

Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign

Baike Xi¹, Xiquan Dong¹, Xiaojian Zheng¹, and Peng Wu²

¹Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA

²Pacific Northwest National Laboratory, Richland, WA, USA

Correspondence: Baike Xi (baikexi@arizona.edu)

24 **Abstract.**

25 To investigate the cloud phase and macrophysical properties over the Southern Ocean (SO), the
26 Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility
27 (AMF2) was installed on the Australian icebreaker *Aurora Australis* during the MARCUS field
28 campaign [41 to 69 °S; 60 to 160 °E] from October 2017 to March 2018. To examine cloud
29 properties over the mid-latitude and Polar regions, the study domain is separated into northern
30 (NSO) and southern (SSO) parts of the SO with a demarcation line of 60 °S. The total cloud
31 fractions (*CFs*) were 77.9 %, 67.6 %, and 90.3 % for the entire domain, NSO and SSO, respectively,
32 indicating that higher *CFs* were observed in the Polar region. Low-level clouds and deep
33 convective clouds are the two most common cloud types over the SO.

34 A new method was developed to classify liquid, mixed-phase and ice clouds in single-layered
35 low-level clouds (LOW) where mixed-phase clouds dominate with an occurrence frequency (*Freq*)
36 of 54.5 %, while the *Freq* of the liquid and ice clouds were 10.1 % (most drizzling) and 17.4 %
37 (least drizzling). The meridional distributions of low-level cloud boundaries are nearly
38 independent of latitude, whereas the cloud temperatures increased ~8 K and atmospheric
39 precipitable water vapor increased from ~5 mm at 69 °S to ~18 mm at 43 °S. The mean cloud liquid
40 water paths over NSO were much larger than those over SSO. Most liquid clouds occurred over
41 NSO with very few over SSO, whereas more mixed-phase clouds occurred over SSO than over
42 NSO. There were no significant differences for ice cloud *Freq* between NSO and SSO. The ice
43 particle sizes are comparable to cloud droplets and drizzle drops, and well mixed in the cloud layer.
44 These results will be valuable for advancing our understanding of the meridional and vertical
45 distributions of clouds and can be used to improve model simulations over the SO.

47 **1. Introduction**

48 The Southern Ocean (SO) is one of the cloudiest and stormiest regions on the Earth (Mace et
49 al., 2009; Chubb et al., 2013). Over the SO, most of the aerosols are naturally produced via oceanic
50 sources given the remote environment. The uncertainties of aerosol forcing caused by natural
51 emissions have larger variances than anthropogenic emissions, especially the dimethyl sulfide
52 (DMS) flux contributes significantly to the bias (Carslaw et al., 2013). The SO is a unique natural
53 laboratory to address the natural aerosol emissions and their contributions to the biases because it
54 has rich ecosystems and is remote to human activities (McCoy et al., 2015). However, we have
55 limited knowledge about cloud formation processes within such clean environments and their
56 associated aerosol and cloud properties. The unique nature of the SO region features low-level
57 supercooled liquid and mixed-phase clouds, which is significantly different from the subtropical
58 marine boundary layer (MBL) clouds where warm liquid clouds are dominant (Dong et al., 2014;
59 Wu et al., 2020; Zhao et al., 2020), and also different to the Arctic mixed-phase clouds which are
60 featured with the liquid-topped cloud layer with ice cloud layer beneath (Qiu et al., 2015).

61 Large biases in cloud amount and microphysics over the SO in the Coupled Model
62 Intercomparison Project phase 5 (CMIP5) climate models result in a near 30 W m^{-2} shortwave
63 radiation deficit at the top of the atmosphere (TOA) (Marchand et al., 2014; Stanfield et al., 2014,
64 2015), which further leads to unrealistic cloud feedbacks and equilibrium climate sensitivity (Bony
65 et al., 2015; Stocker et al., 2013). Meanwhile, the efficiency of aerosol-cloud interaction (ACI)
66 over the SO was found to be crucial for the models' sensitivities to the radiation budget. A new
67 aerosol scheme in the Hadley Centre Global Environmental model can dampen the ACI and
68 suppress negative clear-sky shortwave feedback, both of which contribute to a larger climate
69 sensitivity (Bodas-Salcedo et a., 2019).

70 A climate sensitivity study using CMIP6 general circulation models (GCMs) shows much
71 higher temperature variations across 27 GCMs in response to doubled CO₂ than those in CMIP5,
72 which may have resulted from the decreased extratropical low-level cloud cover and cloud albedo
73 over the SO in CMIP6 (Zelinka et al., 2020). Low-level clouds are a key climate uncertainty and
74 can explain 50 % of the inter-model variations (Klein et al., 2017) because conversion from liquid
75 cloud droplets to ice cloud particles decreases the cloud albedo and reduces the reflected shortwave
76 radiation at TOA. Models, however, have difficulties accurately partitioning the cloud phase
77 (Kalesse et al., 2016). The phase changes in mixed-phase clouds over the Arctic have proved to
78 affect the cloud lifetime and radiative properties significantly, that is, converting from ice cloud
79 particles to liquid cloud droplets may increase the cloud optical depth and the reflected shortwave
80 radiation at TOA (Morrison et al., 2012). In contrast, models that allow mixed-phase clouds to
81 glaciate rapidly can produce 30% more warming from doubling CO₂ (McCoy et al., 2014).

82 Phase transition processes have been investigated by several groups using both satellite and
83 ground-based measurements. For instance, Mace and Protat (2018) found that there are more
84 mixed-phase clouds over the SO measured from the ship than retrieved from CloudSat and
85 CALIPSO measurements because the satellites cannot accurately measure clouds below ~1 km.
86 Lang et al. (2018) used a model to investigate the clouds under post cold frontal systems and found
87 large biases in model simulations and concluded that the cloud cover and radiative biases over the
88 SO are highly regime dependent. Of all cloud types, low-level clouds are primarily responsible for
89 the biases in the model simulations due to the lack of reliable measurements, which leads to a poor
90 understanding of the conditions where these clouds form and the phase(s) that result. In other
91 words, a physical representation of clouds, especially for low-level clouds, is unclear but truly
92 necessary for improving model simulations. Therefore, reliable observations of the cloud macro-

93 and micro-physical properties from ground-based active and passive remote sensors are crucial for
94 the improvement of model simulations.

95 Previous studies show that cloud phase is primarily dependent on cloud temperature, and the
96 transition from one cloud phase to another will modify the cloud optical properties, which further
97 affects the radiation budgets (Hu et al., 2010; Intrieri et al., 2002; Morrison et al., 2012). Based on
98 satellite observations and retrievals, Hu et al. (2010) found that supercooled liquid water (SLW)
99 clouds are most common in the low-level clouds over the SO, where 80% of low-level clouds
100 contain SLW in a wide range of cloud temperatures from 0°C to -40°C. The formation of SLW
101 clouds is usually related to strong boundary layer convection. However, when ice nuclei exist in
102 the mixed-phase clouds, the ice particles can grow quickly and become bigger through consuming
103 supercooled liquid water drops. The SLW is inherently unstable due to the higher vapor pressure
104 over liquid than over ice and the quicker vapor deposition on ice particles than on liquid droplets
105 (Intrieri et al., 2002). As the supercooled liquid cloud droplets glaciate to ice particles, the cloud
106 layer becomes darker because the ice particles scatter less shortwave radiation and absorb more
107 radiation in the near IR wavelength regime. It is unclear, however, what role these ice particles
108 play in the low-level clouds over the SO, which includes the impact on drizzle development.
109 During HIAPER Pole-to-Pole Observation (HIPPO) campaigns, Chubb et al. (2013) found that
110 there are rarely ice particles in non-drizzling and light drizzling clouds over the SO, which may
111 imply that the ice particles in the mixed-phase clouds may modulate the drizzle formation.

112 To investigate the aerosol and cloud properties over the SO, a field campaign called the
113 Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) was
114 conducted using the ship-based measurements between Hobart, Australia, and the Antarctic during
115 the period October 2017-March 2018. The Department of Energy (DOE) Atmospheric Radiation

116 Measurement (ARM) Mobile Facility (AMF2) was installed on the Australian icebreaker *Aurora*
117 *Australis*, which voyaged from Hobart, Tasmania to the Australian Antarctic stations of Casey,
118 Mawson, and Davis, as well as Macquarie Island as illustrated in Fig. 1. Another field campaign,
119 called South Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) field
120 campaign was conducted during austral summer from January 15 to February 26, 2018. In this
121 study, the aircraft in-situ measurements during SOCRATES are used as the reference for the
122 analysis. The SOCRATES domain is shown in the black dotted rectangle box in Fig. 1. The
123 objectives of the MARCUS campaign are to investigate the vertical distribution of boundary layer
124 clouds and reveal the reasons why the mixed-phase clouds are common in the warm season
125 (McFarquhar et al., 2016; McFarquhar et al., 2021). Our study will focus on cloud macrophysical
126 properties and cloud phase along the shiptracks during MARCUS.

127 MARCUS ship-based instruments include AMF2 cloud radar, lidar, microwave radiometer,
128 micropulse lidar, radiosonde sounding, precision solar pyranometer and precision infrared
129 radiometer, as well as aerosol sensors. Through these comprehensive observations over the SO,
130 we are tentatively answering the following three scientific questions:

- 131 (1) What is the total cloud fraction over the SO during MARCUS, as well as vertical and
132 meridional variations in cloud fraction?
- 133 (2) What are the dominant cloud types over the SO, their associated cloud phase and
134 macrophysical properties, as well as their vertical and meridional distributions?
- 135 (3) What are the vertical and meridional distributions of the low-level clouds over the SO?

136 This manuscript is organized as follows: the data and method and introduced in section 2. The
137 statistical results for all clouds during MARCUS are summarized in section 3. The low-level cloud

138 phase and macrophysical properties are described in section 4, followed by a summary and
139 conclusions in section 5.

140 **2. Data and Method**

141 **2.1 Ship-based measurements used in this study**

142 The AMF2 instruments, measurements, and their corresponding uncertainties and references
143 are listed in Table 1. Because AMF2 was designed to support shipboard deployments, the baseline
144 suite of instruments are marine-focused, including the 95-GHz W-band cloud radar (WACR),
145 ceilometer, micropulse lidar (MPL), microwave radiometer (MWR), aerosol observation system
146 (AOS), meteorological measurements (MET, includes the following data: temperature, pressure,
147 specific humidity, wind direction and speed) on the ship, rain gauge and the radiosonde soundings.
148 The combined cloud radar and ceilometer measurements can provide the cloud boundaries as long
149 as there are no optically thin clouds and the cloud-base heights (H_{base}) are not greater than the
150 upper limit (7.7 km) of the ceilometer. The micropulse lidar will be used to identify optically thin
151 clouds and the clouds with $H_{\text{base}} > 7.7$ km. A previous study has shown that these additional clouds
152 detected by the micropulse lidar can be a non-negligible supplement to the total cloud fraction
153 (Mace et al., 2021). A detailed description of the instruments and the cloud parameters during
154 MARCUS can be found in Mace et al. (2021) and McFarquhar et al. (2016 and 2021).

155 In order to accurately estimate the cloud temperatures, we adopted a linear interpolation
156 method based on the daily balloon soundings (4 to 5 times per day) to achieve a better temporal
157 resolution of the vertical profiles of temperature, pressure, and specific humidity. The method
158 considers MET measurements to ensure vertical continuity and adjacent soundings for temporal
159 continuity. Using these interpolated atmospheric profiles, cloud temperatures can be obtained at a
160 5-min temporal resolution.

161 The cloud liquid water path (*LWP*) and atmospheric precipitable water vapor (*PWV*) are
162 retrieved based on a physical-iterative algorithm using observations of the microwave radiometer
163 brightness temperatures at 23.8 and 31.4 GHz with uncertainties ranging from 15 to 30 g m⁻²
164 (Marchand et al., 2003). It is important to note that the brightness temperature biases switch signs
165 among different climatological regions because a threshold of 5 °C in cloud-base temperature was
166 used in their physical retrievals. Since the retrieved *LWP* and *PWV* are based on the MWR
167 measured brightness temperatures at two frequencies, any biases on the brightness temperatures
168 will affect these retrievals. Therefore, we propose an extra step to determine the uncertainties
169 during MARCUS. Based on the temperature profiles, we can identify clouds that are not likely to
170 contain liquid (e.g., pure ice-cloud), then we can estimate the *LWP* uncertainty based on their
171 corresponding retrieved *LWP* values. From the probability density function (PDF_ analysis, the
172 *LWP* uncertainty is estimated as 10 g m⁻² for MARCUS.

173 To determine the precipitation status, the AOS and rain gauge measurements were used to
174 determine whether rain is reaching the surface qualitatively, but not quantitatively in this study.
175 All the measurements were averaged over 5 minutes, except the radar reflectivity, Doppler velocity,
176 and spectrum width used in Section 4.3.

177 **2.2 Cloud type classification and single-layer low cloud phases**

178 A classification method developed in Xi et al. (2010) was used to categorize different types of
179 clouds using ARM radar-lidar estimated cloud base (H_{base}) and top (H_{top}) heights and cloud
180 thickness (ΔH). A brief description of the classification of cloud types is as follows (Table 1 and
181 Figure 6 in Xi et al., 2010). The single-layered low-level clouds (LOW) is the fraction of time
182 when low clouds with $H_{\text{top}} \leq 3$ km occur without clouds above them. Middle clouds (MID) range
183 from 3 to 6 km without any clouds below and above, while high clouds (HIGH) have $H_{\text{base}} > 6$ km

184 with no cloud underneath. Other types of clouds are defined by different combinations of the above
185 three types, middle over low (MOL), high over low (HOL), high over middle (HOM), and the
186 cloud column through the entire troposphere is defined as HML. Three types, MOL, HOM, and
187 HML, include both contiguous and non-contiguous cloud layers, and their thicknesses may be
188 overestimated when clear layer(s) are present between any two cloud layers.

189 Furthermore, we used the measurements of interpolated sounding, microwave radiometer
190 retrieved *LWP*, radar reflectivity, Doppler velocity and spectrum width to classify the cloud phase
191 in each radar range volume of low-level clouds during MARCUS. The detailed classification
192 method will be introduced in Section 4.1. We also used ERA-Interim reanalysis data to study the
193 environmental conditions during MARCUS. The lower tropospheric stability (LTS) is calculated
194 from the potential temperature difference between the surface and 700 hPa to assess the boundary-
195 layer stabilities when the low-level clouds appeared along the shiptracks. The relative
196 contributions of mixed-phase, liquid and ice clouds to the single-layered low-level clouds as well
197 as their drizzling status are also analyzed in this study. The latitudinal and longitudinal variations
198 of the single-layered low-level clouds as well as their vertical distributions are further explored in
199 this study.

200 **3. Statistical results for all clouds during MARCUS**

201 The occurrence frequencies of total cloud cover and different types of clouds and their
202 associated properties over the entire study domain during MARCUS are presented in Figs. 2 - 4.
203 In order to examine the cloud properties over the mid-latitude and Polar regions, we separate the
204 SO domain into northern (NSO, north of 60°S) and southern (SSO, south of 60°S) parts using a
205 demarcation line of 60°S. A total of 2,447 hours cloud samples were collected during MARCUS
206 in this study, in which 1,181 hours of samples were located in the NSO and 1,266 hours of samples

207 were collected from the SSO. It is important to note that adding micropulse lidar measurements
208 increased the total samples of non-liquid-containing clouds by ~20% because micropulse lidar is
209 more sensitive to optically thin clouds than cloud radar. However, micropulse lidar signals are
210 usually attenuated and cannot provide a meaningful signal when the liquid cloud layer is thicker
211 than a couple of hundred meters (Sassen, 1991).

212 Figure 2 shows the vertical distributions of total cloud cover over the entire domain, as well as
213 over NSO and SSO. For the vertical distributions, the occurrence frequencies of total cloud
214 increase from the first radar gate (~ 226 m) to ~700 m, then monotonically decrease with altitude
215 with a few small increments at different levels, especially over SSO. Comparing the occurrence
216 frequencies of total cloud between NSO and SSO, we can draw the following conclusions. 1) The
217 SSO has more cloudiness than the NSO under 7 km, while the NSO has more cloudiness than the
218 SSO above 7 km. 2) Below 3 km, the occurrence frequencies of clouds over the NSO decrease
219 dramatically from 37 % at an altitude of ~700 m to 16 % at 3 km and from 45 % to 28 % over the
220 SSO, which is similar to the vertical distributions of the low-level clouds over some Northern
221 Hemisphere mid-latitude regions, such as Eastern North Atlantic (ENA, Dong et al., 2014). The
222 occurrence frequencies measured during MARCUS are much lower than those shown in Fig. 8 of
223 Mace et al., (2009) throughout the entire vertical column between the same range of latitudes,
224 especially, the occurrence frequencies during MARCUS are almost half of those measured by
225 CloudSat and CALIPSO from 1 to 3 km. The reason has been explained in Xi et al., (2010), that
226 is, a comparison of occurrence frequencies between measurements of two different platforms can
227 only be performed under an equivalent spatial-to-temporal resolution. In other words, our results
228 were calculated under 5-min temporal resolution, and the results in Mace et al., (2009) were
229 statistically in the 2° gridbox. Therefore, the comparison between these two results is not

230 reasonable. To make a fair comparison, one has to know the cloud amount at each area or time
231 step, then the product of amount and frequency is independent of either temporal and spatial
232 measurement.

233 To compare with other studies, we calculated the cloud fractions (*CFs*) of total and different
234 types of clouds. The total *CFs* were 77.9 %, 67.6 %, and 90.3 % for the entire domain, NSO and
235 SSO, respectively, indicating that 22.7 % more clouds occurred in the Polar region than in the mid-
236 latitude region. The total *CF* over the entire domain is very close to the 76 % calculated by Mace
237 and Protat (2018) using ship-based measurements during the Cloud, Aerosols, Precipitation,
238 Radiation and Atmospheric Composition (CAPRICORN) field experiment. The total *CF* over the
239 SSO is close to that estimated by using the complementarity of CALIOP lidar aboard CALIPSO
240 and CPR aboard CloudSat (DARDAR version 2 data) from Listowski et al. (2019).

241 Figure 3 shows the occurrence frequencies of categorized clouds and their cloud boundaries
242 using the maximum H_{top} and the minimum H_{base} if there are two or more layers in each 5-min
243 sample. For example, the mean H_{base} and H_{top} for single-layered low-level (LOW) are 0.92 km and
244 1.62 km, respectively, listed in Table 2, which are the average values of min H_{base} and max H_{top} in
245 LOW category. As illustrated in Fig. 3a, the single-layered low-level (LOW), deep cumulus or
246 multi-layered (HML), and MOL clouds are the three dominant types of clouds over the SO.
247 Comparing the clouds between NSO and SSO, all types of clouds in SSO have higher frequency
248 of occurrence than those in NSO except HOL. The differences range from less than 1 % (LOW)
249 to more than 10 % (MOL). Comparing the clouds over mid-latitude oceans between the two
250 hemispheres, i.e., between NSO and ARM ENA site (Dong et al., 2014), we find: (1) The total
251 cloud fractions (*CFs*) are close to each other (67.6 % over NSO vs. 70.1 % at ARM ENA); (2)
252 LOW *CFs* are 22.9 % vs. 27.1 %, which is the dominant type of cloud in both regions; and (3)

253 Both MOL and HML clouds, including underneath low clouds, are 14.2 % and 16.5 % over NSO,
254 much higher than those (4.2 % and 12.1 %) at ARM ENA site, indicating that there are more MOL
255 and deep convective clouds over NSO than over ENA.

256 Figure 3b shows the vertical locations of different types of cloud layers, which represent the
257 mean H_{top} and H_{base} listed in Table 2 for any type of cloud. Nearly all H_{top} and cloud thickness (ΔH)
258 values over NSO are higher or deeper than those over SSO, presumably due to stronger solar
259 radiation and stronger convection over NSO. H_{base} values basically followed their cloud-top
260 counterparts with a couple of exceptions. These cloud macrophysical properties are closely
261 associated with large-scale dynamic patterns and environmental conditions. By analyzing the
262 ERA-Interim reanalysis (not shown), the 850 hPa geopotential heights show persistent westerlies
263 with slightly higher geopotential heights over the northwest corner of the domain, which may
264 closely relate to the higher H_{top} over NSO than over SSO. Furthermore, the boundary layer over
265 NSO is relatively more stable than over SSO based on lower troposphere stability (LTS) analysis
266 (12.2-15.32 K over NSO vs. 11.48-13.29 K over SSO).

267 When we plot the probability density functions (PDFs) of cloud *LWPs* for different types of
268 clouds, we find that the PDFs of *LWPs* for HGH and HOM peak are less than 10 g m^{-2} . These
269 results make physical sense because HGH clouds should not contain any liquid droplets, and most
270 HOM clouds, especially those over SSO, should be ice phase dominant. In addition, the 10 g m^{-2}
271 of *LWP* is close to the uncertainty of the *LWP* retrieval in Marchand et al., (2003). Therefore, this
272 value is used as a threshold for all types of clouds, which leads to less than one percent reduction
273 of the total samples. As shown in Fig. 4a, the *LWPs* ($> 10 \text{ g m}^{-2}$) for all types of clouds are much
274 higher over NSO than over SSO because the low-level and MOL clouds in the mid-latitudes
275 contain more liquid water than those in Polar regions. The mean *LWPs* for liquid containing low-

276 level and middle-level clouds over NSO, i.e. LOW, MID and HOL, range from ~ 130 to 150 g m^{-2}
277, while the mean *LWP*s for MOL and HML are two times higher ($\sim 270 \text{ g m}^{-2}$) than the mean *LWP*
278 of LOW, MID and HOL. Note that the mean *LWP*s for most types of clouds over the SSO are
279 much lower than those over the NSO, except for the LOW clouds.

280 The occurrence frequencies of *LWP*s ($> 10 \text{ g m}^{-2}$) over NSO and SSO contradict their cloud
281 *LWP* values as demonstrated in Fig. 4b. To further investigate the amount of available precipitable
282 water vapor (*PWV*), we found that mean *PWV* values in SSO are at least 2 to 3 times less than
283 those in NSO for same types of clouds (figure not shown). Note that the samples of MID, HGH,
284 and HOM clouds are excluded from this study when they have *LWP*s less than 10 g m^{-2} , since
285 these low *LWP*s are within the retrieval uncertainty of cloud *LWP* and hence may not contain any
286 liquid cloud droplets. The higher *LWP*s, larger cloud droplets, drizzle drops and ice particles, and
287 greater drizzling occurrence frequencies over NSO (which is discussed later) will lead to the quick
288 dissipation of clouds over NSO. In contrast to NSO, the SSO cloud *LWP*s and particle sizes are
289 much smaller with less drizzling events, which increases cloud lifetime relative to NSO. The 67.6 %
290 and 90.3 % *CFs* over NSO and SSO provide strong evidence for this argument. We can draw the
291 following conclusions by comparing the cloud macrophysical properties between NSO and SSO
292 in Figs. 3 and 4. The LOW fraction, thickness, and *LWP* over NSO and SSO are comparable to
293 each other. For other types of clouds, cloud thicknesses are similar to each other or slightly deeper
294 over NSO, but the cloud *LWP*s over NSO are much larger than those over SSO, resulting in more
295 precipitation events over NSO. As pointed out in Albrecht (1989), more precipitation events may
296 reduce the cloud lifetime. This argument is consistent with the results shown in Figs. 2 and 3a for
297 all clouds except for HOL. Cloud lifetimes over NSO are shorter than those over SSO, which leads
298 to lower *CFs* over NSO than over SSO.

299 Table 2 provides a summary of the mean, standard derivation, minimum and maximum for
300 cloud boundaries, LWP and the percentage of multi-layered cloud for each cloud type over the SO.
301 Non-contiguous (multi-layer) clouds over the SO occur very frequently, especially for HOM and
302 HML. The *LWP* for single-layered clouds is greater than that for multi-layered clouds. The *LWP*
303 for single-layered HML almost doubles that for multi-layered HML.

304 **4. Single-layered low-level clouds**

305 As discussed in Section 3, single-layered low-level clouds (LOW) are the dominant cloud type
306 in both northern (NSO) and southern (SSO) parts of the SO. Figs. 3 and 4 further reveal that LOW
307 cloud type is the only one having comparable *CF*, cloud, thickness, *LWP* over both NSO and SSO.
308 This warrants further study: Are the cloud phases, properties, and vertical and meridional
309 variations of LOW clouds over these two regions similar to each other or significantly different?

310 **4.1. Cloud phase**

311 In this study, cloud boundaries are determined by combining cloud radar, ceilometer and
312 micropulse lidar measurements at a temporal resolution of 5-min. The cloud phase, liquid water
313 droplets or ice particles, are determined in each radar range volume. A flow chart for classifying
314 the phases of single-layered low-level clouds is drawn in Fig. 5. The determination of warm liquid
315 clouds is straightforward using both cloud-base (T_{base}) and -top (T_{top}) temperatures greater than 0
316 °C, and cloud *LWP*s greater than the threshold (10 g m^{-2}). The determination of supercooled liquid
317 clouds is slightly complicated. When either T_{base} or T_{top} is below 0° C, and cloud *LWP*s are greater
318 than the threshold, the radar Doppler spectrum width (*WID*) and velocity (V_d) are used for the
319 determination of supercooled liquid water clouds. If the majority (10 seconds of original radar
320 measurements) of *WID* within a 5-min period are less than 0.4 m s^{-1} and V_d are equal to or less than
321 0.0 m s^{-1} (updrafts) in the volume, then this range volume is defined as supercooled liquid clouds.

322 Mixed-phase clouds are determined when the median (calculated from 10 seconds of original
323 radar measurements) of *WID* is greater than 0.4 m s^{-1} or V_d is greater than 0.0 m s^{-1} (downdrafts)
324 due to the existence of large ice particles in the clouds. If cloud *LWP* is below the threshold, then
325 it is defined as an ice cloud, otherwise it is defined as a mixed-phase cloud. It is worth mentioning
326 that large ice particles, which grow through vapor deposition or rime processes, dominate the radar
327 reflectivity and are heavier than cloud droplets. Therefore, these large ice particles not only
328 broaden the spectrum width but also have relatively large fall speeds.

329 To further evaluate our classification method, we compared the classified mixed-phase and ice
330 clouds with the micropulse lidar linear depolarization ratios (*LDR*) as an extra measure. The *LDR*
331 ranges follow the method in Shupe et al., (2005), which are $0.11 < LDR < 0.15$ for mixed-phase
332 clouds, and $LDR > 0.15$ for ice clouds as listed in Table 1. Table 3a shows the quantitative
333 comparison of the cloud phase identifications between these two classification methods. The
334 numbers represent the counts of each matched 5-min sample, where the diagonal numbers indicate
335 that both methods are identifying the same type of cloud phase. In general, the two methods have
336 89 % agreement on the phase identification. Secondly, we performed the phase classification
337 directly from microphysical probes onboard G-1 aircraft during SOCRATES and treated them as
338 'ground-truth' (Mohrmann et al., 2021). Since the in-situ cloud microphysical measurements can
339 tell us the phase of the cloud, it allows us to see the percentage variations of cloud phase, by
340 changing integration time of in-situ sampling to mimic what the radar may observe the cloud for
341 each range volume. Table 3b shows possible cloud phase partitionings that may be detected by
342 cloud radar. As sampling time increases from 1 second to 30 seconds, more mixed-phase clouds
343 and fewer single-phase clouds can be observed.

344 Figure 6 shows the determination of mixed-phase and ice clouds through combined
345 measurements of radar reflectivity and spectrum width, lidar LDR and backscatter, and cloud LWP.
346 For the classified ice clouds, cloud LWPs are lower than 10 gm^{-2} (Fig. 6f), most of the Doppler
347 spectrum widths range from 0.08 to 0.16 m s^{-1} (Fig. 6b) and the *LDR* ratios (Fig. 6d) can be greater
348 than ~ 0.15 , representing a narrow range of ice particle size distribution with higher *LDR* ratios.
349 For the classified mixed-phase clouds, cloud LWPs are greater than 10 gm^{-2} and most of the
350 Doppler spectrum widths range from 0.15 to 0.5 m s^{-1} , representing a broad particle size
351 distribution resulting from the mixture of liquid droplets and ice particles. An interesting result
352 occurs where both *LDR* signals (>0.2) and LWPs are much higher during the drizzling periods
353 (Fig. 6a), indicating a mixed-phase cloud with cloud droplets within the cloud layer and large
354 liquid drizzle drops and ice crystals below cloud base.

355 Based on the Doppler velocity, the mode values for both mixed-phase and ice clouds occur at
356 $\sim 0.5 \text{ m s}^{-1}$, where the ice particles are dominant in both types of clouds. The broader particle size
357 distribution with lower *LDR* ratios for mixed-phase clouds and narrower particle size distribution
358 with higher *LDR* ratios for ice clouds further corroborate that the classified results from this study
359 are consistent with the traditional micropulse lidar *LDR* method.

360 It is important to note that the micropulse lidar signals are usually attenuated and cannot
361 provide a meaningful signal when the liquid cloud layer is thicker than a couple of hundred meters
362 (Sassen, 1991). Arctic mixed-phase clouds are typical with the liquid-dominant layer on the top of
363 the mixed-phase clouds and the ice-dominant layer underneath. The ceilometer-derived cloud-base
364 height represents the base of the liquid-dominant layer near the cloud top, while MPL-derived
365 cloud-base height represents the base of the lower ice-dominant layer (Qiu et al., 2015; Shupe,
366 2007; Shupe et al., 2005). Over the Arctic, the micropulse lidar signals can penetrate through the

367 ice-dominant layer to the liquid-dominant layer. However, the mixed-phase clouds over the
368 Southern Ocean are totally different from those over the Arctic region: they are well mixed (liquid
369 droplets and ice particles) from cloud base to cloud top, which is found in this study. Thus, the
370 micropulse lidar signals can be attenuated in the mixed-phase clouds over the Southern Ocean.
371 Statistical results show that 43 % of micropulse lidar signals were attenuated during MARCUS
372 compared to our classified results.

373 This classification method is further supported by the onboard cloud radar measurements
374 during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES,
375 not shown). In that campaign, the reflectivity measurements were usually greater, and the spectrum
376 widths were much wider when the aircraft observed large ice particles compared to the time
377 periods when liquid cloud droplets were observed. Although the wider spectrum widths might be
378 caused by Doppler broadening of the moving aircraft, further analysis shows that the onboard radar
379 sends the signals (assuming the time of transmitted and received signals is short enough comparing
380 to aircraft speed) in the perpendicular to the movement of the aircraft, that is, there is no relative
381 movement between radar signals and clouds. Thus, the onboard radar spectrum width
382 measurements should be not significantly impacted by Doppler broadening (relative movement in
383 the same direction).

384 In this study, a total of 6,934 5-min single-layered low-level cloud samples were determined
385 using our classificaiton method, including 697 liquid cloud samples, 3,777 mixed, 1,205 ice, and
386 1,255 'OTHER' clouds. The category of 'OTHER' clouds represents more than one phase in each
387 column. Note that though the 'OTHER' is also mixed-phase cloud, it has different vertical
388 distribution of liquid compared to the 'mixed' cloud. It is also worth mentioning that about 5.5 %

389 of single-layered low-level cloud phases cannot be determined when the radar measurements were
390 not available during MARCUS, those were not accounted to "OTHER".

391 Figure 7 (upper panel) shows the drizzling status for each categorized cloud type, i.e., no rain
392 (yellow-green), virga (brown) and rain (navy blue). The definition of drizzling status follows the
393 method in Wu et al., (2015, 2017) where there are radar reflectivity measurements below the
394 ceilometer/lidar determined cloud base. The major difference for drizzles in the studies of Wu et
395 al. (2015, 2017) and this study is that drizzle is liquid phase at ARM ENA site but could be both
396 liquid and ice phases in this study.

397 The percentages shown below the x-axis represent the portion of drizzling status in each type
398 of clouds, such as liquid, mixed-phase, ice and 'OTHER' clouds. Figure 7 (bottom panel) also
399 shows the percentages and vertical distributions of classified liquid, mixed-phase, ice, and
400 'OTHER' clouds for each column in the single-layered low-level clouds, represented by different
401 colors. After classification, the samples in each category are sorted by their H_{top} . In detail, Figure
402 7 demonstrates that the mixed-phase clouds dominate the single-layered low-level cloud category
403 with an occurrence frequency of 54.5 %. The 'OTHER' and ice clouds have similar occurrence
404 frequencies of 18.1 % and 17.4 %, respectively, while the liquid clouds have the lowest occurrence
405 frequency of 10.1 %. The liquid-topped mixed-phase clouds (included in 'OTHER'), which
406 frequently occur in the Arctic region (Qiu et al., 2015), are rarely found over the SO. The existence
407 of ice particles in mixed-phase clouds should strongly depend on the distribution of ice nuclei (IN),
408 whereas spatially unevenly distributed IN may result in the OTHER type of clouds.

409 Based on the results in Fig. 7, we draw the following conclusions. Most of the ice clouds are
410 without icy precipitation, and the percentages with virga and precipitation below the cloud base
411 are 12 % and 15 %, respectively. The percentages of non-drizzling, virga and drizzling mixed-

412 phase clouds are 50 %, 21 %, and 29 %. The liquid and 'OTHER' clouds have similar percentages,
413 they are 36 %, 25 % and 39 % for liquid clouds, and 35 %, 22 % and 44 % for 'OTHER' clouds.
414 For liquid and 'OTHER' clouds, the drizzling frequencies are independent of H_{top} . In contrast, for
415 mixed-phase and ice clouds, the drizzling frequencies strongly depend on H_{top} , i.e., higher drizzling
416 frequencies occur mostly at higher H_{top} .

417 The properties of single-layered low-level clouds are summarized in Table 4. The liquid clouds
418 have the lowest H_{base} and H_{top} but more available water vapor than other types of clouds. Since the
419 'OTHER' clouds are a transitional stage among mixed-phase, liquid and ice clouds, they have the
420 highest H_{top} , deepest cloud layer and largest LWP . The ice clouds occur in relatively dry
421 environments and have the highest H_{base} at 1.218 km and thinnest cloud layer. The cloud variables
422 for mixed-phase clouds fall between Liquid and "OTHER". Since LWP s in mixed-phase clouds
423 have larger standard deviation, which implies that SLW is more common at higher LWP s and ice
424 is more common at lower LWP s.

425 **4.2. Meridional variations of cloud properties**

426 Figure 8 shows the meridional variation in single-layered low-level cloud properties during
427 MARCUS. As illustrated in Fig. 8a, the meridional distributions of H_{base} , H_{top} and ΔH are nearly
428 independent of latitude, however, their corresponding temperatures (T_{base} and T_{top}) increased about
429 8 K from 69 °S to 43 °S, though there were slight fluctuations. These results suggest that the cloud
430 and sea surface temperatures have minimal impact on the cloud boundaries over the SO, which is
431 consistent with the findings in McFarquhar et al. (2016). The meridional variation of LWP s follows
432 those of T_{base} and T_{top} , with an increasing trend from south to north. It is important to point out that
433 a big drop in LWP at ~50 °S results from fewer occurrences of low-level clouds there, indicating
434 that the cloud samples at some latitudes are not statistically significant. The atmospheric PWV

435 increased dramatically from ~ 5 mm at 69°S to ~ 18 mm at 43°S , presumably due to increased sea
436 surface and atmospheric temperatures.

437 Figure 9 shows the latitudinal and meridional distributions of categorized liquid, mixed-phase,
438 ice and 'OTHER' in single-layered low-level clouds over the SO during MARCUS. Each circle
439 represents the exact location and time along the ship track. Mixed-phase clouds occurred
440 everywhere over the SO during the MARCUS field campaign and became dominant in November,
441 December and February. Liquid clouds dominated in March, while ice clouds dominated in
442 January. The 'OTHER' clouds are a kind of transitional phase falling in between the mixed-phase
443 and ice/liquid clouds because there are no stand-alone occurrences in any month during MARCUS.

444 **4.3 Vertical distribution of cloud properties**

445 The vertical distributions of classified liquid, mixed-phase, and ice clouds in LOW category
446 are presented in Figs. 10-12. The focus of this section will be comparisons of cloud macrophysical
447 properties between the north (NSO) and south (SSO) regions of the domain. Figure 10a shows the
448 vertical distributions of liquid clouds, which were capped at ~ 1.6 km, mostly in the marine
449 boundary layer. The vertical occurrence frequencies are up to 27 % over NSO, while they were
450 less than 4 % over SSO, i.e., liquid clouds occurred fairly often over the mid-latitude region, but
451 very few occurred over the Polar region. On the contrary, the occurrence frequencies of mixed-
452 phase clouds between NSO and SSO are opposite to liquid clouds as illustrated in Fig. 10b, though
453 the differences are not so obvious. Mixed-phase clouds increased with altitude until ~ 1.6 km, then
454 decreased monotonically towards 3 km. The highest frequencies were ~ 37 % at 0.6 km over SSO
455 and ~ 27 % at 1.5 km over NSO. The vertical distributions of ice clouds are similar to those of
456 mixed-phase clouds (Fig. 10c), however, there were no significant differences between NSO and
457 SSO. It is worth mentioning that the vertical distributions of mixed-phased clouds over SO are

458 quite different to those from DOE ARM Northern Slope Alaska (NSA) site, where the low-level
459 mixed-phase clouds are commonly featured with a liquid-topped layer. (e.g., Qiu et al., 2015).

460 To further investigate the vertical distributions of classified liquid, mixed-phase, and ice clouds
461 over NSO and SSO, we plot the normalized vertical distributions (cloud base as 0, cloud top as 1)
462 of radar reflectivity, Doppler velocity and spectrum width in Figs. 11 and 12, respectively. In this
463 study, the threshold of -50 dBZ was used to determine the cloud boundary over the SO instead of
464 the threshold of -40 dBZ radar reflectivity used at the ARM ENA site (Dong et al., 2014). If we
465 used the threshold of -40 dBZ over the SO, then there would be only 73% cloud samples available.
466 If we used the threshold of -50 dBZ, then we would have 90.4% cloud samples, which gained
467 additional 17.4% on top of the -40 dBZ threshold. About 9.6% of radar reflectivities during
468 MARCUS are lower than -50 dBZ for all LOW cloud samples, but without ceilometer and MPL
469 lidar signals. Thus these 9.6% cloud samples were eliminated in Figs 11-12.

470 Figures 11a-11c represent the normalized vertical distributions of radar reflectivity, Doppler
471 velocity and spectrum width of liquid clouds. Liquid clouds had the lowest reflectivity near the
472 cloud top because of cloud-top entrainment., The reflectivity had a nearly constant median value
473 of \sim -22 dBZ from cloud top height (\sim 0.8 for normalized height) of the cloud layer to the cloud
474 base. Most of the reflectivities were less than -15 dBZ, which is a threshold to distinguish cloud
475 droplets and drizzle drops in each radar range volume (Wu et al., 2020). Most of the Doppler
476 velocities were greater than 0.0 m s^{-1} , indicating that downwelling motion is dominant in liquid
477 clouds. The profiles of Doppler velocity and spectrum width increased smoothly from the cloud
478 top to base, suggesting that larger cloud droplets and broader size distributions exist near the cloud
479 base, which is attributable to more drizzle drops near the cloud base as illustrated in Fig. 7.

480 The vertical distributions of mixed-phase clouds in Figs. 11d-11f are similar to those of liquid
481 clouds. The more occurrences of larger reflectivity measurements and larger median values of
482 spectrum width near the cloud base are most likely due to the presence of moderate ice particles
483 and/or drizzle drops. The nearly same median values of reflectivity, Doppler velocity and spectrum
484 width (but slightly larger standard deviations in each level in mixed-phase clouds) in both liquid
485 and mixed-phase clouds suggest that the ice particle sizes in mixed-phase clouds are comparable
486 to cloud droplets and drizzle drops. The nearly uniform vertical distributions of Doppler velocity
487 and spectrum width indicate well-mixed liquid cloud droplets and ice particles throughout the
488 cloud layer in the mixed-phase clouds over NSO.

489 Compared to liquid and mixed-phase clouds, ice clouds had much lower reflectivities and
490 narrower spectrum width as shown in Figs. 11g-11i. Almost all reflectivity measurements were
491 less than -25 dBz with a median value of -35 dBz at the cloud base, resulting from small or
492 moderate ice particles but much lower concentration. A nearly constant Doppler velocity within
493 the cloud layer further supports the discussion of mixed-phase clouds above, i.e., the ice particle
494 sizes are independent of cloud height and comparable to liquid cloud droplets in the low-level
495 clouds over the SO. Because there are no mechanisms for growing large ice particles in such
496 shallow ice clouds, the accretion process cannot take place. From the statistical results in Fig. 7,
497 these ice particles have relatively little chance to become virga or raindrops and usually dissipate
498 or transition to other types of clouds.

499 Since there are not enough liquid cloud samples over the Polar region, only the mixed-phase
500 and ice clouds results are shown in Fig. 12. Compared to the vertical distributions of ice clouds
501 over NSO, the median values of reflectivity and Doppler spectrum width over SSO were lower
502 and narrower, indicating a lack of large ice particles in the Polar region. The small ice particles in

503 the Polar region were also reflected in their mixed-phase clouds. Compared to the vertical
504 distributions of the mixed-phased clouds over NSO, the median values of reflectivity and Doppler
505 spectrum width over SSO were dramatically lower (-35 dBZ at SSO vs. -22 dBZ at NSO; 0.25 m
506 s^{-1} at SSO vs. 0.32 $m s^{-1}$ at NSO). Figure 12 illustrates that the ice particle sizes over SSO are
507 smaller, their size distributions are narrower than those over NSO, indicative of lack of large ice
508 particles over SSO.

509 **5. Summary and Conclusions**

510 In this study, we presented the statistical results of clouds over the Southern Ocean (SO), and
511 its northern (NSO) and southern (SSO) parts during MARCUS Intensive observational period
512 (IOP). We used the method developed in Xi et al., (2010) to calculate the occurrence frequencies
513 of different types of clouds and their corresponding cloud macrophysical properties. We developed
514 a new method to classify liquid, mixed-phased, and ice clouds in the single-layered low-level
515 clouds as well as their corresponding drizzling status. Lastly, we explored the meridional and
516 vertical distributions of these classified cloud properties. Analysis of the MARCUS cloud phase
517 and macrophysical properties has yielded the following conclusions.

518 1) The total cloud fractions (CFs) were 77.9 %, 67.6 %, and 90.3 % for the entire domain, NSO
519 and SSO, respectively, indicating that 22.7 % more clouds occurred in the Polar region than in
520 the mid-latitude region. The SSO had more clouds under 7 km, while the NSO had more clouds
521 above 7 km. Below 3 km, the occurrence frequencies of clouds over NSO decrease
522 dramatically from 37 % at an altitude of ~0.7 km to 16 % at 3 km, which is similar to the
523 vertical distributions of the low-level clouds over some Northern Hemisphere mid-latitude
524 regions, such as Eastern North Atlantic.

525 2) The single-layered low-level (LOW), deep connective or multi-layered (HML), and MOL
526 clouds are the three dominant types of clouds over the SO. Comparing the clouds between
527 NSO and SSO, all types of clouds in SSO are higher than those in NSO except HOL. The LOW
528 fraction, thickness, LWP over both NSO and SSO are comparable to each other. The mean
529 LWP for LOW, MID and HOL clouds over NSO, range from ~ 130 to 150 g m^{-2} , while the
530 mean NSO LWP ($\sim 270 \text{ g m}^{-2}$) for MOL and deep convective clouds (HML) are two times
531 higher than the same types of clouds over SSO. The mean LWP of clouds over SSO are much
532 lower than the LWP over NSO. Over the Southern Ocean, the single-layered or contiguous
533 clouds usually have higher LWP than their counterparts of multi-layered or non-contiguous
534 clouds. There are more non-contiguous HML and HOM than contiguous ones.

535 3) A new method was developed to classify liquid, mixed-phase and ice clouds in the single-
536 layered low-level clouds (LOW) based on comprehensive ground-based observations. The
537 mixed-phase clouds are dominant in the LOW cloud category with an occurrence frequency of
538 54.5 %. The 'OTHER' and ice clouds had similar occurrence frequencies of 18.1 % and 17.4 %,
539 respectively, while the liquid clouds had the least occurrence frequency of 10.1 %. The
540 percentages of non-drizzling, virga and drizzling for mixed-phase clouds were 50 %, 21 %,
541 and 29 %, and the drizzling frequencies of mixed-phase clouds strongly depend on H_{top} , that
542 is, higher drizzling frequencies occurred mostly at higher H_{top} .

543 4) The meridional distributions of H_{base} , H_{top} and ΔH are nearly independent on latitude, however,
544 their corresponding temperatures increased about 8 K from 69°S to 43°S . The meridional
545 variation of LWP mimics that of cloud temperatures, having an increasing trend from south
546 to north. The mean PWV increased dramatically from $\sim 5 \text{ mm}$ at 69°S to $\sim 18 \text{ mm}$ at 43°S due
547 to increased sea surface and atmospheric temperatures. More liquid clouds occurred over NSO

548 but very few occurred over SSO, whereas more mixed-phase clouds occurred over SSO than
549 over NSO. There were no significant differences in ice clouds occurrences between NSO and
550 SSO.

551 5) The nearly same median values of reflectivity, Doppler velocity and spectrum width in both
552 liquid and mixed-phase clouds over NSO suggest that the ice particle sizes in mixed-phase
553 clouds are comparable to cloud droplets and drizzle drops. The uniform vertical distributions
554 of Doppler velocity and spectrum width suggest well-mixed liquid cloud droplets and ice
555 particles throughout the cloud layer in the mixed-phase clouds over NSO, which are quite
556 different from those over the DOE ARM NSA site where the liquid-topped mixed-phase low-
557 level clouds are common. The median values of reflectivity and Doppler spectrum width over
558 SSO were lower and narrower than those over NSO, indicating lack of large ice particles in
559 the polar region.

560 These results provide comprehensive statistical properties of all clouds over the SO during
561 MARCUS, including the occurrence frequencies of different types of clouds and their
562 corresponding cloud macrophysical properties. We also examined the meridional and vertical
563 distributions of the classified cloud properties. These statistics can be used as a ground truth to
564 evaluate satellite retrieved cloud properties and model simulations over the SO. The results of this
565 study will help to advance our understanding of the clouds over the SO, which may lead to
566 improved model simulations, as well as better representation of global climate.

567 *Data availability.* Data used in this study can be accessed from the DOE ARM's Data Discovery at
568 <https://adc.arm.gov/discovery/>

569

570 *Author contributions.* The idea of this study is discussed by BX, XD, and XZ. BX and XZ performed
571 the analyses and BX wrote the manuscript. BX, XD, XZ and PW participated in scientific discussions
572 and provided substantial comments and edits on the paper.

573

574 *Competing interests.* The authors declare that they have no conflict of interest.

575

576 *Acknowledgements.* The ground-based measurements were obtained from the Atmospheric
577 Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy (DOE)
578 Office of Energy Research, Office of Health and Environmental Research, and Environmental
579 Sciences Division. The data can be downloaded from <http://www.archive.arm.gov/>. Researchers
580 were supported by the NSF project under grant AGS-2031750 at the University of Arizona.
581 Specially thanks to Mr. Xingyu Zhang for providing analysis from CDP and 2DS microphysical
582 sensors during SOCRATES and Dr. Dale Ward for proofreading this manuscript.

583 **References.**

584 Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, *Science*,
585 doi:10.1126/science.245.4923.1227, 1989.

586 Bodas-Salcedo, A., Mulcahy, J. P., Andrews, T., Williams, K. D., Ringer, M. A., Field, P. R. and
587 Elsaesser, G. S.: Strong Dependence of Atmospheric Feedbacks on Mixed-Phase
588 Microphysics and Aerosol-Cloud Interactions in HadGEM3, *J. Adv. Model. Earth Syst.*,
589 doi:10.1029/2019MS001688, 2019.

590 Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G.,
591 Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M. and Webb, M. J.: Clouds,
592 circulation and climate sensitivity, *Nat. Geosci.*, doi:10.1038/ngeo2398, 2015.

593 Chubb, T. H., Jensen, J. B., Siems, S. T. and Manton, M. J.: In situ observations of supercooled
594 liquid clouds over the Southern Ocean during the HIAPER Pole-to-Pole Observation
595 campaigns, *Geophys. Res. Lett.*, doi:10.1002/grl.50986, 2013.

596 Dong, X., Xi, B., Kennedy, A., Minnis, P. and Wood, R.: A 19-month record of marine aerosol-
597 cloud-radiation properties derived from DOE ARM mobile facility deployment at the
598 Azores. Part I: Cloud fraction and single-layered MBL cloud properties, *J. Clim.*,
599 doi:10.1175/JCLI-D-13-00553.1, 2014.

600 Hu, Y., Rodier, S., Xu, K. M., Sun, W., Huang, J., Lin, B., Zhai, P. and Josset, D.: Occurrence,
601 liquid water content, and fraction of supercooled water clouds from combined
602 CALIOP/IIR/MODIS measurements, *J. Geophys. Res. Atmos.*,
603 doi:10.1029/2009JD012384, 2010.

604 Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S. and
605 Moritz, R. E.: An annual cycle of Arctic surface cloud forcing at SHEBA, *J. Geophys. Res.*
606 *Ocean.*, doi:10.1029/2000jc000439, 2002.

607 Klein, S. A., Hall, A., Norris, J. R. and Pincus, R.: Low-Cloud Feedbacks from Cloud-Controlling
608 Factors: A Review, *Surv. Geophys.*, doi:10.1007/s10712-017-9433-3, 2017.

609 Kalesse, H., de Boer, G., Solomon, A., Oue, M., Ahlgren, M., Zhang, D., Shupe, M. D., Luke,
610 E. and Protat, A.: Understanding rapid changes in phase partitioning between cloud liquid
611 and ice in stratiform mixed-phase clouds: An arctic case study, *Mon. Weather Rev.*,
612 doi:10.1175/MWR-D-16-0155.1, 2016.

613 Lang, F., Huang, Y., Siems, S. T. and Manton, M. J.: Characteristics of the Marine Atmospheric
614 Boundary Layer Over the Southern Ocean in Response to the Synoptic Forcing, *J. Geophys.*
615 *Res. Atmos.*, doi:10.1029/2018JD028700, 2018.

616 Listowski, C., Delanoë, J., Kirchgaessner, A., Lachlan-Cope, T. and King, J.: Antarctic clouds,
617 supercooled liquid water and mixed phase, investigated with DARDAR: Geographical and
618 seasonal variations, *Atmos. Chem. Phys.*, doi:10.5194/acp-19-6771-2019, 2019.

619 Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C. and Winker, D.: A
620 description of hydrometeor layer occurrence statistics derived from the first year of merged
621 Cloudsat and CALIPSO data, *J. Geophys. Res. Atmos.*, doi:10.1029/2007JD009755, 2009.

622 Mace, G. G. J. and Protat, A.: Clouds over the Southern Ocean as observed from the R/V
623 investigator during CAPRICORN. Part I: Cloud occurrence and phase partitioning, *J. Appl.*
624 *Meteorol. Climatol.*, doi:10.1175/JAMC-D-17-0194.1, 2018.

625 Mace, G. G., Protat, A., Humphries, R. S., Alexander, S. P., McRobert, I. M., Ward, J., Selleck,
626 P., Keywood, M. and McFarquhar, G. M.: Southern Ocean Cloud Properties Derived From

627 CAPRICORN and MARCUS Data, J. Geophys. Res. Atmos., doi:10.1029/2020JD033368,
628 2021.

629 Marchand, R., Ackerman, T., Westwater, E. R., Clough, S. A., Cady-Pereira, K. and Liljegren, J.
630 C.: An assessment of microwave absorption models and retrievals of cloud liquid water
631 using clear-sky data, J. Geophys. Res. Atmos., doi:10.1029/2003jd003843, 2003.

632 Marchand, R., Wood, R., Bretherton, C., McFarquhar, G., Protat, A., Quinn, P., Siems, S., Jakob,
633 C., Alexander, S., Weller, B.: The Southern Ocean Clouds, Radiation Aerosol Transport
634 Experimental Study (SOCRATES), whitepaper available from
635 [http://www.atmos.washington.edu/socrates/SOCRATES white paper Final Sep29 2014.pdf](http://www.atmos.washington.edu/socrates/SOCRATES_white_paper_Final_Sep29_2014.pdf), 2014.

637 Mccoy, D. T., Hartmann, D. L. and Grosvenor, D. P.: Observed Southern Ocean cloud properties
638 and shortwave reflection. Part II: Phase changes and low cloud feedback, J. Clim.,
639 doi:10.1175/JCLI-D-14-00288.1, 2014.

640 McFarquhar, G., Bretherton, C., Alexander, S., DeMott, P., Marchand, R., Protat, A., Quinn, P.,
641 Siems, S., Weller, R., Wood, R.: Measurements of Aerosols, Radiation, and Clouds over
642 Sothern Ocean (MARCUS) Science Plan, DOE ARM Climate Research Facility.,
643 DOE/SC-ARM-16-011, available at: <http://arm.gov/publications/programdocs/doe-sc-arm-16-011.pdf>, 2016.

645 McFarquhar, G and coauthors, 2021; Observations of Clouds, Aerosols, Precipitation, and
646 Surface Radiation over the Southern Ocean An Overview of CAPRICORN, MARCUS,
647 MICRE, and SOCRATES. BAMS, <https://doi.org/10.1175/BAMS-D-20-0132.2>.

651 Mohrmann, J., Finlon, J., Atlas, R., Lu, J., Hsiao, I., Wood, R.: University of Washington Ice-
652 Liquid Discriminator single particle phase classifications and 1 Hz particle size

653 distributions/heterogeneity estimate, Version 1.0. UCAR/NCAR - Earth Observing
654 Laboratory., doi:10.26023/PA5W-4DRX-W50A, Last Access: Nov 01, 2021

655 Morrison, H., De Boer, G., Feingold, G., Harrington, J., Shupe, M. D. and Sulia, K.: Resilience of
656 persistent Arctic mixed-phase clouds, *Nat. Geosci.*, doi:10.1038/ngeo1332, 2012.

657 Muradyan, P. and Coulter, R.: Micropulse Lidar (MPL) Instrument Handbook. DOE ARM Climate
658 Research Facility, DOE/SC-ARM-TR-019, 2020. Available at:
659 https://www.arm.gov/publications/tech_reports/handbooks/mpl_handbook.pdf, last access:
660 25 March 2022.

661 Qiu, S., Dong, X., Xi, B. and Li, J. L. F.: Characterizing Arctic mixed-phase cloud structure and
662 its relationship with humidity and temperature inversion using ARM NSA observations, *J.
663 Geophys. Res.*, doi:10.1002/2014JD023022, 2015.

664 Rémillard, J., Kollias, P., Luke, E., and Wood, R.: Marine Boundary Layer Cloud Observations in
665 the Azores, *J. Climate*, 25, 7381-7398, 10.1175/JCLI-D-11-00610.1, 2012.

666 Sassen, K.: The polarization lidar technique for cloud research: a review and current assessment,
667 *Bull. - Am. Meteorol. Soc.*, doi:10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2,
668 1991.

669 Shupe, M. D., Uttal, T. and Matrosov, S. Y.: Arctic cloud microphysics retrievals from surface-
670 based remote sensors at SHEBA, *J. Appl. Meteorol.*, doi:10.1175/JAM2297.1, 2005.

671 Shupe, M.: A ground-based multisensory cloud phase classifier, *Geophys. Res. Lett.*,
672 doi:10.1029/2007GL031008, 2007.

673 Stanfield, R. E., Dong, X., Xi, B., Kennedy, A., Del Genio, A. D., Minnis, P. and Jiang, J. H.:
674 Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA
675 Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties, *J.*

676 Clim., doi:10.1175/jcli-d-13-00558.1, 2014.

677 Stanfield, R. E., Dong, X., Xi, B., Del Genio, A. D., Minnis, P., Doelling, D. and Loeb, N.:
678 Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation
679 budgets using satellite observations. Part II: TOA radiation budget and CREs, J. Clim.,
680 doi:10.1175/JCLI-D-14-00249.1, 2015.

681 Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A.,
682 Xia, Y., Bex, V. and Midgley, P. M.: Climate change 2013 the physical science basis:
683 Working Group I contribution to the fifth assessment report of the intergovernmental panel
684 on climate change., 2013.

685 Toto, T. and Jensen, M.: Interpolated Sounding and Gridded Sounding Value-Added Products.
686 DOE ARM Climate Research Facility, DOE/SC-ARM-TR-183, 2016. Available at:
687 https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-183.pdf, last access: 25
688 March 2022.

689 Uin, J.: Cloud Condensation Nuclei Particle Counter Instrument Handbook. DOE ARM Climate
690 Research Facility, DOE/SC-ARM-TR-168, 2016. Available at:
691 https://www.arm.gov/publications/tech_reports/handbooks/ccn_handbook.pdf, last access:
692 25 March 2022.

693 Wu, P., Dong, X. and Xi, B.: Marine boundary layer drizzle properties and their impact on cloud
694 property retrieval, Atmos. Meas. Tech., doi:10.5194/amt-8-3555-2015, 2015.

695 Wu, P., Dong, X., Xi, B., Liu, Y., Thieman, M. and Minnis, P.: Effects of environment forcing on
696 marine boundary layer cloud-drizzle processes, J. Geophys. Res.,
697 doi:10.1002/2016JD026326, 2017.

698 Wu, P., Dong, X. and Xi, B.: A climatology of marine boundary layer cloud and drizzle properties
699 derived from ground-based observations over the azores, *J. Clim.*, doi:10.1175/JCLI-D-20-
700 0272.1, 2020.

701 Xi, B., Dong, X., Minnis, P. and Khaiyer, M. M.: A 10 year climatology of cloud fraction and
702 vertical distribution derived from both surface and GOES observations over the DOE ARM
703 SPG site, *J. Geophys. Res. Atmos.*, doi:10.1029/2009JD012800, 2010.

704 Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Cess, P., Klein, S.
705 A. and Taylor, K. E.: Causes of Higher Climate Sensitivity in CMIP6 Models, *Geophys.*
706 *Res. Lett.*, doi:10.1029/2019GL085782, 2020.

707 Zhao, L., Zhao, C., Wang, Y., Wang, Y. and Yang, Y.: Evaluation of Cloud Microphysical
708 Properties Derived From MODIS and Himawari-8 Using In Situ Aircraft Measurements
709 Over the Southern Ocean, *Earth Sp. Sci.*, doi:10.1029/2020EA001137, 2020.

Table 1. ARM AMF2 instruments and their corresponding measurements and uncertainties used in this study

Parameter	Instruments/ Methods	Uncertainty	References
Cloud-base height	Ceilometer/MPL	15 m	Rémillard et al., 2012
Cloud-top height	95 GHz cloud radar	43 m	Rémillard et al., 2012
Cloud-base and -top temps	Radiosonde sounding	0.2 °C	Toto and Jensen, 2016
Profiles of reflectivity, Doppler velocity and Spectra	W-band ARM Cloud Radar (WACR), 95 GHz	Sensitivity: -50 dBZ at 2 km	Rémillard et al., 2012
linear depolarization ratios (<i>LDR</i>) and backscatter	Micropulse lidar, MPL Liquid: $LDR < 0.11$ Mix: $0.11 < LDR < 0.15$ Ice: $LDR > 0.15$		Shupe et al. 2005 Muradyan and Coulter, 2020
Cloud LWP	Microwave radiometer	$\sim 15\text{-}30 \text{ g m}^{-2}$ Physical retrieval	Marchand et al., 2003
CCN and aerosol properties	Aerosol Observing System	1-min resolution; Uncertainties < 10%	Uin, 2016

Table 2. Mean, standard deviation, minimum and maximum cloud-base heights (H_{base}), -top heights (H_{top}), and LWP (all samples, single-layered, multilayered) of all seven types of clouds over the SO. All cloud heights have a unit of kilometer, and LWP has a unit of g m^{-2}

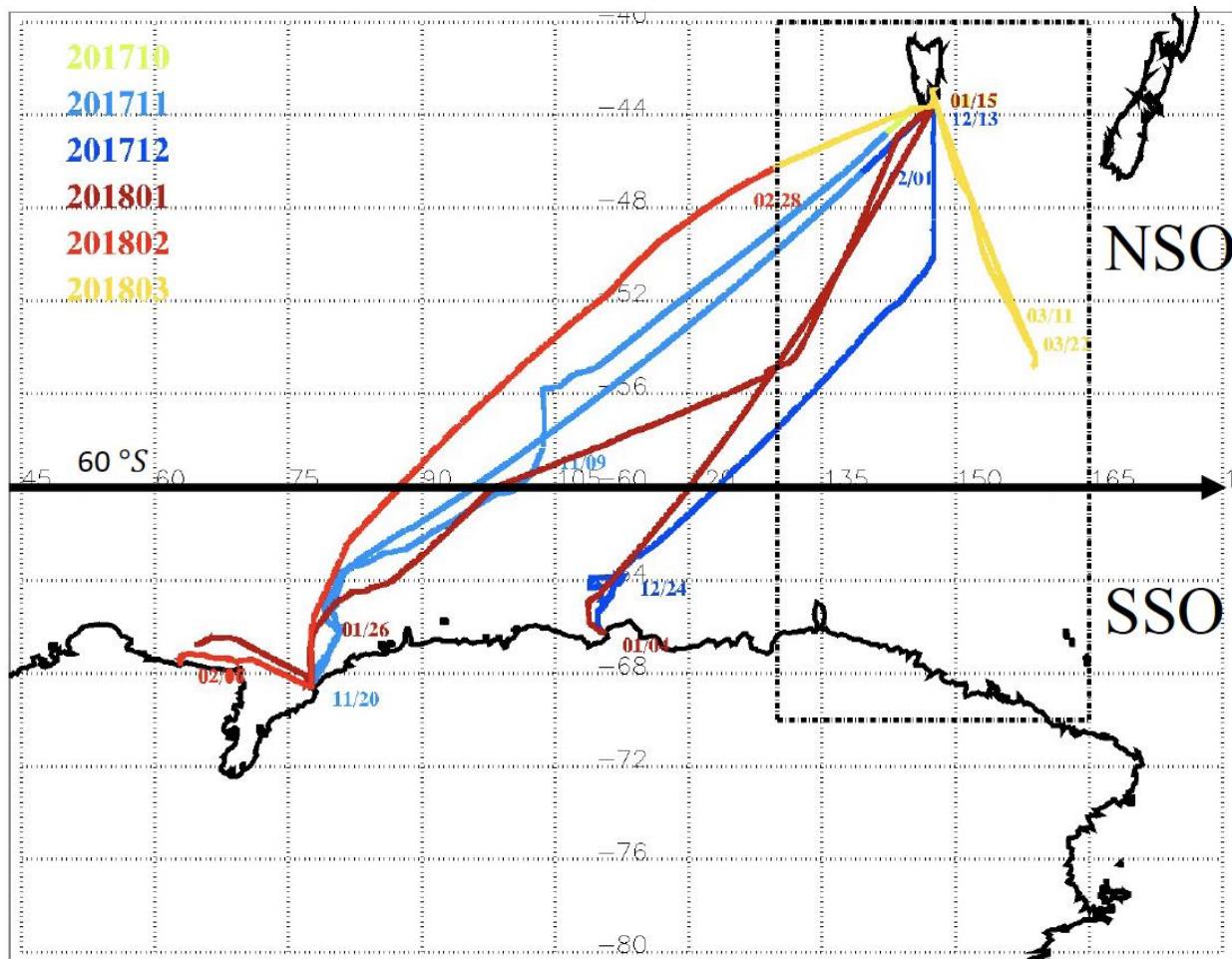
	LOW	MID	MOL	HGH	HOM	HML	HOL
$H_{\text{base}} \pm \text{std}$	0.92 ± 0.57	4.14 ± 0.61	1.37 ± 0.96	8.51 ± 2.23	4.70 ± 0.80	1.22 ± 0.98	1.14 ± 1.12
min, max	0.06, 2.86	3.00, 5.84	0.06, 5.27	6.00, 18.67	3.01, 7.72	0.06, 7.81	0.07, 10.37
$H_{\text{top}} \pm \text{std}$	1.62 ± 0.63	4.88 ± 0.68	4.29 ± 0.89	9.75 ± 2.13	7.93 ± 1.27	7.81 ± 1.35	8.93 ± 1.66
min, max	0.29, 3.0	3.17, 6.0	1.39, 5.99	6.20, 18.79	5.47, 17.98	3.62, 17.38	1.79, 17.56
$LWP \pm \text{std}$	122.4 ± 134.2	86.7 ± 124.5	168.7 ± 236.7	/	40.9 ± 40.8	169.2 ± 238.4	$129.8 \pm 202.$
Max LWP	1470.8	501.1	1937.1	/	345.7	1819.3	1785.2
$LWP \pm \text{std}$ (single layer)	126.6 ± 138.1	88.7 ± 128.9	193.1 ± 271.9	/	48.7 ± 51.7	270.8 ± 349.5	/
max	1470.8	501.1	1937.1	/	345.7	1819.3	/
$LWP \pm \text{std}$ (multi-layer)	96.2 ± 103.4	77.2 ± 109.2	139.0 ± 180.7	/	32.3 ± 21.3	148.4 ± 202.4	$129.8 \pm 202.$
max	842.3	305.6	1830.2	/	86.8	1690.7	1785.2
Multi-layer percentage %	18.1	39.6	50.0	44.9	73.1	77.7	100

* The definition of the cloud types as follow: LOW (H_{base} and $H_{\text{top}} \leq 3 \text{ km}$); MID ($H_{\text{base}} > 3 \text{ km}$ and $H_{\text{top}} \leq 6 \text{ km}$); HGH ($H_{\text{base}} > 6 \text{ km}$); MOL ($H_{\text{base}} < 3 \text{ km}$ and $H_{\text{top}} \leq 6 \text{ km}$); HOM ($3 \text{ km} < H_{\text{base}} < 6 \text{ km}$ and $H_{\text{top}} > 6 \text{ km}$); HML ($H_{\text{base}} < 3 \text{ km}$, $H_{\text{top}} \geq 6 \text{ km}$ with a MID layer); HOL (LOW and HGH appear at the same time).

Table 3a. Comparison of cloud phase identifications between our classification method and Shupe et al. (2005) method in each 5-min measurements, the unit is number of 5-min samples

Shupe \this study	Liquid (this study)	Mixed-phase (this study)	Ice (this study)
Liquid	468	490	0
Mixed-phase	98	3840	0
Ice	81	0	1195

*Numbers denote the cloud sample classifications between two methods. For example, the number 98 denote a total of 98 samples are classified as Mixed-phase using Shupe's method, while are classified as Liquid using this study's method.


Table 3b. The cloud phase partitioning from CDP and 2DS during SOCRATES

Phase partitioning	1 second	10 seconds	30 seconds
Samples #	27,280	2,255	836
Liquid, %	58.8	26.2	18.8
Mixed-phase, %	38.9	69.1	77.0
Ice, %	2.3	4.7	4.2

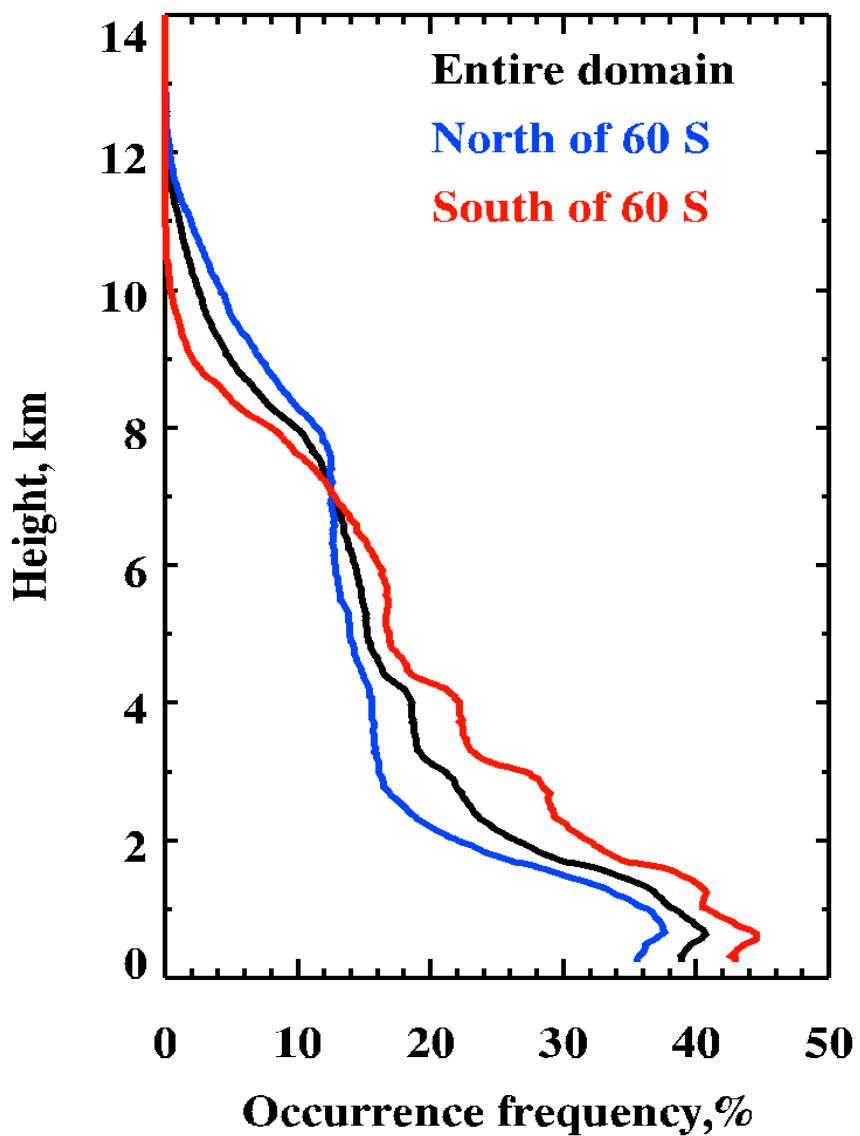
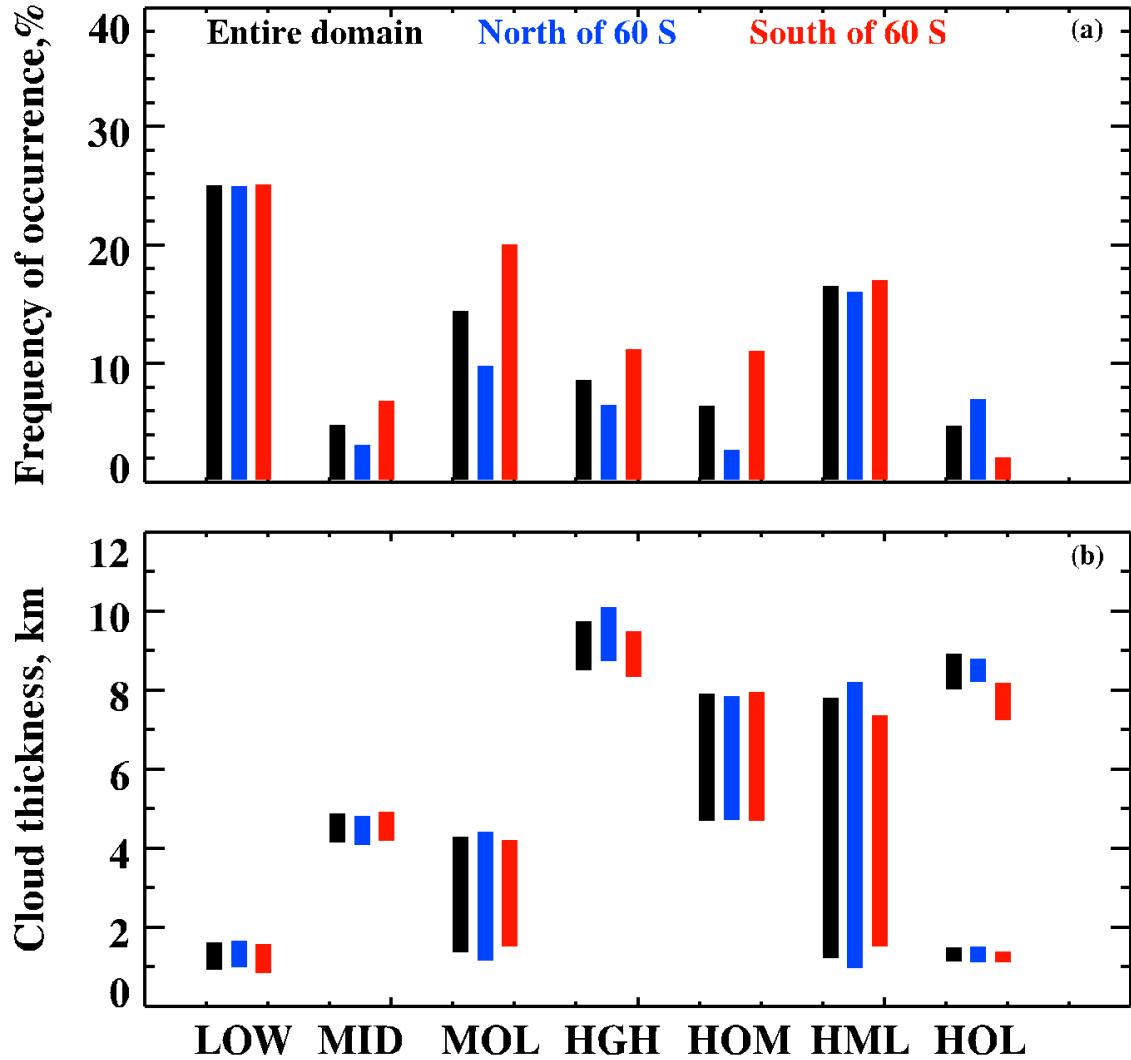

Note that Cloud Droplet Probe (CDP) measures particle size from 2 to 50 μm in diameter; Two-Dimensional Stereo Probe (2DS) measures particle size from 50 to 5000 μm in diameter.

Table 4. Liquid, mixed, ice and OTHER phases of cloud properties within the single-layered low-level clouds


Phase	Samples	H_{base} , km	H_{top} , km	ΔH , km	LWP , g m $^{-2}$	PWV , mm
Liquid	697	0.424 \pm 0.204	1.327 \pm 0.242	0.903	113.6 \pm 90.1	15.7 \pm 3.5
Mixed	3777	0.834 \pm 0.465	1.434 \pm 0.617	0.587	119.7 \pm 136.6	8.9 \pm 5.0
Ice	1205	1.218 \pm 0.635	1.737 \pm 0.651	0.519	0	8.4 \pm 4.5
OTHER	1255	0.700 \pm 0.454	1.774 \pm 0.571	1.074	141.9 \pm 137.5	11.4 \pm 5.9

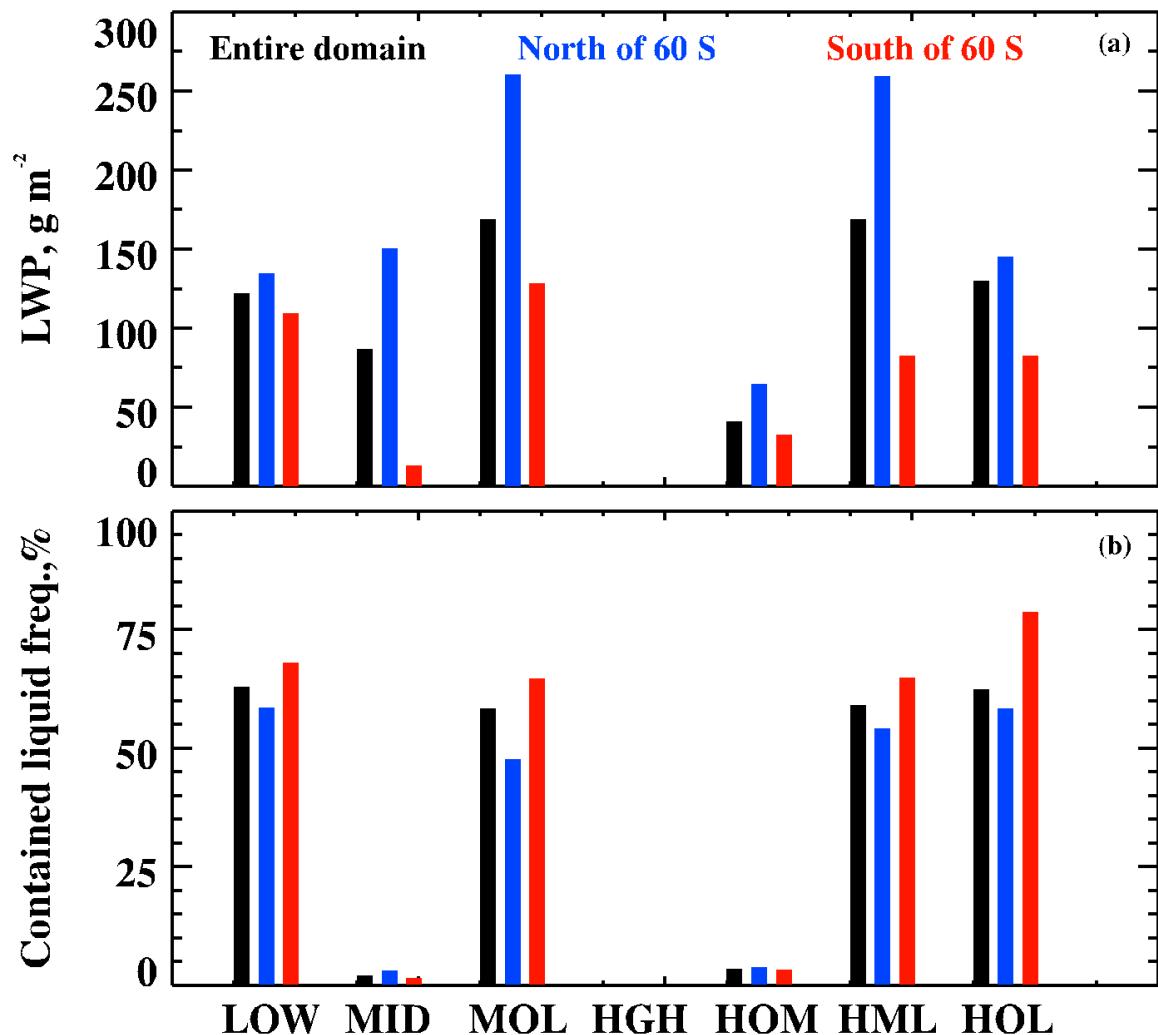

Figure 1. Shiptrack measurements between Hobart, Australia and Antarctica. Different colors represent different month's shiptracks from Oct. 29, 2017 to Mar. 23, 2018 during MARCUS. Along the shiptracks, the study domain is separated into northern (NSO) and southern (SSO) parts of the Southern Ocean with a demarcation line of 60°S in order to study the clouds over the mid-latitudes (North of 60°S) and Polar region (South of 60°S). The black dotted rectangle represents the SOCRATES study domain. Some of the dates are labeled along the shiptracks, indicating the direction of the ship.

Figure 2. Mean vertical distributions of total clouds derived from ARM radar-lidar observations with a 5-min temporal resolution and a 30-m vertical resolution during MARCUS.

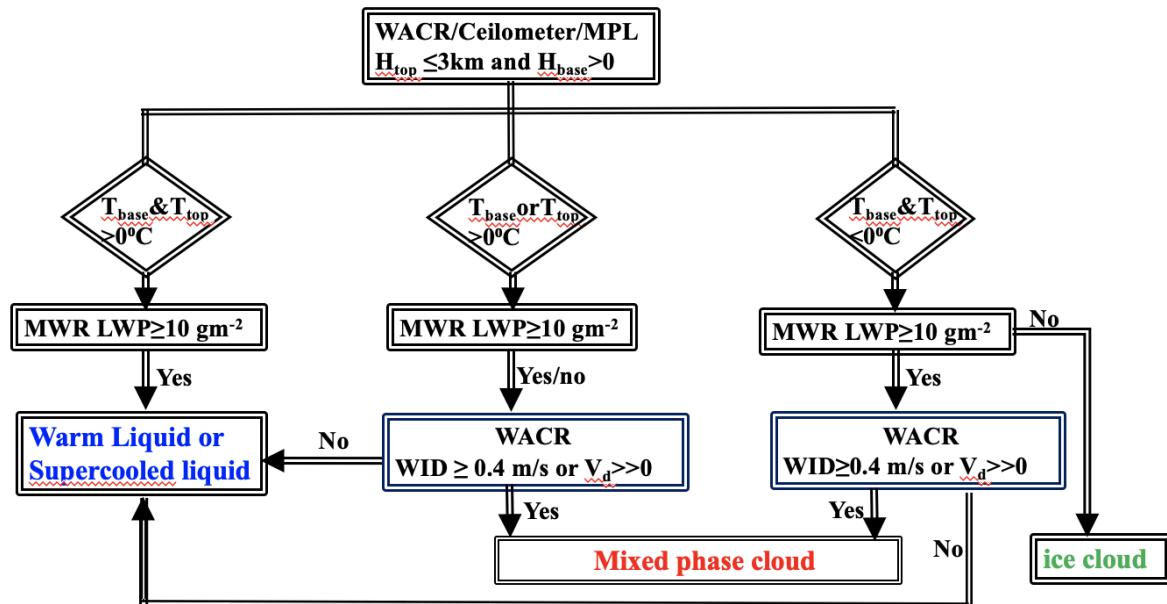


Figure 3. (a) Occurrence frequencies of categorized clouds by their vertical structures. LOW, single-layered low clouds (H_{base} and $H_{\text{top}} \leq 3 \text{ km}$); MID, singlelayered middle clouds ($H_{\text{base}} > 3 \text{ km}$ and $H_{\text{top}} \leq 6 \text{ km}$); MOL, MID over LOW ($H_{\text{base}} < 3 \text{ km}$ and $H_{\text{top}} \leq 6 \text{ km}$); HGH, singlelayered high clouds ($H_{\text{base}} > 6 \text{ km}$); HOM, HGH over MID ($3 \text{ km} < H_{\text{base}} < 6 \text{ km}$ and $H_{\text{top}} > 6 \text{ km}$); HML, HGH over MID and LOW ($H_{\text{base}} < 3 \text{ km}$, $H_{\text{top}} \geq 6 \text{ km}$ with a MID layer); and HOL, HGH over LOW (LOW and HGH appear at the same time). (b) Cloud thickness for each type of clouds (bar), the top and bottom of the bar represent the maximum cloud-top and minimum cloud-base heights, respectively. Black, blue, and red bars represent the entire domain (Lat:41-69 °S; Long: 60-160° E), north of 60 °S (NSO), and south of 60°S (SSO), respectively, during the MARCUS field campaign (10/2017-3/2018).

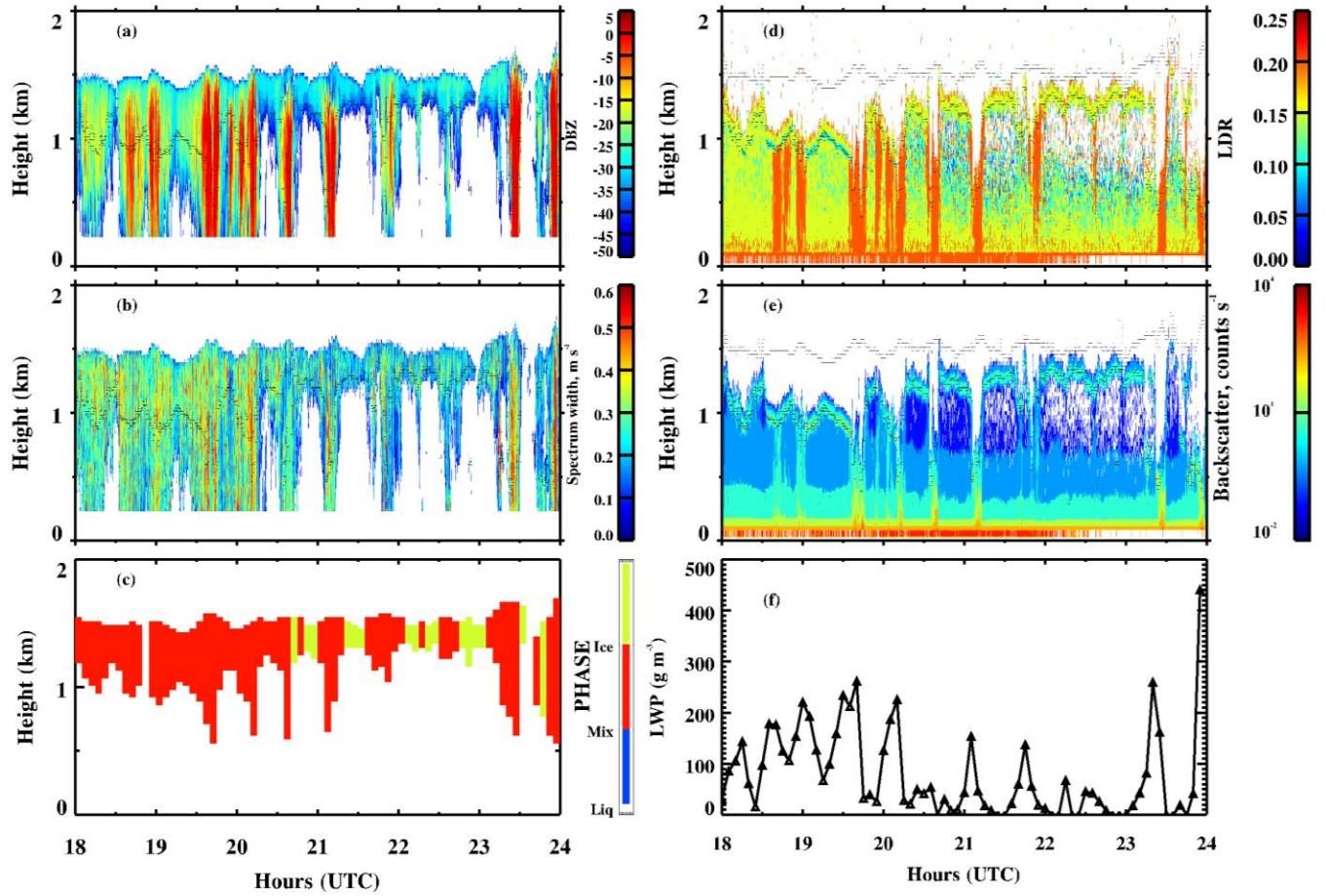
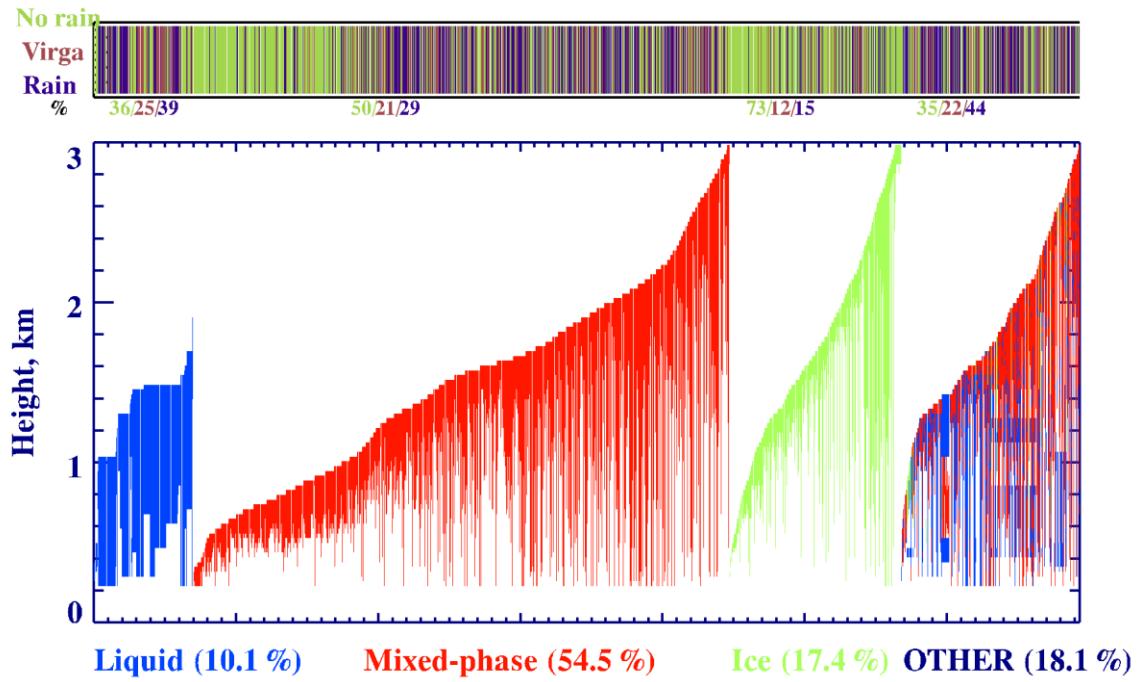
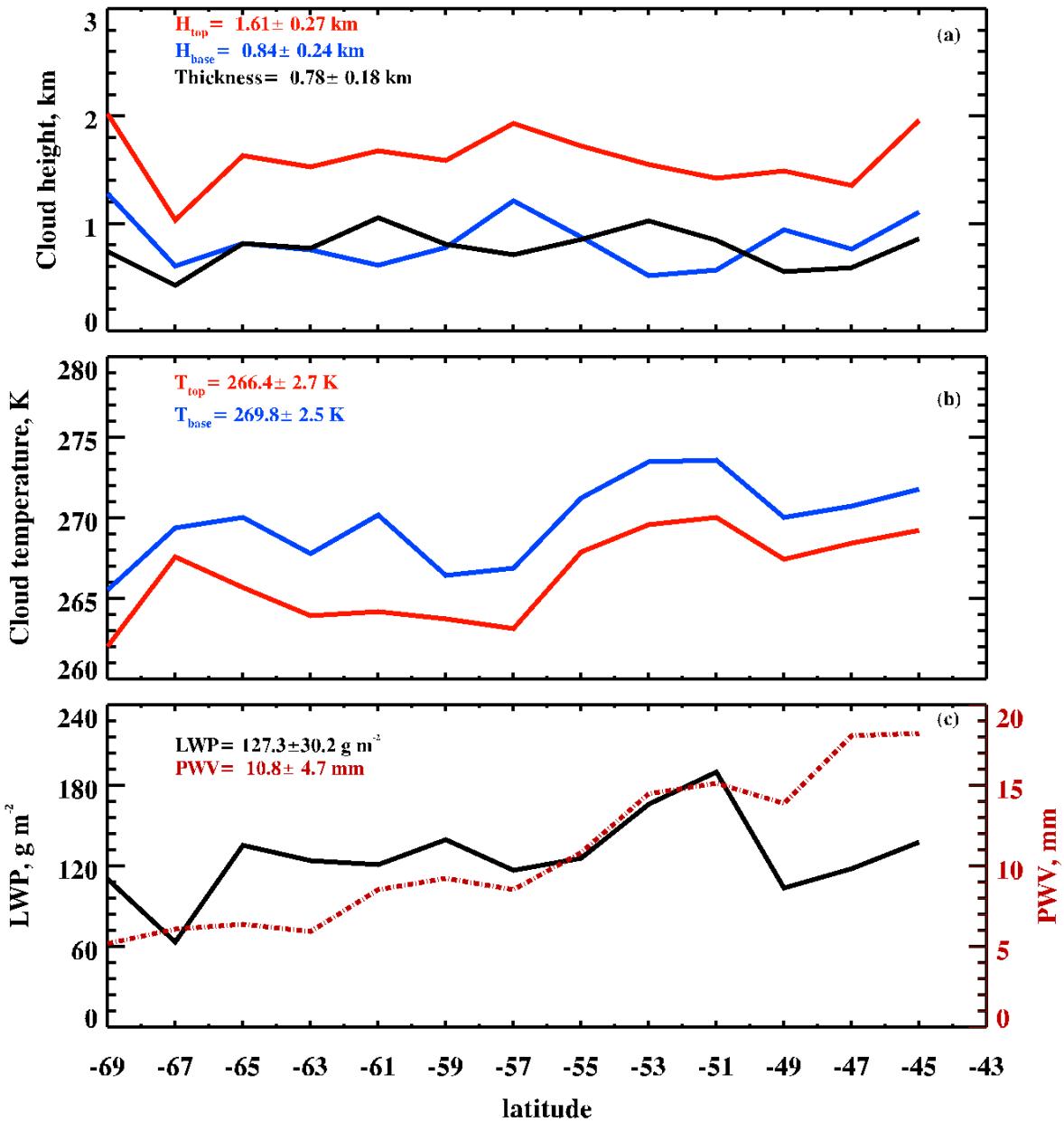
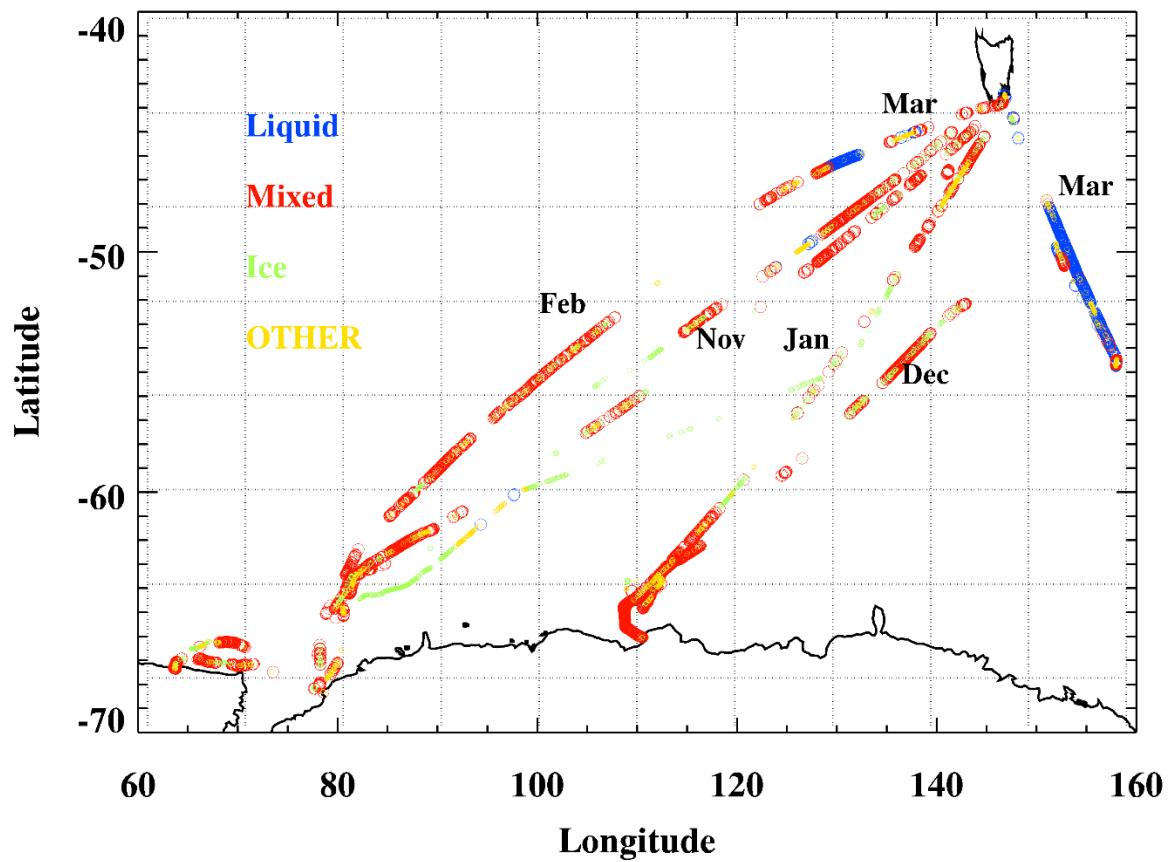
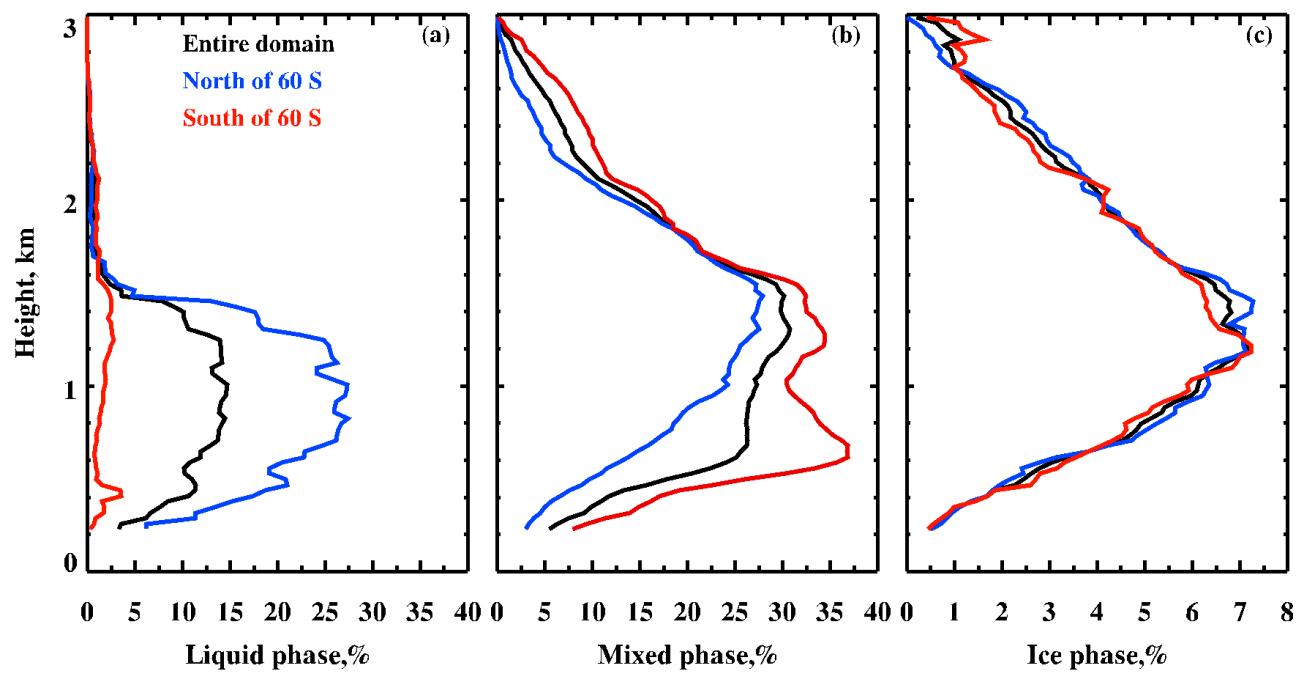


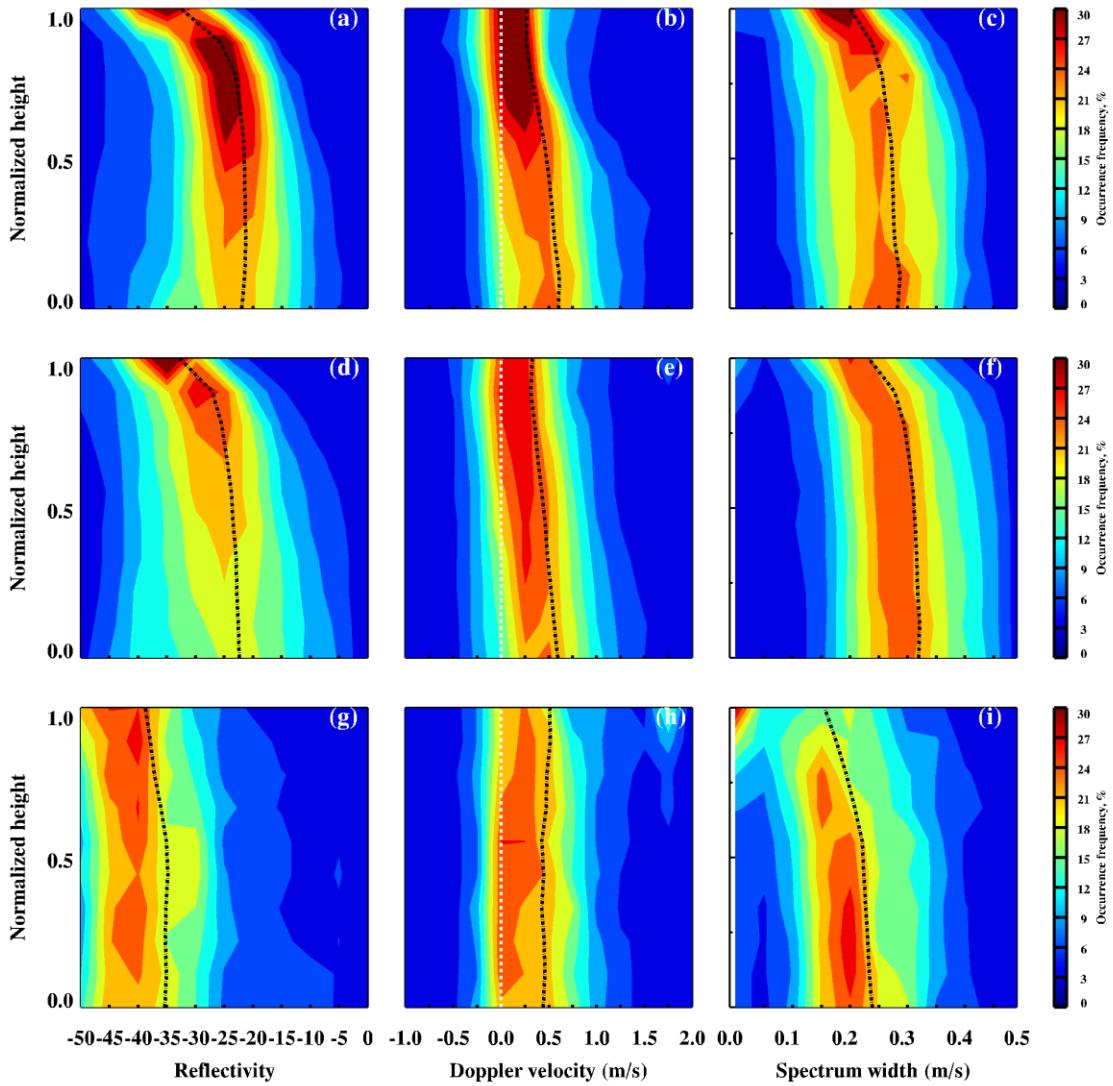
Figure 4. (a) Cloud liquid water paths (LWP) retrieved from microwave radiometer (MWR) measured brightness temperatures using a physical retrieval method for each type of cloud. (b) The occurrence frequencies of LWP > 10 g m^{-2} for each type of clouds


Phase classification algorithm for single layered low level clouds


Figure 5. A flow chart for phase classification of single-layered low-level clouds. W-Band (95 GHz) ARM Cloud Radar (WACR) provides radar spectrum width (*WID*) and Doppler velocity (V_d).


Figure 6. A case study that shows our phase classification (left column) and MicroPulse Lidar (MPL) linear depolarization ratios (*LDR*) and backscatter. W-Band (95 GHz) ARM Cloud Radar (WACR) reflectivity is shown in (a) and spectrum width is shown in (b). Correspondingly, the phase classification in (c); MPL *LDR* in (d) and backscatter in (e); and MWR-derived *LWP* in (f).


Figure 7. (Upper Panel) The drizzling status for each categorized cloud type, e.g., no rain (yellow-green), virga (brown) and rain (navy blue), the percentages shown below the x-axis represent the portion of drizzling in each type of clouds. (Bottom Panel) The percentages and vertical distributions of classified liquid, mixed-phase, ice, and 'OTHER' clouds for each column in the single-layered low-level clouds, represented by different colors, over the entire domain during MARCUS. Each line represents one 5-min sample. The definition of drizzle here is the radar reflectivity below the ceilometer-derived cloud base, which could be either liquid drizzle drops or ice crystals.


Figure 8. Meridional variations of single-layered low-level cloud properties: (a) cloud-base (H_{base}) and -top (H_{top}) heights, and cloud thickness (ΔH), (b) cloud-base (T_{base}) and -top (T_{top}) temperatures, and (c) cloud liquid water path (LWP) and precipitable water vapor (PWV) over the entire domain during MARCUS.

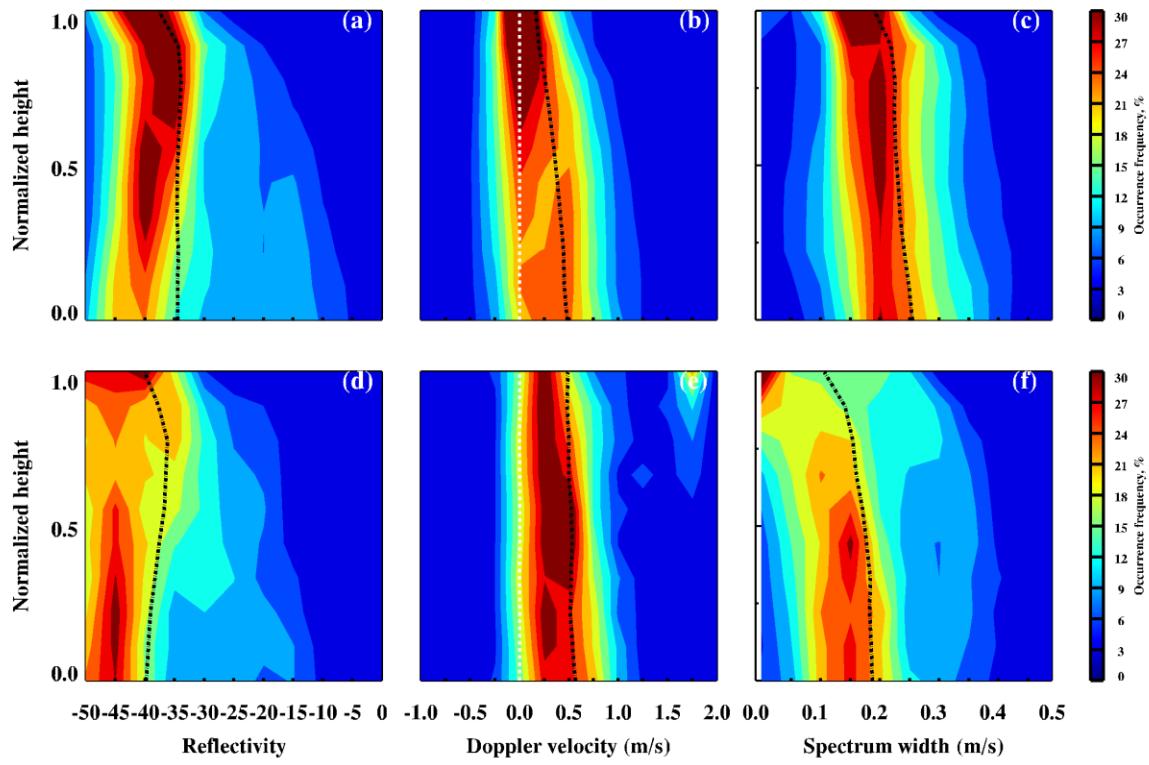

Figure 9. The latitudinal and longitudinal distributions of classified mixed-phase, liquid, and ice clouds in the single-layered low-level clouds. The liquid (blue), mixed (red), ice (light green), and OTHER (yellow) are shown along each shiptrack from October 2017 to March 2018 during MARCUS.

Figure 10. Occurrence frequencies of classified mixed-phase, liquid, and ice clouds over the entire domain (black), North of 60 °S (blue) and South of 60 °S (red) during MARCUS.

Figure 11. Normalized vertical distributions of radar reflectivity (a), Doppler velocity (b) and spectrum width (c) for the classified liquid (upper panel), mixed-phase (d to f, middle panel) and ice (g to i, bottom panel) clouds over the North of 60 °S during MARCUS Intensive observational period (IOP). Normalized height is defined as $= \frac{H - H_{base}}{H_{top} - H_{base}}$ where cloud base is denoted as 0 and cloud top is 1. The black lines represent the median values and the white lines in Doppler velocity represent the reference of 0.0 m s⁻¹.

Figure 12. Same as Fig. 11 but only for mixed-phase (a to c, upper panel) and ice (d to f, bottom panel) over the south of 60° S during MARCUS.