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Abstract. This study gives a systematic comparison of the Tropospheric Monitoring Instrument (TROPOMI) version 1.2 and

Ozone Monitoring Instrument (OMI) QA4ECV tropospheric NO2 column through global chemical data assimilation (DA)

integration for the period April–May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and

coverage. The smaller mean relative observation errors by 16% in TROPOMI than OMI over 60◦N–60◦S during April–May

2018 led to larger reductions in the global root mean square error (RMSE) against the assimilated NO2 measurements in5

TROPOMI DA (by 54%) than in OMI DA (by 38%). Agreements against the independent surface, aircraft-campaign, and

ozonesonde observation data were also improved by TROPOMI DA compared to the control model simulation (by 12–84%

for NO2 and by 7–40% for ozone), which were more obvious than those by OMI DA for many cases (by 2–70% for NO2 and

by 1–22% for ozone)
:::::::
because

::
of

:::::
better

::::::::
capturing

:::::
spatial

::::
and

:::::::
temporal

:::::::::
variability

::
by

::::::::::
TROPOMI

:::
DA. The estimated global total

NOx emissions were 15% lower in TROPOMI DA, with 2–23% smaller regional total emissions, in line with the observed10

negative bias of the TROPOMI version 1.2 product compared to the OMI QA4ECV product. TROPOMI DA can provide city

scale emission estimates, which were within 10% differences with other high-resolution analyses for several limited areas,

while providing a globally consistent analysis. These results demonstrate that TROPOMI DA improves global analyses of

NO2 and ozone, which would also benefit studies on detailed spatial and temporal variations in ozone and nitrate aerosols and

the evaluation of bottom-up NOx emission inventories.15

1 Introduction

Satellite measurements from the Global Ozone Monitoring Experiment (GOME) (Burrows et al., 1999), the Scanning Imaging

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) (Bovensmann et al., 1999), the Ozone Monitoring

Instrument (OMI) (Levelt et al., 2006), and GOME-2 (Callies et al., 2000) have provided long-term global pictures of tropo-

spheric NO2 columns since 1996. Tropospheric NO2 is important for air quality, atmospheric chemistry, and climate change20

as the main precursor of tropospheric ozone and nitrate aerosols (IPCC, 2021). Although these measurements have provided

unprecedented information on global and regional NO2 variations associated with changes in human and natural activity, their
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spatial coverage and accuracy limited their ability for a range of applications. Since October 2017, the Tropospheric Monitor-

ing Instrument (TROPOMI) onboard the Sentinel-5 Precursor (Veefkind et al., 2012) has been measuring tropospheric NO2

columns at higher spatial resolutions of 7 × 3.5 km2 (5.5 × 3.5 km2 after 6 August 2019) and improved signal-to-noise (S/N)25

ratio, compared to previous satellite measurements such as OMI (Eskes et al., 2019; van Geffen et al., 2019).

Satellite NO2 observations have proven useful for constraining NOx emissions, for instance, through fitting downwind line

densities (e.g., Lin et al., 2012; de Foy et al., 2015; Liu et al., 2016) and chemical transport modelling (e.g., Stavrakou et al.,

2013; Ding et al., 2015; Miyazaki et al., 2017). Using TROPOMI NO2, surface NOx emissions have been estimated at high

spatial and temporal resolutions, but studies are mostly limited to specific areas at point source to urban scales (Beirle et al.,30

2019; Goldberg et al., 2019; Lorente et al., 2019; van der A et al., 2020; Huber et al., 2020; Lange et al., 2021). In recent studies,

TROPOMI NO2 retrievals have also been used to provide a detailed understanding of regional and global emission reductions

during the COVID-19 lockdowns (Ding et al., 2020; Miyazaki et al., 2020b, 2021; Kim et al., 2021; Zhang et al., 2021). These

studies demonstrate the great potential of TROPOMI NO2 for improving the spatial distribution and temporal variability of

emissions. Nevertheless, its relative advantage over previous satellite measurements, such as OMI NO2, in emission estimations35

for different regions of the world has not been clearly addressed in a quantitative and consistent manner.

Impacts of individual measurements can be evaluated using state-of-the-art data assimilation (DA) techniques, which have

widely been used in numerical weather forecast applications (e.g., Gelaro and Zhu, 2009). Chemical DA systems have been

used to address measurement impacts on atmospheric composition analysis, including the evaluation of air pollutant emissions

(Fortems-Cheiney et al., 2009; Barré et al., 2014, 2015; Emili et al., 2014; Miyazaki et al., 2012b, 2017, 2019; Zhang et al.,40

2019). A multi-constituent chemical DA system developed by our group assimilates multiple satellite measurements simulta-

neously to improve emissions and concentrations of various species (e.g., Miyazaki et al., 2017, 2020a; Sekiya et al., 2021),

which allows us to evaluate the relative value of TROPOMI and OMI retrievals in a consistent framework.

In this study, we compared concentration and emission analyses derived from the assimilation of TROPOMI and OMI

tropospheric NO2 retrievals, which simultaneously optimize tropospheric NO2, ozone concentrations, and NOx emissions at45

0.56◦ resolution for the globe. Although this resolution is still insufficient to resolve point source to urban scales, it has the

advantage of providing globally–consistent analyses on a megacity scale (Sekiya et al., 2021). The DA analyses were validated

against assimilated and independent observations. The systematic comparison of TROPOMI DA and OMI DA reveals relative

advantages of DA using TROPOMI over OMI, which benefit studies in particular on the evaluation of bottom-up emission

inventories and formation processes of ozone and nitrate aerosols. The remainder of this paper is structured as follows. Section50

2 describes the observation data used for the assimilation and validation and the DA system. Section 3 validates tropospheric

NO2 concentration analyses against assimilated and independent observations. Sections 4 and 5 present surface NOx emission

analyses and their impacts on the ozone analyses, respectively. Section 6 provides a summary of the study.
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2 Data and methods

2.1 TROPOMI and OMI satellite observations of tropospheric NO2 for assimilation55

The TROPOMI and OMI instruments are ultraviolet/visible nadir-scanning solar-backscatter spectrometers (Levelt et al., 2006;

Veefkind et al., 2012). The local equator crossing time is approximately 13:40 LT (local time) for both instruments. The

TROPOMI and OMI ground pixel sizes are 3.5 × 7 km2 ( 3.5 × 5.5 km2 after 6 August 2019) and 13 × 24 km2, respectively.

TROPOMI and OMI provide nearly global daily coverage. We used the TROPOMI NO2 unofficial reprocessing product

(version 1.2 beta), which is similar to the official version 1.2.2 reprocessing product (van Geffen et al., 2020), and the OMI60

QA4ECV version1.1 product (Boersma et al., 2017, 2018) for the period 1 April–31 May 2018. These products were retrieved

based on the differential optical absorption spectroscopy (DOAS) approach using the same wavelength window of 405–465

nm, with slight differences in the detailed settings, such as the formulation of modeled reflectance, the fitting methods, and

the intensity offset correction (van Geffen et al., 2020). The TROPOMI slant column density (SCD) error for a single pixel

is 30% (20% after August 6, 2019) lower than that of the OMI retrievals (van Geffen et al., 2020). A priori NO2 profiles for65

TROPOMI and OMI were obtained from the TM5-MP data assimilation system at 1◦×1◦ resolution. Temporal changes in

row anomalies (after 2007), stripes, and instrument radiometric degradation increase the uncertainty of the OMI NO2 SCD

by 1–2% per year and decrease the coverage area fraction (Schenkeveld et al., 2017; Zara et al., 2018). Therefore, the relative

advantages of TROPOMI over OMI in 2018 need to be evaluated with caution.

The TROPOMI retrievals with quality assurance (QA) values of > 0.75 were used, which corresponds to good quality70

retrievals over (nearly) cloud free scenes. This screening criteria are similar to the criteria applied for OMI: cloud radiance

rfaction
::::::
fraction

:
(CRF) of < 0.5, solar zenith angle (SZA) of < 81◦, surface albedo of < 0.3, quality flag of = 0, and ratio

of tropospheric air mass factor (AMF) to geometric AMF of > 0.05. For OMI, retrievals affected by row anomalies were

excluded using a quality flag. Cloud-covered scene retrievals with CRF of > 0.5 were separately used for optimizing lightning

NOx sources, following the method proposed by Miyazaki et al. (2014).75

Negative biases (by up to 50%) against surface remote sensing observations in the TROPOMI versions 1.2 and 1.3 products

were reported by Verhoelst et al. (2021). However, a large fraction of the negative biases might arise from the vertical profile

shape of NO2 assumed for retrievals, as reported by Dimitropoulou et al. (2020) for Uccle, Belgium. Compared to the OMI

QA4ECV product, the tropospheric NO2 column in the TROPOMI versions 1.2 and 1.3 products are systematically lower

especially for winter, as reported by Lambert et al. (2021), which is largely attributed to a negative cloud height bias in the Fast80

Retrieval Scheme for Clouds from Oxygen absorption band (FRESCO) implementation (van Geffen et al., 2021).

2.2 Independent observations for validation

Vertical profiles and surface concentrations of NO2 and ozone derived from TROPOMI DA and OMI DA were validated

against independent observations. The DA analysis fields at the closest time to measurement were sampled using two-hourly

analysis output, and then linearly interpolated to the observation locations from the surrounding grids in the horizontal and85
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vertical directions. Vertical profiles were compared by averaging data within each vertical pressure bin, namely 7 bins from

850 (800–900) to 250 (200–300) hPa.

2.2.1 NASA ATom aircraft-campaign observations

Vertical profiles of NO2 were obtained from the NASA Atmospheric Tomography mission 4 (ATom-4) aircraft campaign

(Wofsy et al., 2018). The ATom-4 campaign was conducted using a NASA DC-8 aircraft from 24 April to 21 May 2018. The90

DC-8 flight tracks covered regions between 85◦S and 83◦N over the Pacific, Atlantic, and United States. The NO2 concen-

trations were measured via chemiluminescence with an overall uncertainty of 20 pptv (Weinheimer et al., 1994).
::
the

:::::::
NOAA

::::::
NOyO3

:::::::::
4-channel

:::::::::::::::::
chemiluminescence

:::::::::
instrument

:::
per

::
1
::::::
second

:::::
with

::::::::
precision

::
of

:::::
5–10

::::
pptv

::::::
(https://

:::::::::::::::::
espoarchive.nasa.gov/

:::::::::
instrument/

::::::::
NOyO3).

:::
The

:::::::
merged

::::::
dataset

::
of

:::::
flight

::::
data

::::
with

::::::::
10-second

::::::
means

::::
was

::::
used

:::
for

:::
the

:::::::::
validation. To evaluate the DA

performance for vertical NO2 profiles over polluted areas, we used data averaged over coastal regions of the western United95

States (117.25–122.5◦W, 32–37◦N) from three flights on 24 and 27 April, and on 21 May.

2.2.2 Surface in-situ observations

We used surface NO2 and ozone concentrations from 3,255 sites over Europe obtained from the European air quality database

(AirBASE) of the European Environmental Agency (EEA), 404 sites over the United States obtained from the Air Quality

System (AQS) of the United States Environmental Protection Agency (US EPA), and 1,246 sites over Japan obtained from100

Japanese continuous measurement data of general air pollution at ground level compiled by the National Institute of Environ-

mental Studies (NIES). We excluded sites in high-traffic and industrial locations, because the 0.56◦-resolution model grids

cannot resolve NO2 enhancement at roadside and individual point sources. For AirBASE and AQS, sites with station types

of “Industrial” and “Traffic” and with land use of “INDUSTRIAL” and “MOBILE” were excluded, respectively. For Japan,

we excluded measurement sites for automobile exhaust gases. More than 97% of the observed NO2 concentrations used in105

this study were measured by commercial chemiluminescence analyzers, with typical measurement errors of 1–5% (Gluck

et al., 2003). These analyzers overestimate the ambient NO2 concentrations, because the measurements contain interference

from reactive nitrogen compounds other than NO2 (e.g., Dickerson et al., 2019). Thus, correction factors proposed by Lamsal

et al. (2008) using concentration analyses of HNO3, PAN, and
∑

ANs were applied to the observations derived from the

commercial chemiluminescence analyzers in the manner described by Sekiya et al. (2021):110

CF =
NO2

NO2 +
∑

ANs + 0.95 × PAN + 0.35 × HNO3
, (1)

where
∑

AN is the sum of all alkyl nitrate concentrations, and PAN is the peroxyacetyl nitrate concentrations.

2.2.3 Ozonesonde observations

The observed vertical profiles of ozone were obtained from the World Ozone and Ultraviolet Data Center (WOUDC, http://

www.woudc.org), Southern Hemisphere Additional Ozonesondes (SHADOZ; Sterling et al. (2018); Thompson et al. (2017);115

Witte et al. (2017, 2018) and the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Labora-
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tory (ESRL) Global Monitoring Division (GMD, ftp://ftp.cmdl.noaa.gov/ozwv/ozone). We used 127 profiles at 19 stations for

the northern extratropics (20–90◦N), 45 profiles at 9 stations for the tropics (20◦S–20◦N), and 36 profiles at 7 stations for the

southern extratropics (20–90◦S).

2.3 Data assimilation system120

2.3.1 CHASER chemical transport model

We used the global chemical transport model, CHASER V4.0, at a resolution of 0.56◦ with 32 vertical layers (Sudo et al.,

2002; Sekiya et al., 2018) as the forecast model, which simulates tracer transport, emission, dry and wet deposition, and

chemical processes (92 species and 262 reactions) including the ozone-HOx-NOx-CO-VOCs system. The meteorological

fields simulated by the dynamical and physical modules of CHASER (i.e., MIROC-AGCM atmospheric general circulation125

model (K-1 model developers, 2004)) were nudged to the 6-hourly ERA-Interim reanalysis data (Dee et al., 2011) with a

relaxation time of 5 days for temperature and 0.7 days for horizontal winds, and used in the chemical module of CHASER at

every time step (1–4 min). We demonstrated that increasing model resolution from the conventional resolution (2.8◦) to 0.56◦

resolution substantially improves the model performance over polluted regions (Sekiya et al., 2018).

The a priori surface NOx emissions were obtained from the HTAPv2.2 anthropogenic emission inventory (at 0.1◦ resolution)130

for 2010 (Janssens-Maenhout et al., 2015), the Global Fire Emission Database (GFED) version 4.1s monthly-based biomass

burning emission inventory (at 0.25◦ resolution) for 2018 (Randerson et al., 2018), and the Global Emission Initiative (GEIA)

soil NOx emission inventory (at 0.5◦ resolution) (Yienger and Levy, 1995).
:::::
These

::::::::
emissions

:::
are

::::::::
released

::
at

::
the

::::::
lowest

::::::
model

:::::
layers.

:
The a priori lightning NOx sources were calculated in the model at each model time step using the parameterization

proposed by Price and Rind (1992),
::::
with

:::
the

:::::::::
assumption

:::
for

::::::
vertical

::::::::::
distribution

::
of

::::::::
lightning NOx::::::

source
:::::
based

::
on

:::
the

::::::::
C-shaped135

:::::
profile

:::::
given

:::
by

::::::::::::::::::
Pickering et al. (1998).

2.3.2 Ensemble Kalman filter data assimilation

We developed a state-of-the-art chemical DA system (e.g., Miyazaki et al., 2019, 2020a) using the local ensemble transform

Kalman filter (LETKF) technique (Hunt et al., 2007)
:
,
:::::
which

:::::::::
optimizes

:::::
ozone

::::
and

::::::
related

::::::::
chemical

:::::::
species’

:::::::::::::
concentrations,

:::
and

:::::
ozone

::::::::::
precursors’

::::::::
emissions

:::::::::::::
simultaneously. The LETKF uses an ensemble model forecast to estimate background error140

covariance assuming that the background ensemble perturbations sample the forecast model errors. The background ensemble

model fields were converted into observation space by applying the observation operator which includes a spatial interpolation

operator, and an averaging kernel. The inclusion of averaging kernels in the observation operator describes the vertically-

dependent sensitivities and removes the influence of a-priori profile shape (Eskes and Boersma, 2003). The analysis ensemble

mean xa was obtained by combining the background ensemble mean xb and assimilated observations yo with relative weights,145

which were determined using background and observation error covariance matrices Xb and R, respectively:

xa = xb +XbP̃ a
(
Y b
)T

R−1
(
yo−yb

)
, (2)
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where P̃ a is the local analysis error covariance in the ensemble space, while yb and Y b are the background ensemble mean

and error covariance in the observation space, respectively. The local analysis error covariance was estimated as

P̃ a =

[
(k− 1)I

1 + ∆
+
(
Y b
)T

R−1Y b

]−1

, (3)150

where ∆ is a covariance inflation factor (= 7% per DA cycle) and k is the ensemble size (32 or 64 in this study, see Table 1 for

details).

Surface and lightning NOx emissions were estimated based on a state argumentation method (e.g., Evensen, 2009) using

the relationship between NO2 concentrations and NOx emissions in the background error covariance matrix generated based

on ensemble model simulations.
:::
For

::::::::
lightning NOx:

,
:::::::::::
multiplication

::::::
factors

:::
for

:::
the

::::::::
lightning NO

:::::::::
production

:::
rate

:::::
were

:::::::
adjusted155

::::::::
differently

::
at
::::::::
different

:::::
model

:::::
layers

:::::
using

:::
the

:::::::
method

:::::::
proposed

:::
by

:::::::::::::::::::
Miyazaki et al. (2014)

::
and

:::
the

::::::::::
background

:::::
error

:::::::::
covariance

::::::
matrix. The initial a priori error was set as 40% and 60% for the surface and lightning NOx sources, respectively. In the analysis

step, the standard deviation of emission ensembles was artificially inflated to a predefined minimum value obtained through

sensitivity calculations (i.e., 56% of a priori emissions) to prevent covariance underestimation.

Our previous study (Sekiya et al., 2021) demonstrated that DA improvements were larger by factors of 1.5–3 at 0.56◦ res-160

olution than at 2.8◦ resolution over polluted regions in comparison to the assimilated NO2 observations. This high resolution

leads to reduced spatial representativeness errors (due to an increased average coverage fraction per grid cell at 0.56◦ resolution

by a factor of two, compared to 2.8◦ resolution). The 0.56◦-resolution ensemble model simulation also generates background

error covariance matrix which describes small(0.56◦)-scale features. Because of distinct non-linear transport and chemical

processes, assimilation considering the background error covariance would also be essential for making the best use of ob-165

servational information. The multi-constituent DA system have been used to assimilate ozone, NO2, CO, SO2, and HNO3

(Miyazaki et al., 2020a). Nevertheless, in this study, only TROPOMI and OMI NO2 were assimilated to emphasize the impact

of assimilation of tropospheric NO2 retrievals.

2.3.3 Super-observation approach

The super-observation approach (Eskes et al., 2003; Miyazaki et al., 2012a) was used for generating satellite observation data170

representative to the model grid size (i.e., 0.56◦). The super-observation approach can minimize spatial representativeness

errors for spatially varying concentrations of short-lived tracers on sub-grid scales, such as NO2, compared to the thinning

approach which randomly selects an observation per grid cell (Boersma et al., 2016). The resolution of super-observation

was set to be identical to the forecast model resolution. The super-observation concentration was generated by averaging all

data within a super-observation grid cell, while applying a weighting function based on the coverage area of overlap with175

the super-observation grid cell. The super-observation error was calculated as a combination of measurement and spatial

representativeness errors
√
σm +σr:::::::::

√
σ2
m +σ2

r . In our approach, the super-observation measurement error σm was estimated

as

σm =

√√√√(1− c)
n∑

i=1

w2
i σ

2
m,i + c

n∑
i=1

(wiσm,i)2, (4)
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where σm,i is the mean measurement error at individual pixels related to total slant column density (SCD), stratosphere–180

troposphere separation (STS), and tropospheric AMF, c is the error correlation coefficient among the individual retrieval data for

these error components, and n is the number of measurements with non-zero overlap with the chosen grid cell. This approach

explicitly accounts for spatial correlations, c, between observation errors which depends on the error sources, compared to

the conventional approach used in Miyazaki et al. (2012a). It is supposed that observation errors related to total SCD and

tropospheric AMF contain larger random components (by 85%, i.e., c= 0.15) than those related to STS (by 0%, i.e., c= 1.0).185

The spatial representativeness error σr was calculated as a function of coverage area fraction in the same way as Boersma et al.

(2016).

2.4 Experimental setup

As summarized in Table 1, four DA runs from April–May (61 days) were performed. Firstly, we conducted two DA calculations

for TROPOMI and OMI separately at an ensemble size of 64. This comparison was used to investigate how TROPOMI190

DA improves agreements with assimilated and independent observations, compared to OMI DA (Sections 3.2–3.4, 4, and

5). Secondly, we compared OMI DA calculations for two different years (2005 and 2018) at an ensemble size of 32. This

demonstrates the impacts of OMI instrumental degradation and row anomalies , which significantly reduce daily coverage (c.f.,

Section 2.1), on the DA performance (Section 3.5). In addition, a control model simulation without any DA was conducted to

measure the DA impacts in each case. We chose the calculation period of April–May 2018 because of the AToM-4 aircraft-195

campaign data availability (see Section 2.2.1). Furthermore, systematic biases between the TROPOMI and OMI retrievals are

known to be smaller in the summer season than those in the winter season (Lambert et al., 2020). We analyzed the DA results

for the period 15 April–31 May after a 2 week-long spin-up.

3 Validation results

3.1 Data characteristics200

Super-observation concentrations and errors can affect DA results, which are compared in Figure 1 and Table 2. The TROPOMI

and OMI super-observation concentrations were well correlated (r = 0.82 over 60◦S–60◦N) during April–May 2018, with

lower concentrations in TROPOMI by 15% averaged over 60◦S–60◦N without applying averaging kernels of each other. The

mean super-observation errors and mean relative super-observation errors (i.e., errors divided by concentrations) in TROPOMI

averaged over 60◦S–60◦N were compared to those in OMI. The mean super-observation errors were 33% smaller in TROPOMI205

than in OMI, while the mean relative super-observation errors were 16% smaller in TROPOMI. These differences mainly

result from improvements in SCD-related errors associated with improved S/N ratio of TROPOMI data, reduced random

error components by increasing spatial resolution of TROPOMI data (i.e., an increasing number of observations per super-

observation grid cell; see equation 4), and smaller TROPOMI stripes.
:::
The

::::::::
improved

::::
S/N

:::::
ratio

:::
and

:::::::
stripes

:::::::::
contributed

:::
to

::::
about

:::::
80%

:::
and

::::::
almost

:::::
100%

::
of

:::::::
smaller

::::::::::::::
super-observation

:::::
errors

::::
over

:::::::
polluted

::::
and

::::::
remote

:::::::
regions,

::::::::::
respectively.

:
Over polluted210
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regions, because individual retrieval uncertainties scale with tropospheric column amounts, the lower mean concentrations

in TROPOMI than in OMI also led to the smaller super-observation errors in TROPOMI (by 33%). As an exception, over

remote regions, reduced S/N ratio in SCD, rather than the lower concentrations, explain the smaller super-observation errors

(by 32%) in TROPOMI. Over some remote areas, such as northern high latitudes, the Tarim basin, the tropical Pacific Ocean,

and southern midlatitudes, relative errors were larger in TROPOMI than in OMI (Figure 1i). The larger TROPOMI relative215

errros over these areas are influenced by dominant contribution of the uncertainties in stratospheric column for TROPOMI

because of reduced random error components in TROPOMI and the assumption of spatial correlation c= 1.

The spatial coverage per super-observation grid cell of TROPOMI (72%) was larger than those of OMI (69%) mainly

because of OMI row anomalies, which led to smaller spatial representativeness errors of TROPOMI (7%) than those of OMI

(10%). The mean relative super-observations errors of OMI were 8% smaller in 2005 than in 2018 (figure not shown), which220

is attributed to the temporal changes in OMI row anomalies, stripes, and instrument radiometric degradation (see Section 2.1).

The averaging kernel values in the lower troposphere (below 850 hPa) were higher by 44% in TROPOMI averaged over 60◦S–

60◦N than those in OMI, because mean CRF over 60◦S–60◦N is 15% smaller in TROPOMI due to better resolving small-scale

cloud-free scenes.

3.2 Self-consistency225

The performance of TROPOMI DA and OMI DA was confirmed by the χ2 test (Ménard and Chang, 2000; Zupanski and

Zupanski, 2006). χ2 value is
::::
used

::
to

::::::::
diagnose

:::::::
balance

:::::::
between

:::::
actual

::::::
errors

:::
and

::::::::
estimated

::::::
errors.

::::::
When

:::
χ2

::::
value

::
is
::::::

larger

:::::::
(smaller)

::::
than

:::
the

:::::
ideal

::::
value

:::
of

::
1,

:
it
::
is

::::::::
suggested

:::::::::::::
underestimated

:::::::::::::
(overestimated)

::::::::::
background

:::::
error

:::::::::
covariance

::
or

::::::::::
observation

:::::
errors.

:::
χ2

:::::
value

::
is

:
diagnosed from the ratio of the Observation-minus-Forecast (OmF; i.e., yo−H( xb)) to estimated error

covariance in the observational space (HPbHT +R) as230

Y =
1√
N

(HPbHT +R)−1/2(yo−H(xb)) (5)

χ2 = trace YYT . (6)

The mean values of estimated χ2
:::
with

::::::::
standard

::::::::
deviation

:::::
range

:
over polluted regions (> 1×1015 molecules cm−2) after

inflation factor tuning was 0.99
:::::
±0.25

:
for TROPOMI DA, which is close to the ideal value of 1. The

:::::::
whereas

:::
the mean χ2 of

1.17for OMI suggests underestimated background error covariance or observation errors
:::::
±0.19

:::
for

::::
OMI

::::
DA

::
is

:::::
larger

::::
than

:::
the235

::::
ideal

:::::
value.

We also evaluated the self-consistency with the assimilated observations based on reductions in root-mean-square error

(RMSE) by DA (∆RMSE) using daily maps sampled at observation locations as

∆RMSE = −

√∑N
i=1(A(cassim)−V )2

N
−

√∑N
i=1(A(cctl)−V )2

N

/√∑N
i=1(A(cctl)−V )2

N

 (7)

where V and A are the observed tropospheric NO2 column and corresponding averaging kernels, respectively, used for DA;240

cassim and cctl are NO2 concentration fields obtained from the DA runs and control model simulations, respectively; and N
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is the number of super-observation data. The level of significance of ∆RMSE was determined using the Mann-Whitney U test

(Mann and Whitney, 1947).

As shown in Figure 2 and Table 3, the RMSE for TROPOMI DA over 60◦S–60◦N was reduced by 54% compared to that for

the control model simulation, with larger RMSE reductions over polluted regions (by 60%) than over remote regions (by 37%).245

The RMSE reductions were substantial over most regions in the tropics and northern midlatitudes, whereas improvements

are not clear over the northern high latitudes, Tarim Basin, Arabian Sea, northern Australia, South America, and parts of the

southern mid-latitudes. Mean RMSE reductions were larger for TROPOMI DA than OMI DA (by 38%). The differences in

RMSE reductions between TROPOMI DA and OMI DA over the tropics and northern midlatitudes were statistically significant

at the 95% confidence level. These differences can be explained by the reduced relative super-observation errors in TROPOMI.250

::::
Over

:::
the

::::::
oceans

::
in

:::
the

::::::
tropics

:::
and

:::::::::::
midlatitudes,

::::::
higher

::::::
vertical

:::::::::
sensitivity

::::
(i.e.,

:::::::::
averaging

:::::::
kernels)

::
in

:::::::::
TROPOMI

::::
than

:::::
OMI

::
in

::
the

::::::
lower

::::::::::
troposphere

:::
and

:::::
above

::::::
clouds

::::::::::
contributed

::
to

:::
the

::::::::
improved

:::::::::::
performance,

:::::::
through

::::
ship

::::
and

:::::::
lightning

:
NOx :::::::

emission

:::::::::
corrections

:::
and

::::::
direct NO2 :::::::::::

concentration
::::::::::::
modifications. In contrast, the differences in RMSE reduction between TROPOMI

DA and OMI DA were statistically insignificant over most regions with larger relative super-observation errors in TROPOMI.

The two-dimensional histogram of grid-level relative super-observation errors and RMSE reductions (Figures 3a and 3b)255

shows clear decreases in RMSE reductions with increasing relative super-observation errors for both TROPOMI and OMI DA.

Steep RMSE decreases occurred around relative super-observation errors of 20–50%, which reflected areas over and downwind

of polluted regions. Over polluted regions, observational information is more effectively assimilated into the model, because of

the large uncertainty (i.e., background error covariance) of estimated NOx emissions over these regions. As shown in Figure 3c,

mean relative super-observation errors at individual grids were smaller than those in TROPOMI in OMI by 16%. Corresponding260

to these smaller super-observation errors, the mean RMSE reductions by TROPOMI DA at individual grids (by 54%) were

larger than those by OMI DA (by 38%), with large differences in frequency of RMSE reductions between TROPOMI DA and

OMI DA for RMSE reductions of > 10% (Figure 3d). These results confirm that improved RMSE reductions by TROPOMI

DA compared to OMI DA can be attributed to the reduced relative super-observation errors in TROPOMI. Meanwhile, the

obtained result suggests that
:::
the DA efficiency by TROPOMI

:::
was

::::::::
evaluated

::::::
based

::
on

::::::
RMSE

::::::
against

::::::::::
assimilated

::::::::::
observation265

::::
itself.

::
It
:
is determined by the amount and quality of TROPOMI data, regardless of the TROPOMI low bias.

3.3 Validation against independent observations

3.3.1 ATom aircraft-campaign data

Figure 4 and Table 4 compare
:::::::
validated

:
the vertical profiles of NO2 with the ATom-4 aircraft campaign observations on 24

and 27 April, and 21 May when the DC-8 aircraft flew over coastal areas of the western United States .
:::::::::::::::
(117.25–122.5◦W,270

:::::::::
32–37◦N).

:::
For

:::
the

:::::::::::
comparison,

:::::
model

::::::::::
simulation

:::
and

::::
data

:::::::::::
assimilation

::::::
results

::::
were

::::::::
sampled

::
at

::::::::::
observation

::::::::
locations,

::::
and

:::
then

:::
the

::::::::::
observation

:::::
data,

:::
the

::::::
control

:::::
model

::::::::::
simulation,

:::
and

:::
the

::::
data

::::::::::
assimilation

:::::
were

:::::::
averaged

:::
on

::::
each

::::
day

::::
over

:::
the

::::::
coastal

::::
areas

:::
of

:::
the

:::::::
western

::::::
United

::::::
States.

:
The control model simulation overestimated the observed concentrations in the lower

troposphere (700–900 hPa) by factors of 1.4–4 in all cases, while underestimating the NO2 concentrations in the middle and
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upper troposphere (300–700 hPa) by 48–70%, except on 27 April. The positive model biases were particularly large at 750 hPa275

on 24 April and at 850 hPa on 27 April and 21 May. The use of 2010 anthropogenic NOx emissions could explain the positive

model biases. In addition, on 24 April, the simulated planetary boundary layer (PBL) height was 30% higher than that in the

ERA-Interim reanalysis, which could in turn increase NO2 bias at 750 hPa.

On 24 April, TROPOMI DA increased negative bias at 850 hPa, while it reduced positive bias at 750 hPa, which could also

be attributable to model biases in PBL height. The mean bias in the lower troposphere (below 700 hPa) was largely reduced280

by TROPOMI DA (by 84%) on 24 April. The improvements were small (by 17%) on 27 April when the DC-8 aircraft NO2

measurements were conducted in the early morning before the TROPOMI overpass time, whereas TROPOMI DA reduced

positive model biases by 78% in the lower troposphere on 21 May. In the middle and upper troposphere, TROPOMI DA

reduced the model biases by 12–53%. These bias reductions were larger by 52–70% for the lower troposphere and by up to

31% for the middle and upper troposphere in TROPOMI DA than OMI DA, except for the lower troposphere on 27 April.285

Because of the large variability in the observed concentrations, these differences in bias were statistically insignificant based

on a two-sample t test, except for the upper troposphere on 21 May.

3.3.2 Surface in-situ data

Surface in-situ observation data at 14:00 LT was used for validation to evaluate assimilation impacts just after their overpass

times. Validation was conducted after filtering out model grids where water bodies cover >50% of a grid box area using290

annual Moderate Resolution Imaging Spectrodadiometer (MODIS) land cover data (Friedl and Sulla-Menashe, 2015) for 2018,

considering large representativeness errors. Over Europe, the regional mean model bias and RMSE of NO2 were −18% and

145%, respectively (absolute errors are shown in Table 5). The model biases vary with regions, with positive biases of 12–

115% over the United Kingdom (UK), Belgium, and the Netherlands and negative biases of 42–78% over Italy, Serbia, and

Romania (Figure 5). Over the United States, regional mean model bias and RMSE were 37% and 268%, respectively, with295

larger positive biases over urban areas such as New York, Los Angeles, and Chicago. The regional mean bias and RMSE over

Japan were −23% and 124%, respectively.

TROPOMI DA reduced the regional RMSE over Europe by 29%, with larger RMSE reductions by 45% and 47% over the

UK and the Netherlands, respectively, reflecting improvements in spatial and temporal variability by TROPOMI DA (Figure

6). Because of the small RMSEs in the control model simulation, RMSE reductions by TROPOMI DA were not obvious over300

Italy, Spain, and Portugal. Over the United States, TROPOMI DA reduced the regional mean bias and RMSE by 46% and

50%, respectively. In contrast to the large RMSE reductions over the eastern United States and western coastal areas, RMSEs

increased over Colorado and Wyoming again due to the small RMSEs in the control model simulations. Over Japan, TROPOMI

DA reduced RMSE by 23%
::::::
because

:::
of

:::::
better

::::::::
capturing

::::::
spatial

:::
and

::::::::
temporal

::::::::
variations, but increased negative model bias by

68%. Error reductions were smaller in OMI DA overall. The RMSE over Europe was increased by OMI DA by 5% mainly305

due to the increased errors over the Netherlands. Over the United States and Japan, the RMSE reductions for megacities such

as New York, Los Angeles, and Tokyo were 25–70% larger in TROPOMI DA than in OMI DA. The regional RMSE reduction

was comparable between the two runs (by 47% for the United States and 20% for Japan by OMI DA).
::::
These

::::::
results

:::::::
suggest
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:::
that

:::
the

::::::
results

::
of

:::::::::
TROPOMI

::::
DA

::::
were

:::::::
affected

::
by

:::
the

::::::::::
TROPOMI

:::
low

::::
bias

::::::::
compared

:::
to

::::
OMI,

:::::
while

::::::::::
TROPOMI

:::
DA

::::::::
provided

:::::
better

:::::::::
constraints

::
on

::::::
spatial

:::
and

::::::::
temporal

::::::::
variations

::
in

:
NO2 ::::::::::::

concentrations
::::
than

::::
OMI

::::
DA.

:
310

3.4 Regional performance over Los Angeles

The magnitude of improvements by DA can be affected by meteorological conditions (e.g., Miyazaki et al., 2019). We eval-

uated impacts of meteorological conditions on the self-consistency over Los Angeles where both independent surface and

aircraft-campaign observations were available (Sections 3.3.1 and 3.3.2). During 15 April–31 May, southwesterly winds were

predominant over Los Angeles, while wind speed varied (c.f., Figure 8). As shown in Figure 7, the RMSE over Los Angeles315

city (black rectangles of Figure 7) were reduced by TROPOMI DA in windy conditions (wind speed > 2.5 m s−1) by 46%

and calm conditions by 37%. Over Los Angeles city, the RMSE reductions by TROPOMI DA were larger under the windy

conditions (by a factor of 1.3) compared with OMI DA, with statistical significance at the 99% confidence level; the RMSE

reductions were comparable under the calm conditions (within 5%). The TROPOMI measurements with high vertical sensi-

tivity (i.e., averaging kernels) in the lower troposphere captured the dilution of NO2 over Los Angeles city during the windy320

conditions better than OMI, which resulted in better improvements by TROPOMI DA than OMI DA under the windy condi-

tions. The vertical sensitivity of TROPOMI in the lower troposphere over Los Angeles city was 36% higher than that of OMI,

reflecting a smaller CRF in TROPOMI than in OMI (by 17%), because TROPOMI has higher spatial resolution and better

resolves small-scale cloud-free scenes over Los Angeles. In contrast, the super-observation errors and quantities in TROPOMI

and OMI during the windy conditions were comparable to those during the calm conditions (figure not shown). Meanwhile,325

over the surrounding areas of Los Angeles city, RMSE reductions by TROPOMI DA and OMI DA were comparable under

both the windy and calm conditions.

As summarized in Table 6, positive model bias in NO2 concentrations against in-situ observations for 15 April–31 May

2018 was 33%. Temporal correlation coefficient between observed and simulated concentrations was 0.49. TROPOMI DA

introduced negative bias, whereas improving the temporal correlation to 0.63. RMSEs were reduced by 37% and 26% during330

the calm and windy conditions, respectively. The negative bias was larger in TROPOMI DA than in OMI DA, whereas temporal

correlation coefficients in TROPOMI DA (r = 0.63) were larger than those in OMI DA (r = 0.25). The RMSE reductions

by TROPOMI DA were 8% larger than those by OMI DA under the windy conditions, whereas the RMSE reductions by

TROPOMI DA and OMI DA were comparable under the calm conditions. These results suggest similar improvements by

TROPOMI DA compared to OMI DA under the windy and calm conditions, while meteorological conditions slightly affect335

the magnitude of improvements in NO2 concentrations by TROPOMI DA compared to OMI DA.

3.5 Impact of OMI instrumental degradation

Temporal changes in OMI row anomalies, stripes, and instrument radiometric degradation from 2005 to 2018 could affect OMI

DA results. Thus, we compared OMI DA results between 2005 and 2018. As summarized in Table 3, the RMSE reduction over

polluted regions in 2018 (by 48%) was larger than that in 2005 (by 41%) with statistical significance at the 99% confidence340

level. The multi-year difference in DA performance is likely driven by inter-annual variations in meteorological conditions
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rather than by OMI degradation. Over Europe, the United States, and China, the number of cloud-free scenes in 2018 was

increased by 11–19% compared to those in 2005. In contrast, RMSE reductions over remote regions were similar (23% in

2018 and 25% in 2005). Such interannual changes in cloud cover can affect the overall OMI DA performance, which needs

to be considered in the TROPOMI and OMI comparison results for 2018. Nevertheless, the improvements against assimilated345

observations by TROPOMI DA (by 54%) were larger than those by OMI DA for both years 2005 (by 34%) and 2018 (by 38%).

TROPOMI DA clearly shows better performance compared to OMI DA for the periods before instrumental degradation, even

when considering inter-annual variations in meteorological conditions.

4 NOx emission estimates

The top-down estimates provided by TROPOMI DA significantly differed from the a priori emissions (Figure 9 and Table 7).350

TROPOMI DA tends to decrease emissions over the eastern United States, China, northern India, and Central Africa. Large

positive increments (by 42% on average) were found over regions where soil emissions are dominant (> 50% in a priori

emissions), such as over remote areas of Spain, Turkey, the Midwest United States, Kazakhstan, and the Sahel regions. This

suggests underestimated soil emissions in a prior inventories, as commonly reported by previous studies (Vinken et al., 2014;

Oikawa et al., 2015; Visser et al., 2019). The country and regional total emissions were decreased by 14% in the United States,355

38%
::
in China, 17% in India, and 22% in Central Africa, and increased by 12% in Europe, 39% in the Middle East, and 44 %

in Southeast Asia.

The global total NOx emissions were 15% smaller in TROPOMI DA than in OMI DA, with 3–18% smaller regional total

emissions for polluted regions and 22–23% smaller regional total emissions for biomass burning regions, reflecting
:::::
which

:::
led

::
to

::::::
smaller

:::::::
surface NO2 ::::::::::::

concentrations
::::::
(Figure

:::
9).

:::::
These

::::::::::
differences

::::::
reflect the low bias of TROPOMI retrievals compared360

to OMI retrievals. The low bias of the TROPOMI retrievals compared to the OMI retrievals also affects OH concentrations.

Assimilation of lower NO2 retrievals, through NOx emission and NO2 concentration optimization, led to weaker chemical

production of HOx and conversion from HO2 to OH. This effect resulted in 2–21% smaller regional-mean OH concentrations

in the lower troposphere in TROPOMI DA, except for South Africa. In contrast, differences in the regional total emissions over

India and the Middle East between TROPOMI DA and OMI DA were small (4–5%), reflecting small differences in regional-365

mean concentrations between the TROPOMI and OMI retrievals (4–6% lower in TROPOMI). Compared to the EDGARv5

(Crippa et al., 2019) and REASv3.2 (Kurokawa and Ohara, 2020) bottom-up emission inventories for 2015, the regional total

emissions from TROPOMI DA and OMI DA over major polluted regions, except for Europe, were smaller by 17–35% and 9–

21%, respectively. These results suggest that the emission estimates from OMI DA are closer to the EDGARv5 and REASv3.2

bottom-up emission inventories than those from TROPOMI DA (using the TROPOMI v1.2beta product).370

The NOx emissions derived from TROPOMI DA were compared with previous estimates over large urban areas based on

statistical fits of NO2 line density data with the exponentially modified Gaussian (EMG) function using TROPOMI NO2 (Beirle

et al., 2019; Lorente et al., 2019; Goldberg et al., 2019; Lange et al., 2021). We focused on large urban areas where at least

two estimates were available. For this comparison, a posterior emissions from our TROPOMI DA estimates were integrated
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inside a square of 100×100 km2 centered on the selected urban area, while the uncertainty information was obtained from375

the analysis ensemble spreads. As summarized in Table 8, our estimates were in good agreement with the previous estimates

within 10% differences for Riyadh, Chicago, and New York compared to the estimates from Beirle et al. (2019) and Lange

et al. (2021). Nevertheless, lower emissions in our estimates by 18–66% over Chicago, New York, and Toronto than the

estimates from Goldberg et al. (2019) could be explained by the difference in the TROPOMI NO2 AMF calculation, which

was replaced by Environment and Climate Change Canada (ECCC) with their high-resolution regional CTM and the MODIS380

surface reflectance (Griffin et al., 2019). For Paris, our estimate in late spring was lower by 35% and 41% than those by Lorente

et al. (2019) and Lange et al. (2021), respectively, but analyzed for different time periods in winter and annually, respectively.

Increases in NOx emissions during cold seasons are because of residential heating (Lorente et al., 2019).
::::::
Overall,

:::::
these

::::::
results

:::::
imply

:::
that

::::::::
top-down

:
NOx :::::::

emission
::::::::
estimates

:::::
using

:::::::::
TROPOMI

:::::::
version

::::::
1.2-1.3

:::::::
products

:::::
could

:::
be

:::::::
affected

::
by

:::
the

::::::::::
TROPOMI

:::
low

:::::
biases

:::::::::
compared

::
to

:::::
OMI,

:::::
while

::::::::
top-down

::::::::
estimates

:::::
using

:::::::::
TROPOMI

::::
have

:::
the

::::::::
potential

::
for

::::::::::
constraints

::
on

:::::::
detailed

::::::
spatial385

:::
and

:::::::
temporal

:::::::::
variations

:::::
based

::
on

:::::::::
validation

::::::
results

::::
(c.f.,

::::::
Section

::::
3.3).

:

Cloud-covered scenes of satellite NO2 retrievals were used to optimize lightning NOx sources following the method of

Miyazaki et al. (2014), which provide important constraints on tropospheric chemistry including ozone (e.g., Boersma et al.,

2005; Miyazaki et al., 2014; Allen et al., 2021). Because of its high spatial resolution, TROPOMI NO2 retrievals offer the

potential for better resolving small-scale cloud-covered scenes (Marais et al., 2021) and constraining lightning NOx sources.390

As a result, the difference between TROPOMI DA and OMI DA can be attributed to 75–92% higher vertical sensitivities above

the cloud height for cloud-covered scenes (CRF > 0.5). As shown in Table 7, the global total production of lightning NO

estimated by TROPOMI DA was 13% larger than that estimated by OMI DA, with larger regional total production by 14–52%

over North and South America, Southeast Asia, the Atlantic, and Indian Ocean. The impacts of TROPOMI on lightning NOx

source estimation will be investigated in more detail in a separate study.395

5 Impacts on ozone analysis

The NO2 DA plays an important role in improving the representation of tropospheric chemistry, including ozone. We evaluated

the relative values of TROPOMI and OMI NO2 DA on surface and tropospheric ozone analysis.

5.1 Validation using surface in-situ data

Daily maximum 8-h average (MDA8) ozone concentrations were validated using surface in-situ observation data in the same400

manner as NO2. As summarized in Table 5, the regional mean bias and RMSE of the control model simulation against surface

in-situ ozone observations over Europe were 22% and 29%, respectively, with large RMSEs over southern Europe (Figure

10). Over the United States, the mean model bias and RMSE were 10% and 22%, respectively, reflecting large model biases

over the eastern United States. The mean bias and RMSE over Japan were 7% and 18%, respectively. Positive model biases in

surface ozone over polluted regions are commonly reported in other global CTMs (Schnell et al., 2015; Turnock et al., 2020).405
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TROPOMI DA increased the mean bias and RMSE of surface ozone over Europe by 14% and 8%, respectively, with

large error increases over southern Europe. Increased bias and RMSE were also found over the western United States. Many

factors can lead to increased errors in ozone, including model errors in ozone precursors’ emissions other than NOx, chemical

processes, and meteorological processes such as PBL vertical mixing. For example, ozone responses to NOx emissions strongly

depend on the choice of CTMs (Miyazaki et al., 2020c), which affects the impacts of NOx emission corrections on ozone410

analyses. Over the eastern United States, RMSEs were typically reduced by 5–10 ppbv by TROPOMI DA, resulting in improved

bias by 14% and RMSE by 16% at country scale. Over Japan, the mean bias and RMSE were reduced by TROPOMI DA by

54% and 7%, respectively.

For most regions, better agreement with surface ozone data was obtained from TROPOMI DA than from OMI DA. OMI DA

resulted in larger increases in the positive bias and RMSE over Europe by 32% and 22%, respectively. Over the United States,415

the mean bias and RMSE were slightly increased by OMI DA by 8% and 1%, respectively. The bias reduction over Japan by

TROPOMI DA was larger than that by OMI DA (by 18%), while RMSE over Japan was increased by OMI DA (by 4%). The

better agreement in surface ozone by TROPOMI DA coincides with that in surface NO2 (c.f., Section 3.3.2). This confirms

that the better representation of NO2 through assimilation of advanced NO2 satellites is essential to improve surface ozone

analysis for many regions of the world. Meanwhile, any biases in satellite NO2 retrievals affect surface ozone analysis. Surface420

ozone analysis bias could be improved by
:::::
biases

:::
are

:::::::
expected

::
to
:::
be

::::::::
increased

:::
for

:
a
:
NOx ::::::

-limited
:::::
ozone

::::::::
chemical

::::::
regime

:::::
when

using updated retrievals with reduced TROPOMI NO2 negative biases
::::
bias.

5.2 Validation using ozonesonde data

Here we focus on the NO2 DA impacts on free tropospheric ozone. Mean negative model biases of ozone at 500 and 800 hPa

against ozonesonde observations were 9.5% and 3.8%, respectively, over the 20–90◦N band, 15.7% and 3.6% over the tropics425

(20◦S–20◦N), and 14.4% and 20.6% over the 20–90◦S band. The RMSEs at 500 and 800 hPa were 16% and 23%, respectively,

over the 20–90◦N band, 26% and 31% over the tropics, and 23% and 18% over the 20–90◦S band (Table 9).

TROPOMI DA greatly reduced the mean model biases and RMSE by 98% and 24% at 500 hPa, respectively, and 82%

and 14% at 800 hPa over the 20–90◦N band. Over the 20–90◦S band, there were reductions of 67% and 40% at 500 hPa,

respectively, and 70% and 35 % at 800 hPa. In contrast, it introduced large positive biases in the tropics. The reductions430

in model bias and RMSEs over the 20–90◦N and S bands provided by TROPOMI DA were larger than those by OMI DA

(by 24–91% and 12–22%, respectively). The increases in model biases and RMSEs over the tropics by TROPOMI DA were

smaller than those by OMI DA. The larger differences at 500 hPa over the tropics than over the extratropics can be attributed

to smaller NOx emission estimates over biomass burning regions in TROPOMI DA than those in OMI DA, through upward

transport of ozone and NOx and chemical processes. In addition, the tropospheric ozone burden over 60◦N–60◦S was smaller435

in TROPOMI DA (291 TgO3) than in OMI DA (304 TgO3), while estimates from both TROPOMI DA and OMI DA were

within the 287–311 TgO3 range of satellite-based estimates (i.e., the OMI/MLS, OMI-SAO, OMI-RAL, IASI-FORLI, and

IASI-SOFRID satellite products) for the period 2014–2016 (Gaudel et al., 2018).
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6 Summary and discussion

We compared DA analyses of NO2, ozone concentrations, and NOx emissions derived from the assimilation of the TROPOMI440

and OMI tropospheric NO2 column retrievals. To generate observation data representative to the model grid size, we employed

a super-observation approach that explicitly accounts for spatial correlations between observation errors. Because of 16%

smaller relative super-observation errors in TROPOMI than in OMI, the DA self-consistency, as measured by RMSE reductions

against the assimilated observations, was improved in TROPOMI DA by 54%, which was larger than OMI DA (by 38%).

Agreements against the independent ATom-4 aircraft-campaign and surface in-situ NO2 data were also improved by 12–84%445

and 23–50%, respectively, which was larger than those for OMI DA (by up to 70% and 47%, respectively) for many cases.

The improved NO2 led to improved agreement with surface in-situ MDA8 ozone over United States and Japan in TROPOMI

DA (by 7–40%) than in OMI DA (by 1–22%). Agreements with ozonesonde data at 500 and 800 hPa were also improved by

TROPOMI DA by 14–40% for most regions, except for the tropics, which was larger than those by OMI DA (by 12–22%).

Global total NOx emission
::
for

:::::
April

:::::::
15–May

::
31

:::::
2018 was increased from 43.5 Tg N yr−1 in a priori emissions to 46.2 Tg N450

yr−1 by TROPOMI DA, which was 15% smaller than those derived from OMI DA (54.2 TgN), with 3–23% smaller regional

total emissions for major polluted and biomass burning areas. The city-scale emissions derived from TROPOMI DA were

generally consistent with previous estimates using limited-area high resolution analyses (within 10% differences for Riyadh,

New York, and Chicago). The global emission estimates constrained by the more accurate and dense TROPOMI measurements

provide complementary information about emission variability, especially where accurate and detailed information on activity455

data and emission factors is missing when developing bottom-up inventories (Elguindi et al., 2020). This would also benefit

model simulations of tropospheric ozone (e.g., Miyazaki et al., 2019; Visser et al., 2019; Bae et al., 2020; Qu et al., 2020), and

estimations of nitrate aerosols and their deposition flux (Nowlan et al., 2014; Geddes and Martin, 2017). These improvements

are important for productivities and diversities of terrestrial and marine ecosystems.

The DA performance comparisons provide a systematic evaluation of TROPOMI and OMI retrievals, independent from460

their averaging kernels and a priori profiles. The improved agreements with independent observations in TROPOMI DA

demonstrate the importance of improved spatial coverage and reduced retrieval uncertainty for many science applications.

Meanwhile, validation
:::::
Along

::::
with

::::
the

::::::::
improved

::::::
spatial

:::::::
patterns,

::::
the

::::::
impact

::
of

::::::::::
systematic

:::::
biases

:::
in

:::
the

::::::::
retrievals

::::
need

:::
to

::
be

::::::::
carefully

::::::::
evaluated.

:::::::::
Validation

:
against surface NO2 measurements showed

::::::::
confirmed

:
lower bias in TROPOMI retrievals

compared to OMI retrievals by 15% for the United States, Europe, and Japan,
:::::::::

consistent
::::
with

::::::::
previous

:::::::::
validation

::::::
results465

:::::::::::::::::
(Lambert et al., 2021). The smaller estimated NOx emissions also confirm the low biases in TROPOMI NO2 relative to OMI

NO2 globally, which also
::
in

:::
turn

:
affected ozone analysis. This systematic bias

:::
The

:::::::::
systematic

:::::::::
differences

::
of

::::::::::
TROPOMI

::::::
version

:::
1.2

::::::::
compared

::
to

:::::::::::
ground-based

::::::
remote

:::::::
sensing

:::
and

::::
OMI

:::
are

:::::
larger

::
in

::::::
winter

:::
than

:::
in

::::
other

:::::::
seasons

::::
over

:::
the

:::::::
polluted

::::::
regions

::::::::::::::::::::::::::::::::::::
(Verhoelst et al., 2021; Lambert et al., 2021)

:
,
::::::::
consistent

::::
with

:::::::::
Appendix

::
A.

::::
The

:::::::
influence

::
of
::::::::
negative

:::::
biases

::::::
related

::
to

:::
the

::::::
a-priori

::::::
profile

:::::
shape

::::
area

:::::::
removed

:::
by

:::::
using

::::::::
averaging

:::::::
kernels.

::::::::
However,

:::::::
because

::
of470

::
the

::::::
larger

:::::::::
TROPOMI

:::::::
(version

:::
1.2)

::::::::
negative

:::
bias

::
in

::::::
winter

::::
than

::
in

:::::::::
April-May,

:::
the

::::::
relative

::::
DA

::::::::::
performance

:::::::
between

::::::::::
TROPOMI

:::
and

::::
OMI

::::
will

:::::::
depend

::
on

:::
the

:::::::
season,

::::::::
especially

::::
over

:::::::
heavily

:::::::
polluted

:::::
areas.

::::::::
Because

::
of

:::
the

::::::::::
availability

::
of

:::::::::::::::
aircraft-campaign
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:::::::::::
observational

::::
data

:::
for

:::::::::
validation

:::
and

::::
the

:::::
active

:::::::::::::
photochemical

:::::::::
production

::::::
during

:::
the

::::::
target

::::::
period,

::::
this

:::::
study

:::::::
focused

:::
on

:::::::::
April–May

:::::
2018

:::::
only,

:::
and

::::
the

::::::
impact

:::
of

:::::::::
seasonally

:::::::
varying

::::::
relative

::::::
biases

::::::::
between

:::::
OMI

:::
and

::::::::::
TROPOMI

::::
has

:::
not

:::::
been

::::::::::
investigated.

::::
The

:::
low

::::
bias

::
in

::::::::::
TROPOMI

::::::
version

:::::
1.2.2

::::::::
compared

:::
to

::::
OMI

:
is largely attributed to a negative cloud height bias475

in the FRESCO cloud retrieval algorithm (van Geffen et al., 2021). New versions of the
:::
The

:::::::
updated

:
TROPOMI NO2 product

:::::::
products were introduced in December 2020 (version 1.4) and July 2021 (version 2.2) . As shown by van Geffen et al. (2021)

, these
::::
after

:::
this

:::::
study.

::::::
These new versions largely remove the bias with

::::::
respect

::
to

:
the OMI QA4ECV product . Meanwhile

relative super-observation errors of the new version (2.2.0) are comparable to those in
::
for

:::
all

:::::::
seasons,

::::::::
especially

::
in

::::::
winter

::::
over

:::::::
polluted

::::
areas

::::::::::::::::::::
(van Geffen et al., 2021)

:
.
::::::::::::::::::
Lambert et al. (2021)

:::
and

::::::::::::::::::::
van Geffen et al. (2021)

::::::
reported

::::
that

:::
the

:::::::
negative

::::::
biases

::
of480

::
the

:::::::
updated

::::::::::
TROPOMI

:::::::
retrievals

::::::::
(versions

:::::
1.4.x

:::
and

::::
2.x)

::::::::
compared

::
to

::::
OMI

:::
are

:::::::
reduced

::
to

::::::
within

::::
10%.

:::::::::
Assuming

:
a
:::::::::
remaining

:::
bias

::
of
:::::

10%
::::::::
compared

::
to

:::::
OMI,

:::
the

::::::::
improved

::::::::::
TROPOMI

::::::::
retrievals

:::::
would

::::::::
increase

:::
the

::::::::
estimated NOx ::::::::

emissions
::
by

::::::::
10–30%

:::
over

:::::::
Europe

:::
and

::::::
eastern

::::::
China

::
in

::::::
winter

::
for

:::::
areas

::::
with

::
a

::::
weak

::::::::
chemical

:::::::::::
non-linearity,

:::::::::
compared

::
to

:::
the

:::
DA

:::::
using

::::::::::
TROPOMI

version 1.2.2 (Appendix A). These differences in the new version products would not affect the main conclusions of this study

and improve
:::
beta.

::::
The

:::::::
increase

::
in

:
NOx emission and ozone analyses

::::::::
emissions

::::::
would

:::::
reduce

::::::::
negative

:::::
ozone

:::::
biases

::
in
:::
the

::::
DA485

::::::
analysis

:::
for

::
a
:
NOx ::::::

-limited
:::::
ozone

::::::::
chemical

:::::::
regime.

::::::
Further

::::::::::::
investigations

:::
on

:::
the

:::::::
impacts

::
of

:::
the

:::::::::
seasonally

:::::::
varying

:::::::
retrieval

:::::
biases

:::::
would

:::::::
provide

:::::
more

::::::
detailed

:::::::
insights

::::
into

:::
the

::::::
relative

:::::::::::
performance

::
of

:::::::::
TROPOMI

::::
and

::::
OMI

::::
DA.

::::::::::
Meanwhile,

::
in

:::::::
contrast

::
to

:::
the

::::
large

:::::::::
systematic

:::::::::
difference

::
in

:::::
mean

:
NO2 ::::::::::::

concentrations,
:::
the

:::::::
relative

:::::::::::::::
super-observation

:::::
errors

::
of

::::::::::
TROPOMI

::::::::
retrievals

::::
were

::::::
almost

:::::::
identical

:::::::
between

::::::::
different

:::::::
retrieval

:::::::
versions

:::::::::
(Appendix

:::
B).

::::
This

:::::::
suggests

::::
that

:::
the

:::
DA

:::::::::
efficiency,

:::
for

::::::::
example,

::
to

:::::::
constrain

:::::::
detailed

::::::::
temporal

:::
and

::::::
spatial

::::::::
variations

:::::
using

:::::::::
TROPOMI

::
as

:::::::::::
demonstrated

:::
by

:::
this

:::::
study,

::::::
might

:::
not

::
be

::::::
largely

:::::::
affected490

::
by

:::
the

:::::::
retrieval

:::::::
updates.

The
:::::::::::
Consequently,

:::
the

:
evaluation of individual satellite measurement through DA integration provides unique and detailed

information on possible errors
:::::::
retrieval

:::::
errors

::::
and

::
its

::::::::::::
characteristics, including their spatio-temporal structures, which in turn

:::::::
provides

:
a
::::::::
platform

:
to
:::::::
evaluate

::::::::
different

::::::::
retrievals

:::
and supports satellite retrieval developments. Meanwhile, application of bias

correction in DA analysis is essential for the combined use of observational information from multiple sensors, including those495

from other polar orbit satellites such as OMPS and advanced geostationary satellites such as GEMS, TEMPO, and Sentinel-4.

Code availability. The source codes are not publicly available because of license restriction. The source code is available from Kengo Sudo
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and OMI satellite retrievals are publicly available at the TEMIS website (http://www.temis.nl) and the S5P-PAL data portal (https://data-
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Figure 1. Global distribution of tropospheric NO2 column (left), super-observation errors (middle), and relative super-observation errors

(right) obtained from the Tropospheric Monitoring Instrument (TROPOMI; top) and the Ozone Monitoring Instrument (OMI; middle) from

April–May 2018, and the differences between TROPOMI and OMI (bottom). The
::::
values

:::
are

::::::
mapped

:::
onto

:::::
0.56◦

:::::::
resolution

:::::
grids.

:::
The units of

the tropospheric NO2 column, super-observation errors, and relative super-observation errors are ×1015 molecules cm−2, ×1015 molecules

cm−2, and percentage (%), respectively.

26



[%] [%] [%]RMSE reduction RMSE reduction RMSE reduction

Figure 2. Root-mean-square error (RMSE) reduction for tropospheric NO2 concentration fields against assimilated observations by data

assimilation (DA) (%) obtained from Tropospheric Monitoring Instrument (TROPOMI) DA (left) and Ozone Monitoring Instrument (OMI)

DA (middle), and the differences between them (right). For the right panel, grids with a gray color indicate differences between RMSE

reductions by TROPOMI DA and OMI DA that are statistically insignificant at the 95% confidence level using the Mann-Whitney U test.

:::
The

:::::
values

::
are

:::::::
mapped

:::
onto

:::::
0.56◦

:::::::
resolution

:::::
grids.

Table 1. List of data assimilation and control model simulation runs performed in this study.

No. Experiment Period Assimilated observation Ensemble size

1 TROPOMI DA (2018, N=64) April–May, 2018 TROPOMI v1.2beta 64

2 OMI DA (2018, N=64) April–May, 2018 OMI QA4ECV v1.1 64

3 OMI DA (2018, N=32) April–May, 2018 OMI QA4ECV v1.1 32

4 OMI DA (2005) April–May, 2005 OMI QA4ECV v1.1 32

5 Control model simulation
April–May, 2018

April–May, 2005

Table 2. Mean tropospheric NO2 column (× 10−15 molecules cm−2), super-observation error (× 10−15 molecules cm−2), relative super-

observation error (%) over 60◦S–60◦N in the Tropospheric Monitoring Instrument (TROPOMI) from April to May 2018, and the Ozone

Monitoring Instrument (OMI) from April to May in 2005 and 2018. Values in brackets are calculated from TROPOMI and OMI data with

co-location criteria of < 60 km in space and < 2 h in time.

Satellite observations Tropospheric column Super-observation error Relative super-observation error

TROPOMI 0.52 (0.54) 0.28 (0.27) 53 (51)

OMI (2018) 0.63 (0.64) 0.40 (0.38) 63 (60)

OMI (2005) 0.57 0.33 58
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Figure 3. Two-dimensional (2-D) histogram (%) as a function of relative super-observation errors (%) and root-mean-square error (RMSE)

reductions (%) for tropospheric NO2 column made to data assimilation (DA) (top row) obtained from Tropospheric Monitoring Instrument

(TROPOMI) DA (left) and Ozone monitoring Instrument (OMI) DA (right). The values in the top panels are regression coefficients, inter-

cepts, and correlation coefficients between relative super-observation errors and RMSE reductions against assimilated observations by DA

on the grid scale. The values in brackets were calculated using data with relative super-observation errors of < 50%. One-dimensional (1-D)

histogram as a function of relative super-observation errors (left) and RMSE reductions (right) are exhibited in the bottom row. The black

and red lines are taken from TROPOMI DA and OMI DA, respectively.
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Figure 4. Vertical profiles of NO2 (pptv) on 24 April (left), 27 April (middle), and 21 May (right) over coastal areas of the western United

States (117.25–122.5˚W, 32–37˚N). The results were obtained from the ATom-4 aircraft campaign observations (black), Tropospheric Mon-

itoring Instrument (TROPOMI) data assimilation (DA) (red), Ozone Monitoring Instrument (OMI) DA (blue), and the control model simu-

lation (yellow). The error ranges are the standard deviations of individual values in each pressure bin.
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Figure 5. Mean model biases against surface in-situ observations for surface NO2 concentrations (%) at 14:00LT (local time) derived from

the control model simulation (left column), Tropospheric Monitoring Instrument (TROPOMI) data assimilation (DA) (middle column) and

Ozone Monitoring Instrument (OMI) DA (right column) over Europe (top), the United States (middle), and Japan (bottom). The values are

mapped onto 0.56◦ resolution grids.
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Figure 6. Root-mean-square errors (RMSEs) against surface in-situ observations for surface NO2 concentration fields (ppbv) at 14:00 LT

(local time) in the control model simulation (left column) and their reductions (%) by Tropospheric Monitoring Instrument (TROPOMI)

data assimilation (DA) and Ozone Monitoring Instrument (OMI) DA (middle and right columns, respectively) over Europe (top), the United

States (middle), and Japan (bottom). The values are mapped onto 0.56◦ resolution grids. For the middle and right columns, grids with open

circles indicate RMSE reductions that are statistically significant at the 95% confidence level using the Mann-Whitney U-test.
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Figure 7. Root-mean-square error (RMSE) reduction for tropospheric NO2 concentration fields against assimilated observations by data

assimilation (DA) over Los Angeles under windy (wind speed > 2.5 m s−1, top row) and calm (bottom row) conditions. The left, middle,

and right columns show Tropospheric Monitoring Instrument (TROPOMI) DA, Ozone Monitoring Instrument (OMI) DA, and the differences

between them, respectively. The unit is percentage (%). Arrows in the left and middle columns show surface winds derived from ERA-Interim

reanalysis data. For the right column, grids with open circles indicate the differences in RMSE reductions between TROPOMI DA and OMI

DA that are statistically significant at the 95% confidence level using the Mann-Whitney U-test. The black circle indicate the location of Los

Angles city center.
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Figure 8. Surface NO2 concentrations (ppbv) at 14:00LT (local time) over Los Angeles. The results were obtained from in-situ observations

(black), Tropospheric Monitoring Instrument (TROPOMI) data assimilation (DA) (red), Ozone Monitoring Instrument (OMI) DA (blue),

and the control model simulation (yellow). The periods filled in pink are windy conditions (wind speed > 2.5 m s−1).
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Figure 9. Global distributions of top-down NOx emission estimates (×10−11 kg N m−2 s−1
:::
top)

::
and

::::::
surface NO2:::::::::::

concentrations
:::::::
(bottom)

provided by Tropospheric Monitoring Instrument (TROPOMI) data assimilation (DA) from 15 April–31 May 2018 (left), and the differences

between TROPOMI DA and a priori emissions (middle) and between TROPOMI DA and Ozone Monitoring Instrument (OMI) DA (right).

For the middle
::::
upper

:
and right

::::
upper

:
panels, grids with a gray color indicate the differences that are statistically insignificant at the 95%

confidence level using the Mann-Whitney U-test.
::

The
::::
units

::
of

:
NOx :::::::

emissions
:::
and NO2 :::::::::::

concentrations
::
are

:::::::
×10−11

::
kg

::
N

:::
m−2

:::
s−1

:::
and

:::::
ppbv,

:::::::::
respectively.
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Figure 10. Root-mean-square errors (RMSEs) against surface in-situ observations (ppbv) for daily maximum 8-h average (MDA8) ozone

concentrations in the control model simulation (left), and their reductions by Tropospheric Monitoring Instrument (TROPOMI) data assimi-

lation (DA) and Ozone Monitoring Instrument (OMI) DA (middle and right, respectively) over Europe (top), the United States (middle), and

Japan (bottom). The values are mapped onto 0.56◦ resolution grids. For the middle and right columns, grids with open circles indicate the

RMSE reductions that are statistically significant at the 95% confidence level using the Mann-Whitney U-test.
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Table 4. Mean bias (MB) against the ATom-4 aircraft campaign observations in the lower (700–900 hPa) and middle–upper troposphere

(300–700 hPa) over coastal areas of the western United States (117.25–122.5◦W, 32–37◦N) on 24 and 27 April, and 21 May 2018. MB is

expressed in pptv. Boldface denotes the best agreement with in-situ observations. The ranges of MB are the standard deviations of individual

values in each pressure bin. “Model” indicate the control model simulation.

April 24 April 27 May 21

700–900 hPa 300–700 hPa 700–900 hPa 300–700 hPa 700–900 hPa 300–700 hPa

TROPOMI DA -33.5±516.0 -21.2±144.1 166.0±295.1 2.8±18.8 139.5±412.7 -10.6±7.6

OMI DA 103.5±429.9 -22.7±144.8 159.2±278.8 5.3±19.1 187.0±471.9 -15.5±7.3

Model 216.0±487.4 -26.4±146.0 200.4±419.1 3.2±19.3 643.3±834.7 -22.6±7.0

Table 5. Mean bias (MB) and root-mean-square error (RMSE) for surface NO2 at 14:00LT (local time) and daily maximum 8-h average

(MDA8) ozone against in-situ observations during 15 April–31 May 2018. The units of MB and RMSE are ppbv. Boldface denotes the best

agreement with in-situ observations. The ranges of MB and RMSE are the standard deviation of the time series. “Model” indicate the control

model simulation.

NO2 MDA8 ozone

Region Run MB RMSE MB RMSE

TROPOMI DA -0.43±0.44 1.71±0.54 11.15±2.80 13.92±2.53

Europe OMI DA -0.12±1.02 2.53±0.46 12.87±3.37 15.73±3.33

Model -0.30±0.80 2.41±0.46 9.75±2.67 12.92±2.39

TROPOMI DA -0.29±0.51 1.93±0.56 4.66±3.01 9.53±2.90

The United States OMI DA -0.08±0.55 2.02±0.57 5.90±2.71 11.50±4.30

Model 0.53±1.55 3.87±0.47 5.42±3.19 11.39±3.71

TROPOMI DA -0.80±0.93 1.91±0.61 1.67±5.24 9.63±2.95

Japan OMI DA -0.49±0.95 1.98±0.61 3.00±5.51 10.81±3.82

Model -0.47±1.35 2.47±0.50 3.70±5.30 10.36±3.17
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Table 6. Mean bias (MB), temporal correlation coefficient (T-Corr.), and root-mean-square error (RMSE) for surface NO2 at 14:00LT (local

time) against in-situ observations from the Air Quality System (AQS) over Los Angeles from 15 April–31 May 2018) under all, calm (wind

speed ≤ 2.5 m s−1
::

−1), and windy conditions. Both MB and RMSE are expressed in ppbv. Boldface denotes the best agreement with in-situ

observations. The range of the MB is the standard deviation of the time series. “Model” indicate the control model simulation.

All conditions Calm condition Windy condition

MB T-Corr. RMSE MB T-Corr. RMSE MB T-Corr. RMSE

TROPOMI DA -1.69±1.60 0.63 2.33 -2.08±1.54 0.74 2.59 -1.49±1.60 0.50 2.19

OMI DA -1.11±2.28 0.25 2.54 -1.80±2.24 0.23 2.87 -0.76±2.22 0.22 2.35

Model 1.88±2.80 0.49 3.37 2.72±3.04 0.34 4.08 1.45±2.57 0.45 2.95

Table 7. Global and regional total surface and lightning NOx emissions (Tg yr−1) from 15 April–31 May 2018, taken from a priori emis-

sions, Tropospheric Monitoring Instrument (TROPOMI) data assimilation (DA), Ozone Monitoring Instrument (OMI) DA, EDGARv5 (for

2015)+GFED4 (for 2018) inventories, and REASv3.2 (for 2015)+GFED4 (for 2018) inventories. The ranges are the standard deviations of

the time series. A priori lightning emissions are calculated in the control model simulation.

A priori TROPOMI DA OMI DA EDGARv5+GFED4 REASv3.2+GFED4

Global 43.5±0.5 46.2±0.9 54.2±1.1 46.9±1.3

Europe 4.1±0.03 4.6±0.3 5.3±0.1 3.9±0.3

The United States 5.0±0.03 4.3±0.5 5.0±0.4 5.2±0.2

China 7.9±0.4 4.9±0.1 6.0±0.1 7.6±0.1 6.6±0.06

India 3.5±0.004 2.9±0.1 3.1±0.1 3.8±0.03 3.6±0.007

Middle East 2.3±0.004 3.2±0.05 3.3±0.1 2.9±0.04

South Africa 0.36±0.003 0.34±0.03 0.38±0.04 0.42±0.001

Central Africa 1.8±0.2 1.4±0.4 1.8±0.4 1.4±0.6

Southeast Asia 0.9±0.1 1.3±0.2 1.7±0.2 1.2±0.1 1.0±0.1

Global lightning 6.1±0.3 6.9±0.1 6.1±0.9
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Table 8. NOx emission estimates in large urban areas obtained from this study and previous studies. The unit is Mg/hr. Emissions are

averaged for the period 15 April–31 May 2018 for this study, March 2018–November 2020 for Lange et al. (2021), December 2017–October

2018 for Beirle et al. (2019), May–September 2018 for Goldberg et al. (2019), February–June 2018 for Lorente et al. (2019). The ranges of

the emissions are emission analysis spreads in this study, while the ranges are the errors estimated by individual previous studies.

City This study Lange et al. (2021) Beirle et al. (2019) Goldberg et al. (2019) Lorente et al. (2019)

Riyadh (24.6◦N, 46.7◦E) 21.5±0.9 21.8±0.8 23.8

Chicago (41.8◦N, 87.8◦W) 11.0±2.4 12.1±1.1 18.8±5

New York (40.7◦N, 74.0◦W) 14.6±2.5 14.7±1.5 17.9±5

Toronto (43.7◦N, 79.4◦W) 4.9±2.9 7.6±0.5 14.3±5

Paris (48.9◦N, 2.3◦E) 5.2±2.7 8.0±0.5 8.8

Table 9. Mean bias (MB) and root-mean-square error (RMSE) for ozone concentrations at 500 and 800 hPa against ozonesonde observations

over three latitude bands from 15 April–31 May 2018. The units of MB and RMSE are ppbv. Boldface denotes the best agreement with

in-situ observations. “Model” indicate the control model simulation.

500 hPa 800 hPa

Latitude bands Run MB RMSE MB RMSE

TROPOMI DA -0.10 12.22 0.39 8.06

20–90◦N OMI DA 0.56 12.47 1.62 8.27

Model -6.59 16.03 -2.12 9.39

TROPOMI DA 7.00 10.70 5.00 9.66

20◦S–20◦N OMI DA 10.22 13.78 5.87 10.93

Model -5.93 10.05 -0.93 8.01

TROPOMI DA 1.51 3.88 -2.11 4.57

20–90◦S OMI DA 2.46 5.21 -2.57 5.44

Model -5.11 6.48 -6.34 7.02
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Appendix A: Characteristics of
:::::::
Seasonal

::::::
cycles

::
in the TROPOMI version 1.2

:::::::::::
tropospheric

:
NO2 and 2.2 products

:::::::::::::::
super-observation

::::::
errors790

::
As

::::::
shown

::
in

::::::
Figure

:::
A1,

:::
the

:::::::
negative

:::::
biases

::
in
::::::::::
TROPOMI

::::::::::
tropospheric

:
NO2 ::::::

column
:::::::::
compared

::
to

::::
OMI

:::
are

:::::
larger

::
in

:::::::::
December

::::::::::::
2018–February

:::::
2019

:::
(by

::::
25%,

:::::
19%,

:::
and

::::
26%

::::
over

:::::::
Europe,

:::
the

::::::
United

:::::
States,

::::
and

:::::
China,

:::::::::::
respectively)

::::
than

::
in

:::::::::
April–May

:::::
2018

:::
(by

::::
10%,

:::::
17%,

:::
and

::::
16%

::::
over

:::::::
Europe,

::
the

::::::
United

::::::
States,

:::
and

::::::
China,

:::::::::::
respectively).

::
In

:::::::
contrast,

:::
the

:::::::::
differences

::
in

:::::::::::::::
super-observation

:::::
errors

:::::::
between

:::::::::
TROPOMI

::::
and

::::
OMI

:::
are

::::::::
relatively

:::::::
constant

:::::
over

::::
time.

::::
The

:::::::::
differences

::
in

:::
the

:::::::
relative

:::::::::::::::
super-observation

:::::
errors

::::
(i.e.,

:::::
errors

::::::
divided

:::
by

::::::::::::
concentrations)

::::::::
obtained

::::
from

::::::::::
TROPOMI

:::
and

::::
OMI

:::::::
smaller

::
in

:::::
winter

::::
than

::
in

:::::
other

::::::
seasons

::::
over

:::::::
Europe795

:::
and

:::::
China

:::::::
because

:::
of

:::
the

:::::
larger

::::
bias

::
of

:::
the

::::::::::
TROPOMI

::::::::::
tropospheric

:
NO2 ::::::

column
::::::::
compared

::
to

:::::
OMI

::
in

::::::
winter

::::
than

::
in

:::::
other

:::::::
seasons.

:::
The

::::::
strong

:::::::
negative

:::::
biases

::
in

:::::::::
TROPOMI

::::::::
retrievals

::
in

::::::
winter

:::::
would

:::::::
increase

:::
the

:::::::
negative

::::
bias

::
in

:
NO2 :::::::::::

concentration
:::::::
analysis

:::
and

::::::
reduce

:::
the

:::::::::
estimated

:
NOx ::::::::

emissions.
::::::::::
Meanwhile,

::::
the

::::::::::
differences

::
in

:::::::
relative

:::::::::::::::
super-observation

:::::
errors

:::
of

::::::::::
TROPOMI

:::::::
retrievals

:::::::
between

::::::
winter

:::
and

:::::
other

::::::
seasons

::::::::
suggests

:::
that

:::::::::
TROPOMI

::::
DA

:::::
might

::::::
provide

::::
less

:::::::::
constraints

::
on

::::::
spatial

:::
and

::::::::
temporal800

::::::::
variations

::
in NO2 :

in
::::::
winter

::::
than

::
in

:::::
other

:::::::
seasons,

:::
and

::::::
would

:::
still

:::::::
provide

:::::
better

:::::::::
constraints

::::
than

::::
OMI

::::
DA.

:

Appendix B:
:::::::::::::
Characteristics

::
of

:::
the

::::::::::
TROPOMI

:::::::
version

:::
1.2

::::
and

:::
2.3

::::::::
products

Figure B1
:
In

:::
the

:::::
latest

:::::::
version

::
of

:::
the

:::::::::
TROPOMI

:::::
NO2

:::::::
product,

:::
the

:::
low

::::
bias

:::::::::
compared

::
to

::::
OMI

:::::::::
QA4ECV

:
is
:::::::

largely
::::::::
improved

::::
from

:::
the

::::::::
previous

:::::::
versions

::::
(van

::::::
Geffen

::
et
::::

al.,
::::::
2021).

::
To

:::::::
discuss

:::
the

::::::::
potential

:::::::
impacts

::
of

:::
the

:::::::::
algorithm

::::::
updates

:::
on

:::
the

::::
DA

:::::::::::
performance,

::::::
Figure

:::
B1 compares global distributions of tropospheric

::::
NO2

:
column, super-observation errors, and relative805

super-observation errors (i.e., errors divided by concentrations) obtained from the TROPOMI version 1.2product during September

2018 and the version 2.2 product during September 2021. We found large differences in tropospheric column amounts between

2018 and 2021 due to algorithm updates and inter-annual changes, while relative super-observation errors in the version

2.2 product over polluted regions are comparable to those in the version
:::
beta

::::::::
product,

::::
that

::::
was

::::
used

:::
in

:::
this

::::::
study,

::::
and

:::::::
S5P-PAL

:::::::::::
reprocessing

:::::::
product

:::::::::
(processed

:::::
with

::::
same

:::::::::
processor

::
as

:::::::
version

:::::
2.3.1),

::::
that

::::
was

:::::::
released

:::::
more

:::::::
recently,

:::
for

:::::
May810

:::::
2018.

:::
The

::::::::
S5P-PAL

:::::::::::
reprocessing

::::::
product

::::
data

:::::
were

:::::::
obtained

:::::
from

:::
the

::::::::
S5P-PAL

::::
data

:::::
portal

:::::::::::::::::::::::::::
(https://data-portal.s5p-pal.com).

:::
The

::::::::
algorithm

:::::::
updates

:::::
from

:::::::
versions 1.2 product, because individual retrieval uncertainties scale with column amounts. Over

remote regions, large differences in
:
to

:::
2.3

:::
led

::
to

::::::::
increases

::
in

::::::::::
tropospheric

:::::
NO2

::::::
column

::::::::
amounts

:::::::
typically

:::
by

:::
6%

::::
over

:::::::
polluted

::::
areas

::::
due

::
to

:::
the

::::::::
algorithm

::::::
updates

:::::
from

:::::::
versions

:::
1.2

::
to

::::
2.3.

:::::
These

::::::::
increases

:::
are

::::::
mainly

:::::::::
attributable

:::
to

:::
the

::::::::
improved

::::::::
FRESCO

::::
cloud

:::::::::
retrievals

::::
(van

::::::
Geffen

:::
et

:::
al.,

::::::
2021).

::
In

::::::::
contrast,

:::
the

:
relative super-observation errors at a grid scale are caused by815

inter-annual variations in the column amounts, because individual retrieval uncertainties do not scale with column amounts

due to reduced S/N ratio over remote regions and stratospheric column-related uncertainties, which are a dominant factor. The

:::
over

:::::
most

::::::
regions

::::::
except

:::
for

:::
the

:::::::
southern

:::::::::::
mid-latitudes

:::
are

::::::::::
comparable

:::::::
between

:::
the

::::::::
products,

::::
with

::::
less

::::
than

::::
0.2%

:
differences

in the mean relative super-observation error over 60◦N–60
::::
N–60◦Sbetween the version 2.2 and 1.2 products is within 1.3%,

even though data from different years are compared. These differences are much smaller than the differences between the820

TROPOMI version 1.2beta and OMI QA4ECV products
::
(by

::::
19%

:::
in

::::
May

:::::
2018).
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Figure A1.
::::::::::
Monthly-mean

::::::::
timeseries

::
of

::::::::::
tropospheric NO2::::::

column
::::
(top),

::::::::::::::
super-observation

::::
errors

:::::::
(middle),

::::
and

:::::
relative

::::::::::::::
super-observation

::::
errors

:::::::
(bottom)

:::::::
obtained

::::
from

:::
the

::::::::::
Tropospheric

:::::::::
Monitoring

:::::::::
Instrument

::::::::::
(TROPOMI)

::::::
version

:::::
1.2beta

::::::::::
(April–May

:::::
2018)

:::
and

::::::
version

:::
1.2

::::
(June

:::::
2018-)

:::::::
products

:::::
during

::::
April

::::::::::
2018–March

::::
2019

:::
over

::::::
Europe

::::
(first

::::::
column,

::::::::::
10◦W–30◦E,

::::::::
35–60◦N),

::
the

::::::
United

::::
States

::::::
(second

:::::::
column,

::::::::
70–125◦W,

:::::::::
28–50◦N),

:::
and

:::::
China

:::::
(third

::::::
column,

::::::::::
102–132◦E,

::::::::
18–50◦N).

:::
The

:::::
units

::
of

:::
the

:::::::::
tropospheric

:
NO2 ::::::

column,
::::::::::::::

super-observation

:::::
errors,

:::
and

:::::
relative

::::::::::::::
super-observation

::::
errors

:::
are

:::::
×1015

::::::::
molecules

:::::
cm−2,

:::::
×1015

::::::::
molecules

:::::
cm−2,

:::
and

:::::::::
percentage

:::
(%),

::::::::::
respectively.
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:::
The

::::::::
improved

:::::::::
TROPOMI

::::::::
retrievals

::::::
would

:::::
reduce

:::
the

:::::::
negative

::::
bias

::
in NO2 :::::::::::

concentration
::::::
analysis

::::
and

:::::::
increase

:::
the

::::::::
estimated

NOx :::::::
emissions

:::
for

:::::
areas

::::
with

:::::
weak

::::::::
chemical

:::::::::::
non-linearity.

::::
The

:::::::
increase

::
in NOx ::::::::

emissions
:::::
would

::::::
reduce

:::
the

:::::::
negative

::::::
biases

::
in

:::::
ozone

:::::::
analysis

:::::
under

:
NOx ::::::

-limited
:::::
ozone

::::::::
chemical

:::::::
regime.

::::::::::
Meanwhile,

:::
the

::::::
relative

:::::::::::::::
super-observation

:::::
errors

::
of

::::::::::
TROPOMI

:::::::
retrievals

:::::
were

::::::
almost

::::::::
identical

:::::::
between

::::::::
versions

::::::
1.2beta

::::
and

:::::
2.3.1.

::::
This

::::::::
suggests

::::
that

:::
the

:::
DA

:::::::::
efficiency,

:::
for

::::::::
example,

:::
to825

:::::::
constrain

:::::::
detailed

::::::::
temporal

:::
and

::::::
spatial

:::::::::
variations,

:::::
might

:::
not

::
be

::::::
largely

:::::::
affected

:::
by

:::
the

::::::::
algorithm

:::::::
updates.

:

[x1015 molecules cm-2] [x1015 molecules cm-2] [%]

[x1015 molecules cm-2] [x1015 molecules cm-2] [%]

[x1015 molecules cm-2] [x1015 molecules cm-2] [%]

Figure B1. Global distribution of tropospheric NO2 column (left), super-observation errors (middle), and relative super-observation er-

rors (right) obtained from the Tropospheric Monitoring Instrument (TROPOMI) version 1.2
:::
beta product during September 2018 (top) and

TROPOMI
:::::::
S5P-PAL

:::::
(same

::
as version 2.2

::::
2.3.1) product during September 2021 (middle), and the differences between TROPOMI versions

:::::
version

:
1.2

:::
beta and 2.2

:::::::
S5P-PAL

::::::
products

:
(bottom) .

:::::
during

::::
May

::::
2018.

:
The units of the tropospheric NO2 column, super-observation errors,

and relative super-observation errors are ×1015 molecules cm−2, ×1015 molecules cm−2, and percentage (%), respectively.
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