, resulting in more

299 precipitation events over NSO. As pointed out in Albrecht (1989), more precipitation events may
300 reduce the cloud lifetime. This argument is consistent with the results shown in Figs. 2 and 3a for
301 all clouds except for HOL. Cloud lifetimes over NSO are shorter than those over SSO, which leads
302 to lower *CFs* over NSO than over SSO.

303 Table 2 provides a summary of the mean, standard derivation, minimum and maximum for
304 cloud boundaries, LWP and the percentage of multi-layered cloud for each cloud type over the SO.
305 Non-contiguous (multi-layer) clouds over the SO occur very frequently, especially for HOM and
306 HML. The *LWP* for single-layered clouds is greater than that for multi-layered clouds. The *LWP*
307 for single-layered HML almost doubles that for multi-layered HML.

308 **4. Single-layered low-level clouds**

309 As discussed in Section 3, single-layered low-level clouds (LOW) are the dominant cloud type
310 in both northern (NSO) and southern (SSO) parts of the SO. Figs. 3 and 4 further reveal that LOW
311 cloud type is the only one having comparable *CF*, cloud, thickness, *LWP* over both NSO and SSO.
312 This warrants further study: Are the cloud phases, properties, and vertical and meridional
313 variations of LOW clouds over these two regions similar to each other or significantly different?

314 **4.1. Cloud phase**

315 In this study, cloud boundaries are determined by combining cloud radar, ceilometer and
316 micropulse lidar measurements at a temporal resolution of 5-min. The cloud phase, liquid water
317 droplets or ice particles, are determined in each radar range volume. A flow chart for classifying
318 the phases of single-layered low-level clouds is drawn in Fig. 5. The determination of warm liquid
319 clouds is straightforward using both cloud-base (T_{base}) and -top (T_{top}) temperatures greater than 0
320 $^{\circ}\text{C}$, and cloud *LWP*s greater than the threshold (10 g m^{-2}). The determination of supercooled liquid
321 clouds is slightly complicated. When either T_{base} or T_{top} is below 0° C , and cloud *LWP*s are greater

322 than the threshold, the radar Doppler spectrum width (*WID*) and velocity (V_d) are used for the
323 determination of supercooled liquid water clouds. If the majority (10 seconds of original radar
324 measurements) of *WID* within a 5-min period are less than 0.4 m s^{-1} and V_d are equal to or less than
325 0.0 m s^{-1} (updrafts) in the volume, then this range volume is defined as supercooled liquid clouds.

326 Mixed-phase clouds are determined when the median (calculated from 10 seconds of original
327 radar measurements) of *WID* is greater than 0.4 m s^{-1} or V_d is greater than 0.0 m s^{-1} (downdrafts)
328 due to the existence of large ice particles in the clouds. If cloud *LWP* is below the threshold, then
329 it is defined as an ice cloud, otherwise it is defined as a mixed-phase cloud. It is worth mentioning
330 that large ice particles, which grow through vapor deposition or rime processes, dominate the radar
331 reflectivity and are heavier than cloud droplets. Therefore, these large ice particles not only
332 broaden the spectrum width but also have relatively large fall speeds.

333 To further evaluate our classification method, we compared the classified mixed-phase and ice
334 clouds with the micropulse lidar linear depolarization ratios (*LDR*) as an extra measure. The *LDR*
335 ranges follow the method in Shupe et al., (2005), which are $0.11 < LDR < 0.15$ for mixed-phase
336 clouds, and $LDR > 0.15$ for ice clouds as listed in Table 1. Table 3a shows the quantitative
337 comparison of the cloud phase identifications between these two classification methods. The
338 numbers represent the counts of each matched 5-min sample, where the diagonal numbers indicate
339 that both methods are identifying the same type of cloud phase. In general, the two methods have
340 89 % agreement on the phase identification. Secondly, we performed the phase classification
341 directly from microphysical probes onboard G-1 aircraft during SOCRATES and treated them as
342 'ground-truth' (Mohrmann et al., 2021). Since the in-situ cloud microphysical measurements can
343 tell us the phase of the cloud, it allows us to see the percentage variations of cloud phase, by
344 changing integration time of in-situ sampling to mimic what the radar may observe the cloud for

345 each range volume. Table 3b shows possible cloud phase partitionings that may be detected by
346 cloud radar. As sampling time increases from 1 second to 30 seconds, more mixed-phase clouds
347 and fewer single-phase clouds can be observed.

348 Figure 6 shows the determination of mixed-phase and ice clouds through combined
349 measurements of radar reflectivity and spectrum width, lidar LDR and backscatter, and cloud LWP.
350 For the classified ice clouds, cloud LWPs are lower than 10 gm^{-2} (Fig. 6f), most of the Doppler
351 spectrum widths range from 0.08 to 0.16 m s^{-1} (Fig. 6b) and the *LDR* ratios (Fig. 6d) can be greater
352 than ~ 0.15 , representing a narrow range of ice particle size distribution with higher *LDR* ratios.
353 For the classified mixed-phase clouds, cloud LWPs are greater than 10 gm^{-2} and most of the
354 Doppler spectrum widths range from 0.15 to 0.5 m s^{-1} , representing a broad particle size
355 distribution resulting from the mixture of liquid droplets and ice particles. An interesting result
356 occurs where both *LDR* signals (>0.2) and LWPs are much higher during the drizzling periods
357 (Fig. 6a), indicating a mixed-phase cloud with cloud droplets within the cloud layer and large
358 liquid drizzle drops and ice crystals below cloud base.

359 Based on the Doppler velocity, the mode values for both mixed-phase and ice clouds occur at
360 $\sim 0.5 \text{ m s}^{-1}$, where the ice particles are dominant in both types of clouds. The broader particle size
361 distribution with lower *LDR* ratios for mixed-phase clouds and narrower particle size distribution
362 with higher *LDR* ratios for ice clouds further corroborate that the classified results from this study
363 are consistent with the traditional micropulse lidar *LDR* method.

364 It is important to note that the micropulse lidar signals are usually attenuated and cannot
365 provide a meaningful signal when the liquid cloud layer is thicker than a couple of hundred meters
366 (Sassen, 1991). Arctic mixed-phase clouds are typical with the liquid-dominant layer on the top of
367 the mixed-phase clouds and the ice-dominant layer underneath. The ceilometer-derived cloud-base

368 height represents the base of the liquid-dominant layer near the cloud top, while MPL-derived
369 cloud-base height represents the base of the lower ice-dominant layer (Qiu et al., 2015; Shupe,
370 2007; Shupe et al., 2005). Over the Arctic, the micropulse lidar signals can penetrate through the
371 ice-dominant layer to the liquid-dominant layer. However, the mixed-phase clouds over the
372 Southern Ocean are totally different from those over the Arctic region: they are well mixed (liquid
373 droplets and ice particles) from cloud base to cloud top, which is found in this study. Thus, the
374 micropulse lidar signals can be attenuated in the mixed-phase clouds over the Southern Ocean.
375 Statistical results show that 43 % of micropulse lidar signals were attenuated during MARCUS
376 compared to our classified results.

377 This classification method is further supported by the onboard cloud radar measurements
378 during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES,
379 not shown). In that campaign, the reflectivity measurements were usually greater, and the spectrum
380 widths were much wider when the aircraft observed large ice particles compared to the time
381 periods when liquid cloud droplets were observed. Although the wider spectrum widths might be
382 caused by Doppler broadening of the moving aircraft, further analysis shows that the onboard radar
383 sends the signals (assuming the time of transmitted and received signals is short enough comparing
384 to aircraft speed) in the perpendicular to the movement of the aircraft, that is, there is no relative
385 movement between radar signals and clouds. Thus, the onboard radar spectrum width
386 measurements should be not significantly impacted by Doppler broadening (relative movement in
387 the same direction).

388 In this study, a total of 6,934 5-min single-layered low-level cloud samples were determined
389 using our classificaiton method, including 697 liquid cloud samples, 3,777 mixed, 1,205 ice, and
390 1,255 'OTHER' clouds. The category of 'OTHER' clouds represents more than one phase in each

391 column. Note that though the ‘OTHER’ is also mixed-phase cloud, it has different vertical
392 distribution of liquid compared to the ‘mixed’ cloud. It is also worth mentioning that about 5.5 %
393 of single-layered low-level cloud phases cannot be determined when the radar measurements were
394 not available during MARCUS, those were not accounted to “OTHER”.

395 Figure 7 (upper panel) shows the drizzling status for each categorized cloud type, i.e., no rain
396 (yellow-green), virga (brown) and rain (navy blue). The definition of drizzling status follows the
397 method in Wu et al., (2015, 2017) where there are radar reflectivity measurements below the
398 ceilometer/lidar determined cloud base. The major difference for drizzles in the studies of Wu et
399 al. (2015, 2017) and this study is that drizzle is liquid phase at ARM ENA site but could be both
400 liquid and ice phases in this study.

401 The percentages shown below the x-axis represent the portion of drizzling status in each type
402 of clouds, such as liquid, mixed-phase, ice and 'OTHER' clouds. Figure 7 (bottom panel) also
403 shows the percentages and vertical distributions of classified liquid, mixed-phase, ice, and
404 'OTHER' clouds for each column in the single-layered low-level clouds, represented by different
405 colors. After classification, the samples in each category are sorted by their H_{top} . In detail, Figure
406 7 demonstrates that the mixed-phase clouds dominate the single-layered low-level cloud category
407 with an occurrence frequency of 54.5 %. The 'OTHER' and ice clouds have similar occurrence
408 frequencies of 18.1 % and 17.4 %, respectively, while the liquid clouds have the lowest occurrence
409 frequency of 10.1 %. The liquid-topped mixed-phase clouds (included in 'OTHER'), which
410 frequently occur in the Arctic region (Qiu et al., 2015), are rarely found over the SO. The existence
411 of ice particles in mixed-phase clouds should strongly depend on the distribution of ice nuclei (IN),
412 whereas spatially unevenly distributed IN may result in the OTHER type of clouds.

413 Based on the results in Fig. 7, we draw the following conclusions. Most of the ice clouds are
414 without icy precipitation, and the percentages with virga and precipitation below the cloud base
415 are 12 % and 15 %, respectively. The percentages of non-drizzling, virga and drizzling mixed-
416 phase clouds are 50 %, 21 %, and 29 %. The liquid and 'OTHER' clouds have similar percentages,
417 they are 36 %, 25 % and 39 % for liquid clouds, and 35 %, 22 % and 44 % for 'OTHER' clouds.
418 For liquid and 'OTHER' clouds, the drizzling frequencies are independent of H_{top} . In contrast, for
419 mixed-phase and ice clouds, the drizzling frequencies strongly depend on H_{top} , i.e., higher drizzling
420 frequencies occur mostly at higher H_{top} .

421 The properties of single-layered low-level clouds are summarized in Table 4. The liquid clouds
422 have the lowest H_{base} and H_{top} but more available water vapor than other types of clouds. Since the
423 'OTHER' clouds are a transitional stage among mixed-phase, liquid and ice clouds, they have the
424 highest H_{top} , deepest cloud layer and largest LWP . The ice clouds occur in relatively dry
425 environments and have the highest H_{base} at 1.218 km and thinnest cloud layer. The cloud variables
426 for mixed-phase clouds fall between Liquid and "OTHER". Since $LWPs$ in mixed-phase clouds
427 have larger standard deviation, which implies that SLW is more common at higher $LWPs$ and ice
428 is more common at lower $LWPs$.

429 **4.2. Meridional variations of cloud properties**

430 Figure 8 shows the meridional variation in single-layered low-level cloud properties during
431 MARCUS. As illustrated in Fig. 8a, the meridional distributions of H_{base} , H_{top} and ΔH are nearly
432 independent of latitude, however, their corresponding temperatures (T_{base} and T_{top}) increased about
433 8 K from 69 °S to 43 °S, though there were slight fluctuations. These results suggest that the cloud
434 and sea surface temperatures have minimal impact on the cloud boundaries over the SO, which is
435 consistent with the findings in McFarquhar et al. (2016). The meridional variation of $LWPs$ follows

436 those of T_{base} and T_{top} , with an increasing trend from south to north. It is important to point out that
437 a big drop in LWP at $\sim 50^{\circ}\text{S}$ results from fewer occurrences of low-level clouds there, indicating
438 that the cloud samples at some latitudes are not statistically significant. The atmospheric PWV
439 increased dramatically from ~ 5 mm at 69°S to ~ 18 mm at 43°S , presumably due to increased sea
440 surface and atmospheric temperatures.

441 Figure 9 shows the latitudinal and meridional distributions of categorized liquid, mixed-phase,
442 ice and 'OTHER' in single-layered low-level clouds over the SO during MARCUS. Each circle
443 represents the exact location and time along the ship track. Mixed-phase clouds occurred
444 everywhere over the SO during the MARCUS field campaign and became dominant in November,
445 December and February. Liquid clouds dominated in March, while ice clouds dominated in
446 January. The 'OTHER' clouds are a kind of transitional phase falling in between the mixed-phase
447 and ice/liquid clouds because there are no stand-alone occurrences in any month during MARCUS.

448 **4.3 Vertical distribution of cloud properties**

449 The vertical distributions of classified liquid, mixed-phase, and ice clouds in LOW category
450 are presented in Figs. 10-12. The focus of this section will be comparisons of cloud macrophysical
451 properties between the north (NSO) and south (SSO) regions of the domain. Figure 10a shows the
452 vertical distributions of liquid clouds, which were capped at ~ 1.6 km, mostly in the marine
453 boundary layer. The vertical occurrence frequencies are up to 27 % over NSO, while they were
454 less than 4 % over SSO, i.e., liquid clouds occurred fairly often over the mid-latitude region, but
455 very few occurred over the Polar region. On the contrary, the occurrence frequencies of mixed-
456 phase clouds between NSO and SSO are opposite to liquid clouds as illustrated in Fig. 10b, though
457 the differences are not so obvious. Mixed-phase clouds increased with altitude until ~ 1.6 km, then
458 decreased monotonically towards 3 km. The highest frequencies were ~ 37 % at 0.6 km over SSO

459 and ~27 % at 1.5 km over NSO. The vertical distributions of ice clouds are similar to those of
460 mixed-phase clouds (Fig. 10c), however, there were no significant differences between NSO and
461 SSO. It is worth mentioning that the vertical distributions of mixed-phased clouds over SO are
462 quite different to those from DOE ARM Northern Slope Alaska (NSA) site, where the low-level
463 mixed-phase clouds are commonly featured with a liquid-topped layer. (e.g., Qiu et al., 2015).

464 To further investigate the vertical distributions of classified liquid, mixed-phase, and ice clouds
465 over NSO and SSO, we plot the normalized vertical distributions (cloud base as 0, cloud top as 1)
466 of radar reflectivity, Doppler velocity and spectrum width in Figs. 11 and 12, respectively. In this
467 study, the threshold of -50 dBZ was used to determine the cloud boundary over the SO instead of
468 the threshold of -40 dBZ radar reflectivity used at the ARM ENA site (Dong et al., 2014). If we
469 used the threshold of -40 dBZ over the SO, then there would be only 73% cloud samples available.
470 If we used the threshold of -50 dBZ, then we would have 90.4% cloud samples, which gained
471 additional 17.4% on top of the -40 dBZ threshold. About 9.6% of radar reflectivities during
472 MARCUS are lower than -50 dBZ for all LOW cloud samples, but without ceilometer and MPL
473 lidar signals. Thus these 9.6% cloud samples were eliminated in Figs 11-12.

474 Figures 11a-11c represent the normalized vertical distributions of radar reflectivity, Doppler
475 velocity and spectrum width of liquid clouds. Liquid clouds had the lowest reflectivity near the
476 cloud top because of cloud-top entrainment. The reflectivity had a nearly constant median value
477 of ~ -22 dBZ from cloud top height (~ 0.8 for normalized height) of the cloud layer to the cloud
478 base. Most of the reflectivities were less than -15 dBZ, which is a threshold to distinguish cloud
479 droplets and drizzle drops in each radar range volume (Wu et al., 2020). Most of the Doppler
480 velocities were greater than 0.0 m s^{-1} , indicating that downwelling motion is dominant in liquid
481 clouds. The profiles of Doppler velocity and spectrum width increased smoothly from the cloud

482 top to base, suggesting that larger cloud droplets and broader size distributions exist near the cloud
483 base, which is attributable to more drizzle drops near the cloud base as illustrated in Fig. 7.

484 The vertical distributions of mixed-phase clouds in Figs. 11d-11f are similar to those of liquid
485 clouds. The more occurrences of larger reflectivity measurements and larger median values of
486 spectrum width near the cloud base are most likely due to the presence of moderate ice particles
487 and/or drizzle drops. The nearly same median values of reflectivity, Doppler velocity and spectrum
488 width (but slightly larger standard deviations in each level in mixed-phase clouds) in both liquid
489 and mixed-phase clouds suggest that the ice particle sizes in mixed-phase clouds are comparable
490 to cloud droplets and drizzle drops. The nearly uniform vertical distributions of Doppler velocity
491 and spectrum width indicate well-mixed liquid cloud droplets and ice particles throughout the
492 cloud layer in the mixed-phase clouds over NSO.

493 Compared to liquid and mixed-phase clouds, ice clouds had much lower reflectivities and
494 narrower spectrum width as shown in Figs. 11g-11i. Almost all reflectivity measurements were
495 less than -25 dBz with a median value of -35 dBz at the cloud base, resulting from small or
496 moderate ice particles but much lower concentration. A nearly constant Doppler velocity within
497 the cloud layer further supports the discussion of mixed-phase clouds above, i.e., the ice particle
498 sizes are independent of cloud height and comparable to liquid cloud droplets in the low-level
499 clouds over the SO. Because there are no mechanisms for growing large ice particles in such
500 shallow ice clouds, the accretion process cannot take place. From the statistical results in Fig. 7,
501 these ice particles have relatively little chance to become virga or raindrops and usually dissipate
502 or transition to other types of clouds.

503 Since there are not enough liquid cloud samples over the Polar region, only the mixed-phase
504 and ice clouds results are shown in Fig. 12. Compared to the vertical distributions of ice clouds

505 over NSO, the median values of reflectivity and Doppler spectrum width over SSO were lower
506 and narrower, indicating a lack of large ice particles in the Polar region. The small ice particles in
507 the Polar region were also reflected in their mixed-phase clouds. Compared to the vertical
508 distributions of the mixed-phased clouds over NSO, the median values of reflectivity and Doppler
509 spectrum width over SSO were dramatically lower (-35 dBz at SSO vs. -22 dBz at NSO; 0.25 m
510 s^{-1} at SSO vs. 0.32 m s^{-1} at NSO). Figure 12 illustrates that the ice particle sizes over SSO are
511 smaller, their size distributions are narrower than those over NSO, indicative of lack of large ice
512 particles over SSO.

513 **5. Summary and Conclusions**

514 In this study, we presented the statistical results of clouds over the Southern Ocean (SO), and
515 its northern (NSO) and southern (SSO) parts during MARCUS Intensive observational period
516 (IOP). We used the method developed in Xi et al., (2010) to calculate the occurrence frequencies
517 of different types of clouds and their corresponding cloud macrophysical properties. We developed
518 a new method to classify liquid, mixed-phased, and ice clouds in the single-layered low-level
519 clouds as well as their corresponding drizzling status. Lastly, we explored the meridional and
520 vertical distributions of these classified cloud properties. Analysis of the MARCUS cloud phase
521 and macrophysical properties has yielded the following conclusions.

522 1) The total cloud fractions (CFs) were 77.9 %, 67.6 %, and 90.3 % for the entire domain, NSO
523 and SSO, respectively, indicating that 22.7 % more clouds occurred in the Polar region than in
524 the mid-latitude region. The SSO had more clouds under 7 km, while the NSO had more clouds
525 above 7 km. Below 3 km, the occurrence frequencies of clouds over NSO decrease
526 dramatically from 37 % at an altitude of ~0.7 km to 16 % at 3 km, which is similar to the

527 vertical distributions of the low-level clouds over some Northern Hemisphere mid-latitude
528 regions, such as Eastern North Atlantic.

529 2) The single-layered low-level (LOW), deep convective or multi-layered (HML), and MOL
530 clouds are the three dominant types of clouds over the SO. Comparing the clouds between
531 NSO and SSO, all types of clouds in SSO are higher than those in NSO except HOL. The LOW
532 fraction, thickness, LWP over both NSO and SSO are comparable to each other. The mean
533 LWP for LOW, MID and HOL clouds over NSO, range from ~ 130 to 150 g m^{-2} , while the
534 mean NSO LWP ($\sim 270 \text{ g m}^{-2}$) for MOL and deep convective clouds (HML) are two times
535 higher than the same types of clouds over SSO. The mean LWP of clouds over SSO are much
536 lower than the LWP over NSO. Over the Southern Ocean, the single-layered or contiguous
537 clouds usually have higher LWP than their counterparts of multi-layered or non-contiguous
538 clouds. There are more non-contiguous HML and HOM than contiguous ones.

539 3) A new method was developed to classify liquid, mixed-phase and ice clouds in the single-
540 layered low-level clouds (LOW) based on comprehensive ground-based observations. The
541 mixed-phase clouds are dominant in the LOW cloud category with an occurrence frequency of
542 54.5 %. The 'OTHER' and ice clouds had similar occurrence frequencies of 18.1 % and 17.4 %,
543 respectively, while the liquid clouds had the least occurrence frequency of 10.1 %. The
544 percentages of non-drizzling, virga and drizzling for mixed-phase clouds were 50 %, 21 %,
545 and 29 %, and the drizzling frequencies of mixed-phase clouds strongly depend on H_{top} , that
546 is, higher drizzling frequencies occurred mostly at higher H_{top} .

547 4) The meridional distributions of H_{base} , H_{top} and ΔH are nearly independent on latitude, however,
548 their corresponding temperatures increased about 8 K from 69°S to 43°S . The meridional
549 variation of LWP mimics that of cloud temperatures, having an increasing trend from south

550 to north. The mean *PWV* increased dramatically from ~ 5 mm at 69 °S to ~18 mm at 43 °S due
551 to increased sea surface and atmospheric temperatures. More liquid clouds occurred over NSO
552 but very few occurred over SSO, whereas more mixed-phase clouds occurred over SSO than
553 over NSO. There were no significant differences in ice clouds occurrences between NSO and
554 SSO.

555 5) The nearly same median values of reflectivity, Doppler velocity and spectrum width in both
556 liquid and mixed-phase clouds over NSO suggest that the ice particle sizes in mixed-phase
557 clouds are comparable to cloud droplets and drizzle drops. The uniform vertical distributions
558 of Doppler velocity and spectrum width suggest well-mixed liquid cloud droplets and ice
559 particles throughout the cloud layer in the mixed-phase clouds over NSO, which are quite
560 different from those over the DOE ARM NSA site where the liquid-topped mixed-phase low-
561 level clouds are common. The median values of reflectivity and Doppler spectrum width over
562 SSO were lower and narrower than those over NSO, indicating lack of large ice particles in
563 the polar region.

564 These results provide comprehensive statistical properties of all clouds over the SO during
565 MARCUS, including the occurrence frequencies of different types of clouds and their
566 corresponding cloud macrophysical properties. We also examined the meridional and vertical
567 distributions of the classified cloud properties. These statistics can be used as a ground truth to
568 evaluate satellite retrieved cloud properties and model simulations over the SO. The results of this
569 study will help to advance our understanding of the clouds over the SO, which may lead to
570 improved model simulations, as well as better representation of global climate.

571 *Data availability.* Data used in this study can be accessed from the DOE ARM's Data Discovery at
572 <https://adc.arm.gov/discovery/>

573

574 *Author contributions.* The idea of this study is discussed by BX, XD, and XZ. BX and XZ performed
575 the analyses and BX wrote the manuscript. BX, XD, XZ and PW participated in scientific discussions
576 and provided substantial comments and edits on the paper.

577

578 *Competing interests.* The authors declare that they have no conflict of interest.

579

580 *Acknowledgements.* The ground-based measurements were obtained from the Atmospheric
581 Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy (DOE)
582 Office of Energy Research, Office of Health and Environmental Research, and Environmental
583 Sciences Division. The data can be downloaded from <http://www.archive.arm.gov/>. Researchers
584 were supported by the NSF project under grant AGS-2031750 at the University of Arizona.
585 Specially thanks to Mr. Xingyu Zhang for providing analysis from CDP and 2DS microphysical
586 sensors during SOCRATES and Dr. Dale Ward for proofreading this manuscript.

587 **References.**

588 Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, *Science*,
589 doi:10.1126/science.245.4923.1227, 1989.

590 Bodas-Salcedo, A., Mulcahy, J. P., Andrews, T., Williams, K. D., Ringer, M. A., Field, P. R. and
591 Elsaesser, G. S.: Strong Dependence of Atmospheric Feedbacks on Mixed-Phase
592 Microphysics and Aerosol-Cloud Interactions in HadGEM3, *J. Adv. Model. Earth Syst.*,
593 doi:10.1029/2019MS001688, 2019.

594 Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G.,
595 Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M. and Webb, M. J.: Clouds,
596 circulation and climate sensitivity, *Nat. Geosci.*, doi:10.1038/ngeo2398, 2015.

597 Chubb, T. H., Jensen, J. B., Siems, S. T. and Manton, M. J.: In situ observations of supercooled
598 liquid clouds over the Southern Ocean during the HIAPER Pole-to-Pole Observation
599 campaigns, *Geophys. Res. Lett.*, doi:10.1002/grl.50986, 2013.

600 Dong, X., Xi, B., Kennedy, A., Minnis, P. and Wood, R.: A 19-month record of marine aerosol-
601 cloud-radiation properties derived from DOE ARM mobile facility deployment at the
602 Azores. Part I: Cloud fraction and single-layered MBL cloud properties, *J. Clim.*,
603 doi:10.1175/JCLI-D-13-00553.1, 2014.

604 Hu, Y., Rodier, S., Xu, K. M., Sun, W., Huang, J., Lin, B., Zhai, P. and Josset, D.: Occurrence,
605 liquid water content, and fraction of supercooled water clouds from combined
606 CALIOP/IIR/MODIS measurements, *J. Geophys. Res. Atmos.*,
607 doi:10.1029/2009JD012384, 2010.

608 Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S. and
609 Moritz, R. E.: An annual cycle of Arctic surface cloud forcing at SHEBA, *J. Geophys. Res.*
610 *Ocean.*, doi:10.1029/2000jc000439, 2002.

611 Klein, S. A., Hall, A., Norris, J. R. and Pincus, R.: Low-Cloud Feedbacks from Cloud-Controlling
612 Factors: A Review, *Surv. Geophys.*, doi:10.1007/s10712-017-9433-3, 2017.

613 Kalesse, H., de Boer, G., Solomon, A., Oue, M., Ahlgrimm, M., Zhang, D., Shupe, M. D., Luke,
614 E. and Protat, A.: Understanding rapid changes in phase partitioning between cloud liquid
615 and ice in stratiform mixed-phase clouds: An arctic case study, *Mon. Weather Rev.*,
616 doi:10.1175/MWR-D-16-0155.1, 2016.

617 Lang, F., Huang, Y., Siems, S. T. and Manton, M. J.: Characteristics of the Marine Atmospheric
618 Boundary Layer Over the Southern Ocean in Response to the Synoptic Forcing, *J. Geophys.*
619 *Res. Atmos.*, doi:10.1029/2018JD028700, 2018.

620 Listowski, C., Delanoë, J., Kirchgaessner, A., Lachlan-Cope, T. and King, J.: Antarctic clouds,
621 supercooled liquid water and mixed phase, investigated with DARDAR: Geographical and
622 seasonal variations, *Atmos. Chem. Phys.*, doi:10.5194/acp-19-6771-2019, 2019.

623 Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C. and Winker, D.: A
624 description of hydrometeor layer occurrence statistics derived from the first year of merged
625 Cloudsat and CALIPSO data, *J. Geophys. Res. Atmos.*, doi:10.1029/2007JD009755, 2009.

626 Mace, G. G. J. and Protat, A.: Clouds over the Southern Ocean as observed from the R/V
627 investigator during CAPRICORN. Part I: Cloud occurrence and phase partitioning, *J. Appl.*
628 *Meteorol. Climatol.*, doi:10.1175/JAMC-D-17-0194.1, 2018.

629 Mace, G. G., Protat, A., Humphries, R. S., Alexander, S. P., McRobert, I. M., Ward, J., Selleck,
630 P., Keywood, M. and McFarquhar, G. M.: Southern Ocean Cloud Properties Derived From

631 CAPRICORN and MARCUS Data, J. Geophys. Res. Atmos., doi:10.1029/2020JD033368,
632 2021.

633 Marchand, R., Ackerman, T., Westwater, E. R., Clough, S. A., Cady-Pereira, K. and Liljegren, J.
634 C.: An assessment of microwave absorption models and retrievals of cloud liquid water
635 using clear-sky data, J. Geophys. Res. Atmos., doi:10.1029/2003jd003843, 2003.

636 Marchand, R., Wood, R., Bretherton, C., McFarquhar, G., Protat, A., Quinn, P., Siems, S., Jakob,
637 C., Alexander, S., Weller, B.: The Southern Ocean Clouds, Radiation Aerosol Transport
638 Experimental Study (SOCRATES), whitepaper available from
639 [http://www.atmos.washington.edu/socrates/SOCRATES white paper Final Sep29 2014.pdf](http://www.atmos.washington.edu/socrates/SOCRATES_white_paper_Final_Sep29_2014.pdf), 2014.

640

641 Mccoy, D. T., Hartmann, D. L. and Grosvenor, D. P.: Observed Southern Ocean cloud properties
642 and shortwave reflection. Part II: Phase changes and low cloud feedback, J. Clim.,
643 doi:10.1175/JCLI-D-14-00288.1, 2014.

644 McFarquhar, G., Bretherton, C., Alexander, S., DeMott, P., Marchand, R., Protat, A., Quinn, P.,
645 Siems, S., Weller, R., Wood, R.: Measurements of Aerosols, Radiation, and Clouds over
646 Sothern Ocean (MARCUS) Science Plan, DOE ARM Climate Research Facility.,
647 DOE/SC-ARM-16-011, available at: <http://arm.gov/publications/programdocs/doe-sc-arm-16-011.pdf>, 2016.

648

649 McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P. J., Alexander, S. P.,
650 Roberts, G. C., Twohy, C. H., Toohey, D., Siems, S., Huang, Y., Wood, R., Rauber, R. M.,
651 Lasher-Trapp, S., Jensen, J., Stith, J. L., Mace, J., Um, J., Järvinen, E., Schnaiter, M.,
652 Gettelman, A., Sanchez, K. J., McCluskey, C. S., Russell, L. M., McCoy, I. L., Atlas, R.
653 L., Bardeen, C. G., Moore, K. A., Hill, T. C. J., Humphries, R. S., Keywood, M. D.,

654 Ristovski, Z., Cravigan, L., Schofield, R., Fairall, C., Mallet, M. D., Kreidenweis, S. M.,
655 Rainwater, B., D'Alessandro, J., Wang, Y., Wu, W., Saliba, G., Levin, E. J. T., Ding, S.,
656 Lang, F., Truong, S. C. H., Wolff, C., Haggerty, J., Harvey, M. J., Klekociuk, A. R., and
657 McDonald, A.: Observations of Clouds, Aerosols, Precipitation, and Surface Radiation
658 over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and
659 SOCRATES, B. Am. Meteorol. Soc., 102, E894-E928, 10.1175/BAMS-D-20-0132.1,
660 2021.

661 Mohrmann, J., Finlon, J., Atlas, R., Lu, J., Hsiao, I., Wood, R.: University of Washington Ice-
662 Liquid Discriminator single particle phase classifications and 1 Hz particle size
663 distributions/heterogeneity estimate, Version 1.0. UCAR/NCAR - Earth Observing
664 Laboratory., doi:10.26023/PA5W-4DRX-W50A, Last Access: Nov 01, 2021

665 Morrison, H., De Boer, G., Feingold, G., Harrington, J., Shupe, M. D. and Sulia, K.: Resilience of
666 persistent Arctic mixed-phase clouds, Nat. Geosci., doi:10.1038/ngeo1332, 2012.

667 Muradyan, P. and Coulter, R.: Micropulse Lidar (MPL) Instrument Handbook. DOE ARM Climate
668 Research Facility, DOE/SC-ARM-TR-019, 2020. Available at:
669 https://www.arm.gov/publications/tech_reports/handbooks/mpl_handbook.pdf, last access:
670 25 March 2022.

671 Qiu, S., Dong, X., Xi, B. and Li, J. L. F.: Characterizing Arctic mixed-phase cloud structure and
672 its relationship with humidity and temperature inversion using ARM NSA observations, J.
673 Geophys. Res., doi:10.1002/2014JD023022, 2015.

674 Rémillard, J., Kollias, P., Luke, E., and Wood, R.: Marine Boundary Layer Cloud Observations in
675 the Azores, J. Climate, 25, 7381-7398, 10.1175/JCLI-D-11-00610.1, 2012.

676 Sassen, K.: The polarization lidar technique for cloud research: a review and current assessment,
677 Bull. - Am. Meteorol. Soc., doi:10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2,
678 1991.

679 Shupe, M. D., Uttal, T. and Matrosov, S. Y.: Arctic cloud microphysics retrievals from surface-
680 based remote sensors at SHEBA, J. Appl. Meteorol., doi:10.1175/JAM2297.1, 2005.

681 Shupe, M.: A ground-based multisensory cloud phase classifier, Geophys. Res. Lett.,
682 doi:10.1029/2007GL031008, 2007.

683 Stanfield, R. E., Dong, X., Xi, B., Kennedy, A., Del Genio, A. D., Minnis, P. and Jiang, J. H.:
684 Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA
685 Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties, J.
686 Clim., doi:10.1175/jcli-d-13-00558.1, 2014.

687 Stanfield, R. E., Dong, X., Xi, B., Del Genio, A. D., Minnis, P., Doelling, D. and Loeb, N.:
688 Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation
689 budgets using satellite observations. Part II: TOA radiation budget and CREs, J. Clim.,
690 doi:10.1175/JCLI-D-14-00249.1, 2015.

691 Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A.,
692 Xia, Y., Bex, V. and Midgley, P. M.: Climate change 2013 the physical science basis:
693 Working Group I contribution to the fifth assessment report of the intergovernmental panel
694 on climate change., 2013.

695 Toto, T. and Jensen, M.: Interpolated Sounding and Gridded Sounding Value-Added Products.
696 DOE ARM Climate Research Facility, DOE/SC-ARM-TR-183, 2016. Available at:
697 https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-183.pdf, last access: 25
698 March 2022.

699 Uin, J.: Cloud Condensation Nuclei Particle Counter Instrument Handbook. DOE ARM Climate
700 Research Facility, DOE/SC-ARM-TR-168, 2016. Available at:
701 https://www.arm.gov/publications/tech_reports/handbooks/ccn_handbook.pdf, last access:
702 25 March 2022.

703 Wu, P., Dong, X. and Xi, B.: Marine boundary layer drizzle properties and their impact on cloud
704 property retrieval, *Atmos. Meas. Tech.*, doi:10.5194/amt-8-3555-2015, 2015.

705 Wu, P., Dong, X., Xi, B., Liu, Y., Thieman, M. and Minnis, P.: Effects of environment forcing on
706 marine boundary layer cloud-drizzle processes, *J. Geophys. Res.*,
707 doi:10.1002/2016JD026326, 2017.

708 Wu, P., Dong, X. and Xi, B.: A climatology of marine boundary layer cloud and drizzle properties
709 derived from ground-based observations over the azores, *J. Clim.*, doi:10.1175/JCLI-D-20-
710 0272.1, 2020.

711 Xi, B., Dong, X., Minnis, P. and Khaiyer, M. M.: A 10 year climatology of cloud fraction and
712 vertical distribution derived from both surface and GOES observations over the DOE ARM
713 SPG site, *J. Geophys. Res. Atmos.*, doi:10.1029/2009JD012800, 2010.

714 Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Cessi, P., Klein, S.
715 A. and Taylor, K. E.: Causes of Higher Climate Sensitivity in CMIP6 Models, *Geophys.*
716 *Res. Lett.*, doi:10.1029/2019GL085782, 2020.

717 Zhao, L., Zhao, C., Wang, Y., Wang, Y. and Yang, Y.: Evaluation of Cloud Microphysical
718 Properties Derived From MODIS and Himawari-8 Using In Situ Aircraft Measurements
719 Over the Southern Ocean, *Earth Sp. Sci.*, doi:10.1029/2020EA001137, 2020.

Table 1. ARM AMF2 instruments and their corresponding measurements and uncertainties used in this study

Parameter	Instruments/ Methods	Uncertainty	References
Cloud-base height	Ceilometer/MPL	15 m	Rémillard et al., 2012
Cloud-top height	95 GHz cloud radar	43 m	Rémillard et al., 2012
Cloud-base and -top temps	Radiosonde sounding	0.2 °C	Toto and Jensen, 2016
Profiles of reflectivity, Doppler velocity and Spectra	W-band ARM Cloud Radar (WACR), 95 GHz	Sensitivity: -50 dBZ at 2 km	Rémillard et al., 2012
linear depolarization ratios (<i>LDR</i>) and backscatter	Micropulse lidar, MPL Liquid: $LDR < 0.11$ Mix: $0.11 < LDR < 0.15$ Ice: $LDR > 0.15$		Shupe et al. 2005 Muradyan and Coulter, 2020
Cloud LWP	Microwave radiometer	$\sim 15\text{-}30 \text{ g m}^{-2}$ Physical retrieval	Marchand et al., 2003
CCN and aerosol properties	Aerosol Observing System	1-min resolution; Uncertainties < 10%	Uin, 2016

Table 2. Mean, standard deviation, minimum and maximum cloud-base heights (H_{base}), -top heights (H_{top}), and LWP (all samples, single-layered, multilayered) of all seven types of clouds over the SO. All cloud heights have a unit of kilometer, and LWP has a unit of g m^{-2}

	LOW	MID	MOL	HGH	HOM	HML	HOL
$H_{\text{base}} \pm \text{std}$	0.92 ± 0.57	4.14 ± 0.61	1.37 ± 0.96	8.51 ± 2.23	4.70 ± 0.80	1.22 ± 0.98	1.14 ± 1.12
min, max	0.06, 2.86	3.00, 5.84	0.06, 5.27	6.00, 18.67	3.01, 7.72	0.06, 7.81	0.07, 10.37
$H_{\text{top}} \pm \text{std}$	1.62 ± 0.63	4.88 ± 0.68	4.29 ± 0.89	9.75 ± 2.13	7.93 ± 1.27	7.81 ± 1.35	8.93 ± 1.66
min, max	0.29, 3.0	3.17, 6.0	1.39, 5.99	6.20, 18.79	5.47, 17.98	3.62, 17.38	1.79, 17.56
$LWP \pm \text{std}$	122.4 ± 134.2	86.7 ± 124.5	168.7 ± 236.7	/	40.9 ± 40.8	169.2 ± 238.4	$129.8 \pm 202.$
Max LWP	1470.8	501.1	1937.1	/	345.7	1819.3	1785.2
$LWP \pm \text{std}$ (single layer)	126.6 ± 138.1	88.7 ± 128.9	193.1 ± 271.9	/	48.7 ± 51.7	270.8 ± 349.5	/
max	1470.8	501.1	1937.1	/	345.7	1819.3	/
$LWP \pm \text{std}$ (multi-layer)	96.2 ± 103.4	77.2 ± 109.2	139.0 ± 180.7	/	32.3 ± 21.3	148.4 ± 202.4	$129.8 \pm 202.$
max	842.3	305.6	1830.2	/	86.8	1690.7	1785.2
Multi-layer percentage %	18.1	39.6	50.0	44.9	73.1	77.7	100

* The definition of the cloud types as follow: LOW (H_{base} and $H_{\text{top}} \leq 3 \text{ km}$); MID ($H_{\text{base}} > 3 \text{ km}$ and $H_{\text{top}} \leq 6 \text{ km}$); HGH ($H_{\text{base}} > 6 \text{ km}$); MOL ($H_{\text{base}} < 3 \text{ km}$ and $H_{\text{top}} \leq 6 \text{ km}$); HOM ($3 \text{ km} < H_{\text{base}} < 6 \text{ km}$ and $H_{\text{top}} > 6 \text{ km}$); HML ($H_{\text{base}} < 3 \text{ km}$, $H_{\text{top}} \geq 6 \text{ km}$ with a MID layer); HOL (LOW and HGH appear at the same time).

Table 3a. Comparison of cloud phase identifications between our classification method and Shupe et al. (2005) method in each 5-min measurements, the unit is number of 5-min samples

Shupe \this study	Liquid (this study)	Mixed-phase (this study)	Ice (this study)
Liquid	468	490	0
Mixed-phase	98	3840	0
Ice	81	0	1195

*Numbers denote the cloud sample classifications between two methods. For example, the number 98 denote a total of 98 samples are classified as Mixed-phase using Shupe's method, while are classified as Liquid using this study's method.

Table 3b. The cloud phase partitioning from CDP and 2DS during SOCRATES

Phase partitioning	1 second	10 seconds	30 seconds
Samples #	27,280	2,255	836
Liquid, %	58.8	26.2	18.8
Mixed-phase, %	38.9	69.1	77.0
Ice, %	2.3	4.7	4.2

Note that Cloud Droplet Probe (CDP) measures particle size from 2 to 50 μm in diameter; Two-Dimensional Stereo Probe (2DS) measures particle size from 50 to 5000 μm in diameter.

Table 4. Liquid, mixed, ice and OTHER phases of cloud properties within the single-layered low-level clouds

Phase	Samples	$H_{\text{base}}, \text{km}$	$H_{\text{top}}, \text{km}$	$\Delta H, \text{km}$	$LWP, \text{g m}^{-2}$	PWV, mm
Liquid	697	0.424 ± 0.204	1.327 ± 0.242	0.903	113.6 ± 90.1	15.7 ± 3.5
Mixed	3777	0.834 ± 0.465	1.434 ± 0.617	0.587	119.7 ± 136.6	8.9 ± 5.0
Ice	1205	1.218 ± 0.635	1.737 ± 0.651	0.519	0	8.4 ± 4.5
OTHER	1255	0.700 ± 0.454	1.774 ± 0.571	1.074	141.9 ± 137.5	11.4 ± 5.9

Figure 1. Shiptrack measurements between Hobart, Australia and Antarctica. Different colors represent different month's shiptracks from Oct. 29, 2017 to Mar. 23, 2018 during MARCUS. Along the shiptracks, the study domain is separated into northern (NSO) and southern (SSO) parts of the Southern Ocean with a demarcation line of 60 °S in order to study the clouds over the mid-latitudes (North of 60 °S) and Polar region (South of 60 °S). The black dotted rectangle represents the SOCRATES study domain. Some of the dates are labeled along the shiptracks, indicating the direction of the ship.

Figure 2. Mean vertical distributions of total clouds derived from ARM radar-lidar observations with a 5-min temporal resolution and a 30-m vertical resolution during MARCUS.

Figure 3. (a) Occurrence frequencies of categorized clouds by their vertical structures. LOW, single - layered low clouds (H_{base} and $H_{\text{top}} \leq 3 \text{ km}$); MID, singlelayered middle clouds ($H_{\text{base}} > 3 \text{ km}$ and $H_{\text{top}} \leq 6 \text{ km}$); MOL, MID over LOW ($H_{\text{base}} < 3 \text{ km}$ and $H_{\text{top}} \leq 6 \text{ km}$); HGH, singlelayered high clouds ($H_{\text{base}} > 6 \text{ km}$); HOM, HGH over MID ($3 \text{ km} < H_{\text{base}} < 6 \text{ km}$ and $H_{\text{top}} > 6 \text{ km}$); HML, HGH over MID and LOW ($H_{\text{base}} < 3 \text{ km}$, $H_{\text{top}} \geq 6 \text{ km}$ with a MID layer); and HOL, HGH over LOW (LOW and HGH appear at the same time). (b) Cloud thickness for each type of clouds (bar), the top and bottom of the bar represent the maximum cloud-top and minimum cloud-base heights, respectively. Black, blue, and red bars represent the entire domain (Lat:41-69 °S; Long: 60-160° E), north of 60 °S (NSO), and south of 60°S (SSO), respectively, during the MARCUS field campaign (10/2017-3/2018).

Figure 4. (a) Cloud liquid water paths (LWP) retrieved from microwave radiometer (MWR) measured brightness temperatures using a physical retrieval method for each type of cloud. (b) The occurrence frequencies of LWP > 10 g m^{-2} for each type of clouds

Phase classification algorithm for single layered low level clouds

Figure 5. A flow chart for phase classification of single-layered low-level clouds. W-Band (95 GHz) ARM Cloud Radar (WACR) provides radar spectrum width (*WID*) and Doppler velocity (V_d).

Figure 6. A case study that shows our phase classification (left column) and MicroPulse Lidar (MPL) linear depolarization ratios (*LDR*) and backscatter. W-Band (95 GHz) ARM Cloud Radar (WACR) reflectivity is shown in (a) and spectrum width is shown in (b). Correspondingly, the phase classification in (c); MPL *LDR* in (d) and backscatter in (e); and MWR-derived *LWP* in (f).

Figure 7. (Upper Panel) The drizzling status for each categorized cloud type, e.g., no rain (yellow-green), virga (brown) and rain (navy blue), the percentages shown below the x-axis represent the portion of drizzling in each type of clouds. (Bottom Panel) The percentages and vertical distributions of classified liquid, mixed-phase, ice, and 'OTHER' clouds for each column in the single-layered low-level clouds, represented by different colors, over the entire domain during MARCUS. Each line represents one 5-min sample. The definition of drizzle here is the radar reflectivity below the ceilometer-derived cloud base, which could be either liquid drizzle drops or ice crystals.

Figure 8. Meridional variations of single-layered low-level cloud properties: (a) cloud-base (H_{base}) and -top (H_{top}) heights, and cloud thickness (ΔH), (b) cloud-base (T_{base}) and -top (T_{top}) temperatures, and (c) cloud liquid water path (LWP) and precipitable water vapor (PWV) over the entire domain during MARCUS.

Figure 9. The latitudinal and longitudinal distributions of classified mixed-phase, liquid, and ice clouds in the single-layered low-level clouds. The liquid (blue), mixed (red), ice (light green), and OTHER (yellow) are shown along each shiptrack from October 2017 to March 2018 during MARCUS.

Figure 10. Occurrence frequencies of classified mixed-phase, liquid, and ice clouds over the entire domain (black), North of 60 °S (blue) and South of 60 °S (red) during MARCUS.

Figure 11. Normalized vertical distributions of radar reflectivity (a), Doppler velocity (b) and spectrum width (c) for the classified liquid (upper panel), mixed-phase (d to f, middle panel) and ice (g to i, bottom panel) clouds over the North of 60 °S during MARCUS Intensive observational period (IOP). Normalized height is defined as $= \frac{H - H_{base}}{H_{top} - H_{base}}$ where cloud base is denoted as 0 and cloud top is 1. The black lines represent the median values and the white lines in Doppler velocity represent the reference of 0.0 m s⁻¹.

Figure 12. Same as Fig. 11 but only for mixed-phase (a to c, upper panel) and ice (d to f, bottom panel) over the south of 60° S during MARCUS.