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Abstract. Mesoscale dynamics in the mesosphere and lower thermosphere (MLT) region have been difficult to study from

either ground- or satellite-based observations. For understanding of atmospheric coupling processes, important spatial scales

at these altitudes range between tens to hundreds of kilometers in the horizontal plane. To date, this scale size is challenging

observationally, and so structures are usually parameterized in global circulation models. The advent of multistatic specular

meteor radar networks allows exploration of MLT mesocale dynamics on these scales using an increased number of detec-5

tions and a diversity of viewing angles inherent to multistatic networks. In this work, we introduce a four dimensional wind

field inversion method that makes use of Gaussian process regression (GPR), a non-parametric and Bayesian approach. The

method takes measured projected wind velocities and prior distributions of the wind velocity as a function of space and time,

specified by the user or estimated from the data, and produces posterior distributions for the wind velocity. Computation of the

predictive posterior distribution is performed on sampled points of interest and is not necessarily regularly sampled. The main10

benefits of the GPR method include this non-gridded sampling, the built-in statistical uncertainty estimates, and the ability

to horizontally-resolve winds on relatively small scales. The performance of the GPR implementation has been evaluated on

Monte Carlo simulations with known distributions using the same spatial and temporal sampling as one day of real meteor

measurements. Based on the simulation results we find that the GPR implementation is robust, providing wind fields that are

statistically unbiased and with statistical variances that depend on the geometry and are proportional to the prior velocity vari-15

ances. A conservative and fast approach can be straightforwardly implemented by employing overestimated prior variances and

distances, while a more robust but computationally intensive approach can be implemented by employing training and fitting

of model hyperparameters. The latter GPR approach has been applied to a 24-hour data set and shown to compare well to pre-

viously used homogeneous and gradient methods. Small scale features have reasonably low statistical uncertainties, implying

geophysical wind field horizontal structures as low as 20-50 km. We suggest that this GPR approach forms a suitable method20

for MLT regional and weather studies.
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1 Introduction

The mesoscale neutral dynamics of the mesosphere and lower thermosphere (MLT) region are challenging to study, despite

their importance in global circulation models. Due to the lack of observations, these scales are usually parameterized in models

(e.g., Liu, 2019). MLT large scale dynamics have been studied with monostatic specular meteor radars (SMRs) by providing25

mean horizontal winds over areas with approximately 200-300 km radius at MLT altitudes, and 1-2 hour and 2-3 km temporal

and vertical resolutions, respectively (e.g. Hocking et al., 2001; Holdsworth et al., 2004). These measurements have made

significant contributions to community understanding of the climatological behavior of mean winds, planetary waves, and total

tides over a variety of SMR monostatic sites (e.g. Mitchell et al., 1999, 2002; Pancheva et al., 2002; Sandford et al., 2006;

Hoffmann et al., 2010). Moreover, when the winds from more than one SMR widely separated in longitude at a similar latitude30

are combined, spatiotemporal ambiguities of tides and planetary waves have been successfully resolved (e.g., Murphy, 2003;

Murphy et al., 2006; He et al., 2018; He and Chau, 2019). Monostatic SMRs have been also used to study MLT gravity wave

momentum flux with wide and narrow beam observing configurations, with the caveat that spatial and temporal contributions

are combined (e.g. Hocking, 2005; Fritts et al., 2012; Andrioli et al., 2013; Placke et al., 2015).

Recently, multistatic configurations have been proposed to complement these previous studies and to allow the investigation35

of MLT mesoscale dynamics. These configurations include the MMARIA (Multi-static Multi-frequency Agile Radar Investiga-

tions of the Atmosphere) concept (Stober and Chau, 2015; Chau et al., 2017). This concept has been further augmented by the

SIMONe (Spread Spectrum Interferometric Multistatic meteor radar Observing Network) approach (Chau et al., 2019). By us-

ing recent technological developments in atmospheric radars, such as spread-spectrum, MIMO (Multi-input multiple-output),

and compressed sensing approaches (Vierinen et al., 2016; Urco et al., 2018, 2019b), SIMONe allows the implementation40

of MMARIA with several attractive qualities: it is easier, cheaper, and inherently expandable compared to original proposed

configurations using traditional pulsed systems. Examples of SIMONe implementations in Germany, Peru and Argentina can

be found in several studies (Vierinen et al., 2019; Charuvil Asokan et al., 2020; Vargas et al., 2020; Chau et al., 2021; Conte

et al., 2021).

Multistatic observing approaches allow a large increase in scattering detections per unit time along with observation of the45

same volume from different viewing angles. These two features unlock the possibility of estimating the spatial features of the

wind within the observed volume. Depending on the resolutions and spatial scales covered, different aspects of MLT mesoscale

dynamics and coupling studies can be studied with the technique. For example, at scales between a few tens of kilometers to a

few hundreds of kilometers, the contributions of gravity waves and strongly stratified turbulence can be studied with multistatic

approaches (e.g. Roberts and Larsen, 2014; Marino et al., 2015).50

The spatial structure of horizontal winds has been also pursued using a variety of other techniques including meteorological

radars in the lower atmosphere, coherent scatter radars in the mesosphere, and Fabry-Perot interferometers in the thermosphere

(e.g., Browning and Wexler, 1968; Chau et al., 2017; Meriwether et al., 2008). As in the case of the initial MMARIA analysis,

these techniques typically approximate wind fields as analytic, differentiable polynomials in order to obtain gradients of the

horizontal winds. Although they provide additional spatial information beyond direct single-point information, these methods55
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can aggressively smooth real spatial structure and, in some cases, can introduce artificial structure, particularly in regions

with sparse or noisy measurements. In recent years, a variety of analysis approaches using statistical inverse theory have been

applied to these and similar problems. These studies have the goal of estimating the spatial structure of multi-point projected

wind velocities and electric fields (e.g., Nicolls et al., 2014; Hysell et al., 2014; Harding et al., 2015; Stober et al., 2018). For

example, a Tikhonov regularization originally developed for a optical network of Fabry-Perot Interferometers (Harding et al.,60

2015) has been adapted to yield MLT wind fields over Peru (Chau et al., 2021).

As in any statistical inverse theory problem, more independent samples are desirable to reduce the impact of regularization

constraints and to improve the quality of the estimates. In November 2018, a short observing campaign was conducted in north-

ern Germany, herein denoted SIMONe2018, in which six existing MMARIA links were complemented with eight additional

SIMONe links. During this campaign, we obtained on average two hundred thousand meteor scatter observations per day (e.g.,65

Vierinen et al., 2019; Charuvil Asokan et al., 2020). For reference, a monostatic SMR obtains on average ten thousand meteors

per day at a comparable latitude and seasonal time.

Some previous analysis methods have been published on multistatic observations of MLT mesocale dynamics, such as the

gradient method and variants of Tikhonov regularization (Chau et al., 2017; Stober et al., 2018; Chau et al., 2021). However,

given the novelty of multistatic measurements and the lack of a reliable ground truth observation, different wind field ap-70

proaches still need to be explored, particularly in the properties of resulting statistical measure bias and variance. In this work,

we introduce a multistatic analysis technique based on Gaussian process regression (GPR) (Rasmussen and Williams, 2006).

Some of the main benefits of GPR are that analysis predictions essentially interpolate the measurements (within error bounds)

and that final output products inherently include quantitative uncertainties.

GPR is a Bayesian and non-parametric approach currently being used in many different machine learning applications75

(e.g., Wahlström et al., 2013; Foreman-Mackey et al., 2017). As a Bayesian technique, a key user input is the specification

of a prior distribution for the values to be estimated, including hyperparameters of the distribution. Despite needing these

hyperparameters, GPR is non-parametric in the sense that it does not compress the training data into a finite-dimensional

parameter vector, in contrast to parametric methods like linear regression (Rasmussen and Williams, 2006). GPR is also known

in other fields as kriging, and it has a long history of use in geostatistics under that name (Matheron, 1973; Journel and80

Huijbregts, 1978; Daley, 1991). Deep connections can be found between GPR and interpolation techniques using reproducing

kernel Hilbert spaces (Scheuerer et al., 2013), including those that employ regularization. This ties GPR mathematically to the

previously-mentioned wind field estimation techniques, but the Bayesian viewpoint afforded by GPR can be more natural for

expressing prior information and analyzing uncertainty. We direct the reader to Rasmussen and Williams (2006) for a general

discussion of GPR and its place in the wider estimation landscape.85

In this article, we start by introducing the wind estimation problem and geometrical considerations. Next, we present the

wind field estimation method using GPR, including the necessary mathematical expressions. The proposed estimation is sub-

sequently applied to both Monte Carlo simulations and to measurements from the SIMONe2018 campaign in Sect. 5 and 6,

respectively. In the latter section, estimated wind fields are compared to the winds obtained with the homogeneous and gradient
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methods, i.e., to the zero- and first-order Taylor expansion approximations. Finally, we discuss the benefits and challenges of90

the proposed estimation approach for MLT wind field studies.

2 Specular meteor radar measurements and geometry

SMRs receive echoes from meteor trails when the radar Bragg vector (kB) points perpendicular to them. The Doppler shift (f )

of the received signal of a meteor echo at time t and location given by longitude, latitude, and altitude (Λ,Φ,z) results from

the projection of the atmospheric wind vector (u) in the Bragg vector kB (e.g, Hocking et al., 2001; Holdsworth et al., 2004),95

i.e.,

f(Λ,Φ,z, t) =
1

2π

[
ku kv kz

]
u(Λ,Φ,z, t)

v(Λ,Φ,z, t)

w(Λ,Φ,z, t)

 (1)

where ku, kv , and kw are the Bragg vector components of kB and u, v, and w are wind vector components of u in the zonal

(East), meridional (North), and vertical (Up) directions, respectively. The Bragg vector is given by the difference of the scattered

and incident wavevectors, i.e., kB = ks−ki. Using interferometry on reception, the angle of arrival (AOA) is obtained. In the100

case of MIMO systems, interferometry is also implemented on transmission, allowing measurement of the angle of departure

(AOD) (e.g., Chau et al., 2019). By combining these angles along with range information, the meteor location (Λ,Φ,z) and

Bragg wavevectors are obtained. In the reductive case of monostatic systems, kB =−2ki and its magnitude is equal to 4π/λ,

where λ is the radar wavelength.

As mentioned above, traditionally a mean horizontal wind has been obtained from analysis that simultaneously solves105

N equations of the form of (1), with the assumption that the wind is constant in the observed volume (zero-order Taylor

approximation or homogeneous method). The data for the N -equation set was obtained by binning desired observations with

regular altitude and temporal resolutions. In general, with a sufficient number of meteors and viewing angles, the method

yields spatial information of the wind inside the observed volume. For example, Chau et al. (2017) has implemented a gradient

method, where the wind field estimation includes the first-order Taylor expansion terms.110

In multistatic geometries, both the observed volumes and separations of the multi-static links are relatively large. For this

reason, it is necessary to take the Earth’s geoid shape into account. Moreover, the GPR model described in the next section

is directly dependent on calculating coordinate distances accurately. This implies that altitudes and horizontal distances that

account for the Earth’s curvature, the measurement goal, must also try to minimizing mapping distortions, particularly in

distance scaling. Use of a naive geometric projection such as the equirectangular projection, in which latitude and longitude115

are simply scaled to yield x−y coordinates in meters, does not satisfy these requirements. Therefore, in this work, we use a local

azimuthal equidistant projection centered in the observing region, with Earth shape based on the well known WGS84 geoid

model. This projection is used to transform longitude and latitude into local x and y coordinates, where horizontal distance in x

and y reasonably approximates the true geodesic distance. Subsequently, we use these (x,y) projected coordinates in place of
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(Λ,Φ) geodetic coordinates from (1). Note that this does not change the definitions of (u,v,w) and kB , which remain aligned120

with a local East-North-Up coordinate system and not, in general, with the projected x and y coordinates.

To represent a set of Doppler wind measurements, we use the following notation for the measurement equation. Let xm =

(tm,zm,ym,xm) denote the coordinates for a measurement m of M . Then the ensemble of coordinates is given by the matrix

X as

X =


xᵀ
1

...

xᵀ
M

=


t1 z1 y1 x1
...

...
...

...

tM zM yM xM

 , (2)125

and the corresponding wind vectors are given by

u=


u(x1)

...

u(xM )

 v =


v(x1)

...

v(xM )

 w =


w(x1)

...

w(xM )

 . (3)

We group the Bragg vectors of a set of measurements by component and combine with the 1
2π scaling to give u, v, and w

measurement vectors:

au =
1

2π


ku1

...

kuM

 av =
1

2π


kv1

...

kvM

 aw =
1

2π


kw1

...

kwM

 (4)130

Finally, using � to denote the element-wise (Hadamard) vector product, our measurement equation following from (1) for the

ensemble of Doppler measurements f is

f(X) =


f(x1)

...

f(xM )

= au�u+av �v+aw �w+ ε (5)

where ε∼N
(
0,Σn

)
is zero-mean Gaussian measurement uncertainty with covariance Σn.

3 Estimation Problem135

The estimation task is to take a set of Doppler measurements f and infer wind values u(x′), v(x′), w(x′) at a chosen location

x′ using the measurement model from (5). We employ Gaussian process regression (GPR) to model the winds and hence

Doppler measurements as a stochastic process. This approach allows estimation at arbitrary coordinates (convenient for the

random meteor locations and non-gridded prediction) and produces statistical uncertainty as an output product.

Our GPR method is implemented as a 3-staged process. First, one defines the form for the model, which includes mean and140

covariance functions and their hyperparameters. Then, one fully specifies the model by setting hyperparameter values, either
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   Doppler measurements 
  measurement uncertainty 

y(x)
σy(x)
x = (lat, lon, alt, t)

GPR wind model 
 
 

u(x) ∼ 𝒢𝒫(mu(x), κu(x, x′ �))
v(x) ∼ 𝒢𝒫(mv(x), κv(x, x′�))

w(x) ∼ 𝒢𝒫(mw(x), κw(x, x′�))
Posterior model 

 

(see text for details)
(

u*
v*
w*) |Y ∼ 𝒩( . . . , . . . )

Test points 
x* = (lat*, lon*, alt*, t*)

Prediction 
 

Uncertainties 
̂u(x*), ̂v(x*), ŵ(x*)

σ ̂u, σ ̂v, σŵ

User  
specified

yes
Train?

Parameter 
set 
θ

no

Train and  
fit

Calculate  
posterior

Make 
estimate

Block diagram 4D Wind field GPR

Figure 1. Block diagram of processing flow. The blocks in orange indicate input from the user, blocks in green belong to the GPR model,

and the estimates are obtained in the red block (see text for details).

through prior knowledge or a separate fitting process. Finally, one applies the specified model to a set of measurements to cal-

culate the posterior predictive distribution and make an estimate at points of interest. Figure 1 summarizes our implementation

in a block diagram. In the following paragraphs, we describe the method in detail.

3.1 Gaussian process definitions145

For a function f(x) drawn from a Gaussian process, we write

f(x)∼ GP
(
m(x),κ(x,x′)

)
. (6)

This representation is fully defined by mean and covariance functions which describe the first- and second-order statistics:

m(x) = E
[
f(x)

]
(7)

κ(x,x′) = E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)]
(8)150
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where E denotes expected value. Gaussian processes are convenient because evaluating them at a set of points leads to a

Gaussian random vector
f(x1)

...

f(xN )

∼N


m(x1)

...

m(xN )

 ,

κ(x1,x1) · · · κ(x1,xN )

...
. . .

...

κ(xN ,x1) · · · κ(xN ,xN )


 (9)

which enables tractable computation. We recast this compactly using matrix notation as

f(X)∼N (m(X),K(X,X)). (10)155

It might seem like this model is too simple to be useful, but Gaussian processes have a lot of flexibility to fit a wide variety

of functions because the posterior distribution is constructed non-parametrically and directly incorporates the measurements.

Additionally, a modeler has a lot of freedom in applying Gaussian processes by choosing the form of the mean and covariance

functions, including specifying hyperparameters.

3.2 Wind component prior distributions160

Since we want to estimate the wind components, we model them as independent Gaussian processes:

u(x)∼ GP(mu(x),κu(x,x′)) (11)

v(x)∼ GP(mv(x),κv(x,x
′)) (12)

w(x)∼ GP(mw(x),κw(x,x′)). (13)

Assuming Gaussianity of the wind processes is not simply for convenience (although it does enable closed-form computation).165

Given some mean and covariance, a Gaussian distribution has the maximum entropy (Cover and Thomas, 2006). In other

words, assuming normality imposes the minimal prior information about the wind processes within a second-order statistical

framework. The winds likely have more structure than this, including cross-covariances between the components, but this

assumption ensures conservative estimates without prior knowledge of the true statistical structure of the wind processes.

Many choices for the mean functions are possible, but for simplicity we restrict our attention to means that are fixed without170

tunable hyperparameters. Even under this restriction, one can use a standard parametric model for the mean functions, and as

long as the parameter-fitting is done with linear regression prior to GPR analysis, no additional hyperparameters are added to

the GPR model. In general, the mean functions have less impact on the GPR results than the covariance functions, and we will

see later how the posterior predictive distribution is more strongly driven by the measurements and the covariance functions.

Often a zero mean is sufficient to produce good results (Rasmussen and Williams, 2006), and that holds for this case as well.175

Nevertheless, the mean can be useful for including well-known effects. In the models for subsequent sections, we have used two

cubic splines taken as a tensor product over altitude and time to produce a mean that accounts for large-scale tidal components.
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For the covariance functions, we choose a functional form where each wind component has an independent amplitude

multiplying a common distance kernel:

κu(x,x′) = σ2
uκd(x,x

′) (14)180

κv(x,x
′) = σ2

vκd(x,x
′) (15)

κw(x,x′) = σ2
wκd(x,x

′). (16)

Using a common distance kernel is convenient for simplifying computations, and we expect that relaxing this assumption in

the future would allow for increased expressiveness at the cost of computational burden. The distance kernel κd is chosen to

be the Matérn covariance with ν = 5
2 , using length scales given by δt, δz , δy , and δx for the coordinate dimensions:185

κd(x,x
′) =

(
1 +
√

5r+
5

3
r2
)
e−
√
5r (17)

with

r =

∥∥∥∥x−x′

δ

∥∥∥∥
2

(18)

δ =
[
δt δz δy δx

]ᵀ
(19)

where ‖.‖2 represents the Euclidean norm. Altogether, this results in a hyperparameter set θ of190

θ =
[
σ2
u σ2

v σ2
w δt δz δy δx

]ᵀ
(20)

for the GPR wind model. We chose the Matérn-52 covariance because it is twice-differentiable but not infinitely-differentiable,

so it provides relatively smooth functions while still allowing for rapid, geophysically-driven changes that might be expected

in wind fields. It is a typical choice for physical processes for this reason across a wide series of applications (Rasmussen and

Williams, 2006).195

Jointly and in matrix notation, we then write the Gaussian random vectors for the winds at a set of points X as
u

v

w

∼N


mu(X)

mv(X)

mw(X)

 ,


Ku(X,X) 0 0

0 Kv(X,X) 0

0 0 Kw(X,X)


. (21)

Note that since we have defined the wind component processes independently, the cross terms are zero in the joint covariance

matrix. However, this is not to say that we strictly enforce zero cross-covariance between the wind terms with this model.

Rather, it is more accurate to say that we do not require prior knowledge of the cross-covariance but also cannot benefit from200

the improved estimation that such knowledge would provide.

3.3 Doppler measurement prior distribution

Since we are taking the wind components as Gaussian processes, and (5) provides a linear relationship between the wind

components and Doppler measurements, the Doppler measurements themselves also take the form of a Gaussian process. For
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a set of measurements f corresponding to the locations X, this produces a formulation as205

f ∼N (mf (X),Kf (X,X)) (22)

where

mf (X) = au�mu(X) +av �mv(X) +aw �mw(X)

Kf (X,X) = (auau
ᵀ)�Ku(X,X) + (avav

ᵀ)�Kv(X,X)

+ (awaw
ᵀ)�Kw(X,X) + Σn.

Note that the Gaussian process being measured is a linear composition. This is only a minor concern for our application, but210

it does make the formulation slightly different from the more typical examples. The following subsections provide the explicit

formulas necessary to perform hyperparameter fitting and wind estimation using this model.

3.4 Model hyperparameter fitting

Fitting for the model hyperparameters θ involves maximizing the likelihood function for the marginal distribution pertaining

to a set of measurements. Assuming Doppler measurements f coming from the distribution defined in (22), the negative215

log-likelihood as a function of the hyperparameters is

−l(θ) =
1

2
(f −mf )

ᵀ
Kf
−1(f −mf ) +

1

2
logdetKf −C (23)

where C is a fixed scaling constant. Minimizing this function requires evaluating the gradient of the negative log-likelihood.

For each hyperparameter θi, we thus have

∂(−l(θ))

∂θi
=

1

2
tr

(
(ααᵀ−Kf

−1)
∂Kf

∂θi

)
(24)220

where

α= Kf
−1(f −mf ). (25)

Continuing down the derivative chain for each type of hyperparameter produces

∂Kf

∂σ2
i

= (aiai
ᵀ)�Kd (26)

∂Kf

∂δi
=
(
σ2
u(auau

ᵀ) +σ2
v(avav

ᵀ) +σ2
w(awaw

ᵀ)
)
� ∂Kd

∂δi
(27)225

and

∂κd(xj ,xk)

∂δi
=

5

3
(1 +
√

5r)e−
√
5r 1

δi

(
(xj)i− (xk)i

δi

)2

(28)

where

r =

∥∥∥∥xj −xkδ

∥∥∥∥
2

. (29)
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With the objective and gradient known, fitting for θ then involves feeding these functions into an appropriate optimization rou-230

tine. We have observed the most reliable convergence using SciPy’s implementation of the L-BFGS-B and SLSQP algorithms

(Virtanen et al., 2020).

3.5 Wind estimation

Having defined the model hyperparameters either through fitting or prior specification, estimating the winds at a set of predic-

tion points X∗ involves evaluating the posterior probability distribution given the measurements.235

We start with the joint distribution between the measurements and the winds at the prediction points, which from previous

definitions is given by:
f

u∗

v∗

w∗

∼N



mf (X)

mu(X∗)

mv(X∗)

mw(X∗)

 ,Ktot

 (30)

where

Ktot =


Kf (X,X) au�Ku(X,X∗) av �Kv(X,X∗) aw �Kw(X,X∗)

Ku(X∗,X)�au Ku(X∗,X∗) 0 0

Kv(X∗,X)�av 0 Kv(X∗,X∗) 0

Kw(X∗,X)�aw 0 0 Kw(X∗,X∗)

 . (31)240

The posterior predictive distribution follows from conditioning on the measurements:
u∗

v∗

w∗

 | f ∼N (mpost,Kpost) (32)

where

mpost =


mu(X∗)

mv(X∗)

mw(X∗)

+


Ku(X∗,X)�au
Kv(X∗,X)�av
Kw(X∗,X)�aw

Kf (X,X)
−1

(f −mf (X)) (33)

and245

Kpost =


Ku(X∗,X∗) 0 0

0 Kv(X∗,X∗) 0

0 0 Kw(X∗,X∗)



−


Ku(X∗,X)�au
Kv(X∗,X)�av
Kw(X∗,X)�aw

Kf (X,X)
−1
[
au�Ku(X,X∗) av �Kv(X,X∗) aw �Kw(X,X∗)

]
.

(34)
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The mean of the posterior predictive distribution forms our estimate for the winds at the chosen points of interest, and this is

given by

û(X∗) = E[u∗ | f ] =mu(X∗) + (Ku(X∗,X)�au)Kf (X,X)
−1

(f −mf (X)) (35)

v̂(X∗) = E[v∗ | f ] =mv(X∗) + (Kv(X∗,X)�av)Kf (X,X)
−1

(f −mf (X)) (36)250

ŵ(X∗) = E[w∗ | f ] =mw(X∗) + (Kw(X∗,X)�aw)Kf (X,X)
−1

(f −mf (X)). (37)

Here we can see that the estimates near measurement locations, where Ku,v,w(X∗,X) is large, are dominated by the prior

covariance function specification. This is why the choice of prior covariance function is more important than the choice of prior

mean function for making useful estimates and why our subsequent analysis is concentrated on the covariance hyperparameters.

Similarly, we obtain an estimate of the prediction uncertainty by using the posterior variance for each wind component,255

given by

σ2
û(X∗) = Var[u∗ | f ] = σ2

u− diag
(

(Ku(X∗,X)�au)Kf (X,X)
−1

(au�Ku(X,X∗))
)

(38)

σ2
v̂(X∗) = Var[v∗ | f ] = σ2

v −diag
(

(Kv(X∗,X)�av)Kf (X,X)
−1

(av �Kv(X,X∗))
)

(39)

σ2
ŵ(X∗) = Var[w∗ | f ] = σ2

w −diag
(

(Kw(X∗,X)�aw)Kf (X,X)
−1

(aw �Kw(X,X∗))
)
. (40)

Since the measurement covariance Kf term includes the assumed measurement noise, these equations effectively propagate the260

Doppler uncertainty through the measurement geometry and meteor density to produce the wind estimate uncertainty. However,

we note that this uncertainty estimate ignores the cross terms in the covariance, both between test locations and among the

wind components. These factors can also be included to give a more complete picture of how the individual estimates are

correlated, at an increased computational cost. More detailed estimates could also be backed by a fully Bayesian approach

that involves Markov chain Monte Carlo sampling of the posterior predictive distribution and includes full distributions for the265

hyperparameters θ.

Evaluating the posterior mean and covariance is a straightforward numerical linear algebra problem. However, given the

potential sizes of the various covariance matrices, this can be computationally expensive. Mitigation of this implementation

burden can be achieved with both matrix-free and approximate methods (e.g. Gardner et al., 2018; Wilson and Nickisch,

2015). Application of these methods are the subject of future work, but we note that their use would make practical fitting and270

evaluating more tractable.

4 SIMONe2018 Campaign

Before describing and presenting the simulation and experimental results, in this section we briefly describe the SIMONe2018

measurement campaign that was conducted in northern Germany between November 2nd and 9th, 2018. As mentioned in the

Introduction, the SIMONe2018 campaign added eight SIMONe links to six existing MMARIA links. The MMARIA links275

consist of two pulsed transmitters located in Juliusruh (13.37◦E, 54.63◦N) and Collm (13.00◦E, 51.31◦N), operating at 32.55
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and 36.2 MHz, respectively. The signals of these transmitters were received at four receiving stations located in Juliusruh,

Neustrelitz (13.07◦E, 53.33◦N), Bornim (13.02◦E, 52.44◦N), and Collm, respectively.

For the SIMONe links, a coded continuous wave (CW) transmitter was operated from Kühlungsborn (11.77◦E, 54.12◦N)

at 32.55 MHz. The transmitter array consisted of five two-element single polarization antennas, arranged in a Pentagon con-280

figuration. Each antenna transmitted a different pseudo-random code sequence, with 1000 bauds and 10 µs baud length. On

reception, four single antennas were used, yielding MISO (multi-input single-output) links. In addition, the same 32.55 MHz

antennas and receiving systems located in Neustrelitz and Bornim were used to receive the coded CW signals, forming both

MISO and SIMO (single-input multiple-output) links at both sites.

The meteor signals from the pulsed links were detected and identified using a similar methodology as described in Hocking285

et al. (2001). In the case of the SIMONe links, the meteor signals were decoded and detected using the compressed sensing

approach introduced by Urco et al. (2019a). Once the signals were detected, Doppler shift and interferometric angles were

obtained from the autocorrelation and cross-correlation (between channels), respectively, in a similar manner as employed

by Holdsworth et al. (2004). The interferometric angles were obtained using a combination of beam-forming and non-linear

complex fitting of the time series data following Clahsen (2018) and Chau and Clahsen (2019), which includes estimating290

statistical uncertainties for the Doppler measurements. Such uncertainty estimates are used as quality checks or weights in

fitting procedures. Location of the meteors and representation of the Bragg vector in the local meteor ENU coordinate system

was performed using the WGS84 representation for an ellipsoidal Earth coordinate frame. That procedure has been described

previously in Clahsen (2018) and Stober et al. (2018). More details of the SIMONe2018 campaign can be found in Vierinen

et al. (2019) and Charuvil Asokan et al. (2020).295

5 Monte Carlo Simulations

Monte Carlo simulations of the wind field (u= u,v,w) are essential to gauge the bias and variance properties of the GPR

method. To create realistic random wind fields with which we could simulate meteor measurements and compare the GPR

estimate, we again made use of Gaussian processes. Instances of u(t,z,y,x) were drawn from the Gaussian random vector

distribution described by (21) for specified sample locations, mean wind functions, and covariance amplitude and length scale300

hyperparameters. The hyperparameters used were as follows: σ2
u = σ2

v = 900 m2 s−2, σ2
w = 90 m2 s−2, δx = δy = 50 km,

δz = 3 km, and δt = 1800 s. These velocity fields were used with observing geometries taken from one day of the SIMONe

2018 campaign, specifically November 5, 2018. At each real detection, the measured projected velocity was replaced by a new

projected simulation velocity taking into account both the measured Bragg vector and the simulated u(t,z,y,x). In this way,

we are able to test the proposed GPR method on actual measuring geometries.305

Using the simulated measurements, we followed the GPR method from Sect. 3 to estimate the 4D wind field for comparison

to the simulated winds. We explored fitting with different cubic spline forms for the mean wind functions, and qualitatively

we found that the wind estimates were not sensitive to the details of the fit as long as it was reasonable. Even using a constant

mean of zero produced qualitatively similar results. Thus, to remove a confounding variable, all of the estimation results
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presented in this section use the exact mean functions that were used to simulate the winds, which in turn are the same mean310

functions fitted to the SIMON2018 data as described in Sect. 6. Likewise, we fit for the covariance hyperparameters from

the simulated measurements and found that the results were similar (within 10%) to the values used for the simulation. This

was reassuring and showed that the fitting procedure works at least when the winds can be described exactly by a Matérn-

covariance Gaussian process. Similar to the mean, the estimated winds showed little qualitative sensitivity to small changes

in the covariance hyperparameters, so for the subsequent estimation results we used (as a baseline case) the same values for315

the amplitudes and length scales between the simulation and estimation Gaussian processes in order to remove fitting noise as

a confounding variable. These comparisons should be viewed as a best-case scenario from the perspective of the model, and

therefore they can be used primarily to explore the effects of meteor measurement spatial density and geometry on the quality

of the wind estimates.

5.1 Qualitative comparison of horizontal winds320

Figure 2 shows an example of results for simulated (left) and estimated (right) wind fields for three selected altitudes: 84, 90,

and 96 km. The horizontal wind magnitude is color-coded (blue-green-yellow tones), while the direction is indicated by the

over-plotted streamlines. The estimated values are also masked (altering transparency) in regions where the posterior predictive

variances are high. Such regions are naturally where there are fewer meteor detections. Note that contrary to traditional methods

and despite the presentation here as horizontal slices, the estimates are not confined to a regular horizontal grid since solutions325

are inherently obtained in 4D. At an overall level, there is a very good agreement between the horizontal wind magnitude and

direction at all altitudes in regions where the posterior predictive variance is reasonably low (full color areas).

5.2 Bias and error variance

For a more quantitative idea of the performance of the GPR method, we have repeated the Monte Carlo simulations 4700 times

using 100 instances at each (t,z,y,x) location for 47 different overlapping time intervals throughout the day. This is equivalent330

to observing over 100 days with the same measurement statistics at each of the 47 time intervals of a given day. We estimated

bias and error variance by calculating the sample mean and variance of the error between the estimated and simulated u,v,w

wind values over the n= 4700 time/trial instances. In the case of the horizontal winds, the bias is given as the magnitude of

the mean error vector composed of both the zonal u and meridional v wind components, and the error variance is the sum of

both the u and v error variances.335

Figure 3 shows the bias of the horizontal wind error (left) color-coded with red tones and the error variance of the horizontal

wind (right) color-coded with purple-yellow tones, in both cases for the same altitudes shown in Fig. 2. In the mean error panels,

the posterior predictive variance is also indicated with green contours. A bias of less than 2 ms−1 is seen across the plots, and

generally smaller biases are seen in the regions of lower predictive variance where there are more meteor detections. Note also

that the uncertainty contours (left) roughly match the shape of the actual error variance (right), which gives confidence that the340

uncertainty estimates are useful.
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Simulated Estimate

Figure 2. Simulated wind field (left panels) compared to the resulting GPR estimate based on SIMONe-derived measurements (right panels).

Each panel shows the horizontal wind speed as a function of latitude and longitude overlaid by streamlines showing the wind flow. The

estimated wind speed is masked at 50% transparency in areas where there are few meteor detections and thus the estimate uncertainty is

relatively high (i.e. the improvement in posterior predictive variance over the prior variance is less than 4 dB).
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Figure 3. Statistics of the horizontal wind estimator error relative to the simulated truth. Each panel shows the bias (left) or error variance

(right) as a function of latitude and longitude averaged over n= 100 trials at each of 47 measurement geometries taken throughout one day.

Contours on the bias plots give the posterior predictive variance in units of m2 s−2, indicating more confidence in the central areas where the

bias also tends to be a little lower. Contours on the error variance plots correspond to the sample error variance (matching the coloring).
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Figure 4. Statistics of the vertical wind estimator error relative to the simulated truth. Each panel shows the bias (left) or error variance

(right) as a function of latitude and longitude averaged over n= 100 trials at each of 47 measurement geometries taken throughout one day.

Contours on the bias plots give the posterior predictive variance in units of m2 s−2, indicating more confidence in the central areas where the

bias also tends to be a little lower. Contours on the error variance plots correspond to the sample error variance (matching the coloring).
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Similarly, the bias and variance results for the vertical wind are shown in Fig. 4. Again, we see low biases that are uniformly

less that 1 ms−1 in magnitude, with the lowest biases in the regions of low predictive variance. However, this region is smaller

than in the horizontal wind case. We are certain that this difference is mainly due to the configuration geometry that is needed

to get accurate vertical winds, and the low-variance region provides a better observing geometry than the rest. Given the345

differences in magnitudes and the typically observed Bragg vectors, vertical wind estimates are relatively less constrained and

more susceptible to horizontal wind contamination. Again, as in the case of the horizontal wind results, the uncertainty contours

(left) roughly match the shape of the actual error variance (right).

5.3 Effects of scaling the covariance amplitudes

Until now we have presented results using estimator prior covariance amplitudes equal to the simulated values. In Figures 5350

and 6, we show the biases and error variances while varying over different values of the estimator covariance amplitudes: (a)

half, (b) equal, and (c) double the true value of the simulated winds. Specifically, we took the same 47 observation windows as

before, simulated 100 random trials of measurements using covariance amplitudes of σ2
u = 900 m2 s−2, σ2

v = 900 m2 s−2, and

σ2
w = 90 m2 s−2, and estimated the winds with 9 different covariance amplitude combinations by scaling the horizontal and

vertical values separately by 1
2 , 1, and 2. Note that the horizontal amplitudes for the zonal and meridional wind components355

were varied together such that σ2
u = σ2

v . Finally, we computed the error between the estimated and simulated winds, calculated

the mean and variance of the error over the random 100 trials (to give bias and error variance, respectively), and plotted the

resulting distributions taken over time-space grid coordinates.

Figure 5 shows the GPR bias statistics for the zonal (top), meridional (middle) and vertical (bottom) wind components, with

columns corresponding to halved (left), equal (center), and doubled (right) covariance amplitudes for the given wind compo-360

nent. The remaining vertical/horizontal covariance amplitude value is indicated with different colors. The salient features of

this figure are: (a) the mean error has a tight distribution around zero, indicating little or no bias regardless of covariance ampli-

tude scaling; and (b) the differences from scaling the covariance amplitudes are minor, with a slightly tighter bias distribution

for the vertical wind component with a doubled vertical amplitude and halved horizontal amplitudes.

The posterior predictive uncertainties are plotted against the error variance in Fig. 6 for both the horizontal (left) and vertical365

(right) wind components. In the horizontal case, we show the results of the total horizontal wind speed, i.e.,
√
u2 + v2. Lines

give the mean of the error variance distribution, while the shaded region indicates the 90% confidence interval. For the hori-

zontal/vertical wind plot, different line styles and labeling indicate the estimator values for the horizontal/vertical covariance

amplitude while different colors indicate values for the vertical/horizontal covariance amplitude, respectively. The estimator

covariance amplitudes match the simulated covariance amplitudes at the middle-orange values shown (σ2
u = σ2

v = 900 m2 s−2370

and σ2
w = 90 m2 s−2), and those cases show good linear agreement between uncertainty and error variance. Halving and dou-

bling the prior covariance amplitude of a given wind component similarly scales the posterior estimator uncertainty, resulting

in either under- or over-estimating the uncertainty relative to the observed error variance.

Based on these Monte Carlo simulations, we recommend one of two approaches for applying GPR depending on the re-

quirements of precision. First, if computational speed is a constraint and relatively large uncertainties are acceptable, then375
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Figure 5. Mean estimator error relative to the simulated truth when varying the covariance amplitudes. Each panel shows distributions of

the estimator error averaged over n= 100 random trials, where the distribution is taken over estimates at time-space grid coordinates where

the estimated uncertainty shows meaningful improvement (defined as 1.5 dB). Relative to the simulated values, the estimator covariance am-

plitudes were scaled by 1
2

, 1, and 2 to test nine different combinations by varying values for both the horizontal (σ2
u = σ2

v = [450, 900, 1800]

m2 s−2) and vertical (σ2
w = [45, 90, 180] m2 s−2) wind components.
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Figure 6. Estimator posterior uncertainty versus error variance relative to the simulated truth when varying the covariance amplitudes.

Each panel plots the mean (lines) and 90% confidence interval (shading) of the distribution of the posterior predictive variance versus the

error variance calculated over n= 100 random trials, where the distribution is taken over individual estimates at time-space grid coordinates.

Relative to the simulated values, the estimator covariance amplitudes were scaled by 1
2

, 1, and 2 to test nine different combinations by varying

values for both the horizontal (σ2
u = σ2

v = [450, 900, 1800] m2 s−2) and vertical (σ2
w = [45, 90, 180] m2 s−2) wind components.

using conservative overestimates of the wind variances to specify the covariance amplitudes will still yield unbiased wind

estimates with uncertainties that can be treated as rough upper bounds on the error variances. Second, if more precision is

needed and computational time is not a problem, then fitting on the incoming data to get more accurate estimates of the prior

covariance amplitudes will yield unbiased wind estimates with more accurate uncertainties. This choice between specifying

the covariance hyperparameters and fitting for them is a critical decision for any user of the GPR method, as seen already in380

the block diagram of Fig. 1.

5.4 Qualitative role of the covariance length scales

We have not yet conducted a systematic study of the covariance length scales in the same manner as our examination of

the covariance amplitude hyperparameters. This is both because the degrees-of-freedom in perturbing the values are greater,

making the analysis more complex, but also because the length scales are easier to interpret without detailed analysis. Because385

the model will enforce high correlation for coordinates that are "close" relative to the length scales, the covariance length

scales set the effective resolution of the wind estimates. So intuitively, increasing the length scales will lose resolution and

blur the estimates, while decreasing the length scales will gain resolution at the cost of increasing uncertainty (due to fewer

measurements having a strong effect at a given estimation location). This intuition matches with the informal testing that we

have done in perturbing the length scales from the fitted values.390
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We have found that fitting the length scale hyperparameters generally does a good job of maximizing resolution while

maintaining a usefully low posterior predictive variance. Those optimal values are determined by both the true covariance

length scales of the wind field and the spatiotemporal density of the meteor measurements. For this simulated data, we know

that the measurement density can support smaller length scales because the fitted values for the corresponding real data are

roughly half for the x, y, and t dimensions (see Sect. 6) compared to the values for the simulated winds. Nevertheless, fitting395

the estimation hyperparameters to the simulated data produced length scales close to the simulation values, showing that the

fitting is responsive to the "true" wind covariance distances and does not just tune to the meteor measurement density.

As an alternative to fitting, one always has the option of setting the covariance length scales according to a desired estimation

resolution. This is useful when one is content with sacrificing potentially better resolution for the sake of computational

simplicity. In the case that the measurement density is not high enough to support analysis at those fixed length scales, that fact400

will be made clear by having few or no regions of low posterior predictive variance for the resulting winds. The estimates will

likely not have the overall best uncertainty, but they will still be valid and thus useful.

6 Experimental Results

In this section we implement the proposed wind field estimator on a data set of 24-hour observations collected on November 5,

2018 during the SIMONe2018 campaign. After initial data quality control, almost 200,000 meteor detections were obtained in405

24 hours. Using a conservative approach and performing further quality checks yielded 100,000 high quality detections. The

filter criteria used in this second reduction required that detections were (a) within three standard deviations of the zero-order

residuals, and (b) more than 30◦ above the horizon, to ensure that good interferometric angle of arrival (AOA) or angle of

departure (AOD) estimates were obtained (e.g. Chau et al., 2019). Filtering by a minimum elevation angle also has the effect of

ensuring that the errors in AOA/AOD, when projected into the vertical direction, have limited effect on the estimated altitude.410

Meteor location errors are not incorporated into the current GPR method, so their effect must be limited by ensuring that any

potential coordinate deviations are much smaller than the covariance length scales used.

Subsequently, GPR results were obtained by first determining mean wind functions by fitting a 6-knot (altitude) by 6-knot

(time) tensor product cubic spline over the entire 24 hours of data. The 12 spline parameters were calculated by solving

the standard least squares problem completely independently of the GPR model. Then the covariance fitting procedure was415

applied on overlapping 90-minute windows spaced at 30 minute intervals to estimate the covariance amplitudes and length

scales as they varied throughout the day. With the current procedure that computes the full covariance matrix, limiting to

short time intervals like this is necessary for computational feasibility. The hyperparameters were found to be constant enough

throughout the day that approximate overestimates would suffice and allow proceeding with a single set of hyperparameters.

The resulting covariance hyperparameters are: σ2
u = σ2

v = 900 m2 s−2, σ2
w = 90 m2 s−2, δx = δy = 26 km, δz = 3 km, and420

δt = 900 s. Finally, the wind estimates were produced by selecting a fixed time, gathering data from the 90 minute window

around that time (more than enough given the time length scale of 15 minutes), and computing the posterior predictive values

at chosen spatial points.
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To get a sense of the scales resolved with the GPR method, Figure 7 shows latitude-longitude slices of wind fields at three

different altitudes (84, 90, and 96 km) and three different times (05, 08, and 11 UT). The presentation format is similar to Fig.425

2, i.e., horizontal wind speeds are color-coded, and streamlines show the direction of flow. Areas of large velocity variance are

shaded with 50% transparency to white. The wind fields show significant complexity, much more than can be well represented

by the single mean vector per plot that would be reported by a monostatic meteor radar. On simple inspection, horizontal wind

structures of∼ 20-50 km are successfully resolved, which is commensurate with the horizontal length scale hyperparameter of

26 km.430

In Figure 8, altitude-time slices at selected latitude-longitude points are shown for both zonal (left) and meridional (right)

wind components. The large-scale tidal features are in good agreement with those obtained with the homogeneous method

applied to the same data (see, Vierinen et al., 2019, Figure 6). The winds show significant variation between horizontal locations

as expected.

Although we do not have a ground truth in this analysis to validate the horizontal scales we are resolving, we conduct an435

additional comparison to complement earlier identification of the large scale features (i.e., tides). In Figure 9, we compare GPR

wind fields with those obtained with the homogeneous method (i.e., independent of latitude and longitude), and those obtained

with a gradient method. Specifically, the homogeneous method uses a zero-order Taylor expansion, while the gradient method

uses a first-order Taylor expansion. Both estimates have been obtained with altitude and temporal bins of 4 km and 4 hour

respectively, in order to produce a good representation of large scale features. The specifics of the two methods can be found440

in Chau et al. (2017) and Chau et al. (2021), respectively.

The gradient wind fields are shown in the first row of Fig. 9 for three selected altitudes (84, 89 and 94 km). The arrows are

color-coded with the horizontal wind speed (green tones), while the mean vertical wind from the gradient method is color-

coded with red-yellow-blue tones. In the second row the GPR 3D wind fields are displayed in a similar manner to the gradient

estimates in the first row. The third row shows the difference between the GPR wind fields and those from the gradient method.445

Note that the arrow colors and colorbar in the third row are different from the first two rows and show the difference of the

horizontal winds. In all three rows the horizontal wind from the homogeneous method is shown with a thick black arrow in the

center.

The salient features of Fig. 9 are:

– In general, there is good agreement in the horizontal wind components between the gradient and GPR methods. Note450

that the gradient estimates have been obtained with relatively large temporal and vertical averaging, in order to produce

a good representation of large-scale features.

– By subtracting the mean wind obtained with the gradient method (i.e., large scale features) from the GPR estimates, in

the third row, mesoscale structures are identified. Horizontal structures in the order to 20-50 km are clearly identified in

all three altitude cuts.455

Similar wind field comparisons for different times of the day can be found in supplemental material Movie S1.
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Figure 7. Latitude-longitude slices of the winds estimated from SIMONe campaign data. Each panel represents a separate altitude and time

and shows the horizontal wind speed as a function of latitude and longitude overlaid by streamlines which show the wind flow. The wind

speed is shown with 50% transparency in areas where the estimate uncertainty is large (< 2 dB improvement relative to prior uncertainty, i.e.

where there are few meteor detections).
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Figure 8. Altitude-time slices of the winds estimated from SIMONe campaign data. Zonal and meridional winds are shown at a selection

of four latitude-longitude points. The wind speed is shown with gray shading in areas where the estimate uncertainty is large (< 1 dB

improvement relative to prior uncertainty, i.e. where there are few meteor detections).
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Figure 9. Comparison of GPR to gradient and homogeneous methods. The first row shows the horizontal wind field obtained with the

gradient method using 4-hr and 4-km bins; the second row shows the horizontal wind field obtained with the GPR method using fitted

covariance hyperparameters; and the third row shows the wind field difference between the values in the second row and the mean horizontal

wind indicated in all panels with a black arrow. In all cases, a normalized statistical variance is indicated as gray contour lines, while the color

contour represents the vertical component from gradient method (first row), GPR method (second row), and GPR minus mean from gradient

method (third row). The row two color bar corresponds to the background vertical wind coloring while the other two color bars correspond

to their respective arrow colors.
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7 Discussion

We have introduced a robust method based on Gaussian process regression analysis to estimate MLT wind fields in four

dimensions. The method has been evaluated using Monte Carlo simulations and implemented successfully on real data. The

fast implementation using specified covariance hyperparameters (per-component amplitudes and per-dimension length scales)460

provides unbiased estimates with estimated uncertainties proportional to the prior velocity variances. In other words, if the

prior variances are underestimated, the posterior variances are also underestimated. Using a more resource intensive training

and fitting approach, covariance amplitudes can be estimated, resulting in posterior variances that are in good agreement with

expectations from Monte Carlo simulations. The training approach requires more computation time than using fixed prior

variances and we have not routinely applied it in analysis to date. However, for method testing purposes, we have implemented465

it on the real data shown in this work.

As expected, we have shown that mean values of GPR wind fields are in good agreement with the mean winds obtained with

the homogeneous method. Similarly, to a first order approximation, GPR wind fields are also in good agreement with the wind

fields obtained with the gradient method. Based on the simulation results, we expect the differences (i.e. the 20-50 km scales

within their posterior variances) to be of geophysical nature.470

Although the GPR method is robust, its region of validity and resolution depends highly on the geometrical configuration

used, which influences the location and density of meteor observations and the observable projected wind component. For

example, we found that the region of low variance vertical winds is smaller than the region of low variance horizontal winds.

This result occurs even though the SIMONe2018 configuration has far superior properties in terms of links and diversity of

Bragg angles compared to any other multistatic configuration used to date to study MLT winds (e.g., Chau et al., 2017; Stober475

et al., 2018; Spargo et al., 2019; Chau et al., 2021; Conte et al., 2021). Fortunately, the posterior predictive variances provided

by the GPR method can be used in the future to optimize the meteor radar network geometry to achieve a given prediction goal,

e.g. covering a specified region so that the estimate uncertainty for the winds reaches a particular value given typical meteor

statistics.

Estimating the vertical wind component is still challenging due to two factors: the horizontal wind variability is larger than480

the vertical wind variability (leading to large contamination of the vertical wind when there are errors in the estimated Bragg

vector or meteor location), and the majority of Bragg vectors have angles that are not close to zenith. The absence of zenith

oriented Bragg vectors is intrinsic to all specular meteor radars, since any Bragg vectors with angles close to Zenith would

require meteor trajectories parallel to the Earth’s surface and are therefore very unlikely to be observed. In the particular case of

the gradient method, Chau et al. (2017) have previously shown that the mean vertical velocity obtained with the homogeneous485

method, i.e., an area of ∼200 km radius, was contaminated by the mean horizontal divergence. Similar effects would be

expected at smaller scales. Our experimental results do produce a vertical wind prior variance of about 90 m2 s−2, and some of

the vertical wind estimates do show non-zero vertical velocities congruent with that variance. However, the posterior error bars

are still large enough that a zero or nearly-zero vertical wind is a plausible explanation, especially considering the possible role

of horizontal contamination. The important points relevant to the technique are that GPR is agnostic to the prior assumptions490
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one wants to employ for the vertical winds, and it also provides the necessary uncertainty information to allow for assessing

the quality of the vertical wind estimates.

These results represent just the first step toward applying GPR analysis to estimate wind fields from meteor observations.

We envision multiple directions of future work to expand and improve on the technique. There are many degrees of freedom in

specifying mean and covariance functions to represent the wind components that can be explored. Known physical processes495

imply more structure in the joint wind component covariance than expressed in (21), so it would make sense to experiment

with adding cross-covariance terms and allowing independent length scales for each component. The spatiotemporally varying

sampling density imposed by the meteors argues for using covariance functions or hyperparameters that also vary in time

and/or space. This can already be achieved in a crude form by performing fitting and estimation on overlapping subsets of the

data, and we would like to explore that more as well as develop a more elegant approach. We’ve used the mean functions to500

essentially remove large-scale tidal effects, but it remains to be seen how to strike the optimal balance between complexity in

the mean versus covariance functions or even the model complexity overall. At some point, adding complexity transforms the

GPR method from data-based estimation into assimilative modeling, and we see value in prioritizing simplicity and clarity.

Incorporating the uncertainty in the meteor locations and Bragg vector components into the GPR analysis is another impor-

tant avenue for improving the technique. We have so far removed any low-quality meteor detections from the analysis to limit505

the effect of this additional error, and the quality of the wind estimates would be improved by being able to incorporate this

discarded data and make even better use of the high-quality detections. We anticipate that such a task would be challenging;

it would likely entail leaving the closed-form solutions behind and numerically sampling from the distributions (e.g. Markov

chain Monte Carlo methods).

Future work will also concentrate on further validation (including cross-validation within a single dataset), although it re-510

mains that currently no alternative MLT wind instrument is available for comparison with GPR estimates. Therefore, indepen-

dent of the good comparisons with Monte Carlo simulations, we are planning to conduct special future observing campaigns

under different atmospheric conditions and geometric configurations to intercompare our GPR method with other wind field

methods such as those employing Tikhonov regularization (e.g., Stober et al., 2018; Chau et al., 2021). Similarly, we plan to

compare these techniques using synthetic data from regional weather models with high resolution covering the MLT alitudes,515

such as the ICON-UA model (e.g., Borchert et al., 2019). This analysis concept would be similar to the one implemented in

this work, but with more realistic atmospheric dynamics for the simulated winds.

Finally, we plan to apply the GPR method to selected additional datasets that use a multi-static configuration in order to

further investigate the properties of the resolved 20-50 km horizontal wind structures. These investigations will cover both

individual case studies and statistical studies: for the former, we expect to analyze special geophysical conditions and/or520

measurements that are complemented by other ground- or satellite-based instruments (e.g., Davis et al., 2018; Vargas et al.,

2020); for the latter, we expect to compare the Reynolds stress tensor statistics of GPR-estimated wind fields to those obtained

from second-order statistics of projected wind velocities (Vierinen et al., 2019).
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8 Conclusions

We have introduced an alternative observation method based on Gaussian process regression analysis to resolve MLT wind525

fields in 4D from multistatic radar observations. Based on Monte Carlo simulations of known wind field distributions, our

proposed method provides unbiased mean velocity estimates and posterior velocity variances that are proportional to prior

velocity variances. By using an adaptive fitting procedure based on input data, unbiased posterior variances can be achieved.

This adaptive approach is currently not practical for real-time applications, but is ideal for case studies.

The horizontal regions of good GPR method performance in MLT wind determination are dependent on the meteor scatter530

geometric configuration. On one hand, optimal configurations should ultimately increase the number of detections. However,

on the other hand, these same configurations need to provide sufficient Bragg vector diversity. For the particular SIMONe2018

experiment scattering geometry, these factors meant that vertical velocity estimates with relatively small variances were ob-

tained over a much smaller horizontal area than horizontal wind estimates.

Overall, the GPR method has attractive benefits for MLT regional and weather studies: 1) it enables flexible analysis by535

allowing grid-free wind estimates; 2) it provides statistical uncertainties for the estimated winds that reflect measurement

uncertainty and meteor observation geometry; and 3) it adapts to the horizontal, vertical, and temporal scales of the data,

accounting for measurement density, and thus is able to resolve winds at relatively small scales.

Data availability. Meteor observations from the SIMONe 2018 campaign on November 5, 2018 and wind estimates produced by the GPR

method can be found at https://zenodo.org/record/5550854 (Volz et al., 2021). Additional information and hyperparameters used for the GPR540

wind estimates can also be found there.
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