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Abstract Typhoon-related precipitation over land can result in severe disasters such as floods and landslides, and satellites are 

a valuable tool for estimating surface precipitation with high spatial-temporal resolutions. Accordingly, this study develops a 

surface precipitation integration framework to combine high-resolution observations from the radiometers of two geostationary 15 

satellites, Fengyun-4A (F4) and Himawari-8 (H8), with high-density rain-gauge observations or IMERG data and atmospheric 

reanalysis data based on a random forest (RF) algorithm. The RF algorithm integrates cloud and atmospheric features from 

radiometric observations and reanalysis information, and the intensity and spatial distribution of precipitation can be revealed 

by high-density rain-gauge or IMERG data. We take three typhoons that made landfall in South China during 2018 as examples. 

The F4-based and H8-based results using rain-gauge data as the predictand both show excellent results, yielding correlation 20 

coefficients (R) of ~0.75 and probabilities of detection (POD) of ~0.95. In contrast, when IMERG data are used as the 

predictand, the corresponding R and POD drop to ~0.5 and 0.93, respectively, due to the uncertainties related to IMERG 

retrievals. By carefully choosing the predictor, our RF algorithm successfully integrates the information from satellite 

observations, surface measurements and atmospheric reanalyses, resulting in precipitation estimates that are highly consistent 

with actual ground observations. Consequently, our proposed integration framework can reconstruct hourly surface 25 

precipitation estimates at high spatial-temporal resolutions for historical typhoon studies. 

1 Introduction 

Typhoons, also referred to as tropical cyclones, are high-impact atmospheric phenomena, that cause some of the most 

significant socioeconomic damage due to their intense winds, immense storm surges and flood-inducing rainfall [Negri et al., 

2005; Rappaport et al., 2014; Wang et al., 2019]. Over eighty typhoons occur every year globally, and approximately one-30 

third of them originate in the Northwest Pacific (NWPAC) [Chan et al., 2005]. Although the number of typhoons in the 
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NWPAC is exhibiting a decreasing trend with global warming, their average intensity is increasing, and as a result, coastal 

areas are suffering increasingly severe damage [Cai et al., 2004; Webster et al., 2005; Emanuel et al., 2013; Kang et al., 2016; 

Ho et al., 2021]. Unfortunately, because of its high spatial-temporal variability and complex physical processes, precipitation 

still accounts for one of the largest uncertainties in the forecasting of tropical cyclones [Su et al., 2012; Tu et al., 2013], and 35 

its high-quality observations of precipitation are also limited. Nevertheless, precipitation observations with a high spatial-

temporal resolution during typhoon periods play an important role in research on not only the precipitation characteristics of 

tropical cyclones but also the prevention and mitigation of typhoon disasters.  

Ground rain-gauges, weather radars and satellites are commonly used to acquire precipitation measurements [Villarini et al., 

2008], and they all exhibit their unique advantages and disadvantages. Ground-based rain-gauges are direct and accurate at 40 

measure local surface precipitation, while is limited by the station locations and coverages, especially in oceanic, mountainous 

and polar regions. [Susana et al., 2013; Gires et al., 2012; Rodriguez et al., 2019; Looper et al., 2012]. In contrast, microwave 

radars can survey larger areas and can better capture the spatial variability of rainfall fields; however, the accuracy of radar-

based measurements is strongly influenced by electromagnetic attenuation and the uncertainty in the relationship between the 

radar reflectivity factor and precipitation, particularly under extreme rainfall conditions [Marra et al., 2015; Bárdossy et al., 45 

2017].  

Satellite-based quantitative precipitation estimation (QPE) can be implemented on a large scale with a high spatial-temporal 

resolution, offering large scale capability with high spatial-temporal resolutions [Tang et al., 2016; Wang et al., 2018; Jozaghi 

et al., 2019], but quantitatively inferring the amount of surface precipitation from space is still a serious challenge, especially 

during typhoon periods. Nevertheless, with the continuous improvement of meteorological satellites, satellite-based QPE 50 

technologies have undergone considerable development [Boushaki et al., 2009; Nguyen et al., 2018]. Accordingly, various 

models have been developed to generate satellite-based QPE products by relying on the relationships between passive 

infrared/microwave observations and precipitation; typical products include the Tropical Rainfall Measuring Mission 

Multisatellite Precipitation Analysis (TRMM TMA) [Huffman et al., 2007; Liu et al., 2016], Integrated Multisatellite 

Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG) [Huffman et al., 2015; Wang et al., 2017], 55 

Climate Prediction Center morphing technique (CMORPH) [Joyce et al., 2004] and Global Satellite Mapping of Precipitation 

(GsMaP) [Aonashi et al., 2009; Ushio et al., 2009].  

In addition, machine learning (ML) methods have been widely used to establish the relationship between precipitation and 

satellite passive spectral observations as well [Albawi et al., 2017; Sehad et al., 2017; Min et al. 2018; Ahmed et al., 2020; 

Wang et al., 2021; Zhang et al., 2021]. For instance, Min et al. used a random forest (RF) algorithm to establish the relationship 60 

between spectral imager observations and numerical weather prediction results, and quite reasonable rainfall area and intensity 

can be obtained [Min et al., 2018]. Wang et al. used a convolutional neural network (CNN) to establish a high-quality 

precipitation dataset based on Chinese FengYun geostationary satellite [Wang et al., 2017]. However, most of these studies 

intended to develop a general model for all kinds of precipitation across the globe or over large regions, and the variable 

responses of precipitation to different cloud properties and atmospheric conditions may limit their accuracy. 65 
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Furthermore, typhoons result in not only heavy and widespread precipitation but also thick clouds that significantly influence 

or even block satellite observations of surface processes. Thus, considering the complex and uncertain relationship between 

precipitation and clouds, the QPE product particularly designed for typhoon precipitation remains limited, leaving a gap in a 

the availability of accurate and high-resolution estimates of surface precipitation. Meanwhile, FengYun-4A (F4) and 

Himawari-8 (H8) are new-generation geosynchronous equatorial orbit (GEO) satellites launched by the Chinese and Japanese 70 

meteorological agencies, respectively [Min et al., 2017; Bessho et al., 2016]. These two satellites cover a similar observational 

region of the NWPAC and a large portion of East Asia, and their high temporal and spatial resolutions are favourable for the 

continuously monitoring of NWPAC typhoons [Ma et al., 2021; Honda et al., 2018]. Thus, in this study, we employ a ML 

technique to integrate F4/H8 radiometer observations with multi-source datasets to develop better surface precipitation 

integration algorithms, particularly for typhoon precipitation. More importantly, we investigate how multi-source (ground-75 

based, satellite and reanalysis) data to improving the surface precipitation integration performance. 

2 Data and study area 

2 Data  

In this work,to better estimate surface precipitation during the typhoon period, we aimed to take advantage of multi-source 

data for different atmospheric variables, while also include only popular and public-available ones for the generality of the 80 

method. Thus, in addition to the F4/H8 radiometer measurements, we would consider ground-based observations, atmospheric 

reanalysis and existing satellite-based surface precipitation estimations. 

F4 and H8 can observe most of the NWPAC and East Asia; within this region, South China is frequently affected by the 

landfall of typhoons, resulting in serious disasters and casualties. The spectral radiometer onboard F4, namely, the Advanced 

Geosynchronous Radiation Imager (AGRI), has six visible and near-infrared channels and eight thermal infrared channels. 85 

The Advanced Himawari Imager (AHI) onboard H8 has a similar channel design but is equipped with two additional thermal 

infrared channels. To develop an integration algorithm capable of utilizing both daytime and nighttime measurements, we 

consider only the AGRI and AHI infrared channel radiances and their combinations. Specifically, to facilitate a fair comparison 

between the F4/AGRI- and H8/AHI-based algorithms, only the channels that are similarly equipped on both instruments are 

used, including the two water vapor channels (WV1 and WV2) and four longwave infrared channels (LW1–LW4). The central 90 

wavelengths of each channel considered in our integration algorithm are shown in Table 1, and it becomes interesting whether 

such small differences on the channel characteristics as well as those on channel spectral response functions and geolocation 

would influence the surface precipitation estimation. 

Passive spectral observations can provide the spatial distributions of clouds and cloud top properties, whereas surface 

precipitation is highly related to the atmospheric conditions. Thus, our algorithm also adopts atmospheric variables such as the 95 

column water vapor content, cloud water content, atmospheric profiles and so on. These variables are obtained from the latest 

atmospheric reanalysis product developed by the European Center for Medium-Range Weather Forecasts (ECMWF), i.e., the 
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state-of-the-art Fifth-Generation ECMWF Reanalysis (ERA5) [Hersbach et al., 2020]. To infer the general atmospheric 

conditions within the integration region, we consider nine variables from ERA5 related to typhoon precipitation [Min et al., 

2018]. For example, the convective available potential energy (CAPE) is an indicator of the instability (or stability) of the 100 

atmosphere and can be used to assess the potential for the development of convection, which can lead to heavy rainfall, 

thunderstorms and other severe weather. The K-index, calculated from the temperature and dew point temperature in the lower 

part of the atmosphere, is a measure of the potential for a thunderstorm to develop. The total column rain water (TCRW) is the 

total amount of water in droplets of raindrop size (which can fall to the surface as precipitation) in a column extending from 

the surface of the Earth to the top of the atmosphere. Total precipitation (TP) is the accumulated liquid and frozen water 105 

(comprising both rain and snow) that falls to the Earth’s surface. The total column liquid water (TCLW) is the total amount of 

supercooled water in a column extending from the surface of the Earth to the top of the atmosphere. Furthermore, four basic 

atmospheric variables are considered, namely, the relative humidity at 850 hPa (R850) and 950 hPa (R950) and the temperature 

at 850 hPa (T850) and 950 hPa (T950), which describe the humidity and temperature states in the lower atmosphere. 

2.2 Study area 110 

Accurate precipitation observations are needed as the references to train ML-based models, and thus are essential for high-

quality integration. Two kinds of data are considered: high-density ground rain-gauge data and IMERG estimates. Offering 

some of the most reliable and fundamental precipitation observations, rain-gauge data are obtained from the National 

Meteorological Information Center of the China Meteorological Administration (CMA). Due to the high frequency of rainfall 

and the dense distribution of urban areas in South China, a large number of automatic rain-gauge stations are distributed 115 

throughout this region, reaching a total of 5024 stations within the area of the study region (79´104 km2); the distribution of 

these stations is shown in Figure 1. However, such a high density of ground-based observations may not always be feasible, 

so another type of data that is more commonly used in ML-based precipitation estimation is also considered, i.e., the IMERG 

final run-calibrated precipitation data. IMERG provides gridded precipitation estimation from both passive microwave sensors 

on various satellites in the GPM constellation and infrared-based observations from GEO satellites [Liu et al., 2016, Tang et 120 

al., 2016] and therefore is one of the most reliable precipitation datasets available. IMERG has a half-hourly temporal interval 

with a maximum rain rate of 50 mm/h and covers the Earth’s surface between the latitudes of 60°S and 60°N [Min et al., 2018]. 

This study investigates three typhoon events that made landfall in South China in 2018. Information on these three typhoon 

events is provided in Table 2, and the paths of the three typhoons are illustrated in Figure 1. We consider the area within the 

latitudes 15°–27°N and the longitudes 105°–125°E, including a large part of South China (15°–27°N; 105°–122.5°E) and the 125 

NWPAC, which are completely covered by the observation areas of F4 and H8. We consider the whole evolution of each of 

the three typhoons from landfall to dissipation, and the model performance over a total of ~120 hours is considered using 

approximately 600,000 hourly precipitation observations from the ground rain-gauge stations. 
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3 RF-based typhoon precipitation integration frameworks 

3.1 Establishment of a surface precipitation integration algorithm 130 

The RF algorithm is an ML method widely used in the inversion of meteorological elements and has been proven to perform 

well in applications such as the estimation of precipitation, detection of clouds, and inversion of PM2.5 concentrations [Oscar 

et al., 2020; Tan et al., 2021; Liu et al., 2021; Guo et al., 2021]. Thus, this study used this simple but promising RF algorithm 

to establish the nonlinear relationships among surface precipitation, satellite observations and atmospheric characteristics.  

In the framework of RF algorithms, two types of data are utilized for the integration model: the predictor and the predictand. 135 

To study the influences of different satellite observations (F4/AGRI vs. H8/AHI) as the predictor and different precipitation 

data (rain-gauges vs. IMERG) as the predictand on the surface precipitation integration algorithm, we established four 

independent surface precipitation integration models. These models are referred to hereinafter as F4-based and H8-based 

models according to the satellite data used in the predictor; similarly, the models using rain-gauge observations and IMERG 

data as the predictand are referred to as RG-based and IM-based models, respectively. Thus, a total of four models, i.e., F4-140 

RG, F4-IM, H8-RG and H8-IM, are developed. Table 3 differentiates these four models. It is worth noting that the only 

difference between the RG-based models and the IM-based models is the predictand used in the models, as will be described 

in more detail in the following. 

The predictors for the surface precipitation integration algorithm include the geographic location, radiometer observations and 

atmospheric reanalysis data. By testing the performance of the RF-based models with different combinations of variables, our 145 

final models consider a total of 21 variables, as listed in Table 4. The rain-gauge observations and IMERG estimates are used 

to provide the corresponding surface precipitation as the model predictand. It should be noted that only F4/AGRI observations 

are used in F4-RG and F4-IM, and only H8/AHI observations are used in H8-RG and H8-IM. Considering the uncertainties 

related to IMERG precipitation estimates, we use ground rain-gauge data to validate all four models. 

Figure 2 illustrates the general flowchart of our surface precipitation integration algorithm, including the model development 150 

and surface precipitation estimation. During the model development, both ERA5 data and satellite data are collocated with 

high-density ground rain-gauge data to obtain RG-based training datasets. During the collocation processes, the satellite data 

have a high spatial resolution (4 km for F4/AGRI and 5 km for H8/AHI), and the average radiances values of the nine satellite 

pixels (3´3 pixels) closest to each ground station are collocated to represent the satellite data corresponding to that station. In 

contrast, ERA5 has a much lower spatial resolution (0.25°), so the atmospheric variables from the single ERA5 grid point 155 

closest to each ground station are used. In other words, all the aforementioned data are collocated with the ground rain-gauge 

stations, and the resulting datasets are used for further training and model development. For a fair comparison, the IMERG 

precipitation estimates are also collocated with the rain-gauge observations, resulting in a dataset with the same spatial-

temporal sampling interval as that of the RG-based models for model training. Thus, the F4-IM/H8-IM and F4-RG/H8-RG 

models have completely the same predictor dataset, and differ only with regard to the predictand; i.e., rain-gauge observations 160 

are replaced with the corresponding IMERG estimates for F4-IM/H8-IM. With the training datasets obtained above, the RF 
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algorithm is used for the training phase, and the four surface precipitation integration models (F4-IM, H8-IM, F4-RG and H8-

RG) are developed.  

The right part of Figure 2 depicts the procedure for the pixel-level component of our surface precipitation integration algorithm. 

At this stage, linear interpolation is employed to obtain the ERA5 atmospheric variables at each F4/H8 grid point. Then, the 165 

surface precipitation integration results from the direct RF-based integration models are classified into two sets: pixels with 

precipitation and those without precipitation. Considering that the minimum precipitation resolution of a rain-gauge is 0.1 

mm/h, pixels with a fused rainfall rate below 0.1 mm/h are defined as those without precipitation, while the integration results 

are retained for pixels with an estimated rainfall rate greater than 0.1 mm/h. This threshold of 0.1 mm/h ensures a high 

probability of distinguishing precipitation from non-precipitation. 170 

To objectively evaluate the performance of our surface precipitation integration models, we consider the rain-gauge 

observations to be the “ground truth” and perform 10-fold cross-validation (10-cv) to ensure the independence between the 

training and testing datasets. In other words, the original training dataset is evenly divided into ten parts, one of which is taken 

as the testing dataset each time (without repetition), while the remaining nine are taken as the training dataset; this process is 

repeated ten times. We adopt four popular parameters to quantify the model performance: two categorical parameters (the 175 

probability of detection (POD) and false alarm ratio (FAR)) and two statistical parameters (the correlation coefficient (R) and 

root mean square error (RMSE)) between our results and the truth [Ebert et al., 2007; Mecikalski et al., 2008]. POD and FAR 

both range from 0 to 1, where larger POD and lower FAR values correspond to the better identification of precipitation events. 

Two important RF parameters must be considered: the number of trees to grow (𝑁!"##) and the number of variables randomly 

sampled as candidates at each split (𝑀$#%!&"#). Figure 3 quantifies the relationship between parameters 𝑁!"## and max_features 180 

with the correlation coefficient (R), which is a measure of how well the RF models perform in the testing datasets created by 

10-cv. Based on the results, the value of R increases with the increases in 𝑁!"## and 𝑀$#%!&"#, and tends to be stable when 

𝑁!"## is greater than 500 and 𝑀$#%!&"# is greater than 10. To ensure that the four models are comparable, the RF parameters 

are fixed to be the same. Considering the accuracy, computational efficiency and comparability of the models, the number of 

trees to grow (𝑁!"## = 1000) and the number of variables randomly sampled as candidates at each split (𝑀$#%!&"# = 10) are 185 

both fixed for the four models. 

3.2 Testing and evaluation of the RF-based integration algorithm 

Considering the distribution of precipitation throughout the year and the amount of damage caused by precipitation, the 

distribution of CMA ground rain-gauge stations is clearly uneven, with many more stations situated in eastern China than in 

western China. Because we employ ground rain-gauge observations for the integration, so the coverage of rain-gauge 190 

observations is crucial for representing the spatial distribution of precipitation. To explore the impact of station density on the 

integration of typhoon precipitation, we select data from different numbers of stations (increasing from 100 to 5000 with an 

interval of 100) to build training datasets of different sizes. Figure 4 shows the influence of the number of stations considered 
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on the model training results. The solid lines represent the RG-based model results, while the dashed lines represent the IM-

based model results; the blue and red colors denote the F4-based and H8-based results, respectively. The evaluation parameters 195 

of all four models exhibit similar trends with an increasing number of stations; i.e., the integration results become more accurate 

due to both additional input data and a better representation on precipitation spatial distribution. The POD values of the four 

models are all close to 1, and vary only slightly with the number of stations, while the FAR values of the four models decreases 

with an increase in the number of stations. In contrast, the two statistical metrics (R and RMSE) fluctuate greatly when there 

are fewer than ~1000 stations, i.e., 1.26´10-3 station per km2; when observations from more than 1000 stations are considered, 200 

the R (RMSE) gradually increases (decreases) with an increasing number of stations. In general, in the estimation of typhoon 

precipitation, when the number of stations covering the region exceeds 1000, rain-gauge observations can generally reflect the 

spatial distribution of precipitation and thus can be used for surface precipitation integration. Of course, an increase in the 

number of stations does improve the integration performance, but only to a limited degree. Nevertheless, to ensure optimal 

model performance, this paper selects the data from all available stations. 205 

The scatter plots in Figure 5 quantitatively compare the hourly precipitation estimated by our surface precipitation integration 

models with the 10-cv testing datasets, indicating only the generalization ability of the model. The two IM-based models (F4-

IM and H8-IM) outperform the RG-based models (F4-RG and H8-RG) in the testing datasets according to the values of the 

POD (0.98 vs. 0.95, 0.97 vs. 0.95), FAR (0.25 vs. 0.46, 0.25 vs. 0.46), R (0.89 vs. 0.79, 0.89 vs. 0.79) and RMSE (1.25 mm/h 

vs. 2.19 mm/h, 1.25 mm/h vs. 2.17 mm/h). This may be using the satellite-based precipitation data of IMERG as the predictand 210 

may demonstrate better spatial consistency with the satellite observations than using the rain-gauge observations. In contrast, 

due to the similar satellite channels used as the predictors, the results based on different satellites are very similar in both the 

RG-based and the IM-based models. Noted that the “better performance” here only illustrates the better correlations between 

the predictors and predictands, but is not a high accuracy of the final model estimations, which also depend on the accuracy of 

the predictands compared to the truth (see Section 4).  215 

To better understand the performance of the surface precipitation integration models, Figure 6 shows the importance of all the 

predictors considered in all four models. The importance of each variable is given in the form of the mean decrease in accuracy 

(%IncMSE), which can represent the relative contribution of each variable, and the sum of the importance of all variables is 

100%. For F4-RG and H8-RG, the most important input variables are TCRW and TP, which represent the potential precipitable 

water in the atmosphere and the sum of large-scale precipitation and convective precipitation given by the atmospheric 220 

reanalysis. Geographical location data are also highly important, perhaps because the obvious spatial patterns of typhoon 

precipitation can be captured by RF-based training. The most important radiometer observations are certain brightness 

temperatures (BTs), such as BT12.0-BT10.7 for F4-RG and BT6.25-BT10.7 for H8-RG, both of which are related to the state 

of water vapor in the atmosphere. It is interesting that the most important variables in F4-IM/H8-IM differ significantly from 

those in F4-RG/H8-RG. Since the IMERG data comprise satellite-based precipitation estimates (Min et al., 2018), strong 225 

consistency is noted between the IMERG data and satellite observations, which is also reflected in the importance of variables. 

For F4-IM and H8-IM, the importance of variables such as BT8.5, BT6.2-BT10.7, BT6.2-BT11.2 and BT7.0-BT12.3 is 
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significantly high, while the importance of atmospheric reanalysis data and geographic data is relatively low; hence, the 

precipitation predicted by the F4-IM and H8-IM models is more dependent on the satellite observations. Meanwhile, the higher 

rankings of reanalysis-based variables in the RG-based models indicate their reasonable performance for distributing accurate 230 

atmospheric states (i.e., surface precipitation from rain gauges). 

4 Typhoon precipitation integration performance 

To evaluate the surface precipitation integration results, Figure 7 shows the ground rain-gauge observations and the results 

from the four integration models at three instants (from top to bottom) during Typhoon Mangkhut, which made landfall at 

0900 UTC on 16 Sep. 2018. Three typical cases are illustrated at three distinct instants: before the typhoon made landfall (0100 235 

UTC on 16 Sep. 2018), after the typhoon made landfall (1200 UTC on 16 Sep. 2018) and as the typhoon started to dissipate 

(2300 UTC on 17 Sep. 2018). Before the typhoon made landfall, the number of stations with precipitation on land was small, 

and heavy precipitations (e.g., stations with rain rates greater than 20 mm/h) was concentrated mainly over the coastline. After 

the typhoon made landfall, the precipitation area increased significantly, and both the extent of heavy precipitation area and 

the rain rates increased, with over 29 stations with recording rain rates exceeding 30 mm/h. Before the typhoon started to 240 

dissipate, the center of heavy rainfall disappeared, although there were still large regions of weak precipitation. At all instants 

steps, the four models consistently yield reasonable typhoon precipitation intensities and spatial distributions, especially the 

F4-RG and H8-RG, whereas F4-IM and H8-IM slightly overestimate the precipitation extent and cannot accurately represent 

the heavy precipitation centers. Figure 7 demonstrates that F4-RG and H8-RG predict similar spatial distributions, which is 

because the two models use similar predictors to predict the same predictand; the similar spatial distribution between F4-IM 245 

and H8-IM is also due to this reason. In addition, because the two RG-based models use rain-gauge data as the predictand 

during model development while the two IM-based models use IMERG data, the precipitation predicted by the RG-based 

models is closer to the rain-gauge precipitation, whereas that predicted by the IM-based models is closer to the IMERG 

precipitation, which further indicates that rain-gauge data are more suitable for the predictand than IMERG data when using 

ML to predict surface precipitation. 250 

To quantitatively understand the abovementioned comparison, Figure 8 illustrates the differences in hourly precipitation 

between our integration results and the ground rain-gauge observations at the same instants steps in Figure 7. Warm colors 

indicate stations at which the surface precipitation integration results are overestimated (larger than the rain-gauge 

observations), while cold colors indicate those at which the surface precipitation integration results are underestimated. The 

differences between the F4-RG/H8-RG results and rain-gauge observations are mostly within 2 mm/h, significantly smaller 255 

than the differences between the F4-IM/H8-IM results and rain-gauge observations. However, all four models tend to 

underestimate the precipitation intensity in the area of heavy precipitation and overestimate the precipitation at the rain-gauge 

stations with relatively weak precipitation (rain rates below 5 mm/h). Ultimately, more than 70% of the surface precipitation 

is overestimated because many more stations experienced weak precipitation than heavy precipitation within the study region. 
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Table 5 summarizes the percentages of the precipitation that were overestimated by the four integration models at the three 260 

typhoon instants. The percentages in this table denote ratios of our integration results larger than the true values (i.e., rain-

gauge observations) to the total amount of data at the particular rainfall rate. As our precipitation differences are strongly 

consistent with the rainfall rates, we divide the results into two groups: one group for stations with rainfall rates less than 5 

mm/h and the other group for those with rainfall rates greater than 5 mm/h. For rain-gauge precipitation rates less than 5 mm/h, 

more than ~85% of these data are overestimated. However, for rainfall rates greater than 5 mm/h, only approximately 20% of 265 

our results are larger than the true values, which means that the rate of underestimation is approximately 80%. 

Figure 9 compares the daily precipitation of our four models during Typhoon Mangkhut on 16 Sep. 2018. The daily 

precipitation results of the RG-based models (F4-RG and H8-RG, top panels) exhibit close agreement, and similar consistency 

is noticed between the F4-IM and H8-IM results (bottom panels). However, the RG-based model results differ substantially 

from the IM-based model results. The daily precipitation distributions of F4-RG and H8-RG indicate that during Typhoon 270 

Mangkhut, the precipitation over land was concentrated mainly in Guangdong Province, and the daily precipitation in some 

areas surpassed 200 mm/day. In contrast, F4-IM and H8-IM overestimate most of the daily precipitation on land but 

significantly underestimate the daily precipitation over 200 mm/day. It is worth noting that our models can yield the 

precipitation distribution over the ocean as well, but the performance could hardly be evaluated with any objectivity due to the 

lack of ground-based observations at sea. 275 

The spatial distributions of the above biases in our daily surface precipitation integration results are shown in Figure 10. In 

general, both the RG-based models and the IM-based models share considerable similarities in their spatial distribution of bias. 

For the two RG-based models, the average errors at most stations are between -20 mm/day and 20 mm/day, while the errors 

in the two IM-based models are significantly larger. Moreover, ~75% of the stations in all four models overestimate the rain 

rate, which is consistent with the aforementioned analysis of the hourly results. 280 

For further sample validation, Figure 11 shows the surface precipitation integration results from our integration models against 

the ground rain-gauge observations at both hourly (top panels) and daily (bottom panels) scales for all three instants during 

Typhoon Mangkhut, with the color bars indicating the occurrence frequency on a logarithmic scale at intervals of 0.5 mm/h at 

the hourly scale and 5 mm/day at the daily scale. In general, not only at the hourly scale but also at the daily scale, the surface 

precipitation integration results from the RG-based models show better consistency with the rain-gauge observations than do 285 

those from the IM-based models.  

To better explore the performance of the four surface precipitation integration models over time, Figure 12 illustrates time 

series plots of the four evaluation metrics at the hourly scale during the three typhoon events in 2018. The solid and dotted 

lines represent the RG-based and IM-based models, respectively, and the blue and red lines represent the F4-based and H8-

based models. Generally, the RG-based models (F4-RG and H8-RG) perform significantly better than the IM-based models 290 

(F4-IM and H8-IM) with relatively better classification metrics (i.e., without apparent fluctuations) and with better statistical 

metrics. Because the RG-based models use ground rain-gauge observations as the predictor while the IM-based models use 

IMERG estimates based on satellite observations as the predictor, the surface precipitation integration results differ greatly 
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between the RG- and IM-based models. In addition, because of the similar satellite observation channels adopted for the model 

development, the F4- based and H8-based models yield very similar surface precipitation integration results. 295 

Note that all surface precipitation integration models perform better during Ewiniar and Mangkhut than during Bebinca, with 

the former two having higher POD and R values and lower FAR values; this is attributed to the uneven distribution of surface 

precipitation. As shown in Table 1, there was either light precipitation or no precipitation over most of the land area during 

Bebinca, accounting for 78% and 18%, respectively. Therefore, the surface precipitation integration results of all models are 

relatively poor for the precipitation process during Bebinca. 300 

5 Summary 

This paper proposes an RF-based surface precipitation integration framework for typhoons making landfall that combines 

geostationary spectral radiometer observations, atmospheric reanalysis data, high-density rain-gauge observations and IMERG 

estimates. To develop the model, we consider either F4 or H8 observations as the predictor and either rain-gauge observations 

or IMERG estimates as the predictand, and the performances of four models, i.e., F4-RG, H8-RG, F4-IM, and H8-IM, are 305 

systematically evaluated. All four models are capable of capturing precipitation events caused by typhoons making landfall. 

Regardless of whether hourly precipitation or daily precipitation is used, POD is greater than 0.9, and FAR is approximately 

0.5; additionally, the RG-based models (F4-RG and H8-RG) can estimate surface precipitation well. For hourly precipitation, 

the R values between F4-RG and H8-RG and the ground rain-gauge observations are greater than 0.7, and the RMSE is 

approximately 2.5 mm/h. For daily precipitation, the R values between F4-RG and H8-RG and the ground rain-gauge 310 

observations are approximately 0.9, and the RMSE is approximately 25 mm/d. In contrast, while the two IM-based models 

achieve good success in model development, when the surface precipitation integration results of the two models are compared 

with the ground rain-gauge observations, the comparison results are obviously worse than those of the RG-based models, 

which indicates that the ground rain-gauge data are more suitable than IMERG data as ground truth for the development of the 

typhoon surface precipitation integration algorithm. Nevertheless, despite the excellent performance of our typhoon-only 315 

models, the surface precipitation estimates could be further improved by developing and using different models for different 

precipitation types.   

Note that the input variables of the surface precipitation integration models include satellite observations, geographic locations 

and channel combinations. The key point to establishing surface precipitation integration models is how to accurately 

discerning the nonlinear relationship between the model input variables and precipitation. According to the importance of the 320 

variables shown by the RF algorithm used in the model development, TCRW, TP and geographic location rank much higher 

in importance, which is useful for confirming the accuracy of the surface precipitation integration results for typhoons. 

Furthermore, considering the complexity and variability of typhoon precipitating cloud systems, the vertical factors of clouds 

derived by passive microwave sensors (e.g., cloud water vapor profiles, cloud thickness) and the environmental conditions 

(e.g., wind shear, relative humidity) from a global forecast system should be introduced into the RF model to improve the QPE 325 

accuracy in the future. 
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Table 1: Channel information for F4/AGRI and H8/AHI considered in our integration algorithms. 500 

Band name 
Central wavelength (µm) 

F4/AGRI H8/AHI 

WV1 6.2 6.2 

WV2 7.1 7.0 

LW1 8.5 8.6 

LW2 10.7 11.2 

LW3 12.0 12.3 

LW4 13.5 13.3 

 
 

 

 

 505 

 

 

 

 

 510 

Table 2: Information on the three examples of typhoon events that made landfall in South China in 2018. 

Typhoon name  Period No rain Rain<=5 mm/h Rain>5 mm/h 

Ewiniar  6–7 Jun. 2018 (48 hrs) 55.7% 35.9% 8.4% 

Bebinca  14–15 Aug. 2018 (48 hrs) 78.9% 18.3% 2.8% 

Mangkhut 16 Sep. 2018 (24 hrs) 50.9% 36.0% 13.1% 

 

 

 

 515 

 



19 
 

 

 

 
Table 3: Differences among the four precipitation integration models used in this paper. 520 

     Satellite data 

Precipitation data 

FengYun-4A/AGRI 

(F4-based models) 

Himawari-8/AHI 

(H8-based models) 

 Rain-gauge observations 

 (RG-based models) 
F4-RG H8-RG 

IMERG estimates 

(IM-based models) 
F4-IM H8-IM 

 

 

 

 
Table 4: Data and variables considered in this study for precipitation integration. 525 

 Parameters Type Resolution 

Predictor 

Longitude, Latitude Geographic Location - 

WV1, WV2, LW1, LW2, LW3, LW4,  

WV1-LW2, LW1-LW2, WV2-LW3, LW2-LW3 

AGRI observation 4 km/1 h 

AHI observation 5 km/1 h 

CAPE, K-Index, TCRW, TP, TCLW,  

R850, R950, T850, T950 
Atmospheric Reanalysis 0.25°/1 h 

Predictand 
Rain-gauge data Rain-gauge-based - 

IMERG data IMERG-based 0.1°/1 h 

Validation Rain-gauge data Ground-based - 
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Table 5: Surface precipitation overestimation percentages for the four models during the three typhoons. 

Typhoon Rain Rate  F4-RG H8-RG F4-IM H8-IM 

Ewiniar 
< 5 mm/h 87% 87% 86% 86% 

> 5 mm/h 22% 23% 19% 19% 

Bebinca 
< 5 mm/h 88% 89% 85% 84% 

> 5 mm/h 11% 9.1% 7.2% 6.7% 

Mangkhut 
< 5 mm/h 89% 88% 90% 90% 

> 5 mm/h 25% 24% 16% 15% 

Total 
< 5 mm/h 88% 88% 87% 87% 

> 5 mm/h 19% 19% 14% 14% 

 530 
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Figure 1: Distribution of high-density ground rain-gauge stations over the study area. 
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 535 
 

Figure 2: Flowchart of the surface precipitation integration algorithm. 
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Figure 3: Dependence of the correlation coefficient (R) on the parameters𝑵𝒕𝒓𝒆𝒆 (a) and 𝑴𝒇𝒆𝒂𝒕𝒖𝒓𝒆 (b). 540 

  



24 
 

 
Figure 4: Influence of the number of ground stations on the model training results. 
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 545 
Figure 5: Scatter plots of the hourly precipitation among the different surface precipitation integration models (F4-RG, H8-RG, F4-
IM and H8-IM) and rain-gauge observations over the testing datasets created by the 10-cv method with the RF algorithm. The black 
dotted line in all panels represents the 1:1 line. 
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 550 
Figure 6: Importance of each variable in the RF algorithm when estimating  surface precipitation. 

  

The variable importance of F4-RG

0 2 4 6 8 10 12 14 16 18
Variable importance (%)

BT12.0
BT7.1
BT6.2

K-Index
CAPE
TCLW

BT10.7
BT12.0-BT10.7
BT7.1-BT12.0
BT8.5-BT10.7

R850
T950
R950

BT13.5
T850

BT6.2-BT10.7
BT8.5

Latitude
Longtitude

TP
TCRW

The variable importance of H8-RG

0 2 4 6 8 10 12 14 16 18
Variable importance (%)

BT12.3
BT13.3

BT7.0
BT11.2

BT6.2
TCLW
CAPE

K-Index
BT8.6
R850

BT8.6-BT11.2
T950
R950
T850

BT12.0-BT10.7
BT7.0-BT12.3
BT6.2-BT11.2

Longtitude
Latitude

TP
TCRW

The variable importance of F4-IM

0 2 4 6 8 10 12 14 16 18
Variable importance (%)

BT6.2
BT8.5-BT10.7

BT12.0-BT10.7
BT7.1

BT12.0
CAPE
R850
R950

TP
BT7.1-BT12.0

K-Index
T850
T950

BT13.5
TCLW

Latitude
Longtitude

BT10.7
TCRW

BT6.2-BT10.7
BT8.5

The variable importance of H8-IM

0 2 4 6 8 10 12 14 16 18
Variable importance (%)

BT7.0
BT6.2

BT13.3
BT12.3
BT11.2

R850
CAPE
R950

BT8.6-BT11.2
TP

T850
K-Index

T950
TCLW

BT12.0-BT10.7
BT8.6

Latitude
Longtitude

TCRW
BT7.0-BT12.3
BT6.2-BT11.2



27 
 

 
Figure 7: Comparison of the hourly precipitation from the ground rain-gauge observations with the F4-RG, H8-RG, F4-IM and H8-
IM estimates at instants steps (0100 UTC on 16 Sep. 2018, 1200 UTC on 16 Sep. 2018, and 2300 UTC on 17 Sep. 2018). 555 
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Figure 8: Differences in hourly precipitation between F4-RG, H8-RG, F4-IM and H8-IM and the ground rain-gauge observations 
at instants steps (0100 UTC on 16 Sep. 2018, 1200 UTC on 16 Sep. 2018, and 2300 UTC on 17 Sep. 2018). 

  560 
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Figure 9: Comparison of daily precipitation among F4-RG, H8-RG, F4-IM and H8-IM on 16 Sep. 2018. 
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Figure 10: Differences in daily precipitation between F4-RG, H8-RG, F4-IM and H8-IM and the ground rain-gauge observations on 565 
16 Sep. 2018. 
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Figure 11: Probability density distributions of the hourly ((a)~(d)) and daily ((e)~(h)) precipitation of F4-RG, H8-RG, F4-IM and 
H8-IM during three typhoon events. The black dotted line in all panels represents the 1:1 line. 570 
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Figure 12: Time series plots of the POD, FAR, R, and RMSE (mm/h) from F4-RG, H8-RG, F4-IM and H8-IM throughout the 
evolution of the three typhoon events. 
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