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Abstract. Clouds warm the surface in the longwave (LW) and this warming effect can be quantified through the surface LW
cloud radiative effect (CRE). The global surface LW CRE has been estimated over more than two decades using space-based
radiometers (2000-2021) and over the 5-year period ending in 2011 using the combination of radar, lidar and space-based
radiometer. Previous work comparing these two types of retrievals have shown that the radiometer-based cloud amount has
some bias over icy surfaces. Here we propose new estimates of the global surface LW CRE from space-based lidar
observations over the 2008-2020 time period. We show from 1D atmospheric column radiative transfer calculations, that
surface LW CRE linearly decreases with increasing cloud altitude. These computations allow us to establish simple
parameterizations between surface LW CRE, and five cloud properties that are well observed by the CALIPSO space-based
lidar: opaque cloud cover and altitude, and thin cloud cover, altitude, and emissivity. We evaluate this new surface LWCRE—
LIDAR product by comparing it to existing satellite-derived products globally on instantaneous collocated data at footprint
scale and on global averages, as well as to ground-based observations at specific locations. This evaluation shows good
correlations between this new product and other datasets. Our estimate appears to be an improvement over others as it
appropriately captures the annual variability of the surface LW CRE over bright polar surfaces and it provides a dataset more

than 13 years long.
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1 Introduction

Small changes in the surface irradiance may lead to large climatological responses (Chylek et al., 2007; Kwok and
Untersteiner, 2011). Therefore, quantifying irradiance at the Earth’s surface is a useful step to better understand the climate
system. Clouds exert a very important effect on the energy balance at the surface of the Earth through their effects on
shortwave (SW) and longwave (LW) radiation. They radiatively warm the surface in the LW domain because they absorb
upward LW radiation that would otherwise escape the Earth system and reemit it back towards the surface. They cool the
surface in the SW domain because they reflect solar radiation back to space that would otherwise partly be absorbed by the
surface. These effects are usually quantified using the surface cloud radiative effect (CRE), defined as the change in the SW
and LW radiation reaching the surface induced by the presence of clouds. Globally, clouds radiatively cool the Earth’s
surface by 20 W m? according to Kato et al. (2018) and by 25 W m? according to L’Ecuyer et al. (2019), where the
(negative) surface SW CRE cooling is two times larger in magnitude than the (positive) surface LW CRE warming.
Nevertheless, in some specific regions, like at high latitudes or over the tropical ocean below persistent stratocumulus
clouds, the surface LW CRE warming can be larger than the surface SW CRE cooling, so that the clouds exert a net radiative
warming of the surface.

As an example, SW effects vanish in the winter-hemisphere polar regions, leading to positive net CRE as LW effects
dominate (Henderson et al., 2013). While climate warming in the Arctic is already visible with the sea ice melting (Stroeve
et al., 2011), previous works showed that clouds may exert some control on future Arctic climate trajectories (Kay et al.,
2016) because they play a primary role in regulating the surface energy balance (Ramanathan et al., 1989; Curry et al., 1996,
Shupe and Intrieri, 2004) which influences the surface melting (van den Broeke et al., 2009). Specifically, over Greenland,
van Tricht et al. (2016) showed that clouds increase the radiative fluxes into the surface and could therefore modulate the
Greenland ice sheet mass balance (van Tricht et al., 2016; Hofer et al., 2017), which is a large contributor to global sea-level
rise (Shepherd et al., 2012; IPCC, 2021). In the Southern high latitudes, clouds likely exert an important role on the surface
energy budget of Antarctica (Shepherd et al., 2012; Kopp et al., 2016), but their radiative impact in this region remains
largely unexplored (Scott et al., 2017), in spite of the fact that Antarctica contains the largest reservoir of ice on Earth. King
et al. (2015) showed large errors in Antarctic surface energy budget and surface melting rates in models and underlined the
importance of improving observations of cloud radiative properties in this region.

Acquaotta et al. (2014) underlined the current urgent need to develop long term reliable and high-quality climatic time series,
in order to better understand, detect, predict and react to global climate variability and change. Given the importance of the
surface LW CRE and the need for multiyear-time series, it is necessary to get reliable estimates of the surface LW CRE over
multiple years, everywhere around the globe including over continents and ice-covered regions. The main motivation for the
current work is to derive a 13 year-time series of the global surface LW CRE that can be used to better understand the cloud
property that have driven the evolution of the surface LW CRE during the last decade (Vaillant de Guélis et al., 2017b,

Norris et al., 2016). This is a necessary step towards understanding how clouds might interact with the surface in the future
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as the climate warms (Lindzen and Choi, 2021). A possible way to observe cloud variability is to combine space radar and
space lidar observations (Henderson et al., 2013), because passive sensors often struggle to distinguish clouds from the
surface over continents and ice-covered regions. The launch of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO; Winker et al., 2010) and CloudSat Profiling Radar (CPR; Stephens et al., 2008) in 2006 provided
the first opportunity to incorporate information about the global vertical cloud distribution (Henderson et al., 2013) over all
surface types, and is an important parameter for surface LW CRE estimates from space. As CloudSat experienced a battery
anomaly that limited future observations to daytime scenes only in 2011, CALIPSO’s global observations collected since
2006 are the main tool to provide information on the cloud vertical distribution over more than a decade. Therefore, we
retrieve the surface LW CRE from space lidar alone over 13 years.

Section 2 presents the satellite and ground-based data used in this study. In section 3, we present the method followed to
retrieve the surface LW CRE from radiative transfer computations. In section 4, we present the radiative-transfer-based
statistical regressions tying the surface LW CRE to cloud altitude and emissivity. In section 5, we present the new surface
LW CRE retrieved from the analytical relationships and CALIPSO space-based lidar observations (cloud cover, cloud
altitude, and cloud opacity). In section 6, we evaluate this new surface LW CRE product against ground-based observations.
In section 7 we evaluate it at footprint scale and at 2°x2° gridded scale against existing independent surface LW CRE
satellite-derived products.. In section 8, we discuss the limit of the new surface LW CRE product. Section 9 summarizes the

main results and perspectives of this work.
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2 Data

This section describes the CALIPSO cloud observations used to retrieve the surface LW CRE and the independent space-

based and ground-based datasets used to evaluate it.

2.1 Cloud observations from CALIPSO-GOCCP-OPAQ

We use cloud properties from the GCM Oriented CALIPSO Cloud Product (GOCCP v3.1.2; Chepfer et al., 2010; Cesana et
al., 2012; Guzman et al., 2017) over the period 2008-2020. We do not use data collected between 2006 and 2007 because the
laser tilted off nadir in November 2007, which introduced some change in the CALIPSO signal. In this product (hereafter,
CALIPSO-GOCCP), lidar profiles are classified into three types: clear sky profile when no cloud is detected, thin cloud
profile when one or several cloud layers and a surface echo are detected, and opaque cloud profile when one or several cloud
layers are detected but no surface echo is detected. Surface echo is not detected typically when the profile contains a cloud
with visible optical depth > 3-5 depending on the cloud microphysical properties. The cloud base height corresponds to the
lowest cloud layer detected. From this classification, five fundamental cloud properties for CRE studies are derived:

= C Opaque* the opaque cloud cover, i.e. the number of opaque cloud profiles divided by the total number of profiles

within a 2°x2° latitude longitude grid box.

- 7 : the altitude of opaque cloud, i.e. the average between the altitude of the highest cloud layer in the profile (

Opaq

ZTOP) and the altitude of the layer where the lidar beam is fully attenuated (Zy,) is computed for each profile, a
schematic illustrating these altitudes is presented in Fig. 1. Then the gridded ZTOWW is the average value of all the

ZTOPW profiles within a grid box.
* Cp,, the thin cloud cover, i.e. the number of thin cloud profiles divided by the total number of profiles within a
grid box.
- 7 .. the altitude of thin cloud, i.e. the average between the altitude of the highest cloud layer in the profile (ZTOP)
and the altitude of the lowest cloud layer (Zp,,) is computed for each profile, a schematic illustrating these
altitudes is presented in Fig. 1. Then the gridded ZTM is the average value of all the ZTM_” profiles within a grid box.

" Eqn: the thin cloud emissivity, derived from the space lidar retrieval of the thin cloud visible optical depth T‘T/ﬁn

from which we estimate the thin cloud LW optical depth r#:-/n, which is approximately half of T‘Tﬁn (Garnier et al.,

2015). The relationship £ ,,. =1 — eﬂ%" (eg. Vaillant de Guélis et al., 2017a) is computed for each profile and then

averaged over all the values within a grid box.
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Figure 1 presents the altitudes of interest of an opaque cloud and a thin cloud seen from a downward space-based lidar beam

Z, . and

and from an upward ground-based lidar beam. A thin cloud (Fig. 1 left) is characterized by three altitudes: ZTOP, Base

ZTW, which is the average value of the previous two. For an ideal case, these three altitudes are the same when observed

from a space-based lidar or a ground-based lidar.

An opaque cloud (Fig. 1 right) is characterized by three altitudes. When the lidar is based on the ground, we measure the

altitude of the lowest cloud layer (Z5,,,), the altitude where the lidar beam is fully attenuated (Zp, _;), and ZTOPWG which

Base.

is the average of the two. When the lidar is onboard a satellite, we measure the highest cloud layer (ZTOP), the altitude where

the lidar beam is fully attenuated (Z ,), and the average of the two (ZTOPW).

Figure 2 illustrates the mean 2°x2° latitude-longitude gridded values of these five variables over the period 2008 -2020. At
global scale, opaque clouds are more numerous (42%; Fig. 2a) than thin clouds (25%; Fig. 2b) in the CALIPSO-GOCCP
v3.1.2. Note that these numbers are different from CALIPSO-GOCCP v3.1.1 (35% and 36% respectively) where the
threshold used to detect surface echo, which influences the identification of opaque clouds, was lower because CALIPSO—
GOCCP v3.1.1 (Guzman et al., 2017) was applied only to nighttime data since noise is lower during nighttime than daytime.
The CALIPSO-GOCCP v3.1.2 is applied to nighttime and daytime observations. As expected, the multiyear, annual mean
opaque and thin cloud altitudes (Fig 2c, 2d) reach maxima (> 9 km) in the presence of deep convective clouds over the warm
pool and over tropical continents, and minima (< 3 km) in subsidence regions such as over stratocumulus along the West
coast of continents. The thin cloud emissivity (Fig. 2e) is larger along the ITCZ, the continental regions and around the

Antarctica peninsula.
2.2 Surface LW CRE from satellites

In this subsection, we describe the already existing global surface LW CRE datasets derived from satellite measurements,

against which we will evaluate our satellite new product.
2.2.1 CERES -CCCM

This product combines Clouds Earth’s Radiant Energy System (CERES) radiometer observations of top of the atmosphere
(TOA) LW fluxes with observations from CloudSat, CALIPSO and MODIS, as well as radiative transfer calculations, to
retrieve the surface LW fluxes in all sky and clear sky scenes at a resolution of the CERES Single Scanner Footprint (SSF,
20 km diameter). This product contains the surface LW CRE at CERES SSF footprint and is part of the CALIPSO,
CloudSat, CERES, and MODIS Merged Product (CCCM or C3M Kato et al., 2010). This product stops in 2011 because of
the CloudSat battery anomaly. This product (Version RelB1) contains the CERES footprints that include ground-track of
CALIPSO and CloudSat. TOA LW fluxes are derived from CERES radiance observations using Edition 2 Aqua angular
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distribution model. (Loeb et al., 2005 ; 2007). Surface LW fluxes are computed using cloud properties derived from
CALIPSO, CloudSat, and MODIS. CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) derived cloud products are
extracted from version 3 CALIPSO VFM, 0.5kmALay, and 0.5kmCLay, and 0.5kmCPro, products (Vaughan et al., 2018)
and R-04 CloudSat CLDCLASS, (Sassen and Wang 2008) and CWC-RO (Austin et al., 2009) products. MODIS cloud
properties are derived by the CERES MODIS cloud algorithm described in Minnis et al. (2010). Cloud boundaries derived
from CALIOP at a 1/3 km resolution and cloud boundaries derived from CPR CloudSat are merged to form cloud vertical
profiles by the method described in Kato et al. (2011). These cloud profiles are further merged into CERES footprints, the
size of which is approximately 20 km. Temperature and humidity profiles used in flux computations are from the Goddard
Earth Observing System Data Assimilation System reanalysis (GEOS, Rienecker et al., 2008). GEOS-4 is used from July
2006 through October 2007 and GEOS-5.2 is used from November 2007. Further description of the RelB1 CERES-CCCM
product is given in Ham et al. (2017) and Kato et al. (2019).

2.2.2 2B-FLXHR-LIDAR

The CloudSat 2B-FLXHR-LIDAR P1_R04 (hereafter, 2BFLX) product combines measurements from CloudSat,
CALIPSO, and MODIS to generate estimates of longwave and shortwave fluxes and heating rates throughout the
atmosphere (L’Ecuyer et al., 2008; Henderson et al., 2013). The algorithm uses inferred vertical profiles of cloud and
precipitation water contents and particle size and temperature and humidity profiles from ECMWF analyses as input to a
broadband radiative transfer model. A detailed description of the approach used to reconstruct the atmospheric columns and
prescribe surface characteristics as well as a thorough uncertainty assessment are provided in Henderson et al. (2013) and
Matus et al. (2017). The surface LW CRE product used here is provided for each CloudSat orbit at the instantaneous
footprint scale of 1.8 km and gridded for the comparisons that follow. The dataset currently covers the period August 2006
through April 2011 before CloudSat experienced a battery anomaly that limited operations to daylight conditions.

The surface fluxes derived from a combination of radar and lidar observations in 2BFLX are less susceptible to uncertainties
due to undetected multi-layered clouds and uncertainties in cloud base height than those derived primarily from passive
observations (L’Ecuyer et al., 2019; Hang et al., 2019). However, both 2BFLX as well as the LWCRE-LIDAR product are
sensitive to retrieval errors and biases introduced by the limited spatial and temporal characteristics of CloudSat and
CALIPSO. Sensitivity studies suggest that uncertainties in monthly-mean surface longwave irradiances at 2.5° resolution
derived from 2BFLX are ~11 Wm™ owing primarily to errors in specifying lower tropospheric temperature and humidity and

uncertainty in cloud base height (Henderson et al., 2013).
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2.3 Surface LW CRE from ground-based sites

As the retrieval of the surface CRE from space observations is not direct, we will evaluate the surface LW CRE retrieved
from space against that derived from surface radiation measurements collected directly at ground-based sites. For this
purpose, we selected three sites located in different regions.

The first site is located in the Arctic, where constraining radiative transfer is challenging with the limited cloud, available
atmospheric temperature and humidity profile observations (Kay et al., 2015), and where the surface CRE may influence the
Greenland ice-cap melt (van Trich et al., 2016; Hofer et al., 2017; Shupe et al., 2013). This Summit station (Shupe et al.,
2013; Gallagher et al., 2018) is located at the top of the Greenland ice cap (72.6° N-38.5° W) with an elevation of 3250 m.
Summit is unique because it is the only place where we have enough observations to make a robust assessment of the surface
CRE over Greenland (Lacour et al., 2018). Here, the clear sky flux is computed using a radiative transfer algorithm with
measurements of temperature and humidity profiles (e.g., REFs), while the all sky flux is measured directly using a pair of
upward- and downward-looking broadband pyrgeometers (e.g., Shupe and Intrieri, 2004; Intrieri et al., 2002).

The second site is located in continental mid-latitudes. This Site Instrumental de Recherche par Télédétection
Atmosphérique (SIRTA, Haeffelin et al., 2005; Chiriaco et al., 2018) is located in France (48.7° N-2.2° E) with an elevation
of 156 m. The data are part of the Baseline Surface Radiation Network (BSRN; Ohmura et al., 1998; Driemel et al., 2018).
At SIRTA, the clear sky flux is a parameterization made from the surface humidity, the integrated moisture content over the
atmospheric column and the air temperature at 2 m. The details are given in Dupont et al. (2008) and this product has also
been used in Rojas et al. (2021). The resulting clear sky uncertainty is approximately +/-5 W m?.

The third site is located in the tropical belt where clouds influence the global climate and heat transport (Loeb et al., 2016),
and where extensive deep convective clouds reach the cold tropical tropopause. Here, the surface LW CRE is small since
much of the surface downward LW radiation originates from emission by the moist near-surface layers of the atmosphere
(Prata, 1996). This Kwajalein station (KWA, Roesch et al., 2011), which is also part of BSRN, is located in the Northern
Pacific Ocean (8.72° N-167.73° E) with an elevation of 10 m.

Over the 3 ground-based sites, the radiative flux measurements at the surface are carried out using two Kipp and Zonen

CM22 pyrgeometers, which measure in the spectral range of 4.5-40 pm.
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3 Method
3.1 Approach

Vaillant de Guélis et al. (2017a; 2017b) retrieved the TOA LW CRE from the five CALIPSO-GOCCP cloud properties
presented in Fig. 2: the opaque cloud cover, the opaque cloud altitude, the thin cloud cover, the thin cloud altitude, and thin
cloud emissivity. In adapting their approach to the surface instead of the TOA, we developed a method to retrieve the surface
LW CRE from the same five CALIPSO-GOCCP cloud properties. The method we have developed is based on simple
parameterization. This will allow us to, in future work, more easily decompose the temporal variations of the surface LW
CRE into several components in order to identify which cloud variables have driven the variations of the surface LW CRE

during the last 13 years. The following physical differences exist between the surface and the TOA:
3.1.1 Moisture

Moisture within the boundary layer influences the surface LW CRE more than the TOA LW CRE. To take moisture effects
into account, we add the surface elevation in the framework of Vaillant de Guélis et al. (2017) and we consider different
humidity and temperature profiles at a monthly resolution and for every 2° latitude, differentiating oceans from continents.
Compared to the fluxes themselves, small water vapor variability does not affect CRE much, as the equivalent clear sky
contribution is removed from CRE. The surface LW CRE dependence on temperature and humidity profiles is shown in
Sect. 4.1, 4.2, and 4.3. The impact on the results of using monthly mean humidity and temperature profiles will be discussed

in Section 8.
3.1.2 Cloud heights used for the surface LW CRE estimate

In thin cloud situations, the surface LW CRE is influenced by radiation emitted downwards by all cloud layers between the

cloud base (Zp,,,) and the cloud top (ZTOP). Therefore, the surface LW CRE depends on the vertical distribution of

condensed water between Z and Z;,, which are measured by the lidar. Therefore, we use the average of both (ZTW) to

Base Top

estimate the surface LW CRE from lidar observations

In opaque cloud situation, the surface LW CRE is influenced by radiation emitted by all cloud layers between cloud base (

Zg..) and the altitude Zp,,..,,, defined as the altitude where the emissivity between Zg,, and Zp, ., is close to one.
Cloud layers at altitudes higher than Zg, ., do not contribute to the surface LW CRE. Therefore, the surface LW CRE

depends on the vertical distribution of condensed water between Z 5, and Z

Base Emisv 1+
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In those specific cases where the vertical distribution of condensed water is such that Zg,, equals Zp,,,, meaning that
the Z g, layer (480m thick) contains enough condensed water to alone make the emissivity close to 1, then the surface LW
CRE is driven only by Zp,,. In that specific case, the lidar Zp, should be used to compute the surface LW CRE, and the

larger the difference between, Zp, and the actual Zg,,, the more the space base lidar surface LW CRE will be
underestimated.
In all other opaque cloud situations, where Zg,, is lower than Zp, .., all cloud layers between Zg,, and Zg, . 1

contribute to the surface LW CRE, and the relative weight of each layer depends on the detailed vertical distribution of

condensed water between Z g, and Z, .., ;. In that case, the lidar measures Z;, and Zp,, and we use the average Z

T Opaque®

Top

which is the average of Z;,  and Zp, to estimate the surface LW CRE from lidar observations.

Top

To retrieve the surface LW CRE, we could use Zg,, from CloudSat, but this would limit our time series to 2011 only

instead of 2021, and CloudSat is not always optimal to detect cloud base in particular if it is a liquid-water cloud. We chose

to use what we have access to with CALIPSO: A first option consists in using Zp,, the lowest opaque cloud altitude
observable by space lidar ( Z m< 3 km above the surface most of the time, Guzman et al., 2017), which is close to the actual

cloud base height except in deep convective towers and some frontal mid-latitude clouds. A second option is to use ZTOPW,

which might represent the altitude of emission of the cloud in some cases. This second option will overestimate the mean

altitude of the deep convective towers, where the downward space-based lidar beam attenuates quickly without seeing much
of the cloud bottom. The bias will be larger when the cloud base temperature is far from that of Zp,. Moreover, this bias will
depend on the opacity of the part of the cloud lying under Z, that is not observable by space lidar.

Hereafter we describe the method with ZTWW. Afterwards, we show the results for both option 1 (Z g, ) and option 2 (Z

).

The impact of the results on using these cloud heights will be discussed in Section 7 and 8.

Opague

3.2 Definition of the radiative quantities

In order to get simple notation, and because we are only interested in the CRE at the surface in the LW domain in this study,

the surface LW CRE will be simply noted CRE in the following equations.

To infer CRE, the net LW radiative fluxes over all type of scenes (F Z\ef,sky) may be compared with corresponding fluxes

where the influence of clouds has been removed (F E;u dy_freesky). Then, we define the surface LW CRE as follows:
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CRE=F r:}zsky -F ncioudy ~ freesky v

Using downwelling (1) and upwelling (1) fluxes, the surface LW CRE is expressed as follow:

CRE= (F zlL\Ilsky -F ;\usky) - (F lCloudy*freesky —-F TCloudy - freesky) 2

Rearranging the terms on the right-hand side of this equation, we get:

CRE= (F jAIlsky -F lcwudy - freesky) - (F jAllsky -F Tczoudy - freesky) 3)

Which can also be expressed as:

CRE=CRE' - CRE' 4

Where CRE' represents the surface CRE on the LW downward fluxes and CRE' the surface CRE on the LW upward

fluxes. CRE" does not exceed 1 W m™ in annual global average (Allan, 2011) and in the radiative transfer computations.
Therefore, the error in the surface properties play a minor role.

Nevertheless, in the LW domain, clouds can warm the surface, changing the surface temperature, which is then related to the
upwelling LW radiation. This is a subtle but important issue and is dependent to some degree on the surface type (i.e., land
surface will warm more than ocean). If CRE is determined in a hypothetical way, one could assume that the surface
temperature is the same. However, this does not capture the full impact of the clouds. To understand the full impact of the
clouds, one would need to consider the adjustments of all other parameters, most importantly the surface temperature. In this
study we assume that the surface temperature is the same under clouds and clear skies, consistently with the definition used

in previous satellite-derived products (e.g., Kato et al., 2018; L’Ecuyer et al., 2019).

3.3 Radiative transfer simulations

We use a radiative transfer code to compute the surface LW CRE due to an opaque cloud (CRE ) or an optically thin

Opaque.
cloud (CRE ;,,) in an atmospheric column fully overcast by that cloud. In these 1D atmospheric columns, molecules and

clouds are evenly distributed within each layer and each layer is considered infinite and homogeneous. For a single column

fully overcast by an opaque cloud, we derived a parameterization between CRE and the opaque cloud altitude ZTOPW

Opaque

(see Sect. 2.1). For the single column fully overcast by a thin cloud, we derived a parameterization between CRE . | the

thin cloud altitude ZTW (see Sect. 2.1) and the thin cloud emissivity € 13,;,, as in Vaillant de Guélis et al. (2017)

The radiative transfer simulations are performed with GAME (Dubuisson et al., 2004). This radiative transfer code computes
LW fluxes at 50 different levels with a vertical resolution of 1 km in the 25 first levels. The fluxes are spectrally integrated
between 5 and 200 pm consistently with CERES measurements. We prescribe various surface temperatures and the
atmospheric profiles of humidity, temperature, ozone and pressure based on ERA Interim reanalysis (Dee et al., 2011) over

oceans and lands for each month and 2° latitude. Humidity and temperature profiles over land for January are presented in

10
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figure A2 in Appendix A. Figure A3 presents the seasonal and latitudinal behavior of the first layer of the humidity and
temperature profiles (from the surface to 1 km above the surface) over ocean and over land. We perform all sky fluxes
through radiative transfer computations for numerous combinations of cloud opacity and vertical distribution. We prescribe

the vertical extent of each cloud, the effective size of cloud particles and the infrared optical thickness. For a column fully

overcast by an opaque cloud, the cloud is represented by a 1 km thick cloud layer with an emissivity close to 1 at Zp _; (

ZTop) above optically uniform cloud layers for different vertical extents with vertically integrated emissivity equal to 0.8. For

a column fully overcast by a thin cloud, the cloud is represented by optically uniform cloud layers with vertically integrated
emissivities equal to 0.1, 0.3, 0.5, or 0.7. The cloud top altitude varies according to latitude and can reach 17 km in tropical
regions and only 11 km in polar regions. For instance, the cloud top altitude at a latitude of 39° N takes 11 different values
ranging between 2 km and 13 km, and for each cloud top value, the cloud base altitude takes all possible values between 1
km above the surface and the cloud top altitude minus 1 km. Clear sky fluxes are defined by recalculating fluxes after

removing clouds with the same humidity and temperature profiles.
3.4 Retrieval of surface LW cloud radiative effect from CALIPSO observations and radiative transfer simulations

The surface LW CRE is retrieved from parameterizations derived from radiative transfer simulations that involves five
observed CALIPSO-GOCCP cloud properties. Two surface LW CRE datasets are built from CALIPSO-GOCCP product
using this theoretical relationship over the 2008-2020 period. An orbit dataset at the CALIOP footprint resolution of
instantaneous cloud property observations and a 2°%2° gridded dataset of mean cloud properties. For the orbit data set, each

lidar profile contains either an opaque or thin cloud or no cloud, and the surface LW CRE for this last category is zero. For

the gridded product, at each grid point, the opaque surface LW CRE is computed from the gridded ZTOPW and weighted by
the gridded opaque cloud cover Copaque in the same way as Vaillant-de-Guélis et al. (2017). The thin surface LW CRE is

computed from the gridded ZTW and gridded € ,;,, and then weighted by the gridded thin cloud cover Cy;;.. The total

gridded surface LW CRE is the sum of the two.

CRE=CRE,, +CRE, ©)

Opaque
In the retrievals, we tested both Z, and ZTWW for estimating the mean altitude of opaque clouds (as discussed in Sect. 3.1).
The new product name is “LWCRE-LIDAR-Ed1” for ‘LW Cloud Radiative Effect derieved from space Lidar
observations Edition 1> and the acronyms are LWCRE-LIDAR and CRE 5 in this study. This new monthly gridded
product is available for the 2008-2020 time period at https://doi.org/10.14768/70d5f4b5-e740-4d4c-b1lec-f6459f7e5563 and

Table C1 summarizes the data included in the dataset.

11
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4 Modeled CRE sensitivity to cloud properties

This section establishes parameterizations of the surface LW CRE against cloud altitude and emissivity over a single cloudy
column using radiative transfer computations (Sect. 4.1). Then it analyzes the sensitivity of the surface LW CRE to the

humidity and temperature profiles (Sect. 4.2), and to the surface elevation (Sect. 4.3).
4.1 Sensitivity of the CRE to cloud altitude

Figure 3 shows the results of numerous simulations for the opaque cloud column (Fig. 3a) and the thin cloud column (Fig.

3b) for a specific atmospheric state over oceans in January at a latitude of 39° N. CRE decreases approximately

Opaque
linearly with opaque cloud altitude at a rate of 6.0 W m? km™ in this atmospheric state. This figure shows that the surface

LW cloud radiative effect depends mostly on the mean altitude of the cloud and only weakly on the detailed vertical cloud

distribution and the cloud bottom altitude. CRE ;. also decreases linearly with thin cloud altitude, and the rate of decrease

depends linearly on the cloud emissivity. The linearity of these relationships is consistent with Ramanathan et al. (1977) and
Vaillant de Guélis et al. (2017, 2018). It is an empirical relation derived from radiative transfer calculations that has been
verified in the observation at the TOA in Vaillant de Guélis et al. (2017a, 2018). Corti and Peter (ACP 2009) also derived an
empirical relationship (power laws) from radiative transfer computation. Our linear relationship can be seen as an

approximation of the Corti and Peter (2009) power law.

Based on a regression, we obtain the following linear relationships between the surface LW CRE and cloud altitude and

emissivity:

CRE y000e=Copaque [a(RH,T) xZ, _+b[RH, T)} ©)
CRE 1, = Crpip X (EThin+0'06) X [a(:RH,T‘,J X ZTW"'b(RH ,T‘J] )

Where a(RH,T) W m? km™ and b(RH,T) W m” are constants whose values depend on the humidity and temperature profiles

as discussed hereafter. For the specific case presented in Fig. 3, a = -6.0 W m? km™ and b = +88.0 W m™.
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4.2 Sensitivity of the CRE to humidity and temperature profiles

The temperature and humidity profiles in the first layers of the atmosphere largely vary according to seasons and location as
presented in Fig. A3 in appendix A. Since these are variables that influence the surface LW CRE, their variations must be
taken into account in order to retrieve the global surface LW CRE.

As an example, Figure 4.a presents the Opaque surface LW CRE for a standard humidity profile and Figure 4.b presents the
Opaque surface LW CRE for an enhanced humidity profile (shown in Fig. A4). A 10% change in humidity in the first few
km of the tropical atmosphere leads to a surface LW CRE change of 7.7 W m™ for a cloud at 1 km and by 5 W m™ for a
cloud at 4 km. To capture some variability of humidity and temperature, we have established similar relationships as in Fig.
3 for each month and latitude (each 2°) over land and ocean. As an example, Figure A1l shows the simulations for cloud
columns for an atmospheric state over land in January at a latitude of 39° N (same as Fig. 3 but over land instead of ocean).

At this latitude, the amount of humidity is lower over land than ocean, therefore the LW F Ze,;udy_ freesky OVer land is lower

and the surface LW CRE would be larger than over the ocean. The surface LW CRE is greater than that over ocean and
decreases with a rate (a(RH,T) W m? km™) of 6.5 W m™ km™ instead of 6.0 W m? km™ over ocean. Figure 5 presents the
latitudinal and seasonal behavior of the linear regression coefficients (a(RH,T) W m? km™ and b(RH,T) W m™). The shape of
these coefficients’ spatio-temporal variation is influenced by the shape of the seasonal cycle of humidity and temperature in
the first layers of the atmosphere (Fig. A3). For instance, the behavior of the intercept (b(RH,T)W m™) over ocean and land
(Fig. 5b and Fig. 5d, respectively) is driven by the shape of the humidity amount where the largest humidity amount (in
tropical regions) causes the smallest intercept coefficients. The seasonal cycle of the surface LW CRE is more pronounced
over land than over ocean because the seasonal cycles of humidity and temperature are more pronounced over land than over

ocean due to the heat capacity of the surface (Chepfer et al., 2019).

4.3 Sensitivity of the CRE to surface elevation

In order to take the surface elevation in the simulation into account, we consider the surface temperature to be the
temperature of the atmospheric layer located at the same altitude as the surface elevation with respect to sea level, and we
discard all layers located between sea level and the altitude of surface elevation. We then performed numerous radiative
transfer simulations corresponding to different clouds, as described in section 3.2.

The results presented in Figure 6 show the sensitivity of the surface LW CRE to the surface elevation over continents in

January at 39°N. As the surface elevation increases, the atmosphere is dryer so the F g;udy_freesky decreases, and the surface

LW CRE increases. The same cloud with the same cloud properties (i.e., same altitude and emissivity) will warm a surface
with a high elevation more than a low elevation. For instance, an opaque cloud at an altitude of 5.5 km msl (mean sea level)
will warm a surface at sea level by ~58 W m™ and a surface with an elevation of 4 km msl by ~102 W m™. These results are

consistent with Wang et al. (2019) who found that the surface LW CRE increases over Summit station in Greenland due to
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the dry atmosphere at high elevations. We performed radiative transfer simulations for different surface elevations at all
latitudes and months (not shown) and used these to retrieve the surface LW CRE from space-based lidar observations over
365 land. Thus, the regression coefficients over land depend also on surface elevation, with a 100 m resolution (a(RH,T,SE) W m"

2 km, b(RH,T,SE) W m).

14



370

375

380

385

390

395

5 New surface LW cloud radiative effect derived form CALIPSO-GOCCP : LWCRE-LIDAR
5.1 Orbit Product

Figure 7 (top panel) shows the CALIPSO-GOCCP cloud vertical mask (Guzman et al., 2017) for two different parts of an
orbit, both in the tropical region. The blue areas over green areas represent the opaque clouds. The blue areas over white
areas represent thin clouds. The second line represents the instantaneous surface LWCRE-LIDAR derived from CALIPSO-
GOCCP instantaneous cloud properties (opaque cloud altitude, thin cloud altitude and emissivity; CRE | ;,,), as described

in Sect. 3.3. As expected, the surface LWCRE-LIDAR is larger for opaque clouds (Fig. 7a, ~22 W m™) than for thin clouds

(Fig. 7b, ~5 W m) for almost the same atmosphere.

5.2 Gridded Product

Figure 8a shows the map of the surface LWCRE-LIDAR derived from CALIPSO-GOCCP product over the2008-2020 time

period.

In annual global means, clouds radiatively warm the surface in the LW domain by 27.0 W m*. CRE |, is maximal in the
Southern Ocean (~50-65 W m™?) where the warm opaque low clouds are numerous, as already stated by L’Ecuyer et al.
(2019) and Henderson et al. (2013). There are also particularly high values in the North Atlantic (> ~55 W m), observed
between Svalbard and Greenland. In the tropics, clouds typically radiatively warm the surface in the LW domain by only ~15
W m™. The moist tropical oceanic atmosphere enhances the downward clear-sky fluxes, which decreases the surface LW
CRE over these oceans. The maximum tropical CRE | ;5. (~30 to ~40 W m™) is produced by warm opaque low oceanic
stratocumulus clouds along the west coast of the continents.

Over continents, the weakest CRE | ;. (< ~5 W m™) occurs over Wadi Abadi basin in the Egyptian desert (25° N, 33° E), a

cloud free region most of the time (80%). The largest CRE | ;1,4 (~60-65 W m) occurs over the Tibet Autonomous Region

(29° N, 97° E), where the opaque cloud cover is high (58%) and the mean surface elevation is high (~4.42 km) over 2.5
million km?. Here, the high amount of moisture is uplifted towards southern Tibet, amplified by Rayleigh distillation as the
vapor moves over the Himalayan mountains (He et al., 2015), which enhances the formation of opaque clouds.

CALIPSO space-based lidar differentiates well opaque clouds from thin clouds. Therefore, we can decompose the
CRE 5y,  into contributions due to opaque clouds (CRE,,,,.: Fig. 8b) and thin clouds (CREp;,: Fig 8c). This
decomposition shows that 85% (23.0 W m) of the overall annual global mean CRE ., (27.0 W m?) is produced by

opaque clouds. Their effect is maximal (~50-55 W m™) over the extra-tropical oceans (60°S and 60°N) where low warm

opaque clouds are numerous. Thin clouds contribute only 15% (4.0 W m?) to the global CRE .z, and their effect is
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maximal (~13 W m?) over the dry continental polar regions of the Greenland and Antarctic ice sheets, where the thin cloud

cover is large (~40%).
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6. Evaluation of the new surface LW cloud radiative effect against ground-based stations

6.1.Method

Comparisons between ground-based measurements and the satellite-derived products (CRE 51z , CRE, g ) provide a

direct evaluation of the satellite retrievals, but are limited by the difference in the spatial resolution of the satellite-derived
product (2°x2°) and the ground station observations (a few meters). For the satellite retrievals, we extract the monthly 2°x2°
grid box centered at each ground site. For the ground-based observations, we extract the hourly observation at CALIPSO
satellite overpass time above each ground site (two observations per day), and average over each month. We consider all
days of each month, even if CALIPSO has no sampling over the site because there are only a few days where CALIPSO
observations are not available (e.g., 18 days in 2008). Moreover, in this study, we are interested in an accurate representation
of the surface LW CRE inter-annual variability, that might have significant impacts on climate-relevant processes, and not
only in an accurate representation of the anomalies observed in e.g. Rutan et al., (2015). That CALIPSO is missing some
sampling over the ground-based site will likely not significantly affect the inter-annual variability (i.e. months of maxima /

minima of the surface LW CRE). The locations of the three ground-based sites are reported in the maps (stars in Fig. 14).

6.2 Time series

Over the Summit Station Greenland site, on average compared to ground-based observations, LWCRE-LIDAR
underestimates the surface LW CRE by 8.5 W m™, while 2BFLX underestimates it by 16.4 W m™ (Fig. 9a). Averages over
the 2008-2010 and 2011-2015 periods (Fig. 10) show that these biases calculated for a short period are similar to the longer

periods. Over the 2008-2011 time period, CRE | ;4x is close to CRE, .  and both show consistent summer maxima and
winter minima, with CRE , 5, x slightly smaller than CRE ; ;,,» (0.8 W m®). Over the 2011-2015 time period, CRE | ;,1»
and the ground station data show similar annual cycles and CRE |, remains smaller than the Greenland site (13.0 W m™).

In winter, the bias in CRE;,,» can go up to ~15 W m™ compared to the Greenland site and is partly due to CALIPSO—

GOCCP missing thin cloud below 2 km above ground level in winter, as shown in Lacour et al. (2017). While this
comparison suggests that LWCRE-LIDAR could be biased somewhat low compared to the ground-station perspective over

Greenland, it is also clear that this approach captures the annual variability with a correlation coefficient between the

CRE psr and ground base site of 0.69 and RMSE of 15.9 W m™. The retrieval using Zp, instead of Zy_ seems to

compare to the Greenland ground-based observations more favorably (correlation coefficient of 0.70 and RMSE of 15.0 W

m™?) with a smaller bias (-11.6 W m™ Vs -13.6 W m?).
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Over the mid-latitude continental site (Fig. 9b) on average, LWCRE-LIDAR underestimates the surface LW CRE by 5.7 W
m™ compared to ground-based observations with a correlation coefficient of 0.73 and RMSE of 11.0 Wm™, while 2BFLX
underestimates it by 9.4 W m™ with a correlation coefficient of 0.67 and RMSE of 15.5 W m™.

Over the tropical ocean site (Fig. 9¢) on average, LWCRE-LIDAR underestimates the surface LW CRE by 2.3 W m?

compared to ground-based observations and 2BFLX underestimates it by 4.1 W m™. This same behavior is found on the map

of differences between CRE |, and CRE, .  (Fig. 14) along the tropical Pacific and tropical Atlantic oceans where

2BFLX underestimates the surface LW CRE comparing to LWCRE-LIDAR.

6.3 Seasonal cycle

Figure 10 presents the comparison of seasonal cycles between the satellite retrievals and the ground-based observations.
Over the Greenland site (Fig. 10a,d), LWCRE-LIDAR and 2BFLX find the same seasonal cycle of the surface LW CRE
with maxima in July, that correspond to the maximum opaque cloud cover, same as the ground-based seasonal cycle.

Over the mid-latitude continental site (Fig. 10b,e), the surface LW CRE seasonal cycle of LWCRE-LIDAR and 2BFLX are
close to each other and the two satellite-derived products show similar seasonal cycles as the ground station.

Over the tropical ocean site (Fig. 10c,f), the surface LW CRE seasonal cycle is relatively flat.

6.4 Diurnal cycle

The time sampling is limited for LWCRE-LIDAR and 2BFLX as they observe each location only two times per day at about
1:30 and 13:30 local solar time, and they do not implement diurnal variation correction in their algorithm. Nevertheless,
diurnal variations of the cloud fraction profiles documented by the CATS/ISS lidar (Noel et al., 2018; Chepfer et al., 2019)
indicate that the average of the cloud profiles collected at 1:30am and 1:30pm time is similar to the average of all the profiles
collected along the 24 hours with 1:30pm corresponds to the minimum in cloud profiles along the day, while 1:30am
corresponds to a maximum (Fig. 7 in Noel et al., 2018). But this statement is valid only between 55°S and 55°N.

Figure 11 shows the diurnal surface LW CRE variation observed at SIRTA in France, together with LWCRE-LIDAR .
This comparison suggests that the average of the two CALIPSO overpasses each day is similar to the ground-based observed
daily mean over this site. The absence of diurnal cycle correction might not be an important source of error in LWCRE—

LIDAR product.
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7. Evaluation of the new surface LW cloud radiative effect against others satellites products

7.1 Comparison along piece of orbits at footprint scale

CloudSat, CALIPSO, and CERES/Aqua satellites are part of the A-Train constellation (Stephens et al., 2002) and closely
matched in time (<5 min) and hence collocated by default, so we can compare them directly, assuming that the atmospheric

changes occurring within 5 minutes are negligible.

Figure 12 shows a comparison between the surface LW CRE from the three spatial satellite retrievals along four pieces of
orbits located over regions with different atmospheres and different surfaces. Figure 12 (top panel) shows the vertical
CALIPSO-GOCCP cloud mask (Guzman et al., 2017), while Figure 12 bottom panel represents the comparison between the
surface LW CREs.

Orbit A passes over the East Pacific Ocean and observes a deep convective tower, a mid-level opaque cloud at an altitude of
7 km and a low opaque cloud. The differences in surface LW CRE between the three spatial restitutions do not exceed ~5 W
m™. Nevertheless, within a small part of the orbit between 11.3°N and 11.8°N (Fig. B1) we observe that the LWCRE~
LIDAR retrieval is lower than the other two products, because the lidar does not detect a low cloud below Zp, that is
detected by CloudSat (shown in Fig. B1.b)

Orbit B passes over the West Pacific Ocean and observes variable yet shallow clouds in the boundary layer (< 2 km). The
CRE | 4z is intermittently larger than the other two products by ~15 W m. CALIPSO-GOCCP (90 m cross track, 330 m

along orbit track) detects shallow clouds in the boundary layer and, during the thickest of these, retrieves a surface LW CRE

that is larger than the CERES (CloudSat) retrieval, which is based on a 20 km (5km) footprint and might miss these clouds.
Orbit C passes over ocean stratocumulus regions and observes a low opaque cloud. Between 12°S and 19°S, the CRE | ;5.
(~60 W m™) is smaller than CRE , ., v by ~5 W m™ and smaller than CRE s by 15 W m™

Orbit D passes over Antarctica and observes opaque clouds at high (10 km) and mid-level (4-5 km) altitudes. In the presence
of high opaque clouds (between 68°S and 71°S or between 73°S and 77°S), CRE | .z is lower than CRE s by up to

~20 W m? and CRE, 5, x by up to ~40 W m™, but typically compares most favourably with CRE ¢ over the full scene.

These orbits show that by not including CloudSat, surface LWCRE-LIDAR is biased low by typically ~10 W m™ compared
to 2BFLX and ~15 W m™ compared to CERES-CCCM in regions of deep convection. In stratocumulus, surface LWCRE~
LIDAR is biases low by typically ~5 W m™ compared to 2BFLX and ~15 W m™ compared to CERES-CCCM.
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7.2 Global Statistical at footprint scale over ocean

Figure 13a shows a comparison between the surface LW CRE derived from CALIPSO-GOCCP product (90 m cross track,
330 m along orbit track) collocated with CERES—CCCM that uses full-resolution CALIPSO and CloudSat data and reports
the results over 20 km CERES footprints. We consider only the CERES—CCCM footprints where all the CALIPSO-GOCCP

profiles falling within this footprint are opaque and where there are more than 40 profiles. To retrieve the surface LWCRE-

LIDAR at the CERES—CCCM footprint resolutions, we average all ZTOPW falling within CERES—CCCM’s footprint and
compute the surface LWCRE-LIDAR using the relationships found in Sect. 4.
We see a strong correlation between CRE s and CRE | 1, (R=0.85). Two significant departures from the one-to-one

comparison line are observed: one for high values of the surface LW CRE, and the second for low values. In the first pattern,

for surface LW CRE greater than ~70 W m™, CRE ,» is larger than CRE _p.c. This pattern corresponds to some low

marine opaque clouds in mid-latitude regions (not shown). To reconcile the two products, CRE 5, should be smaller by

almost ~5 W m™, One way to reduce this difference would be to increase the altitudes of clouds but, due to attenuation of the
signal in opaque clouds, the space-based lidar would already potentially overestimate the overall height of the clouds. Thus,
the cloud height is likely not the source of this difference. Another way to reduce the surface LW CRE is by decreasing the
cloud cover or the cloud opacity. However, thanks to its high spatial resolution, the space-based lidar measures the cloud
cover with precision, and it should not overestimate the cloud opacity. Thus, the source of this apparent bias is more likely

an underestimation of the humidity profiles used to retrieve the surface LW CRE in the presence of clouds. An increase in

the humidity at these times would increase the FnCeIi)u dy ~ freesky and therefore decrease the surface LW CRE. A final possibility

for the difference is that each product has a unique estimate of the cloud cover due to vastly different fields-of-view.
CALIOP footprints are only a small fraction of the CERES footprint, so part of the CERES footprint could be cloud free
even if the 40 CALIOP profiles are opaque. A study by Kato et al. (2010) demonstrated that the differences between CERES
and CloudSat/CALIPSO cloud fractions decrease when averaged over area and time. Hence, this difference is likely not the
primary source of bias when comparing large statistical datasets.

The second regime of differences among the products is for surface LW CRE less than ~30 W m™ (Fig. 13a), which
corresponds to high opaque clouds over the warm pool region (not shown). Here, CRE | |, is smaller than CRE ;5c. The
underestimation of surface LWCRE-LIDAR compared to CERES—CCCM could be caused by the full attenuation of the
laser beam in deep convective clouds such that CALIPSO-GOCCP overestimates the mean altitude of opaque clouds.

Figure 13b represents the comparison between the surface LW CREderived from CALIPSO-GOCCP product (90 m cross
track, 330 m along orbit track) collocated with CloudSat 2BFLX product at a resolution of CloudSat footprint (5 km). We

also consider only the CloudSat footprints where all the CALIPSO-GOCCP profiles falling within this footprint are opaque,
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and where there are more than 10 profiles, and we compute CRE;,,» by averaging all ZTOPW falling within CloudSat

footprint.

Three significant departures from the one-to-one comparison line are observed: one for low values where CRE; .» <
CRE, gp; «, one for high values of the surface LW CRE where CRE ;. > CRE, ., , and one for high values where

CRE ;| pir < CRE, . The two first patterns appear to be similar to Fig. 13a, and show up for the same reasons as

described above. The last pattern of differences among the products is for large values of surface LW CRE where

CRE, ;p,; y is larger than CRE . This pattern corresponds to a sub-sample of marine opaque clouds (25% of the opaque

cloud collocated) in mid-latitude regions (not shown) where CloudSat is able to detect lower clouds than CALIPSO. Using

Z, instead of ZTomuein LWCRE-LIDAR retrieval would shift this pattern upward and reduce the sample (17% Vs 25%).

The differences shown in Fig. 13 are expected when comparing satellite products at footprint scales that use different remote
sensing techniques. However, when looking at the gridded product distributions (fig. B3) instead of instantaneous collocated

data, the 2BFLX and LWCRE-LIDAR agree well.
7.3 Global mean comparison at gridded scale

To compare 2BFLX and LWCRE-LIDAR at gridded scale, we averaged 2BFLX initially at 1°x1° resolution to 2°x2° like
CALIPSO-GOCCP product.

Figure 14a shows global maps of differences between LWCRE-LIDAR and 2BFLX. This comparison gives an overview of
the differences between the two surface LW CRE spatial products, but it may mask some differences given the fact that the

two spatial products are averaged in time (monthly) and space (2°x2° latitude-longitude gridded).

In global annual mean, CRE ;5 is slightly higher compared to CRE, 5, (0.7 W m™).

Compared to 2BFLX (Fig. 14a), CRE | ;.5 is slightly larger than CRE, 5.,  over tropical oceans. Over lands, CRE | ;5 is

slightly lower than CRE , 5 v. The maximum difference occurs over land along the western coasts of the North and South

American continents and the Himalayan mountains, where the surface elevation is above 2.5 km. This difference might be
due to the CloudSat CPR’s long powerful pulse (Fig. B2), which generates a surface clutter echo that tends to partially mask
signals from clouds forming below ~1 km (Marchand et al., 2008). Over icy polar areas, the two products are very similar.

Zonal averages of the surface LW CRE for 2008-2010 (Figure 14c) show that the surface LW CRE is generally low in
tropical regions and increases towards the mid-latitudes as the atmospheric moisture decreases. Values do not vary much
northward of about 50°N. To the south, a maximum occurs at about 60°S, with a decline towards the far south due to less
cloudiness. Over the broad domain, reaching from 60°N to 60°S, the two satellite techniques show similar zonal means, with

differences among the two typically not exceeding ~3 W m™.
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7.4 Variations of 13 years (2008-2020)

Figure 15a shows the temporal evolution of the surface LW CRE anomaly from the two satellite-derived products. A
decomposition, separating continents from oceans and NH from SH, is presented in Figs. 17b—g.

The phasing of the annual cycle of CRE,,, and CRE, ., anomalies are roughly similar over the 2008-2010 time
period. The phasing of the annual cycle of the two products is actually quite consistent for both NH and SH over both land
and ocean. For the NH land (Fig. 17d), the CRE, 5, , is slightly larger than CRE | ;.. However, it is interesting that even

over NH land the annual minima match pretty well.
The inter-annual variability is pretty interesting. For example, the NH winter maximum in LWCRE-LIDAR products
appears to vary by up to about ~3 W m™ from year to year. That is the kind of variability that might have significant impacts

on climate-relevant processes like melting of the cryosphere.
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8. Discussion
8.1 About the space lidar missing the opaque cloud base

Based on the comparison of orbits (Fig. B1), we observe that when the space lidar does not see the cloud base, LWCRE-
LIDAR underestimates the local surface LW CRE compared to 2BFLX. However, the deep convective opaque clouds cover
a small part of the overall tropics compared to other clouds. Therefore, this effect does not dominate the global comparison
(Fig. 14a), where surface LWCRE-LIDAR, is contrarily slightly larger than the other satellite product. Figure 13b (where
2BFLX is about ~70 W m?) and Figure 14a (Southern Ocean) consistently suggest that CALIPSO not seeing cloud base
leads to LWCRE-LIDAR underestimating the surface LW CRE more frequently in the extra-tropical oceanic storm tracks
than elsewhere.

To test if the differences between LWCRE-LIDAR and other satellite products come from the space lidar not seeing the

cloud base, we used two different approaches.

First, we used Zp, instead of ZTOPW in the LWCRE-LIDAR retrieval. By definition Z, is always lower in altitude than

Z; ... Therefore, this change should reduce the difference between the surface LWCRE-LIDAR and other surface LW

Opagque
CREjs, if the differences were due to CALIPSO missing the cloud base. Fig. 14b shows that the difference between surface
LWCRE-LIDAR and the other satellite product increases instead of reduces when using Z, instead of ZTOPW. This

suggests that the differences in surface LW CRE are likely not often due to CALIPSO mis-representing the cloud base and

that, in the majority of the cases, the cloud base might not be far from Z,. Nevertheless, contrarily to the satellite retrieval

inter-comparison, using Z, instead of ZTOPW leads to slightly better agreement between LWCRE-LIDAR and ground-
based retrievals (e.g., Fig. 9, 10). Ground-based measurements derive directly the surface LW CRE. While there are certainly
challenges in comparing ground-based and satellite estimates, we should consider the ground-based estimates to be of pretty
high quality.

Second, we used the cloud-base height (called CBASE dataset) described in Miilmenstédt et al. (2018) in instead of Z, to
compute ZTOPW. In the CBASE dataset, the Cloud base-height value is given at a horizontal resolution of 40 km along the

CALIPSO orbit track in the portion of the orbit where clouds are opaque. Along each CALIPSO orbit, we collocated the

cloud-base height dataset with the CALIPSO-GOCCP dataset and replaced Z, by the Cloud-base-height value given in the

CBASE dataset. Then we computed ZTOWE and the surface LW CRE. CBASE values are distributed in all latitudes and are

available in 33.2% of all the CALIPSO opaque profiles because CBASE can be retrieved only when thin clouds are detected
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within the 40 km orbit piece that also contains opaque cloud profiles. Comparing Fig. 16a and 16b indicates that the
subsample of opaque CALIPSO-GOCCP profiles where CBASE is documented contains both large values of surface LW
CRE associated to mid- and low-level clouds located at mid-latitudes (upper right data in plot b) and small values of surface

LW CRE (lower left), but it does not include the data where 2BFLX is much larger than LWCRE-LIDAR which correspond

to mid-latitude oceanic opaque clouds. When replacing Zp, (Fig. 16b) by CBASE (Fig. 16c) in the LWCRE-LIDAR

algorithm, the surface LWCRE-LIDAR rises slightly almost everywhere because CBASE is lower in altitude than Z,, and

surface LWCRE-LIDAR values lower than ~18 W m™ are no more present. The latter correspond to both deep convective

clouds and shallow boundary layer clouds. The correlation between 2BFLX and LWCRE-LIDAR is similar whether we use
Z ¢, (0.79) or CBASE (0.78) in the LWCRE-LIDAR algorithm.

This sensitivity study suggests that using a more advanced cloud base height (here CBASE) derived from lidar

measurements than Zp, in LWCRE-LIDAR algorithm will increase the surface LW CRE value retrieved in some opaque

cloud profiles slightly, but it does not fundamentally change the results.

Thus, what these results mean collectively is that: 1) The inability of CALIPSO to observe the cloud base likely does have
some effect (with respect to ground-based measurements). 2) This effect actually makes the comparison with other satellite
products worse, which means that there are other issues (possibly also with the other satellite product) leading to further

differences

8.2 About the sub-daily variability of the Humidity and temperature profiles

Looking for other issues that could explain the differences between satellite products, we examined humidity and
temperature profiles.

Contrarily to the surface LWCRE-LIDAR retrieval method, CERES-CCCM an 2BFLX retrievals of surface flux account for
sub-daily variations in temperature/humidity and capture regional variations (e.g., eastern vs. western tropical Pacific),
climate events (e.g., ENSO) and extreme changes over polar regions. 2BFLX uses 3-hourly atmospheric state variable data
on a half-degree Cartesian latitude and longitude grid from AN-ECMWEF-.

As shown in Fig. 14, monthly mean gridded surface LWCRE-LIDAR are consistent with 2BFLX, even though 2BFLX uses
sub-daily spatio-temporal resolutions of temperature/humidity profiles, while LWCRE-LIDAR uses monthly mean
temperature/humidity profiles. Nevertheless, instantaneous surface LWCRE-LIDAR retrieval are likely more biased than
the monthly mean gridded surface LWCRE-LIDAR, due to the use of monthly mean temperature/humidity profiles,
because monthly means miss extreme humidity and temperature profiles. To estimate the error on the instantaneous surface

LWCRE-LIDAR values, we compared the instantaneous surface LWCRE-LIDAR values obtained using 6-hourly
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temperature/humidity profiles from ERA-I, with one obtained using monthly means and 2BFLX, for one day at footprint
scales.

Figure 17 shows that using sub-daily profiles in LWCRE-LIDAR retrieval makes the comparison with other satellite
products worse at footprint scale. More analysis (not shown) indicate that for thin clouds, surface LWCRE-LIDAR
retrieved using sub-daily temperature/humidity profiles agrees better with 2BFLX (at 5 km resolution) than surface
LWCRE-LIDAR retrieved using monthly mean profiles. In contrast, the agreement between LWCRE-LIDAR and other
products are lower when using sub-daily temperature/humidity profiles in all other cases: opaque clouds and also thin clouds
when compared to CERES-CCCM (at 20 km). Overall, this suggets that the differences between the three daily products are

likely due to other causes than LWCRE-LIDAR using monthly mean temperature/humidity profiles.
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9 Conclusion

In this paper, we build a new surface LWCRE-LIDAR dataset from five cloud properties observed with space-based lidar
(CALIPSO-GOCCP product). The robustness of the new surface LWCRE-LIDAR dataset at global scales is evaluated by
comparing it to existing independent space-based surface LW CRE retrievals from CERES and CloudSat (Kato et al., 2010;
L’Ecuyer et al., 2019) at instantaneous footprint scale, as well as at 2°%2° gridded global scale. It is also evaluated locally by
comparison with observations collected at three ground stations in polar (Shupe et al., 2013), mid-latitude (Haeffelin et al.,
2005; Chiriaco et al., 2018) and tropical (Roesch et al., 2011) locations. The (admittedly limited) ground-station comparisons
actually showed that the LWCRE-LIDAR product agreed the best with the ground measurements compared to the other
satellite product. It appears that it captures the inter-annual variability well. Additionally, there are other specific aspects
where the LWCRE-LIDAR product appears to be an improvement over others, in providing a longer time series, including
over bright polar surfaces.

This might be surprising given the simplicity of the surface radiation retrieval method used to produce the LWCRE-LIDAR
product, but this is understandable because of the two following physical elements:

i) The LWCRE-LIDAR method directly retrieves the surface LW CRE without retrieving the surface radiative fluxes first.
This approach minimizes the impact of the uncertainties due to surface characteristics (surface emissivity, roughness, deserts
and frozen surfaces), which strongly influence the fluxes but not the surface LW CRE.

ii) The surface LW CRE is primarily driven by the cloud cover, the cloud opacity and the cloud altitude, which are
documented by space-based lidar over all types of surfaces. Moreover, the lidar approach distinguishes quite well the opaque
clouds from the optically thin clouds. Lastly, it documents the detailed vertical cloud profile, except below the altitude where
the laser is fully attenuated where we overestimate the mean altitude of opaque clouds. This last limitation only weakly
influences the surface LW CRE retrieval because the lidar is fully attenuated at an altitude lower than 3 km above the surface
most of the time (Guzman et al., 2017), except in deep convection and some mid-latitude clouds. Indeed, along deep
convective tropical regions where the attenuation of the lidar beam might not see the whole bottom part of the cloud and can
underestimate the surface LW CRE by almost ~5 W m™ All three satellite datasets exhibit some differences relative to
ground-based measurements and can go up to ~15 W m™ bias in the surface LW CRE over polar regions. The ~15 W m?
bias in LWCRE-LIDAR over Summit in winter is partly due to CALIPSO-GOCCP missing thin cloud below 2 km above
ground level in winter, as shown in Lacour et al. (2017).

The evaluation of this new surface LWCRE-LIDAR against other datasets also showed that (overall) this new retrieval
agrees well with CloudSat-based estimates (L’Ecuyer et al., 2019) and CERES—CCCM, but these latters are limited in time

until only 2011 due to a battery anomaly.
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This new global dataset extends over more than a decade, thanks to the long CALIPSO mission. The global mean temporal
evolution over 13 years (2008-2020) shows that the maximum anomaly of the surface LWCRE-LIDAR in the NH winter
varies by up to about ~3 W m™ from year to year. This new dataset will be extended in time by including future data
acquired by CALIPSO, as well as with data collected by forthcoming space lidars onboard the European Earth Cloud,
Aerosol and Radiation Explorer mission (EarthCARE; Illingworth et al., 2015) and the next generation of US cloud/aerosols
lidar space missions if we are able to reconcile data from successive space lidar missions. The monthly gridded dataset is
available for the 2008-2020 time period at https://doi.org/10.14768/70d5f4b5-e740-4d4c-blec-f6459f7e5563 .

The dataset presented in this paper will be used in a future study to better understand the mechanisms of cloud radiative
feedbacks at the Earth's surface, i.e. how a change in surface temperature modifies the cloud properties that change the
surface LW CRE, which in turn influences the temperature. An essential first step is to understand which cloud variables
have driven the surface LW CRE variations over the last decade in regions that are most sensitive to global warming, such as
the polar regions, as well as on a global scale. Several recent studies (e.g., Taylor et al., 2007; Zelinka et al., 2012a, 2012b ;
Vaillant de Guélis et al., 2017a, 2017b, 2018) have shown that it is possible to attribute changes in CRE to variations in
cloud properties when 1) the CRE is related to a limited number of cloud properties by sufficiently simple relationships that
they can be derived analytically, 2) the CRE retrieved by these analytical relationships is sufficiently reliable, i.e. within the
uncertainty domain of the existing datasets, and 3) the CRE is retrieved using reliable observations over all surface types and
on long global time scale. The surface LWCRE-LIDAR dataset developed in this study satisfies these three conditions. The
next step of this work will therefore be to analyze this 13-year dataset to understand these mechanisms. The goal of this
research is to improve our understanding of the response of clouds to the warming induced by anthropogenic activities,

which is a major source of uncertainty in climate change predictions.
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685 Appendix B: Sensitivity of the surface LW CRE to cloud base height

Appendix C: Data availability :

The monthly gridded dataset of the LWCRE-LIDAR-Ed1 is available for the 2008-2020 time period at
https://doi.org/10.14768/70d5f4b5-e740-4d4c-blec-f6459f7e5563. The data included in the dataset are presented in table C1.
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Figure 1: Schematic of cloud altitudes seen from space lidar and from a ground based lidar in an atmespheric column containing
thin cloud only (left) and opaque cloud only (right). The altitudes used to retrieve the surface LW CRE from CALIPSO-GOCCP
930 are reported in green.
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a) Opaque cloud cover (Copaguer 42.2%)
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Figure 2: Maps of a) opaque cloud cover C b) thin cloud cover C Thire © 0Paque cloud altitudeZTOpaque, d) thin cloud altitude

Opaque?

ZTW and e) thin cloud emissivity € ;.. Global mean are reported in parentheses. Build from CALIPSO-GOCCP v3.1.2 over
935  2008-2020.
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a) Opaque cloud b) Thin cloud
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Figure 3: Linear relationships derived from 1D radiative transfer computations between the surface LW CRE and the cloud
altitude for a single overcast column containing: a) an opaque cloud above a thin cloud, both moving in altitude, and b) a thin
cloud of emissivity 0.1 (red), 0.3 (cyan), 0.5 (green) and 0.7 (pink). These linear relationships (solid lines) are derived from direct
radiative transfer computations (dots). Each dot represents the result of one radiative transfer computation. The color of dots
represents the cloud top altitude (2 km [dark] — 13 km [bright]) and the shape of dots the geometrical thickness from the cloud
base to cloud top (1 km [a star] — 6 km and above [a cross]). The atmospheric state is taken from ERA Interim reanalysis for
January at a latitude of 39° N over ocean. As an exemple, in plot a) the slope is -6.0 W m™? km™ and the intercept is 88.0 W m™.
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Radiative transfer simulations over ocean : Tropics

a) for a standard humidity profile b) for enhanced humidity profile
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Figure 4: Same as Fig. 3a for: a) a standard humidity profile and b) enhanced humidity profile. Both in the tropics [30° S-30° N].
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Figure 5: Coefficients of the linear relationships derived from 1D radiative transfer computations between the surface LW CRE
and the cloud altitude for all latitudes and seasons : a) the slope of the relationships over ocean, b) intercept of the relationships
over ocean, c) the slope of the relationships over land and, d) intercept of the relationships over land.
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Radiative transfer simulations for different surface elevations
Opaque cloud over land : January, Latitude 39° N
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975 Figure 6: Sensitivity of the surface LW opaque CRE to the surface elevation (SE) : Same as Fig. 3a but over land and for different
values of SE : SE = 0 (sea level), SE = 1 km, SE = 2 km, SE = 3 km, SE = 4 km for January at a latitude of 39° N.

41



CALIPSO-GOCCP v3.1.2 OPAQ mask
b) Thin clouds
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Figure 7: Pieces of CALIPSO orbit passing over Africa the 11" August 2010 at 23 h 02 min 38 sec. Opaque clouds (left column)
and, thin clouds (right column). Top line) Vertical feature mask from the product CALIPSO-GOCCP-OPAQ (Guzman et al.,
20017), the black areas below 4 km correspond to land. Bottom line) the surface LWCRE-LIDAR.
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a) Surface LWCRE-LIDAR (27.0 Wm™2)
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Figure 8: Maps of the surface LW CRE: a) all clouds, b) opaque clouds, and c) thin clouds. These surface LW CRE are built
990 from CALIPSO-GOCCP v3.1.2 dataset (Fig. 2) and radiative transfer computations (Figs. 4-7, A1). The surface LW CRE is
averaged over 2008-2020. Note that the color scale is different in c).
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Figure 9: Comparisons between the surface LW CRE derived from ground-stations measurements and from satellites in three
locations : a) polar region at Greenland Summit site, b) mid-latitudes at SIRTA site, and c) tropics at KWA site. Mean values
reported in the legend are computed only over the time period when all products are available e.g. only for months (JFMA 2011)
for Greenland Summit mean values. The locations of the three sites are reported in Fig. 14. Note that the y-axis scale is different in
each subplot.
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Figure 10: Same as Fig. 9 but in mean seasonal cycles. Left column corresponds to 2008-2010 and right column corresponds to
2011-2015. Note that the y-axis scale is different in each subplot.
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Orbit B : Shallow clouds

Orbit A : East pacific ocean

Altitude (km)

R

25°5 20°s 15°S 20°;

The surface LW CRE from satellites

Surface LW CRE (Wm™2)
s Y
8 3

|

~—— LWCRE-LIDAR
CERES-CCCM
— 2BFLX

30°s

25°S 20°s 15°5 20°s
Latitude

2z opaque
FA
Uncert_FA
Clear_FA
Weak_sign
Uncertain
Clear

Cloud

Default

Figure 12: Pieces of CALIPSO orbits passing over: A) east Pacific ocean the 17" October at 8 h 21 min 48 sec, B) shallow clouds
region in the Pacific ocean the 5" April at 12 h 55 min 34 sec, C) stratocumulus region the 13™ July at 6 h 48 min 37 sec and D)
Antarctica the 21* September at 3 h 9 min 46 sec all for the year 2008. Top line) Vertical feature mask from the product
CALIPSO-GOCCP-OPAQ (Guzman et al., 20017), the black areas below 4km correspond to land. Bottom line) Surface LW CRE
of the three satellite products. The location of the pieces of orbit (A, B, C, D) are reported in Figure 14
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Surface LW opaque CRE over ocean (2008) :
a) 20 km footprint b) 5 km footprint
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1035 Figure 13: Instantaneous collocated surface LW opaque CRE at footprint scale: a) LWCRE-LIDAR as a function of CERES—
CCCM , b) LWCRE-LIDAR as a function of 2BFLX. We only consider CERES (CloudSat) footprints where all CALIPSO
footprints falling within the CERES (CloudSat) footprints are opaque and which contain at least 40 (10) profiles. Based on
collocated observations over ocean in 2008.
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b) LWCRE-LIDAR _Z FA - 2BFLX (4.2 Wm~2)
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1045 Figure 14: Maps of differences in the surface LW CRE a) LWCRE-LIDAR minus 2BFLX, b) LWCRE-LIDAR_Z_FA minus
2BFLX, and c) zonal means of the two satellite products. Data are averaged over 2008-2010. Locations of the three ground-based
sites and pieces of orbits are reported in the maps.
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Surface LW CRE (Wm~2)
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Figure 15: a) Time series of global surface LW CRE anomalies. b-f) Time series of surface LW CREs over all NH, ocean NH, land
NH, all SH, ocean SH, land SH. In a) the anomaly is defined as the global average for each month of each product minus its own
average over the whole time serie. Note that the y-axis scale is different in each subplot.
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1065

1070

Surface LW opaque CRE over ocean (200802)

. a) All points (995440) b) Poligmots where CBASE is available (330324 : 33.2%) o c) CRE with CBASE (330324 : 33.2%)
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Figure 16: Surface LW CRE derived from LWCRE-LIDAR as a function of the one derived from 2BFLX. a) surface LWCRE-
LIDAR (y axis) computed using the altitude of full lidar attenuation b) same as (a) but containing only the sub-sample of
CALIPSO profiles where cloud base-height values are available from Miilmenstidt et al. (2018) c) same as b) but the surface
LWCRE-LIDAR is computed using the cloud base-height values from Miilmenstadt et al. (2018) instead of the altitude of lidar
full attenuation. The color scale indicates the number of occurrences at 5km resolution (footprint scale of CloudSat) over ocean in
February 2008.
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Surface LW CRE at footprints (CCCM = 20 km, 2BFLX = 5 km; 20080202)
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Figure 17: Distribution of the Surface LW CRE: a) LWCRE-LIDAR retrieved using monthly mean temperature/humidity
profiles as a function of CERES-CCCM with data at 20 km resolution (CERES SSF footprint), b) same as (a) but LWCRE-

1075 LIDAR retrieved using sub-daily temperature/humidity profiles, c,d) same as (a,b) but for 2BFLX instead of CERES-CCCM and
using data at 5 km resolution (CloudSat resolution).
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a) Opaque cloud
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Figure Al: Same as Fig. 3 but over land.
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b) Thin cloud
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a) Humidity profiles over land : January b) Temperature profiles over land : January
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Figure A2: Exemple of ERA Interim atmospheric profiles taken over land in January and averaged over 10° latitude bands.
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a) Humidity in the first atmospheric layers

Over oceans
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b) Temperature in the first atmospheric layers
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1085 Figure A3: Seasonal and zonal variations of the temperature and humidity in the near surface atmospheric layer (Z < 1 km) from

ERA Interim.
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a) Humidity profiles b) Temperature profiles
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Figure A4: Annual mean profiles of temperature and humidity from ERA Interim.
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Orbit A : East pacific ocean

1755 z_opaque
FA
Uncert_FA
Clear_FA
Weak_signal

Uncertain

Clear

175 8
| |
S N
15.0 S m
p—
)
12.5 =l
10.0 =
S 2
7.5 o
=
5.0
o O
25 % 22
0
1
100
—— LWCRE-LIDAR
——  CERES-CCCM
— 2BFLX 80
60
40

Figure B1: same as figure 12.A between 10.5° N and 12 °N : a) CALIPSO-GOCCP-OPAQ mask, b) CloudSat reflectivity and c)
surface LW CREs.
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Orbit passing over rough surfaces
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Figure B2: same as fig. B1 but for a piece of orbit passing over China the 10" November 2008 at 18 h 58 min 39 sec,
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Surface LW CRE from gridded products (2008-2010)
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Figure B3: Comparison of monthly, 2°x2° gridded surface LW CRE from LWCRE-LIDAR and 2BFLX.
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LWCRE-LIDAR

LWCRE-LIDAR_Z_FA

LWCRE-LIDAR

LWCRE-LIDAR_Z_FA

Bias

-8.5

-7.9

-13.6

-11.6

RMSE

9.0

8.4

16.9

15.9

15.0

Correlation

0.91

0.95

0.45

0.69

0.70

Bias

RMSE

-5.7

10.4

15.5

10.8

9.5

Correlation

0.73

0.73

0.67

0.77

0.77

Bias

-4.1

RMSE

6.1

5.6

6.9

5.7

4.9

Correlation

0.03

0.15

0.23

0.08

0.21

1115 Table 1: Bias, root-mean-square-error (RMSE) and correlation coefficient between satellite products and ground-base

observations.
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Geophysical Quantity Variable name in the nc file | Unit Dim

time time “month” |time

lon Longitude °E lon

lat Latitude °N lat

Surface Cloud Radiative Effects Net Longwave Flux Monthly sfc_cre_net_lw_mon W m? (time, lat, lon)
Means (Surface LW CRE)

Surface Opaque Cloud Radiative Effects Net Longwave Flux sfc_cre_net_lw_mon_opaque |W m? (time, lat, lon)
Monthly Means (Surface LW Opaque CRE)

Surface Thin Cloud Radiative Effects Net Longwave Flux sfc_cre_net_Iw_mon_thin W m? (time, lat, lon)
Monthly Means (Surface LW Thin CRE)

Surface Opaque Cloud Radiative Effects Net Longwave Flux sfc_cre_net lw_mon_Z FA |Wm? (time, lat, lon)
Monthly Means derived using Fully Attenuated Altitude

(Surface LW Opaque CRE_Z_FA)

Top Of the Atmosphere Cloud Radiative Effects Longwave Flux |toa_cre_lw_mon W m* (time, lat, lon)
Monthly Means (TOA LW CRE)

Top Of the Atmosphere Opaque Cloud Radiative Effects toa_cre_lw_mon_opaque W m? (time, lat, lon)
Longwave Flux Monthly Means (TOA LW Opaque CRE)

Top Of the Atmosphere Thin Cloud Radiative Effects Longwave |toa_cre_lw_mon_thin W m? (time, lat, lon)
Flux Monthly Means (TOA LW Thin CRE)

CALIPSO Opaque cloud cover (C_Opaque) cltcalipso_opaque % (time, lat, lon)
CALIPSO Opaque cloud altitude (Z_T_Opaque) cltcalipso_opaque_z km (time, lat, lon)
CALIPSO Fully Attenuated altitude (Z_FA) zopaque km (time, lat, lon)
CALIPSO Thin cloud cover (C_Thin) cltcalipso_thin % (time, lat, lon)
CALIPSO Thin cloud altitude (Z_T_Thin) cltcalipso_thin_z km (time, lat, lon)
CALIPSO Thin cloud emissivity (E_Thin) cltcalipso_thin_emis 1 (time, lat, lon)
Surface Elevation SE km (time, lat, lon)

Table C1: LWCRE-LIDAR-Ed1 Monthly Gridded Products: Definitions and Variable Names
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