
Author’s Response - AMT-2021-40
We wish to thank all of the reviewers for their thoughtful and detailed comments. They have
been very useful in helping to clarify the paper.

Response to RC1
1. Throughout the paper, the GPR method is described as being non-parametric. However, the
prior model for the winds is necessarily parametrized by the means and variances of the wind
components (theta). In what sense is this method non-parametric?

We describe GPR as non-parametric in the same sense as it is used in the referenced
Rasmussen and Williams (2006) book: an estimation method which does not compress the
training data into a finite-dimensional parameter vector, in contrast to parametric methods like
linear regression. The mean and covariance function parameters are usually called
hyperparameters to emphasize that they are parameters of a non-parametric model. We also
find this terminology confusing, so we have clarified this point in the revised manuscript.

Changes in manuscript: We have changed previous references to the model’s parameters to
refer instead to “hyperparameters”, and we have included a sentence in the introduction
explaining what is meant by “non-parametric”.

2. The paper distinguishes the GPR method from Tikhonov regularization which is viewed as a
competing method. However, 2nd order Tikhonov regularization can be interpreted as the
adoption of a Gaussian prior for the state vector. How is this fundamentally different from the
method presented here?

The methods are indeed related, and there is a good discussion of this topic throughout
Rasmussen and Williams (2006), particularly in Chapter 6. The most direct difference is that
Tikhonov regularization would best relate to GPR with a squared exponential covariance,
whereas we have employed a Matern-5/2 covariance. That detail strikes at the heart of the
difference between the two methods: it can often be more natural to express prior knowledge in
terms of a GPR covariance than as a likelihood penalization. Practically, the difference also
comes down to how it is more natural to perform non-gridded estimation and analyze
uncertainty with GPR compared to regularization approaches. In many respects, the
approaches are two sides of the same coin, which is why we see value in future
inter-comparison that can help refine both approaches.

Changes in manuscript: We have added a paragraph in the introduction to expand on the
discussion of GPR in general, including a note that it is highly-related to interpolation techniques
that employ regularization. We mention why one might choose GPR over these other
techniques. We also refer the reader to Rasmussen and Williams (2006) for an extensive
discussion of these topics.



3. The paper describes the assumption of a Gaussian random process for the winds as
"convenient" because of the tractable computations that result. Could not the authors provide a
more satisfying rationale by considering whether the central limit theorem applies to the MLT
wind components?

This question prompted us to think more about this assumption, so we thank you for that.
Assuming normality imposes the minimal prior information about the wind processes within a
second-order statistical framework since the Gaussian distribution has maximum entropy for a
known mean and covariance.

Changes in manuscript: We have added an explicit justification for the Gaussianity
assumption to Sect. 3.2.

4. The authors of the paper note the absence of other kinds of MLT wind measurements that
could be used to validate the wind estimates produced by the GPR method. Have the authors
considered the use of generalized cross validation?

Generalized cross-validation is indeed one technique that could be used to further assess the
validity of the wind estimates using just the data we already have. There is a good discussion of
cross-validation in the context of GPR in Rasmussen and Williams (2006), section 5.4. We think
this is a good area for future work (and will additionally note it in the revised manuscript), and
the result would be a better understanding of the covariance hyperparameter values and the
merit of different forms for the prior wind distributions. We leave it to future work because it
addresses the topic of improving the model specification, and that area is large enough to merit
its own paper(s) beyond the introduction of the technique that we provide here. Although such
work would speak to validation, it still remains that comparison to a completely independent
technique would go even further to give confidence in the GPR method.

Changes in manuscript: We added a parenthetical mention to performing cross-validation as a
subset of future validation work.

5. The authors note that the region of validity and the spatial resolution of their method depends
on the geometrical configuration of the multistatic meteor array. Have they considered
developing a geometrical dilution of precision (GDOP) estimator?

Perhaps it is clearer to say that the measurement geometry controls the wind estimate
uncertainty, which we can calculate through the posterior covariance, and naturally there are
(location, wind direction) pairs that have higher uncertainty. As far as we understand it, we can
quantify the GDOP as a function of location in this case by taking the root mean square of the
wind component uncertainties.

Changes in manuscript: None



6. Finally, interpreting figures 2--4 and 7 is very difficult in view of the fact that color gradations
are being used to represent multiple quantities simultaneously (i.e. horizontal winds, vertical
winds, and data quality). The authors should attempt to clarify these figures.

We very much would like these figures to be both expressive and interpretable, and we
recognize that this is a difficult task given the amount of information that they attempt to include.
We strived to use color scales for the different elements that are distinct enough to be
identifiably separate and thought we had achieved a good balance. Considering this and other
reviewer and community comments, we have simplified the figures somewhat in the revised
manuscript. Notably, we have removed the vertical wind coloring from the horizontal wind
streamline maps. We decided that the focus of these figures should be the horizontal winds, and
including the additional color axis invites confusion and diverts focus. Additionally, we have
simplified the bias panels in Figures 3 and 4 by removing the green shading and changing the
contour lines to depict the predictive variance values instead of dB improvement. This makes
the comparison to the error variance more direct, while still giving the viewer the necessary
information to focus on the more pertinent regions of the bias values.

Changes in manuscript: We have updated Figures 2, 3, 4, and 7 as described above.

Response to RC2
1. Based on the description of the GPR algorithm to estimate winds at any particular point in
space and time, it is necessary to provide the mean and covariance matrix of the a priori wind
distribution. While there is a nice description about how the covariance matrix can be modeled
as a Matern-5/2 covariance function, there is no much discussion about how to determine the
prior mean wind. In the manuscript, it is mentioned that it is obtained from applying a tensor
product cubic spline to the dataset. However, it is not clear, at least to me, if the authors are
calculating this mean from wind estimates that were obtained applying a different method, for
instance with the zero-order method. Please clarify this point. In addition, the role of the prior
covariance is analyzed in detailed, but the role of the mean is not. I can imagine that the results
have a strong dependence on the a priori mean that is provided. The errors will probably
increase depending on the accuracy of the mean. I would also suggest to discuss about the role
of the a priori mean wind field in the manuscript.

We concentrated on specifying and analyzing the prior covariance function because it is by far
the more important component in the GPR specification, but we agree that more can and should
be said about the prior mean function. The biggest effect of specifying a good mean function is
that it improves the covariance function specification, allowing the amplitude and length scale
hyperparameters to be smaller in general. This leads to smaller error bars on the wind
estimates, but the wind estimates themselves (perhaps surprisingly?) don't change too much.

Changes in manuscript: We have added additional discussion in Sect. 3.2 of how we specify
the mean and how that choice affects the final estimates. We have also included a statement in
Sect. 6 about how we solved for the spline parameters that form the mean function in our wind
estimates.



2. The position of the detected meteors are also the result of a fitting procedure, thus there are
uncertainties associated to the space and time location of a meteor. How these uncertainties are
taking into account in the GPR algorithm? Do they play any role in the accuracy of the estimated
winds? I understand that a filter criteria is applied to the data to consider only high quality
detections, what is the criteria that is used? Do the high quality detections have negligible
uncertainties for the meteor locations? I would also suggest to discuss this question in the
manuscript.

Our current GPR method does not incorporate uncertainty in the meteor coordinates (space and
time). We agree that it would be great to include this, but the GPR framework does not naturally
incorporate this and adding it would be a significant project for future work. We expect this
would entail leaving the closed-form solutions behind and numerically sampling from the
distributions (e.g. MCMC). But for the analysis in this paper, we do try to limit the effect of
coordinate uncertainty by throwing out low-quality detections. Overall the uncertainties for the
high quality detections are small enough relative to the covariance length scales that the added
estimation error is negligible.

Changes in manuscript: We have clarified the process of throwing out low-quality detections
and its implications in Sect. 6. We have also added a paragraph in Sect. 7 to discuss
incorporating this uncertainty in future work.

3. The detection of meteors in time can be modeled as a Poisson process, in the sense that
given a detection the probability of detecting the next meteor increases as function of time.
Given this, the time location of the Doppler samples is also a Poisson process. However, for the
GPR approach, we are assuming that the Doppler samples can be modeled as a Gaussian
process in space and also in time. What is the impact of this difference in the estimation of the
MLT winds?

One must be careful to distinguish between the probability distribution of meteors
occurrence/detection and the distributions used to model the winds. For the wind process, when
and where the meteors occur is irrelevant; all we care about is that the meteors produce a set of
measurements, and how those measurements are distributed does not factor into our
assumptions about the wind processes. A practical effect of the Poisson distribution for meteor
detections, however, does mean that our coordinate sampling of the winds is more grouped
than it would be if the meteors were uniformly random. That just means that we'll get lower
uncertainties for the wind estimates in those regions due to the abundance of samples.

Changes in manuscript: To help clarify this point in addition to RC1.3, we have added more
discussion of the wind process distribution assumption in Sect. 3.2.

4. While the role of the covariance amplitudes for the a-priori wind distribution are discussed in
detailed, there is no much discussion about the role of the space and time scales. In principle,
these parameters are also obtained from minimizing the negative log-likelihood, however, I can



imagine that their values will strongly depend on the distribution of data considered. For
instance given some particular data set where data samples are more concentrated around 90
km but more sparse around 80 or 100 km altitude, it is reasonable to expect that the space
scale values will also vary as function of height, they will be probably shorter round 90 km but
longer at higher or lower altitudes. Is this something that is considered in the algorithm? How
the wind estimations will be affected by the precision of the space scales used in the algorithm?

This comment matches our experience with the length scales: the fitted values are strongly
driven by the density of meteor sampling within a particular dataset, so we might naturally want
to use smaller values around 90 km and during the morning detection peak and larger values at
low/high altitudes and during the evening detection valley. This is not currently considered in our
GPR technique, since we are using constant values for the length scales that don't vary with
location. We think that allowing the length scales to vary with location (e.g. altitude) would likely
lead to better wind estimates, and we think that this would be a fruitful area for future work (and
have already suggested this in the manuscript, if not quite as clearly).

Changes in manuscript: We have added Sect 5.4 to discuss the qualitative role of the
covariance length scales.

5. In section 5.2, in the case of the horizontal wind, it is not clear whether the “mean bias error”
or the “mean absolute error” were calculated. The labels in Figure 3 indicates “u+v”, does this
mean that the values of the zonal and meridional winds were added before calculating the
error? Please, clarify this issue, the authors may consider to include the actual formulas used to
estimate the errors. Also, in the same figure, the titles of the plots on the right side indicate
“variance of horizontal wind”, however, I think the authors are referring to the variance of the
horizontal wind error. Please, fix the labels of the figure to clarify their meaning. Similar
comment with respect to Figure 4, have the authors plotted the variance of the vertical wind or
the variance of the error?

We intend to say "magnitude of the mean error of the horizontal wind vector" (averaged
difference in the horizontal wind vector, including both u and v components) for the bias plot,
and we intend to say "variance of the horizontal wind *error*" for the variance plot. Same for the
vertical winds.

Changes in manuscript: We have updated Fig. 3 color labels to refer to “magnitude of mean
vector error” and “variance of vector error” and specified *error* variance in the titles and
caption. We have similarly updated Fig. 4, except with reference to “mean error” and “variance
of error”. We have added a description of how we calculate the bias and error variance to Sect.
5.2.

6. In section 6, in the implementation of the algorithm, it is mentioned that the data is divided in
time intervals of 90 minutes with 30 minutes overlapping, would not this have an impact on the
smoothness of the winds that are estimated? Would not it have sense to apply a similar criteria
in space (altitude, latitude, and longitude) based on the actual distribution of meteors? The



accuracy of the wind estimates in the areas further from the center may improve if covariance
parameters are computed particularly for these regions. This comment is related to the role of
the space and time scales presented above.

The overlapping estimation procedure is not a necessary component of GPR, but it is helpful for
reducing the computational burden as long as care is taken. And by that we mean that we have
only made estimates at times when at least 45 minutes of data both before and after are
included, for a total time window of 90 minutes (with centered estimate). This window is wide
enough, given the 15 minute time length scale for the covariance, to ensure that the estimates
produced are only negligibly different from the result of if a wider time window (or the whole
dataset) was used. We have verified this by comparing the 90-minute-window estimates to ones
done with a 180 minute window. Thus, the smoothness of the wind estimates is not affected.

It is an astute observation that the overlapping estimation procedure could be used to apply
different hyperparameters that are more tuned to different segments of the data. This is indeed
the most straightforward way to apply that type of analysis for future work, even if it is not terribly
elegant. This is also how we know that the density of meteor detections affects the
hyperparameters: we have observed that the fitted length scales in particular change somewhat
throughout the day (when fitted to these overlapping windows of data), seemingly in correlation
to the density of meteor detections. Fortunately the estimates are not changed greatly by
imposing constant conservative values throughout the day; it just means that we're not
achieving quite the best resolution at times when the meteor density would support it, effectively
smoothing over potentially-detectable features.

Changes in manuscript: We have added a brief mention in Sect. 7 of using overlapping data
segments to explore varying the hyperparameters as a function of space and time.

7. In Figure 9, Gradiente winds and GPR estimates are compared. In particular, it is mentioned
that the GPR estimates show some mesoscale structure. Are the authors implying that the GPR
method was capable of estimating these mesoscale structure while the other method could not
do it? I would recommend to clarify this comparison. The gradient winds were computed
considering wider time intervals, and probably that has an impact in the smoothness of the
estimated winds, thus the comparison would not be fair.

Perhaps it is not totally fair to make this comparison and the claim that GPR shows mesoscale
structure where the gradient method does not. It is definitely possible to perform an analysis
with the gradient method (or other existing methods) that focuses on time and length scales
similar to the GPR method, and thereby likely identify the same mesoscale structures. Such
information is in the data, and we don't mean to claim that GPR performs some magic that
unlocks it that is inaccessible to other methods. The benefit of GPR is not necessarily that it
allows one to see these mesoscale structures, but that it provides a suitable framework and
procedure for identifying those scales within the data and making them clear without manual
data analysis.



Changes in manuscript: We have removed the note that GPR identifies smaller horizontal
spatial scales than the gradient method. We have also changed the final point of the conclusion
to highlight the adaptability of the GPR method for analyzing different spatial scales and
selecting appropriate scales based on the data, which is where it actually provides a benefit
over the gradient method.

8. In Figure 2 and Figure 7, the vertical winds are depicted as the color of the horizontal wind
lines. In fact in the labels, it is mentioned “vertical wind speed”, however, “speed” by definition is
a positive value, and the colors go from positive to negative, so I think it is more appropriate to
change the label to “vertical wind”. In addition, are the values of the estimated vertical winds
within the expectation? How do they compare with their corresponding variances? Are the error
bounds small enough to have good vertical wind estimates? It would be important to add a
discussion in the manuscript about the accuracy of the vertical winds estimated with the GPR
method given that previous methods have just assumed that the vertical winds are zero.

In response to this and other discussion of the vertical winds and the figures, we have decided
to remove the vertical wind component from the Figures 2 and 7 to improve clarity.
Nevertheless, we have added more discussion of the vertical winds to the manuscript to
address the questions raised in this and other reviews. The basic conclusion is that the
technique is agnostic to the prior assumptions the user wants to employ for the vertical winds,
and it also provides the necessary uncertainty information on the wind estimates that will allow
the user to assess the quality of the vertical wind estimates. Through the typical meteor
observation geometries, there is much less information about winds in the vertical direction than
the horizontal directions. The fitting procedure on the SIMONe dataset produced a prior
variance for the vertical wind component of about 90 m^2/s^2 using a set mean of zero. This
could be from actual instantaneous non-zero vertical wind values, but it could also be elevated
due to errors in the Bragg vector direction and/or meteor location causing contamination from
the horizontal winds. The values produced in the estimates conform to this prior distribution and
the information added through the measurements, but the posterior error bars are still large
enough that a zero or nearly-zero vertical wind is a plausible explanation, especially considering
the possible role of horizontal contamination. Great care is still needed in this and any future
analysis of vertical winds, but we think GPR will provide a useful new tool in performing that
analysis.

Changes in manuscript: We have removed visualization of the vertical wind component from
Fig. 2 and 7. We have added more discussion of the vertical wind components in Sect. 7 to
highlight the challenges in estimating the vertical winds, emphasize that the GPR technique
provides useful tools in performing that analysis, and state that a nearly-zero vertical wind would
still be consistent with the estimates that we have presented.

9. Finally, in the conclusion section, the authors indicate that the GPR method can resolved
winds at the finest spatial and temporal scales allowable by the instrument. However, what are
these finest scales allowable by the instrument? The geometry and the spate-time distribution of
meteors will definitely set limits to the features that can be resolved both in space and time with



this method, however, aren’t other methods within their assumptions also capable of resolving
fine structures? In fact, in section 6, it is mentioned that the authors do not have a ground truth
to validate the horizontal scales that are resolved by the GPR method. Given this it cannot be
claimed that the GPR method resolves the finest scales allowable. I would recommend to
change this conclusion.

The discussion of comment RC2.7 is also relevant here. It is evident that we need to clarify the
point we are trying to make with this discussion and conclusion.

Changes in manuscript: We have changed the conclusion to highlight the adaptability of the
GPR technique and how that is helpful for resolving finer spatial scales.


