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Abstract. In  remote  sensing  applications,  clouds  are  generally  characterized  by  two  properties:  cloud  optical 

thickness (COT) and effective radius of water/ice particles (Reff),  and  additionally by geometric properties when 

specific information is available. Most of the current operational passive remote sensing algorithms use a mono-

angular bispectral method to retrieve COT and Reff. They are based on pre-computed lookup tables while assuming a 

homogeneous plane-parallel  cloud layer. In this  work,  we use the formalism of the optimal  estimation method, 

applied to  airborne near-infrared high resolution  multi-angular  measurements,  to  retrieve COT and  Reff,  and the 

corresponding uncertainties related to the measurement errors,  to the  non-retrieved parameters and to  the  cloud  

model assumptions.  The used measurements were acquired by the airborne radiometer OSIRIS (Observing System 

Including PolaRization in the Solar Infrared Spectrum), developed by the Laboratoire d'Optique Atmosphérique. It  

provides multi-angular measurements at tens of meters resolution, very suitable for refining our knowledge of cloud 

properties and their high spatial variability. OSIRIS is based on the POLDER (POlarization and Directionality of the 

Earth's  Reflectances) concept  as a prototype of the future 3MI space instrument planned to be launched on the 

EUMETSAT-ESA MetOp-SG platform in  2024. The  used  approach  allows  the  exploitation  of  all  the  angular 

information available for each pixel to overcome the radiance angular effects. More consistent cloud properties with 

lower uncertainty compared to operational mono-directional retrieval methods (traditional bispectral method) are  

then obtained. The framework of the optimal estimation method provides also the possibility to estimate uncertainties 

of different sources. Three types of errors were evaluated: (1) Errors related to measurement uncertainties, which  

reach 6 and 12% for COT and Reff  respectively, (2) errors related to an incorrect estimation of the ancillary data that 

remain  below 0.5%,  and (3)  errors  related  to  the  simplified  cloud physical  model  assuming independent  pixel  

approximation.  We show that  not  considering the in-cloud heterogeneous vertical  profiles  and the 3D radiative  

transfer effects lead to an average uncertainty of 5% and 4% for COT  and of 13% and 9%  for Reff .

1 Introduction

The role and evolution of clouds in the ongoing climate change are still unclear. Their radiative feedbacks due to  

temperature  rise  or  due  to  the  indirect  effect  of  aerosols  are  insufficiently  understood  and  they  are  known to  

contribute  to  the  uncertainties  in  the  Earth  future  climate  (IPCC  report,  2021).  An  accurate  estimation  of  cloud 
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properties is therefore very important for constraining climate and meteorological models, improving the accuracy of  

climate forecasting, and monitoring the cloud cover evolution. The instruments onboard Earth observation satellites 

allow continuous monitoring of the clouds and aerosols and retrieval of their properties from a regional to a global  

scale.

The cloud properties are retrieved using the information carried by the measurements of the reflected, emitted, or  

transmitted radiations by the clouds. Two main optical cloud properties are generally retrieved: the cloud optical  

thickness (COT) and the effective radius of the water/ice particles forming the cloud (Reff). These optical properties, 

along with the cloud altitude when possible, allow to characterize the clouds at a global scale and help to determine 

the  radiative  impacts  of  clouds  along  with  their  cooling  and  warming effects   (Twomey,  1991;  Lohmann and 

Feichter, 2005; Rivoire et al., 2020; Yang et al., 2010). Depending on the available information, various passive 

remote sensing methods are operationally used for the retrievals of these optical properties. For instance, the infrared  

split-window technique (Giraud et al., 1997; Inoue, 1985; Parol et al., 1991) uses infrared measurements and is more 

suitable for optically thin ice clouds (Garnier et al., 2012). The bispectral method (Nakajima and King, 1990) which 

uses visible and shortwave infrared wavelength, is more suitable for optically thicker clouds. It is currently used in a 

lot of operational algorithms, for example by the MODIS radiometer (Platnick et al.,  2017). It is also possible to use 

a  combination  of  multi-angular  total  and  polarized  measurements  in  the  visible  range,  such  as  POLDER 

measurements (Deschamps et al., 1994), to retrieve COT and Reff (Bréon and Goloub, 1998; Buriez et al., 1997).

The above-mentioned methods are subject to several sources of error. A moderate perturbation in the retrieved COT 

and  Reff can,  for  example,  cause variations of  around 1 to  2 W/m 2 in  the estimation of cloud radiative forcing 

(Oreopoulos  and  Platnick,  2008).  The  quantification  of  the  retrieval  uncertainties  of  these  optical  properties  is 

therefore critical. The sources of errors originating from the measurements can be quite well evaluated along the  

instrument calibration process and are often considered when developing a new algorithm (Sourdeval et al., 2015; 

Cooper et al., 2003, Platnick et al.  2017) but the errors related to the choice of the cloud model to retrieve the 

parameters and the assumption made for the radiative transfer simulations should not  be overlooked.  Currently,  

computational constraints and lack of information in the measurements force the operational algorithms of cloud  

products (MODIS, POLDER, and others) to retrieve the cloud optical properties with a simplified 1D-cloud model.  

In this model, clouds are considered flat between two spatially homogeneous planes in what is known as the plane-

parallel and homogeneous (PPH) assumption (Cahalan et al., 1994). Another commonly used assumption is related to 

the infinite dimension of the PPH cloud and treats each pixel independently without considering the interactions that 

occur between neighboring homogeneous pixels, known as the independent pixel approximation (IPA) (Cahalan et 

al.,  1994;  Marshak et  al.,  1995b).  The effect  of  these two assumptions can lead to large uncertainties and bias 

regarding the cloud properties (Marshak et al., 2006b; Seethala and Horváth, 2010) and the aerosol-cloud relationship 

(Kaufman et al., 2002; Chang and Christopher, 2016).

Considering the spatial variability of the cloud macrophysical and microphysical properties, the errors induced by the  

use of a homogeneous horizontal and vertical cloud model have been found to depend on the spatial resolution of the  

observed pixel, the wavelength, and the observation and illumination geometries (Kato and Marshak, 2009; Zhang 
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and Platnick, 2011; Zinner and Mayer, 2006; Davis et al., 1997; Oreopoulos and Davies, 1998; Várnai and Marshak,  

2009). From medium to large-scale observations greater than 1 km (e.g. MODIS: 1×1 km2, POLDER: 6×7 km2), the 

PPH approximation poorly represents the cloud variability. The subpixel horizontal heterogeneity and the nonlinear 

nature of the COT-radiance relationship create the PPH bias that leads to the underestimation of the retrieved COT  

(Cahalan et al., 1994; Szczap et al., 2000; Cornet et al., 2018). The PPH bias is increasing with pixel size due to the 

inhomogeneity  increase.  Using  the  bispectral  method,  the  COT  subpixel  heterogeneity  induces  also  an 

overestimation bias on the retrieved  Reff (Zhang et al.,  2012), while this  effect appear limited with polarimetric 

observations (Alexandrov et al., 2012; Cornet et al., 2018). On the contrary, the microphysical subpixel heterogeneity 

leads to an underestimation of retrieved Reff (Marshak et al., 2006b).

At smaller scales, as considered here, errors due to IPA become more dominant. At this scale, pixels can no longer be 

considered infinite and independent from their adjacent pixels. Radiative energy pass from one column to the others 

depending on the COT gradient. This leads to a decrease in the radiance of pixels with large optical thickness and an  

increase in the radiance of pixels with small optical thickness, which tends to smooth the radiative field and thus the 

field of retrieved COT (Marshak et al., 1995a, b). As a result, it can lead to a large underestimation of the retrieved 

optical thickness  (Cornet and Davies, 2008). Adding to these effects, for off-nadir observations, the tilted line of 

sight  crosses  different  atmospheric  columns  with  variable  extinctions  and  optical  properties  which  tend  to  

additionally smooth the radiative field (Várnai and Davies, 1999; Kato and Marshak, 2009; Benner and Evans, 2001; 

Várnai and Marshak, 2003; Fauchez et al. 2018). In  the case of fractional cloud fields not examined under nadir 

observations, the edges of the clouds cause an increase of the radiances for high viewing angles, which in turn,  

increases  the  value  of  the  retrieved  COT  (Várnai  and  Marshak,  2007),  while  overestimating  the  retrieved  Reff 

(Platnick et  al.,  2003).  They are often filtered out  of  cloud property retrievals  especially  under low sun angles 

(Takahashi et al.,  2017; Zhang et al.,  2019). The illumination and shadowing effects,  on the contrary, lead to a 

roughening of the radiative field by increasing or decreasing radiances compared to the prediction of the plane-

parallel  homogeneous clouds.  Their  influence in over  and under-estimating the cloud droplet  size  retrievals are  

documented in several papers (Zhang et al., 2012; Marshak et al., 2006a; Cornet et al., 2005).

The assumption of a vertically homogeneous profile inside the cloud is also questionable. The vertical distribution of  

the cloud droplets is important to provide an accurate description of the radiative transfer in the cloud (Chang, 2002) 

and obtain a more accurate description of the cloud microphysics such as the water content or the droplet number 

concentration. For simplicity reasons, classical algorithms assume a vertically homogeneous cloud model. However,  

several studies have shown a dependence  between the retrieved effective radius and the SWIR band used. These  

differences are explained by the non-homogenous cloud vertical profiles and by the different sensitivities of spectral  

channels due to a wavelength dependent cloud particleabsorption  (Platnick, 2000; Zhang et al., 2012).  Indeed, the 

absorption by water droplets being stronger at 3.7 µm, the radiation penetrates less deeply in the cloud than at 2.2 and 

1.6 µm. The use of channel 3.7 is therefore expected to lead to retrieve an effective radius that corresponds to a level  

in the cloud higher than that of channels 2.2 and 1.6.  Considerable vertical variation along the cloud profiles is 

confirmed by many in-situ studies of droplet size profiles and water content as summarized in (Miles et al., 2000). 

This vertical variation in liquid particle size is an important cloud parameter related to the processes of condensation, 
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collision-coalescence, and the appearance of precipitation (Wood, 2005). The diversity of possible vertical profiles is 

difficult  to account for. Saito et al.  (2019) propose a method to retrieve it using Empirical Orthogonal Function 

(EOF) to reduce the degrees of freedom of the droplet size profile.

In operational algorithms, the retrieval of COT and Reff is achieved through pre-computed Look-Up Tables (LUT). 

This method can be used to process large databases automatically. Its disadvantage is that a modification of the 

particle model or any other model parameter requires re-generating all these pre-computed tables. In addition, until  

recently,  the  difficulty  was to  assess  the  uncertainties  on the retrieved cloud properties.   Platnick et  al.  (2017)  

succeeded to derive the total uncertainties on COT and Reff and to decompose the contribution of uncertainties from 

measurement errors and  from several non retrieved parameters using covariance matrix and Jacobian computations  

from LUT. 

In this paper, we present a method based on the Optimal Estimation Method (Rodgers et al. 2000) to also derive  

separately each type of uncertainty  and apply it to the measurements of the airborne radiometer named Observing 

System Including PolaRization in the Solar Infrared Spectrum (OSIRIS), which was developed in the Laboratoire 

d’Optique Atmosphérique (Auriol et al., 2008). OSIRIS is the airborne simulator of the 3MI (Multi-viewing Multi-

channel Multi-polarization Imaging) radiometer, planned to be launched on MetOp-SG in 2024. It can measure the 

degree of linear polarization from 440 to 2200 nm and has been used onboard the French Falcon 20 environmental 

research  aircraft  of  Safire,  during  several  airborne  campaigns:  CHARMEX/ADRIMED  (Mallet  et  al.,  2016), 

CALIOSIRIS and AEROCLO-sA (Formenti et al., 2019).

We couple the multi-angular multi-spectral measurements of OSIRIS with a statistical inversion method to obtain a  

flexible retrieval process of COT and Reff. The exploitation of the additional information on the cloud provided by 

these versatile measurements implies the use of a more sophisticated inversion method compared to the LUT. The  

optimal estimation method  (Rodgers, 1976, 2000) has been widely used for applications in cloud remote sensing 

(Cooper et al., 2003;  Poulsen et al., 2012; Sourdeval et al., 2013; Wang et al., 2016). In this method, the Bayesian 

conditional  probability together with a variational  iteration method allows the convergence to the physical  state  

which allow the forward model to best fits the measurements. Therefore, it introduces the probability distribution  

function of solutions where the retrieved parameter being the most probable, with an ability to extract separately  

uncertainties of the retrieved parameters (Whalter et Heidinger, 2012). 

The aim of this paper is not to give an exhaustive view of the possible errors concerning optical thickness and 

effective radius retrievals but to simply introduce a method to derive the different sources of uncertainties from a 

specific case of data acquired during an airborne campaign. Uncertainties due to error measurements, to non retrieved 

parameters  but  also to  the  assumed forward model  are  considered.  If  generalized to  several  cloudy scenes,  the  

partitioning of the errors can help to understand if and which non-retrieved parameters or forward models need to be  

optimized in order to reduce the global uncertainties of the retrieved cloud parameters.

This article is organized as follows. Section 2 describes the basic characteristics of OSIRIS and some essential details 

of  the campaign CALIOSIRIS-2.  In  section 3,  a  detailed description of the  retrieval  methodology is  presented, 
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including the mathematical  framework needed to compute the uncertainties of the retrieved cloud properties.  In 

section 4, a case study of a liquid cloud is presented and analyzed. We assessed the magnitude of different types of 

errors, such as the errors due to measurement noise, the errors linked to the fixed parameters in the simulations, and  

the errors related to the unrealistic homogeneous cloud assumption. The multi-angular retrievals and uncertainties are 

compared with the results obtained by the classical monoangular bispectral retrieval algorithms in section 5. Finally, 

section 6 gives a summary and some concluding remarks.

2 Instrumentation and airborne campaign

We use the new imaging radiometer OSIRIS. We will go through the main characteristics of the instrument and the 

airborne campaign CALIOSIRIS. More details about OSIRIS can be found in (Auriol et al., 2008).

2.1 OSIRIS

OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum) is an extended version of the 

POLDER radiometer (Deschamps et al., 1994) with multi-spectral and polarization capabilities extended to the near 

and short-wave  infrared.  This  airborne  instrument  is  a  prototype of  the  future  spacecraft  3MI  (Marbach et  al., 

2015) planned to be launched on MetOp-SG in 2024.  It  consists  of  two optical  sensors,  each one with a two-

dimensional array of detectors; one for the visible and near-infrared wavelengths (from 440 to 940 nm) named VIS-

NIR (Visible-Near Infrared) and the other one for the near and shortwave infrared wavelengths (from 940 to 2200 

nm) named SWIR (Shortwave Infrared).  The VIS-NIR detector contains 1392×1040 pixels with a pixel  size of  

6.45×6.45 µm2 while the SWIR contains 320×256 pixels with a pixel size of 30×30 µm2. Adding those characteristics 

to the wide field of view of both heads, at a typical aircraft height of 10 km, the spatial resolution at the ground is 18  

m and 58 m for the VIS-NIR and SWIR respectively. This leads to a swath of about 25×19 km for the visible and  

19×15 km for the SWIR.

OSIRIS has eight spectral bands in the VIS-NIR and six in the SWIR. Similar to the concept of POLDER, OSIRIS 

contains a motorized wheel rotating the filters in front of the detectors. The step by step motor allows only one filter  

to intercept the incoming radiation at a particular wavelength. The polarization measurements are conducted using a  

second rotating wheel of polarizers. Given the sensor exposure and transfer times, the duration of a full lap is about 7  

seconds for the VIS-NIR and 4 seconds for the SWIR.  Figure 1 shows the spectral response of each channel of 

OSIRIS. The two channels (1240 and 2200 nm) used in this study are red-colored in the figure.
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Figure 1: Spectral wavelengths of VIS-NIR (left) and SWIR (right) spectral response function of OSIRIS optical channels 
without unit and normalized to unity. The dashed line corresponds to a typical atmospheric transmittance in %. The red-
colored channels are used in this study (1240 and 2200 nm).

OSIRIS is an imaging radiometer with a wide field of view. It has a sensor matrix that allows the acquisition of  

images  with  different  viewing  angles.  The  same  scene  can  thus  be  observed  several  times  during  successive 

acquisitions with variable geometries.  The largest  dimension of the sensor matrix is  oriented along-track of the 

aircraft to increase the number of viewing angles for the same target. For example, when the airplane is flying at 10 

km altitude with a speed of 200 to 250 m/s, the same target at the ground can be seen under 20 different angles for  

the VIS-NIR and 19 for the SWIR.

2.2 Airborne campaign and case study

OSIRIS  participated  in  the  airborne  campaign  CALIOSIRIS  in  October  2014.  It  was  carried  out  with  the  

contributions of the French laboratories LOA (Laboratoire d’Optique Atmosphérique) and LATMOS (Laboratoire  

ATmosphères, Milieux, Observations Spatiales, Paris) and with SAFIRE, the French Facility for Airborne Research.  

One objective of this campaign was  the development of new cloud and aerosol properties retrieval algorithms in 

anticipation of the future space mission of 3MI intending to improve our knowledge of clouds, aerosols and cloud-

aerosol interactions.

The data  used in  this  work focuses  on a  cloudy case over  ocean surface.  A marine monolayer  cloud that  was  

observed on 24 October 2014 at 11:02 (local time). The aircraft flew at an altitude of 11 km above the Atlantic Ocean 

facing the French west coast (46.70°,-2.82°, red arrow in  Figure2a). The solar zenith angle was equal to 59°. The 

LNG (lidar aerosols nouvelle generation, Bruneau et al. 2015), a high spectral resolution airborne Lidar at 355nm, 

was also onboard the Falcon-20 aircraft along with OSIRIS during the airborne campaign. In Figure 2b, the vertical 

profiles of the backscattered signal measured by the LIDAR-LNG is represented. The red rectangle in Figure 2b 

corresponds to OSIRIS images and the scene studied in this paper. The LIDAR-LNG detected a monolayer cloud 

around 5.5 km. In the panels (c) and (d), we present colored compositions of total and polarized radiances obtained 

from three spectral bands of OSIRIS over this cloud scene. One OSIRIS image corresponds to several  viewing 
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angles. The zenith angle ranges from about 0° in the center of the image to 55° in the corner of the image. The white 

concentric contours represent the scattering iso-angles in a step of 10º.

 The clouds backscatter total solar radiation more intensely in the cloudbow regions near 140°. The position of the 

cloudbow peak depends on the wavelength, resulting in the decomposition of the light, slightly visible between the 

140° and 150° scattering angle contours. On the polarized image (Figure2d), we observe a strongest directional 

signature of the signal, characteristic of scattering by spherical droplets showing a cloud bow clearly visible between 

about 140° and 150°. At larger scattering angles between 150° and 160°, we observe slightly the supernumerary  

bows whose positions vary with the wavelength, alternating between the red, blue, and green channels. The measured 

polarized signal for scattering angles smaller than 130º is largely dominated by molecular scattering at 490 nm, hence  

the blue color. Since the solar zenith angle is 59°, the specular direction corresponds to a scattering angle of 62° in  

the solar plane (not visible in Figure 2c and 2d) but the ocean wind enlarges the sun glint area, resulting of an 

enhancement of the radiances between the 70° and 80° scattering iso-contours. 

At the time of the CALIOSIRIS campaign in 2014, the polarized channels presented calibration and stray light  

issues, which make use of the polarized measurements difficult for quantitative retrievals. In addition, the images  

from the two sensors were not well co-localized. Consequently, for this work, we use two unpolarized channels of 

the SWIR matrix, one almost non absorbing (1240 nm) and one absorbing (2200 nm) to have information on optical 

thickness and effective radius respectively.

In order to use the multi-angular capability of OSIRIS, successive images have to be colocalized. After subtracting 

the average of similar successive images to remove the angular effects, the colocalization is achieved by minimizing  

the root mean square difference of the radiances between each pair of successive images for different translations  

along the line and the column in the second image. The reference image is the central one of the sequence. Images  

with translations beyond its dimensions are ignored. Multi-angular radiances at the cloud level correspond in our case  

to 9 to 13 directions.
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Figure 2: Studied case on 24 October 2014 at 10:02 UTC (11:02 local time): (a) In blue, airplane trajectory for this day 
above a  MODIS/AQUA true  color  image.  The red  arrow corresponds to  the  studied  segment  (b)  Quicklook of  the 
backscattered signal provided by the LIDAR-LNG around the observed scene. The red rectangle corresponds to the  
studied scene (c) OSIRIS  RGB composite image, obtained from the total radiances at channels 490, 670, and 865 nm. The 
blue bars  on the left hand side of the images are due to the motion of the airborne between the image acquisitions of the 
different filters (d) OSIRIS  RGB composite image, obtained from the polarized radiances at channels 490, 670, and 865 
nm. The white iso-contours in (c) and (d) represent the scattering iso-angles in a 10º step.

3 Retrieval methodology

One of  the  most  robust  approaches in  cloud property retrievals  is  the  optimal  estimation  method (OEM).  It  is 

increasingly  used  in  satellite  measurement  inversion  (Cooper  et  al.,  2003;  Poulsen  et  al.,  2012;  Walther  and 

Heindiger,  2012,  Sourdeval  et  al.,  2013;  Wang et  al.,  2016). It  provides  a rigorous mathematical  framework to 

estimate one or more parameters from different measurements. The OEM also characterizes the uncertainty on the  

retrieved parameters while taking into account the instrument error and the underlying physical model errors.  A 

complete description of the optimal estimation method for atmospheric applications is given by Clive D. Rodgers  

(Rodgers,  2000).  In  this  book,  Rodgers  described  exhaustively  the  information  content  extraction  from 

measurements, the optimization of the inverse problem, and the solutions and error derivations. In the following, we  

will go through the basics of this method that define the core of our retrieval algorithm.
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3.1 The formalism of the optimal estimation method

Considering a vector  y (of  dimension  ny)  containing the measurements  and a state  vector  x (of  dimension  nx) 

containing the unknown properties to be retrieved, these two vectors are connected by the forward model F, which 

can  model  the  complete  physics  of  the  measurements  to  an  adequate  accuracy.  The  errors  associated  with  the 

measurement and the modelling are represented by the error vector ϵ . Eq. (1) states the relationship between these 

variables.

y=F ( x )+ϵ  (1)

The OEM aims to find the best representation of parameters  x that minimizes the difference between simulations 

F ( x ) and observations  y  while considering the linearity of the direct  model  near the solution.  To achieve it,  a 

Bayesian probabilistic approach is applied. Before the measurements, an a priori knowledge of the state vector can be  

described  by  a  probability  density  function  (PDF)  P ( x ).  Once  the  measurements  y has  been  carried  out,  this 

knowledge can be described by the posterior PDF of the stateP ( x|y ), which is a conditional probability (probability 

of having  x given that  y is true). The posterior PDF of the state vector can be related to its a priori PDF by the  

Bayes’ theorem:

P ( x|y )=P ( y|x) .P ( x )
P ( y )

 (2)

Where P ( y ) is the PDF of the measurements including the uncertainties and P ( y|x ) is the PDF of the measurements 

given that we know the state vector. 

In the optimal estimation method, the previous PDFs are represented by Gaussian distributions, assuming that the 

errors of the measurements, the errors related to the non-retrieved parameters and the errors of the forward model are  

normally distributed around a mean value.

Therefore, it can be easily shown that the best estimate of the state vector x corresponds to the minimum of the so-

called cost function J ( x ):

J ( x )=[ y− F ( x ) ]T Sϵ
−1 [ y −F ( x) ]+ [ x −xa ]T Sa

−1 [ x− xa ] (3)

The first term of J ( x ) represents the difference between the measurements and the forward model calculated for a  

given state vector x, weighted by Sϵ  the covariance matrix associated with the measurement error and the forward 

model errors. The second term represents the difference between the state vector x and the a priori state vector xa 

weighted by  Sa the covariance matrix associated with  xa.  In line with the cost function, the optimal estimation 

emerges from a balance between the information carried by the measurement about the state vector and what we 

already know about it before the measurement. In our case, we do not have a prior estimate of the state vector. The 

iterations are initiated by a first guess while applying a large Sa. The difference between the measurements and the 

forward model will be the decisive element in the minimization of the cost function. It will ensure that the estimated 

cloud properties have the optimal fit with the observed system only.
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The minimization is done through the Levenberg-Marquardt approach (Marquardt, 1963; Levenberg, 1944) based on 

the “Gauss-Newton” iterative method. Assuming the model is nearly linear around a given state vector, each iteration  

is calculated following the Eq. (4): 

x i+1=x i+Sxi
− 1 [K i

T Sϵ
− 1 ( y−F (xi ) )−Sa

− 1 (x i− xa ) ]              (4)

where x i is the state vector at the ith iteration, K i is the sensitivity (or Jacobian) matrix described in Eq. (10) and Sxi 

is the covariance matrix of the state vector defined in Eq. (5).

Sxi=[ (1+γ )Sa
−1+K i

T Sϵ
−1 K i ]

−1
(5)

The parameter γ affects the size of the step at each iteration. If the cost function increases at an iterative step i then γ 

is increased and a new smaller step (x i+1) is calculated until the cost function decreases.

The iterative process stops when the simulation fits the measurement (Eq. (6)), named convergence of Type 1 or 

when the iteration converges (Eq. 7) named convergence of Type 2. The left side of Eq. (6) represents the normalized 

cost function without taking into account the a priori negligible contribution. When the cost function  is smaller than  

n y or the normalized cost function (J /n y) less or equal to one, the iterations stop. Eq.  (7) deals with the iterative 

steps and will make sure that the iterations will stop when the difference between two successive steps weighed by Sx 

is  less  than  nx.  In  other  words,  when  further  changes  in  the  state  vector  have  small  to  zero  changes  in  the  

minimization.

[ y −F (x i ) ]T Sϵ
− 1 [ y −F (xi ) ]/ny ≤1 (6)

           

[ x i− xi− 1 ]T Sx [ x i−xi− 1 ] /nx ≤1 (7)

When neither the  inequality  of  Eq.  6 nor  the inequality of  Eq.  7  is  reached after  15 iterations,  the  retrieval  is 

considered as a failed retrieval. 

3.2 Basic setting of the retrieval algorithm

In order to apply this theoretical framework into our retrieval algorithm, we define next the basic elements stated in  

the previous subsection.

The state vector x contains the properties to be retrieved. In our case, they are the cloud optical thickness (COT) and 

the effective radius of water droplets (Reff):

x=[cotR eff ] (8)

It can be noted because the relationship between radiances and optical thickness has a logarithmic shape, that using 

log(COT) instead of COT in the state vector could have accelerated the convergence. 
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The a priori state vector was set to [10, 10µm] and the a priori covariance matrix S a was set to 108. The latter was 

chosen very large in order to favor the measurements in the determination of the state vector (no a priori constraint) .

The measurement vector y contains the radiances (R) measured by OSIRIS at two wavelengths λa and λb for several 

view directions θi  and is given in Eq. (9) 

y=[
R λa (θ1 )
R λb (θ1 )
⋮
R λa (θnθ )
R λb (θnθ

)
]             (9)

The forward model is based on the adding-doubling method (De Haan et al., 1987; Van de Hulst, 1963) to solve the 

radiative  transfer  equation  and  simulate  the  radiances  measured  by  OSIRIS  for  the  corresponding  observation 

geometries and wavelengths. It is a major element of the retrieval and describes the radiation interaction with the  

cloud,  the  surface,  and the atmosphere while  fixing several  parameters  (e.g.  wind speed,  cloud altitude…).  We 

assume a standard atmosphere with a mid-latitude summer McClatchey profile  (McClatchey et al., 1972) for the 

computation of molecular scattering. As the two channels used in the retrieval are in atmospheric windows (as seen 

in  Figure 1), the atmospheric absorption is not accounted for. It is not completely true, therefore the cloud optical  

thickness will be slightly underestimated and the effective radius slightly overestimated.  Our case study is purely 

above an ocean surface. The reflection by the surface can affect the measured radiances even in cloudy conditions  

and particularly for optically thin clouds. The anisotropic surface reflectance of the ocean surface is characterized by 

a bidirectional polarization distribution function (BPDF). We used the well-known Cox and Munk model to compute 

the specular reflection modulated by ocean waves (Cox and Munk, 1954) with a fixed ocean wind speed based on 

NCEP reanalysis of the National Oceanic and Atmospheric Administration (NOAA).

As in current operational algorithms, the cloud model used for the retrieval is a plane-parallel and homogeneous 

(PPH) cloud, which implies the independent pixel approximation (IPA). The case study is a liquid water cloud scene. 

Therefore, we used a log-normal distribution for the size of particles, which are  assumed spherical  (Hansen and 

Travis,  1974) and described by an effective radius and an effective variance (veff). The altitude of  the cloud is 

determined by the measurements of the LIDAR-LNG that was onboard the research aircraft Safire Falcon 20 during  

the  airborne  campaign.  All  simulations  are  monochromatic  computations  at  the  central  wavelength  of  OSIRIS 

channels.  The  altitude of  OSIRIS and the  illumination  and observation  geometries  are  calculated  based on the 

coordinates of the aircraft inertial unit.

The Jacobian matrix K  includes the partial derivatives of the forward model to each element of the state vector (Eq. 

(10)). The columns of K  define then the sensitivity of the radiances (each with a specific wavelength - viewing angle  

configuration) to COT or Reff.  The rows of the Jacobian define the sensitivity of each radiance configuration to the 

two retrieved properties. The Jacobian Matrix is computed using finite differences.
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K=[
∂F λa (θ1 )
∂cot
∂F λb (θ1 )
∂cot
⋮
∂F λa (θny )
∂cot
∂F λb (θny

)
∂cot

∂ F λa (θ1)
∂ Reff

∂ F λb (θ1)
∂ Reff

⋮
∂ F λa (θny

)
∂ Reff

∂ F λb (θny )
∂ Reff

] (10)

3.3 Error characterization

During the retrieval process, every element is associated with a random or systematic error embedded in the error  

covariance matrix  Sϵ .  The account of errors in the inverse problem allows to have not  an unique value for the  

solution x but to have a Gaussian probability distribution function (PDF) where x is the expected value and Sx is its 

covariance.

Sx is calculated after a successful convergence with Eq. 4 using the Jacobian at the retrieved state and  Sϵ .  This 

posterior variance-covariance matrix can also be written as follow :

Sx=[σ cot20 0
σreff
2 ]            (11)

In this formulation, we have assumed that  the two terms of the state vector are independent, thus the off-diagonal 

terms of  Sx are assumed to be zero. The use of Gaussian PDFs  leads to compute the uncertainty on a particular 

parameter xk  as the square root of the corresponding diagonal elements of the covariance matrix σ k=√Sxk, where k  

is the index of the parameter in the state vector x (Eq. 11). We chose to express this uncertainty using the relative 

standard deviation (RSD) in % (Eq. 12). The RSD will be used to characterize the quality of the retrieval. 

RSD=(σk

xk )×100            (12)

Sϵ  represent the sum of the measurement (Smes) and forward model variance-covariance matrix. Indeed, the forward 

model F uses ancillary information provided by a set of fixed parameters  b (listed in section 3.3.2). Errors related to 

an uncertain estimation of these fixed parameters are represented by the covariance matrix Sfp described in the next 

section. 

Besides the fixed parameters, the cloud model used in the radiative transfer computation can also be a source of  

uncertainty. The uncertainties of the retrieved parameters related to this approximation is regrouped in the covariance 

matrix SF described in the next section. Sϵ  is then addressed as a sum of these three components:
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Sϵ=Smes+S fp+SF            (13)

Previous studies (Wang et al., 2016; Iwabuchi et al., 2016; Poulsen et al., 2012; Sourdeval et al., 2015) have already 

computed and presented  the  uncertainties  of  the  retrieved cloud properties  for  all  error  contributions  using  Sϵ . 

Further,  Walther  and  Heidinger  (2012)  use  the  optimal  estimation  framework  to  separate  the  contribution  of  

measurement errors and several non retrieved parameters. In our work, a similar framework was used to separate the  

contribution  of  each  type  of  uncertainties  including  also  the  forward  model  uncertainties.  The  aim is  to  better 

quantify and understand the limitation of  using simplify forward model  in  such cloud retrieval  algorithm.  It  is  

realized by propagating the covariance matrices of errors from the measurement space into the retrieved state space  

(Rodgers, 2000). The gain matrix G y, which represents the sensitivity of the retrieved quantities to the measurement, 

is then used:

G y=SxK
T Sϵ

−1            (14)

The  total  variance-covariance  matrix  of  the  retrieved  state  vector  (Sx)  can  then  be  decomposed  into  three 

contributions (Eq. 15), with each term originating from its corresponding error covariance matrix. 

Sx=Sxmes
+Sx fp

+SxF            (15)

Each term in this equation is developed and discussed in the following three subsections.

3.3.1 Uncertainties related to the measurements

Any type of measurement is subject to errors. It is necessary to apply calibration processes to study the relationship 

between the electrical signals measured by the detectors and the radiances and quantify its uncertainty. Calibration is  

done during laboratory experiments before the airborne campaign or the instrument launch into space (Hickey and 

Karoli,  1974).  It  can  be done  in-situ  if  calibration  sources  are  available  onboard  the  sensor  (Elsaesser  and 

Kummerow, 2008) or can be vicarious (e.g. Hagolle et al. 1999) by using natural or artificial sites on the surface of  

the Earth. The uncertainties of the measurements remaining after the calibration processes are assumed, random,  

uncorrelated between channels and can be consistently approximated by a Gaussian probability density function over 

the measurement space.

As errors between measurements are supposed to be independent, the covariance matrix of measurement noise ( Smes) 

is diagonal with dimensions equal to the measurements vector dimension (n y×ny). The diagonal elements σ mesi
2  are 

the square of the standard deviation of the measurement errors. In our retrievals, we calculated the covariance matrix 

based on 5% of measurement errors : σ mes=Rλ, θ×5%.

Smes=[σ mes1
2 0 … 0
0 σme s2

2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … σme sny

2 ]                         (16)
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The error covariance matrix for the retrieved parameters due to measurement errors is then expressed by mapping the 

covariance matrix Smes from the measurement space to the state space by using the gain matrix G y:

Sxmes=G y SmesG y
T            (17)

The uncertainty on a particular parameter xk originating from the measurement errors is defined as the square root of 

the corresponding diagonal element corresponding to the standard deviation σ kmes
=√S xmesk. It is expressed using the 

RSD (mes) as in Eq. (12).

3.3.2 Uncertainties related to the fixed parameters

Any retrievals from remote sensing observations require prior knowledge on several unknown parameters used in the 

forward model computation. Those parameters are not retrieved due to a lack of sufficient information. To compute  

the fixed parameters (fp) errors, we quantified the possible error in our estimation of the fixed model parameters. In 

our case study, these parameters are the altitude of the cloud (alt), the effective variance of the cloud droplet size 

distribution (veff), and the ocean wind speed (ws). These errors are considered to be independent and random under 

the assumption of linearity of  the radiances around the fixed parameters. They are set in the diagonal covariance  

matrixSσfp. They are weighed by K fp the Jacobian matrix containing the gradient of the forward model with respect to 

the fixed parameters. Finally, as previously, the errors are mapped from the measurements space to the state vector  

space through G y to estimate their contribution in the retrieval uncertainty as follows:

Sx fp
=G y S fpG y

T=G yK fp SσfpK fp
T G y

T                        (18)

Each column in  K fp and  Sσfp is dedicated to one fixed parameter. Therefore, we can separate the contributions of  

every element of the fixed parameters vector as follows:

Sx fp
=Sx fp , alt

+Sx fp ,ws
+Sx fp, veff

                                    (19)

Each covariance matrix from the right side of Eq. (19) is developed as shown in Eq. 20. σ bi
 is the standard deviation 

of the fixed parameter error and Kbi
 is a column vector containing the gradient of the forward model in regard of the 

same fixed parameter b i.

Sx fp,bi

=G yKbi
σbi

2 K bi

TG y
T                                      (20)

In order to develop  Sx fp, bi
 for each element of  b, the forward model has been constructed in a flexible way that  

permits to initiate small variations of any fixed parameter and then calculate the partial derivatives of the forward  

model in regard to the ancillary data, called the Jacobians of the fixed parameters Kalt ,K v eff
, and Kws.

The last elements needed to resolve Eq. (20) are the errors or standard deviations of the cloud altitude, the effective 

variance of water droplets and the ocean wind speed, σ alt, σ veff
 and σ ws respectively.

The values and the uncertainties of these fixed parameters are chosen according to the experiment setup of the  

campaign. To estimate the uncertainties originating from the fixed cloud altitude, we used the opportunity of having 

the LIDAR-LNG on aboard the aircraft, which gives the backscattering  signal obtained around the case study of 

CALIOSIRIS. From 11:01:06 to 11:03:06 (time where the same cloud scene is apparent), the cloud altitude varies  
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between 5.57 and 5.73 km in our cloud scene. For practical reasons related to the radiative transfer code, we use a  

value of 6km for the cloud top altitude and a standard deviation of σ alt=0.16 km (3% of the cloud altitude). This 

value is low thanks to the knowledge provided by the Lidar. .

Concerning the effective variance veff, to which the polarized radiance is highly sensitive in the supernumerary arcs 

near the cloud bow (Bréon and Goloub, 1998), we fixed a value of 0.02 based on the number of supernumerary bows 

in the polarized radiances (not shown). After simulating radiances with several values of  veff, we choose to add a 

σ v eff
=0.003 (15%) possible  error  in  the  estimation  of  this  parameter.  As  the  value  of  veff was  fixed  using  the 

polarization measurements of OSIRIS, this uncertainty is weak and not representative of all situations.

For the ocean wind speed fixed to 8 m/s obtained from the database of the National Oceanic and Atmospheric 

Administration, we used an error  σ ws=0.8 m/s (10%).  It covers the possible sources of error in the surface wind 

speed retrievals.

3.3.3 Uncertainties related to the forward model

Forward  models  are  usually  formulated  around  some  limitations  and  assumptions  that  can  contribute  to  the 

uncertainty on the retrieved parameters. The forward model used to simulate the radiances measured by OSIRIS 

follows the cloud plane parallel assumption. This assumption is known to cause errors on the retrieved parameters  

(see section 1) that can be assessed and included in the total uncertainty. The evaluation of these modeling errors  

requires  an alternative forward model  F '  that  includes  more realistic  physics.  The contribution of  this  error  is 

represented by the following equation:

SxF
=G y SFG y

T            (21)

SF is diagonal with dimensions equals to the measurement vector dimensions (n y×ny). Each diagonal element is the 

square of the difference between radiance computed for a specific direction with the simplified forward model F and 

the one computed with the more realistic forward model F '  while maintaining the same state vector and the same 

fixed parameter vector b: (F ( x ,b )−F ' ( x ,b ) ) . (F ( x ,b )−F ' (x ,b ) )T .  

The simplified model used for the retrieval can lead to biased retrieved parameters. In this case, the bias due to the  

model will be included in the Gaussian PDF width, resulting in an overestimation of the uncertainties.

The uncertainties related to the cloud vertical homogeneity and the cloud horizontal homogeneity are quantified 

separately. In the following, we present the elements of the forward model used to quantify the uncertainties of these 

assumptions.

Non-uniform cloud vertical profile model

The vertically  heterogeneous cloud model to assess the uncertainties of the assumed homogeneous cloud model is  

described by:

- an effective radius profile and possibly an effective variance profile but for simplification, we will consider that veff 

is constant over the entire vertical profile with a value of 0.02. 
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- an extinction coefficient (σ ext) profile

- a cloud geometrical thickness (CGT) characterized by the difference between the altitude of the cloud top ( z top) and 

the cloud base (zbot). The values of CGT, z top and zbot are fixed based on the LIDAR measurements.

The effective radius and extinction coefficient profiles are computed using an analytical model already introduced in  

(Merlin, 2016). It is based on adiabatic cloud profiles, which are described and used in several studies (Chang, 2002; 

Kokhanovsky and Rozanov, 2012). In the adiabatic scheme, the effective radius increases with altitude. However, 

several studies proved that a simple adiabatic profile is not sufficient to describe a realistic cloud profile (Platnick, 

2000; Seethala and Horváth, 2010; Nakajima et al., 2010; Miller et al., 2016).  Depending on the maturity of the 

cloud, turbulent and evaporation processes can reduce the size of droplets at the top of the cloud and/or collision and 

coalescence process can increase the size of the droplets in the lower part of the clouds as observed by Doppler Radar  

(Kollias et al., 2011). The profile used in this study aims to represent the case of droplet size reduction at the top of 

the cloud but other and more sophisticated and representative profiles can be used (Saito et al., 2019).  

The description of this more realistic vertical cloud profile is obtained with two adiabatic profiles (Figure 3) that are 

joined at the altitude of maximum LWC called zmax:

- The first profile from zbot to zmax is considered adiabatic.

- The second profile from zmax to z top follows an adiabatic LWC profile decreasing with altitude.

Figure  3:  The  heterogeneous vertical  profile  of effective  radius (black line)  and extinction 
coefficient (blue line) used to assess uncertainties due to the assumption used for the vertical 
profile. The equivalent homogeneous vertical profiles are shown in dashed lines. The cloud is 
between 5 and 6 km. The maximum extinction coefficient and effective radius are 6.6 km-1 and 
12 μm respectively and the altitude zmax is 5.85km

Considering that LWC is equal to zero at the base and top of the cloud, and relying on the linear variation model of 

the LWC with altitude (z) established in (Platnick, 2000), we can write that:
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LWC ( z )=LWCmax

z − zbot
zmax−zbot

; z∈ [ zbot , zmax ]

LWC ( z )=LWCmax

z top−z
z top−zmax

;z∈ [zmax , ztop ]
(22)

The profiles of effective radius (Eq. 23) and extinction coefficient (Eq. 24) can then be computed by considering that 

the particle concentration is constant over the entire cloud which makes it possible to obtain analytical functions of 

LWC, Reff  and σ ext.

Reff ( z )=R eff max(z− zbot
zmax−zbot )

1
3 ; z∈ [ zbot , zmax ]

Reff ( z )=R eff max(z top−z
z top−zmax )

1
3 ; z∈ [ zmax , ztop ]

(23)

σ ext ( z )=σextmax(z− zbot
zmax−zbot )

2
3 ; z∈ [ zbot , zmax ]

σ ext ( z )=σextmax(ztop−z
ztop−zmax )

2
3 ; z∈ [ zmax , ztop ]

(24)

A form factor p (Eq. 25) allows the adjustment of the altitude zmax where the extinction coefficient and the effective 

radius are the largest: 

p=
ztop− zmax
ztop− zbot

         (25)

This unitless parameter  p varies from 0 to 1 representing the shape of the profile.  The value 0 corresponds to  

zmax=ztop (adiabatic cloud) and the value 1 corresponds to  zmax=zbot (a reverse adiabatic cloud with a negative 

gradient of water content). In the following results, a value of 0.15 is assigned to this parameter which allows to have 

a profile close to the one studied in (Miller et al., 2016) from large-eddy simulations (LES) cloud scenes.

To assess the error due to the vertical heterogeneity of the cloud, we need to specify the maximum value of the  

extinction coefficient σ extmax and the effective radius Reff max
 of the vertically heterogeneous cloud, corresponding to the 

“equivalent” homogeneous clouds. Several options are possible for these values. We choose to use Eq. (26) to assign 

σ extmax which leads to the same integrated extinction profile and Eq. (27) to assign Reff max
 to ensure that the mean Reff  

of the heterogeneous vertical profile is equal to the Reff  of the homogeneous cloud (Reff F). σ extmax and Reff max
 are found 

analytically by integrating the profiles described in Eq. (23) and Eq. (24). 

σ extmax=
5
3
COT F /( ztop− zbot )                                      (26)
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Reff max
=4
3
R eff F                                    (27)

A vertically heterogeneous cloud is computed for each pixel using the retrieved value based on the homogeneous 

assumption. The error-covariance matrix describing the error due to the simple homogenous cloud assumption  (Eq. 

21) is calculated from the difference between radiances computed with homogeneous and heterogeneous vertical  

profiles, denoted F  and F '  respectively.

The 3D radiative transfer model

The other assumption that might affect the retrieved cloud optical properties in the current operational algorithms is  

the horizontally plane-parallel and homogeneous (PPH) assumption for each observed pixel. It implies that each pixel 

is  horizontally  homogeneous  and  independent  of  the  neighboring  pixels  known  as  the  independent  pixel  

approximation (IPA). The homogeneous PPH assumption affects the cloud-top radiances and leads to differences  

between 1D and 3D radiances that are the result of several effects discussed in numerous publications and briefly  

summarized in section 1. This PPH assumption includes errors known as the PPH bias due to the subpixel variations 

of the cloud and errors related to the photon horizontal transport between columns (IPA error). At the high spatial  

resolution of OSIRIS (less than 50 m), it was shown from airborne data that the dominating effect is related to the  

IPA error (Zinner et Mayer, 2006). In the following, we consider thus only this error and assume that the pixel is  

homogeneous at the measurement scale. 

To assess the uncertainties in the retrievals arisen from this assumption, Eq.  (21) is used.  SF is then the difference 

between the radiances computed with a 1D radiative transfer code (1D-RT), following the Adding-doubling method 

(Hansen and Travis, 1974), and the radiances computed with a 3D radiative transfer (3D-RT) code called 3DMCPOL 

(Cornet et al., 2010). The 3D simulations use, for each pixel, the COT and Reff  retrieved  using the PPH assumption. 

Errors on cloud model assumptions are assessed independently so a vertical homogeneous profile is assumed. We  

also assume a flat cloud top, which leads to underestimate differences and errors as cloud top variation may increase  

the differences between 3D and 1D radiances  (Várnai and Davies, 1999; Várnai, 2000).  The differences are thus 

mainly  due  to  the  lateral  photon  transport  which  tends  to  smooth  the  radiances  fields  compared  to  their  1D  

counterpart (Davis et al. 1997) and  to the cloud heterogeneity along the line of sight (e.g. Fauchez et al., 2018). 

4 Retrieval and uncertainty estimation for a liquid cloud case study measured by OSIRIS

Our strategy to assess the different types of uncertainty follows two steps. In a first step, we retrieve COT and Reff  

using a bispectral multi-angular method by considering the uncertainties related to the measurement errors alone. We 

use a weakly absorbing channel centered at 1240 nm  that is mainly sensitive to COT, and a partially absorbing 

channel centered at 2200 nm, and thus sensitive to Reff. In this case study, up to 13 viewing angles are available for 

each pixel. In the first step, only the measurement errors are accounted for and included in Sϵ . This error is usually 

well characterized and does not change once the measurements are realized. Not considering the other errors at this  

stage allows benefiting from a faster retrieval algorithm without the calculation of  K b and the heavy computation 
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cost of heterogeneous cloud profiles and 3D-RT calculations. The second step consists of computing the errors due 

the non retrieved parameters and due to the assumption of a vertically and horizontally homogeneous cloud for the  

retrieval of Reff  and COT.

It should noted that the parameters retrieved in the first step may be biased, in particular due to the use of a simplified  

cloud model to connect the state vector to the measurements. We assume that the estimation of the uncertainties  

performed in the second step are however correct as long as that the variations predicted by the simplified and the  

realistic models around the retrieved values (potentially biased) and around the true values are identical. This is 

correct with a linear forward model but can be a too strong assumption in cloud retrieval regarding the non linearity  

of the relationship of the radiances in function of cloud parameters. A way to test this assumption would be to use  

numerical experiments.

In Figure 4, COT (a) and Reff (b) retrieved from multi-angular SWIR radiances are presented. Spatial variations are 

mainly due to variations in the observed cloud structures. The COT range is between 0.5 and 6 with a mean value of 

2.1. Some values of COT are very small but no clear sky pixel is present.  Reff varies between 2 and 24 µm around a 

mean value of 8.8 µm.  Figure 4c presents the normalized cost function, which is less or equal to one when the 

retrieval successfully converges according to Eq. 6 (convergence of Type 1). In case of multi-angular measurements,  

the normalized cost function is often above one meaning that the simulated radiances do not fit the measurements  

while  considering  the  measurements  error  covariance  only.  This  comes  from  the  attempt  to  fit  the  measured 

radiances from all the available viewing directions with a too simple forward model, far from reality. The retrieval  

stops thus mainly according to Eq. 7 (convergence of Type 2) indicating that the state vector remains almost constant  

between two successive iterations. When neither Eq. 6 or Eq. 7 are achieved the retrieval fails. For the whole scene,  

failed retrievals account for 3.3% of the pixels. The failure may be associated with pairs of radiances outside the  

LUT that can occur for several reasons well documented in Cho et al. (2015).
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Figure 4: COT (a) and Reff (b) retrieved using a multi-angular bispectral method from a liquid cloud case observed 
during the CALIOSIRIS airborne campaign on 24 october 2014 at  11:02 (local  time).  Pixels associated to  failed 
retrievals are represented by white pixels. (c) Normalized cost function. (d) Convergence type (Eq. 6 for Type 1 and Eq. 7  
for Type 2) and failed retrieval.

As detailed in section 3.3, the final error is divided into three categories. Figure 5 shows the uncertainties originating 

from a 5% measurement error on the retrieved COT, RSD COT (mes), and on the retrieved Reff, RSD Reff (mes). RSD 

COT (mes) ranges from 0.5 to 5% with a mean value of 3.2% while RSD Reff (mes) ranges from 2 to 12% with a 

mean value equal to 6.3%. These uncertainties are plotted according to their respective values in panels (c) and (d).  

RSD COT (mes) increases with the magnitude of the retrieved COT, as tends to do  RSD Reff (mes) with  Reff   for 

values until 12 µm. The uncertainties due to measurement errors are low, especially for optical thickness (less than 

5%).  This is related to the quasi-linearity and the steep slope of the radiance as a function of COT in this cloud  

regime (small COT). When the radiance-COTrelationship is quasi-linear, the sensitivity of the forward model to 

COT is  high,  which  consequently  lead  to  parameters  retrieved  with  a  high  accuracy  (low RSD).  When  COT 

increases, the gradient of the radiance-COT relationship decreases causing larger uncertainties. 

20

540

545



Figure 5: Uncertainties (RSD) in % of COT (a) and Reff (b) originating from the measurement errors for the case study 
of CALIOSIRIS. COT uncertainties as a function of COT (c) . Reff uncertainties as a function of Reff (d).

The second type of uncertainty is related to the fixed parameters in the forward model. In  Figure 6, we show the 

uncertainty on COT and Reff in % due to an incorrect estimation of each fixed parameter in the forward model. Panels 

(a) and (b) represent the uncertainties originating from the fixed cloud altitude,  RSD COT (alt) and  RSD Reff (alt) 

respectively. Both show very small uncertainties with values close to zero. In fact, in the visible range, the altitude of  

the cloud mainly determined the amount of Rayleigh scattering that occurs above the cloud. This type of scattering is  

dominant at shorter and visible wavelengths and becomes negligible at the studied wavelengths (1240 and 2200 nm).  

Consequently, at these wavelengths, an error in the fixed cloud altitude does not contribute to the uncertainty on the  

retrieved COT and Reff.

The (c) and (d) panels in Figure 6 represent the uncertainties of the retrieved COT and Reff originating from the fixed 

effective variance of the particle size distribution. They are nearly null on COT with a mean value of 0.05% as the  

15% uncertainty on the value of  veff (0.02) does not modify the total radiances.  On the other hand,  RSD Reff (veff) 

reaches 0.5% with a mean value of 0.25%. Indeed,  veff modifies the width of the cloud droplet distribution and 

consequently slightly the absorption by cloud droplets, resulting in a larger error.  For  Reff higher than 15 µm, the 

relationship between SWIR radiances and  Reff tends to flatten which make them less sensitive to  veff and thus the 

uncertainties  are  smaller  than  0.1%.  We  remind  that  we  fixed  the  value  of  veff  using  multi-angular  polarized 
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measurements of OSIRIS, which leads to choose a weak uncertainty for veff (15%). In case of lack of information on 

veff in the measurements,  the uncertainty should be higher and thus the errors due to the non-retrieved effective 

variance. Platnick et al. (2017) obtain 2% and 4% uncertainty for COT and Reff respectively for veff ranging between 

0.05 and 0.2.  

The panels (e) and (f) in Figure 6 show that an error in the estimation of the ocean wind speed affects the retrieved 

COT and Reff mainly for small COT.  The water-air interface is reflecting mainly in the specular direction, but the 

ocean being not perfectly smooth, the bright surface (named glitter) is enlarged by the waves formed by the wind.  

The higher the surface wind speed is, the greater the amplitude of the waves is, leading to a larger reflection angle  

(wider  sun-glint).  The  Sun-glint  reflection  is  seen  by  OSIRIS  only  for  very  small  values  of  COT and implies 

uncertainties of the retrieved parameters of about 0.5%. In case of broken clouds, the errors resulting from the ocean  

wind speed uncertainties would be larger. At higher COT, the surface is non-apparent to OSIRIS measurements, and  

uncertainties are thus close to zero. 

We note that all the uncertainties of the studied fixed parameters remain below 1%, which shows that retrieval of all  

the COT-Reff couples does not have a high dependence on the fixed forward model parameters.

Figure 6: The uncertainties RSD (%) of COT (left column) and Reff (right column) originating from the 
non-retrieved parameter errors: altitude (a and b), the effective variance of water droplet distribution (c 
and d), and the surface wind speed (e and f). 
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The uncertainties due to the assumptions of the forward model are presented in Figure 7. The panels (a) and (b)  

represent the uncertainties of COT and  Reff respectively, originating from the vertically homogeneous assumption. 

RSD COT (Fpv) ranges between 1 and 8% with a mean value of 4.9% while RSD Reff (Fpv) varies from 2 to 20% 

with a mean value of 13.3%. We note that when the cloud is optically thin (left part of the image), RSD COT (Fpv) 

and RSD Reff (Fpv) tend to be lower. When the extinction is small, the radiations penetrate deeper into the cloud and  

bring  information  on  the  whole  cloud,  similar  to  the  one  obtained  with  the  homogenous  vertical  profile.  The  

differences between radiances coming from the vertical heterogeneous and homogeneous profiles are thus small  

since the integrated extinction over the cloud is approximately the same in both cases . For larger COT, the radiations 

penetrate less in the cloud and are only affected by the upper part of the cloud where the extinction coefficient is  

different from one profile to another. In this case, RSD COT (Fpv) and RSD Reff (Fpv) are larger up to 8% and 20% 

respectively.

Figure 7: The uncertainties (%) on COT and Reff originating from the assumptions in the forward model  
when not considering the heterogeneous vertical profile (a and b) and the 3D radiative transfer (c and d).

The uncertainties originating from the use of a 1D radiative transfer code instead of a more realistic 3D radiative  

transfer are represented in Figure 7 (c) and (d) for COT and Reff respectively. RSD COT (F3D) ranges between 1 and 

20% with a mean value of 4.35%, while RSD Reff (F3D)  varies from 2 to 18% with a mean value of 9.25%. We 
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remind here that, given the high spatial resolution of OSIRIS measurements, we consider the PPH bias as negligible 

and do not account for the sub-pixel variability of cloud properties in the 3D radiative transfer simulation. 

 

Considering the solar zenith incidence angle (59º), illumination and shadowing effects can also be present depending 

on the viewing geometries and roughness of the radiative fields (Várnai, 2000,(Marshak et al., 1995). However, in 

this work, we are dealing with flat cloud tops that induce weaker 3D effects than bumpy cloud tops (Varnai et Davies,  

1999).  In  addition,  with  multi-angular  measurements,  the  same cloudy pixel  is  viewed under  different  viewing 

angles, which may tend to mitigate the influence of illumination and shadowing effects.

At this scale, the effects related to the Independent Pixel Approximation (IPA) (Oreopoulos and Davies, 1998) are 

dominant since the horizontal transfers of photons between pixels are important. The smaller the column horizontal  

sizes are considered, the more the real behavior of radiation in the atmosphere will be misrepresented. The horizontal  

radiation transport (HRT) tends to smooth the radiative field by increasing or decreasing the radiances according to 

the optical thickness gradient between the considered pixel and its neighbors. This effect is shown in Figure 8. The 

panels (b) and (d) representing the reflectances computed with 3DMCPOL at 1240 and 2200 nm respectively show A 

smoothest field compared to the reflectances computed with a 1D radiative transfer model in panels (a) and (c). The  

variabilities in the 3D radiative field are indeed less pronounced compared to the 1D field.

Figure 8: The simulated 1D (a) and 3D (b) reflectances at 1240 nm using the retrieved COT and Reff 
presented in Figure 4 for the central image. (c) and (d) are the same as (a) and (b) but for 2200 nm.

In Figure 9, the histograms of the relative difference between the radiances computed in 1D (R1D) and the radiances 

computed in 3D (R3D) at 1240 nm for different bins of optical thickness are plotted. We can see the shift of the  
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histograms from negative values for small optical thickness (R1D < R3D) towards positive differences for larger  

optical thickness (R1D > R3D) that is explained by the horizontal radiation transport between columns.

Figure 9: Histograms of the relative difference between the reflectances computed in 1D and 3D at 1240 nm 
for the central image. Each histogram corresponds to a domain of COT.

Overall, we note that the uncertainties due to the forward model assumption are much more important than the one  

due to the fixed parameters. The retrieval is not sensitive to small variations in the fixed parameters. However, while  

assessing uncertainties due to the vertical profile or radiative transfer assumption, we change the parameters that our  

forward model is proven to depend on, thus changes in the integrated profile can lead to relatively large variations in  

the radiance fields, and consequently large uncertainties.

5 Advantage of using multi-angular versus mono angular information

The same strategy applied in section  4, is applied using the bispectral mono-angular method used for the MODIS 

instrument for example. For the mono-angular bispectral approach, the measurement vector y for each pixel contains 

two  mono-angular  total  radiances,  one  at  1240  nm  and  the  other  at  2200  nm.  The  mono-angular  direction  

corresponds to that of the central image of the multi-angular sequence used to retrieve COT and Reff  with the multi-

angular measurements.
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Figure 10: COT (a) and Reff (b) retrieved using  mono-angular bispectral method for the CALIOSIRIS liquid cloud case 
study on 30 June 2014 at 11:02 (local time).  Pixels associated to  failed retrievals are represented by white pixels. (c) 
Normalized cost function. (d) Convergence type (Eq. 6 for Type 1 and Eq. 7 for Type 2) and failed retrieval. Differences 
between mono-angular and multi-angular retrieval for retrieved optical thickness (e) and for retrieved effective radius 
(f).

The results are presented in Figure 10. The retrieved COT over the whole field varies between 1 and 12 with a mean value equal 

to 3.44. Comparing to multi-angular measurements (mean COT of 2.13), the retrieved COT values tend to be higher.  The range 

of retrieved  Reff has a mean value of 15.65 µm, compared to 8.76 µm for multi-angular retrieval. Mono-angular retrieval  is  

particularly affected by the high value of Reff retrieved around the scattering angles 130-140° where the sensitivity of 2200 nm 

radiances to the water droplet size is known to be small. This area corresponds also to a more important  number of failed 

retrievals. As a matter of fact,  (Cho et al., 2015) have indeed shown that in liquid marine cloud cases, the phase functions of 

different  Reff converge to the same value for these scattering angle range leading to the failure of water droplets size retrieval  

from MODIS measurements. This reduced sensitivity explains also the high uncertainty on Reff due to measurement errors around 
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the  cloud  bow  (Figure  11).  The  smaller  sensitivity  on  Reff, in  this  case,  is  not  limited  to  the  cloud  bow  directions  and 

supernumerary bows but is also visible at some regions of small scattering angles (70-80°) that can be affected by specular 

reflection over the ocean.

Figure 11: Uncertainties on the effective radius originating from the measurement errors, RSD Reff (mes) as a function of 
the scattering angle for the mono-angular retrieval. The red line represents the mean RSD Reff (mes) = 12.55%.

Multi-angular retrieval presents the major advantage, that no aberrant values of Reff are retrieved near the scattering 

angles at 140° (comparing Figure 4b to Figure 10b). The multi-angular measurements contain more information and 

allow to  resolve the  problem encountered with the  mono-angular  bispectral method,  which  is  also clear  in  the 

reduction of the failed convergences from 7.6% to 3.3%. In the overall scene, smaller  Reff  values are obtained. A 

smallest effective radius leads to increase the backward scattering and so the reflected radiance, which results in a  

lower retrieved optical thickness. 

Excepted in case of failed retrievals that occur for values outside the LUT ranges, the relation between radiances and  

COT-Reff being monotonical, the mono-directional method allows to always find retrieved values, that is a pair of 

COT and  Reff that matches the measured radiances. However, these values can be more or less far from the real  

values. A normalized cost function value (Figure 10c) less or equal to one is thus not necessarily an indication of an  

accurate retrieval, but only that a fit occurred. On the other hand, multi-angular retrieval increases the constraint on 

the forward model, that makes much more challenging to find a solution allowing to fit the measurements. The  

retrieved state is then consistent at the best with all the measurements associated with different viewing angles. 

To compare the uncertainties of the two retrievals, we use the relative standard deviation (RSD) to be consistent with 

the previous results. In Figure 12, we present the spatial average of the different types of errors, presented in section 

4, for the mono-angular method (light green for COT and light blue for Reff) in comparison with the multi-angular 

method (dark green for COT and dark blue for  Reff). We divide the source of errors in two panels, the left panel  

groups the lowest values of RSD and the right panel for the highest values of RSD. 
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Overall, Reff uncertainties are larger than the one on COT for any type of error. In the left panel of Figure12, the three 

fixed model parameters errors related to an incorrect estimation of the fixed parameters of the model  are weak  

compared to the others and remain below 0.3% for mono-angular retrievals. As explained in section  4, the fixed 

altitude does not contribute to the uncertainty on the two retrieved parameters. The average uncertainties originating 

from the fixed value of veff are about 0.05% for COT and slightly higher (0.15%) for Reff since veff affects the cloud 

bows that are also sensitive to  Reff.  Concerning the surface wind speed, the uncertainties are around an average of 

0.05%.

In the right panel, for mono-angular retrieval, the measurement errors contribute to an uncertainty of about 8% on the  

retrieved COT and of about 13% on the retrieved  Reff. The uncertainties are reduced by a factor two with multi-

angular retrieval. The multi-angular approach leads indeed to more information available for each cloudy pixel and 

each additional information reduces the uncertainty on the retrieved parameters in the presence of the same 5% 

random noise in the measurements.

The following two groups of bars correspond  to the errors introduced by the cloud homogeneous assumption used in  

the forward model. They are the main source of errors. For mono-angular retrieval, the assumption of a vertical 

homogeneous profile contributes to an uncertainty of about 16% on COT and 54% on Reff. These uncertainties are 

reduced by a factor four in the case of multi-angular retrieval. As discussed previously, the principal effects of 1D 

assumptions errors at the spatial resolution of OSIRIS come from the non-independence of the cloud columns that 

lead to smooth the 3D radiative fields and to increase the heterogeneity along the line of sight (Fauchez et al.  2018).  

They lead to an uncertainty of 28% on COT and 45% on Reff when a mono-angular instrument is used.

Figure 12: Bar chart of the mean uncertainties of the retrieved COT and Reff: green bars correspond to RSD 
COT and blue bars to RSD Reff. Dark colors correspond to multi-angular retrieval and light colors to mono-
angular  retrieval.  The  errors  originating  from the  fixed  parameter  errors  are  in  the  left  panel  and  the 
measurements and forward model errors in the right panel.
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The multi-angular approach provides additional  information for each pixel  and constrains the forward model  to  

match all the angular radiances at once. As seen, the OSIRIS multi-angular characteristics have the advantage of  

decreasing the angular effects around the cloud bow directions by adding the contribution of other geometries but  

also certainly to mitigate the sensitivity of the retrieval issued from the assumptions in the forward model. It avoids 

most  of  the  failed  convergences  that  occurred  with  the  mono-angular  bispectral  method and  retrieved  more 

homogeneous and coherent COT and Reff fields.

6 Conclusions

In this study, we present a method to retrieve two important microphysical and optical parameters of liquid clouds,  

COT and Reff and their uncertainties using NIR/SWIR multi-angular airborne measurements. The algorithm is based 

on the mathematical  framework of  the  optimal  estimation method  (Rodgers,  2000) and focuses  on assessing the 

different uncertainties of the retrieved properties originating from different sources of errors.

The  studied  case  uses  the  measurements  of  the  airborne  radiometer  OSIRIS obtained  during  the  CALIOSIRIS 

campaign. It consists of a monolayer water cloud located at 5 km altitude over the ocean with tilted solar incidence (

θs=59º).

In the first step of the retrieval, COT and  Reff are retrieved by considering only the measurement errors (without 

introducing any error linked to the forward model). The uncertainties originating from different sources of error are 

computed afterwards by using the previously retrieved COT and Reff, and are decomposed into 3 different sources 

related to (a) the instrument measurement errors, (b) an incorrect estimation of the fixed model parameters such as  

the ocean surface wind, the cloud altitude and the effective variance of water droplets distribution, and (c) the errors  

related to the vertically and horizontally homogeneous cloud assumptions. The computations are done using the 

multi-angular method and for comparison a mono-angular method, which is the usual approach in the operational  

algorithm.

In the multi-angular retrieval, a 5% measurement error contributes to around 3% of uncertainty on the retrieved COT  

and 6% on the retrieved Reff. It tends to increase with increasing values of COT and Reff to which the sensitivity of 

radiances starts to decrease.  Since they are not characterized, the correlations between the measurement errors issued 

from different viewing angles are not considered in our retrieval, but they could increase these values. Nevertheless,  

when considering a mono-angular retrieval, these uncertainties are doubled. 

The uncertainties related to the fixed parameters remain low with both mono or multi-angular retrieval. The largest  

one is due to the  unknown value of the effective variance of the droplet size and is respectively equal to 0.15% and  

0.25%  for  the  mono  and  multi  angular  cases.  Note  that,  since  information  provided  by  Lidar  or  polarized  

measurements was used, the uncertainty for the non-retrieved parameters was chosen to be low.  For applications to  

cases without  these available information, errors would be higher. If the method is applied to 3MI for example, the 

errors related to the cloud top altitude would be higher as the O2-A band leads to cloud top pressure uncertainties  

between 40 and 80hPa depending on the cloud types (Desmons et al. 2013). A more complex algorithm could  also be 
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used  with  a  measurement  vector  including  O2-Aband  radiances  and  multi-angular  polarized  radiances  to  have  

information on and to add the cloud top altitude and the effective variance (Huazhe et al. 2019) in the state vector. 

This study clearly shows that  the largest  uncertainty is  due to the homogeneous cloud assumption made in our 

forward  model.  First,  the  uncertainties  related  to  the  homogeneous  vertical  profile  were  quantified  using  a  

heterogeneous LWC profile with a triangle shape (known as quasi-adiabatic) composed of two adiabatic profiles.  

This more realistic profile takes into account the transition zone at the top of the cloud related to  turbulent and 

evaporation processes. The scene averaged values reach 5% and 13% for COT and  Reff respectively in the multi-

angular retrieval of our case study and go up to 16% and 54% for COT and  Reff respectively when using mono-

angular measurements. The largest uncertainties are obtained for the largest cloud optical thickness as the radiations 

sample  only  the  higher  layers  of  the  cloud  where  the  information  is  different  between  the  homogeneous  and 

heterogeneous vertical profiles.

The other sources of uncertainty related to the simplified cloud physical model comes from the radiatively non-

independence of the cloudy columns that dominates at the high spatial resolution of OSIRIS. In the optically thin 

overcast cloud case studied here, the scene average uncertainties originating from the 3D effects are 4% for COT and  

9% for Reff when using multi-angular measurements, and 28% for COT and 45% for Reff when using mono-angular 

measurements. The non-independence of the cloud columns dominates and tends in one hand to smooth the 3D  

radiative field compared to radiances computed with the independent pixel approximation and in the other hand to  

increase to cloud property heterogenity along the line of sight. 

The method was applied to real data, which means that the true cloud parameters are unknown. Consequently, it is  

not possible to know if real errors on the retrieved parameters are included in the uncertainties given by the method  

presented here. One reason that can lead to an erroneous assessment is that the estimations of the uncertainties are  

done around retrieved values than can be biased. A way to check the consistency of the method and the validity of  

the  uncertainty ranges  would be to simulate radiances using Large Eddy Simulation model  with realistic cloud  

physical description, add noise for the errors measurements and derive the cloud parameters and their uncertainties.

The method presented here can be adapted to the future 3MI imager. The first step that consists of including the  

uncertainties related to the measurement errors is directly implementable in an operational algorithm. The second  

step that consists of computing the uncertainties resulting from the non-retrieved parameters is more computationally  

expensive but could also be included. The uncertainties related to the non-retrieved parameters, in addition to the one  

related to measurement errors, have already been implemented since Collection 5 in MODIS operational algorithm 

through the computation of covariance matrix where Jacobian are derived from look-up table and was completed for  

Collection 6 (Platnick et al. 2017).  Concerning the forward model errors, the method cannot be implemented as in  

this work, in an operational algorithm because of the prohibitive computation time but a climatology based on several 

cases studies, depending of the type of clouds, land or ocean surface flag for example could be used in order to obtain  

a distribution of the errors according to the scene characteristics. 
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The results obtained in this study show, not surprisingly regarding the numerous studies already published, that the  

vertical and horizontal homogeneity assumptions are major contributors to the retrieval uncertainties. One way to  

reduce it would be to define a more complex cloud model that can take into account the vertical and horizontal  

heterogeneity.  This adds more complexity in the forward model as it would implies to retrieve more sophisticated  

cloud parameters (e.g.  extinction or effective size profile).  It  appears however possible given the important and 

complementary information provided by OSIRIS or 3MI measurements. . Recent studies were proposed to retrieved  

vertical profile using cloud side information (Ewald et al., 2018; Saito et al., 2019, Alexandrov et al., 2020) or to 

realize multi-pixels retrieval to account for the non-independence of the cloudy pixels (Martin et al., 2014; Okamura et 

al., 2017; Levis et al., 2015) and their implementation could be studied. 
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