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Abstract. In remote sensing applications, clouds are generally characterized by two properties: cloud optical thickness 

(COT) and effective radius of water/ice particles (Reff). Most of the current operational passive remote sensing 

algorithms use a mono-angular bi-spectral method to retrieve COT and Reff. They are based on pre-computed lookup 15 

tables while assuming a homogeneous plane-parallel cloud layer and without considering measurement errors and the 

choice of ancillary data. We use the formalism of the optimal estimation method applied to near-infrared multi-angular 

measurements, to retrieve COT and Reff, and the corresponding uncertainties related to the measurement errors, the 

ancillary data, and the cloud model assumption. The used measurements were acquired by the airborne radiometer 

OSIRIS (Observing System Including PolaRization in the Solar Infrared Spectrum), developed by the Laboratoire 20 

d'Optique Atmosphérique. It provides multi-angular measurements at tens of meters resolution, very suitable for 

refining our knowledge of cloud properties and their high spatial variability. OSIRIS is based on the POLDER concept 

as a prototype of the future 3MI space instrument planned to be launched on the EUMETSAT-ESA MetOp-SG platform 

in 2023. The used approach allows the exploitation of all the angular information available for each pixel to overcome 

the radiance angular effects. More consistent cloud properties with lower uncertainty compared to operational mono-25 

directional retrieval methods (MODIS-like methods) are then obtained. The framework of the optimal estimation 

method provides also the possibility to estimate uncertainties of different sources. Three types of errors were evaluated: 

(1) Errors related to measurement uncertainties, which reach 10% for high values of COT and Reff, (2) errors related to 

an incorrect estimation of the ancillary data that remain below 0.5%, (3) errors related to the simplified cloud physical 

model assuming homogeneous plane-parallel cloud and the independent pixel approximation. We show that not 30 

considering the in-cloud heterogeneous vertical profiles and the 3D radiative transfer effects lead to uncertainties on 

COT and Reff exceeding 10%. 

1 Introduction 

The role and evolution of clouds in the ongoing climate change are still unclear. Their radiative feedbacks due to 

temperature rise or the indirect effect of aerosols are insufficiently understood and they are known to contribute to the 35 

uncertainties in the Earth future climate (Boucher et al., 2013). An accurate estimation of cloud properties is therefore 
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very important for constraining climate and meteorological models, improving the accuracy of climate forecast, and 

monitoring the cloud cover evolution. The instruments onboard Earth observation satellites allow continuous 

monitoring of the clouds and aerosols and retrieval of their properties from a regional to a global scale. 

The cloud properties are retrieved using the information carried by the measurements of the reflected or transmitted 40 

radiations by the clouds. Two main optical cloud properties are generally retrieved: the cloud optical thickness (COT) 

and the effective radius of the water/ice particles forming the cloud (Reff). These optical properties, along with the cloud 

altitude, allow to characterize the clouds at a global scale and help to determine the radiative impacts of clouds along 

with their cooling and warming effects (Platnick et al., 2003; Twomey, 1991; Lohmann and Feichter, 2005; Rivoire et 

al., 2020; Yang et al., 2010). Depending on the available information, various passive remote sensing methods are 45 

operationally used in the retrievals of these optical properties. For instance, the infrared split-window technique (Giraud 

et al., 1997; Inoue, 1985; Parol et al., 1991) uses infrared measurements and is more suitable for optically thin ice 

clouds (Garnier et al., 2012). The bispectral method (Nakajima and King, 1990) which uses visible and shortwave 

infrared wavelength, is more suitable for optically thicker clouds. It is currently used in a lot of operational algorithms 

and in particular with the MODIS radiometer (Platnick et al., 2003). It is also possible to use a combination of multi-50 

angular total and polarized measurements in the visible range, such as POLDER measurements (Deschamps et al., 

1994), to retrieve COT and Reff (Bréon and Goloub, 1998; Buriez et al., 1997). 

The above-mentioned methods are subject to several sources of error. Therefore, a moderate perturbation in the 

retrieved COT and Reff can, for example, cause variations of around 1 to 2 W/m2 in the estimation of cloud radiative 

forcing (Oreopoulos and Platnick, 2008). The quantification of the retrieval uncertainties of these optical properties is 55 

therefore critical. The sources of errors originating from the measurements can be quite well evaluated along the 

instrument calibration process and are often considered when developing a new algorithm (Sourdeval et al., 2015; 

Cooper et al., 2003) but the errors related to the choice of the cloud model to retrieve the parameters and the assumption 

made for the radiative transfer simulations should not be overlooked. Currently, computational constraints and lack of 

information in the measurements force the operational algorithms of cloud products (MODIS, POLDER, and others) 60 

to retrieve the cloud optical properties with a simplified 1D-cloud model. In this model, clouds are considered flat 

between two spatially homogeneous planes in what is known as the plane-parallel and homogeneous (PPH) assumption 

(Cahalan et al., 1994). Another commonly used assumption is related to the infinite dimension of the PPH cloud and 

treats each pixel independently without considering the interactions that occur between neighboring homogeneous 

pixels, known as the independent pixel approximation (IPA, (Cahalan et al., 1994; Marshak et al., 1995b). The effect 65 

of these two assumptions can lead to large uncertainties and biased conclusions regarding the cloud properties (Marshak 

et al., 2006b; Seethala and Horváth, 2010) and the aerosol-cloud relationship (Kaufman et al., 2002; Chang and 

Christopher, 2016). 

Considering the spatial variability of the cloud macrophysical and microphysical properties, the errors induced by the 

use of a homogeneous horizontal and vertical cloud model have been found to depend on the spatial resolution of the 70 

observed pixel, the wavelength, and the observation and illumination geometries (Kato and Marshak, 2009; Zhang and 

Platnick, 2011; Zinner and Mayer, 2006; Davis et al., 1997; Oreopoulos and Davies, 1998; Várnai and Marshak, 2009). 
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From medium to large-scale observations greater than 1 km (e.g. MODIS: 1×1 km2, POLDER: 6×7 km2), the PPH 

approximation poorly represents the cloud variability. The subpixel horizontal heterogeneity and the nonlinear nature 

of the COT-radiance relationship create the PPH bias that leads to the underestimation of the retrieved COT (Cahalan 75 

et al., 1994; Szczap et al., 2000; Cornet et al., 2018). The PPH bias increases with pixel size due to increase 

inhomogeneity. Using the bi-spectral method, the COT subpixel heterogeneity induces also an overestimation bias on 

the retrieved Reff (Zhang et al., 2012), while the heterogeneity effects appear limited with polarimetric observations 

(Alexandrov et al., 2012; Cornet et al., 2018). On the contrary, the microphysical subpixel heterogeneity leads to an 

underestimation of retrieved Reff (Marshak et al., 2006b). 80 

At smaller scales, errors due to IPA become more dominant. At this scale, pixels can no longer be considered infinite 

and independent from their adjacent pixels. The radiations pass from one column to the others depending on the COT 

gradient. This leads to a decrease in the radiance of pixels with large optical thickness and an increase in the radiance 

of pixels with small optical thickness, which tends to smooth the radiative field and thus the field of retrieved COT 

(Marshak et al., 1995a, b). As a result, it can lead to a large underestimation of the retrieved optical thickness (Cornet 85 

and Davies, 2008). Adding to these effects, for off-nadir observations, the tilted line of sight crosses different 

atmospheric columns with variable extinctions and optical properties which tend to additionally smooth the radiative 

field (Várnai and Davies, 1999; Kato and Marshak, 2009; Benner and Evans, 2001; Várnai and Marshak, 2003). In the 

case of fractional cloud fields not examined under nadir observations, the edges of the clouds cause an increase in 

radiances for high viewing angles, which by its turn, increases the value of the retrieved COT (Várnai and Marshak, 90 

2007), while overestimating the retrieved Reff (Platnick et al., 2003). They are often filtered out of cloud property 

retrievals especially under low sun angles (Takahashi et al., 2017; Zhang et al., 2019). The illumination and shadowing 

effects, on the contrary, lead to the roughening of the radiative field, their influence in over and under-estimating the 

cloud droplet size retrievals are documented in several papers (Zhang et al., 2012; Marshak et al., 2006a; Cornet et al., 

2005). 95 

The assumption of a vertical homogeneous profile inside the cloud is also questionable. The vertical distribution of the 

cloud droplets is important to provide an accurate description of the radiative transfer in the cloud (Chang, 2002) and 

obtain a more accurate description of the cloud microphysics such as the water content or the droplet number 

concentration. For simplicity reasons, classical algorithms assume a vertically homogeneous cloud model. However, 

several studies show a dependency of the effective radius retrievals on the SWIR band used. These differences are 100 

explained by the non-uniformity of cloud vertical profiles and by the different sensitivities of spectral channels due to 

the absorption difference (Platnick, 2000; Zhang et al., 2012). Indeed, the absorption by water droplets being stronger 

at 3.7 µm, the radiation penetrates less deeply in the cloud than at 2.2 and 1.6 µm. Channel 3.7 is therefore expected to 

retrieve an effective radius that corresponds to a level in the cloud higher than that of channels 2.2 and 1.6. Considerable 

vertical variation along the cloud profiles is confirmed by many in-situ studies of droplet size profiles and water content 105 

as summarized in (Miles et al., 2000). This vertical variation in liquid particle size is an important cloud parameter 

related to the processes of condensation, collision-coalescence, and the appearance of precipitation (Wood, 2005). 

In the operational algorithms, the retrieval of COT and Reff is achieved through pre-computed Look-Up Tables (LUT). 

This method can be used to process large databases automatically. Its disadvantage is that a modification of the particle 
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model or any other model parameter requires re-generating all these pre-calculated tables. But most importantly it lacks 110 

also the ability to assess the uncertainties on the retrieved properties. 

In this paper, we present a method to overcome these drawbacks and apply it to the measurements of the airborne 

radiometer OSIRIS (Observing System Including PolaRization in the Solar Infrared Spectrum, (Auriol et al., 2008) 

which was developed in the Laboratoire d’Optique Atmosphérique (Lille, France). OSIRIS is the airborne simulator 

of the 3MI (Multi-viewing Multi-channel Multi-polarization Imaging) radiometer, planned to be launched on MetOp-115 

SG in 2023. It can measure the degree of linear polarization from 440 to 2200 nm and has been used onboard the 

French research aircraft, Falcon-20, during several airborne campaigns: CHARMEX/ADRIMED (Mallet et al., 2016), 

CALIOSIRIS and AEROCLO-sA (Formenti et al., 2019). 

We couple the multi-angular multi-spectral measurements of OSIRIS with a statistical inversion method to obtain a 

flexible retrieval process of COT and Reff. The exploitation of the additional information on the cloud provided by 120 

these versatile measurements implies the use of a more sophisticated inversion method compared to the LUT. The used 

algorithm is based on the optimal estimation method (Rodgers, 1976, 2000) which has been widely used for 

applications in cloud remote sensing (Cooper et al., 2003; Poulsen et al., 2012; Sourdeval et al., 2013; Wang et al., 

2016). In this method, the bayesian conditional probability together with a variational iteration method allows the 

convergence to the physical model that best fits the measurements. Therefore, it introduces the probability distribution 125 

of solutions where the retrieved parameter being the most probable, with an ability to extract uncertainties on the 

retrieved parameters.  

This article is organized as follows. Section 2 describes the basic characteristics of OSIRIS and some essential details 

of the campaign CALIOSIRIS-2. In section 3, a detailed description of the retrieval methodology is presented, 

including the mathematical framework needed to compute the uncertainties on the retrieved cloud properties. In section 130 

4, a case study of a liquid cloud is presented and analyzed. We assessed the magnitude of different types of errors, such 

as the errors due to measurement noise, the errors linked to the fixed parameters in the simulations, and the errors 

related to the unrealistic homogeneous cloud assumption. The multi-angular retrievals and uncertainties are compared 

with the results obtained by the classical mono-angular retrieval algorithms (MODIS-like method) in section 5. Finally, 

section 6 gives a summary and some concluding remarks. 135 

2 Instrumentation and airborne campaign 

We use the new imaging radiometer OSIRIS. We will go through the main characteristics of the instrument and the 

airborne campaign CALIOSIRIS. More details about OSIRIS can be found in (Auriol et al., 2008). 

2.1 OSIRIS 

OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum, (Auriol et al., 2008))⁠ is an extended 140 

version of the POLDER radiometer (Deschamps et al., 1994) with multi-spectral and polarization capabilities extended 

to the near and short-wave infrared. This airborne instrument is a prototype of the future spacecraft 3MI  (Marbach et 

https://doi.org/10.5194/amt-2021-414
Preprint. Discussion started: 20 January 2022
c© Author(s) 2022. CC BY 4.0 License.



5 

 

al., 2015)⁠ planned to be launched on MetOp-SG in 2023. It consists of two optical sensors, each one with a two-

dimensional array of detectors; one for the visible and near-infrared wavelengths (from 440 to 940 nm) named VIS-

NIR (Visible-Near Infrared) and the other one for the near and shortwave infrared wavelengths (from 940 to 2200 nm) 145 

named SWIR (Shortwave Infrared). The VIS-NIR detector contains 1392×1040 pixels with a pixel size of 6.45×6.45 

µm2 while the SWIR contains 320×256 pixels with a pixel size of 30×30 µm2. Adding those characteristics to the wide 

field of view of both heads, at a typical aircraft height of 10 km, the spatial resolution at the ground is 18 m and 58 m 

respectively for the VIS-NIR and SWIR. This leads to a swath of about 25×19 km for the visible and 19×15 km for the 

SWIR. 150 

OSIRIS has eight spectral bands in the VIS-NIR and six in the SWIR. Similar to the concept of POLDER, OSIRIS 

contains a motorized wheel rotating the filters in front of the detectors. The step by step motor allows only one filter 

to intercept the incoming radiation at a particular wavelength. The polarization measurements are conducted using a 

second rotating wheel of polarizers. Given the sensor exposure and transfer times, the duration of a full lap is about 7 

seconds for the VIS-NIR and 4 seconds for the SWIR. Figure 1 shows the spectral response of each channel of OSIRIS. 155 

The two channels (1240 and 2200 nm) used in this study are red-colored in the figure. 

 

Figure 1: Spectral wavelengths of VIS-NIR (left) and SWIR (right) optical matrices of OSIRIS. The dashed line 

corresponds to a typical atmospheric transmittance. The red-colored channels are used in this study (1240 and 2200 nm). 

OSIRIS is an imaging radiometer with a wide field of view. It has a sensor matrix that allows the acquisition of images 160 

with different viewing angles. The same scene can thus be observed several times during successive acquisitions with 

variable geometries. The largest dimension of the sensor matrix is oriented along-track of the aircraft to increase the 

number of viewing angles for the same target. For example, when the airplane is flying at 10 km altitude with a speed 

of 200 to 250 m/s, the same target at the ground can be seen under 20 different angles for the VIS-NIR and 19 for the 

SWIR. 165 

2.2 Airborne campaign and case study 

OSIRIS participated in the airborne campaign CALIOSIRIS in October 2014. It was carried out with the contributions 

of the French laboratories LOA (Laboratoire d’Optique Atmosphérique) and LATMOS (Laboratoire ATmosphères, 
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Milieux, Observations Spatiales, Paris) and SAFIRE, the French Facility for Airborne Research. One objective of this 

campaign was the development of new cloud and aerosol properties retrieval algorithms in anticipation of the future 170 

space mission of 3MI intending to improve our knowledge of clouds, aerosols, and cloud-aerosol interactions. 

The data used in this work focuses on a cloudy case over ocean surface. A marine monolayer cloud that was observed 

on 24 October 2014 at 11:02 (local time). The aircraft flew at an altitude of 11 km above the Atlantic Ocean facing the 

French west coast (46.70°,-2.82°, red arrow in Figure 2a). The solar zenith angle was equal to 59°. In Figure 2 (b), the 

vertical profile measured by the LIDAR-LNG corresponds to the red rectangle in Figure 3b. The LIDAR-LNG detected 175 

a monolayer cloud around 5.5 km. In the panels (c) and (d), we present colored compositions of total and polarized 

radiances obtained from three spectral bands of OSIRIS over this cloud scene. The white concentric contours represent 

the scattering iso-angles in a step of 10º. 

The cloud strongly backscatters the total solar radiation at the three visible wavelengths, producing an intense white 

signal. On the polarized image (Figure 2d), we observe a strong directional signature of the signal, characteristic of 180 

scattering by spherical droplets. The main structure is the peak of polarization around 140º (known as the cloud bow), 

which forms a white arc in Figure 2d. At larger scattering angles, we observe the supernumerary bows whose positions 

vary with the wavelength, alternating between the red, blue, and green channels. The measured polarized signal for 

scattering angles smaller than 130º is largely dominated by molecular scattering at 490 nm, hence the blue color. The 

ocean surface modulates the scattered total and polarized radiance and increased the signal in the specular direction as 185 

seen in the left part of Figure 2 (c) and (d). 
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Figure 2: Studied case on 24 October 2014 at 11:02 (local time): (a) Airplane trajectories for this day, (b) Quicklook 

provided by the LIDAR-LNG around the observed scene. (c) OSIRIS true-color RGB composite, obtained from the total 

radiances at channels 490, 670, and 865 nm. (d) OSIRIS true-color RGB composite, obtained from the polarized radiances 190 

at channels 490, 670, and 865 nm. The white concentric contours in (c) and (d) represent the scattering iso-angles in a 10º 

step. 

3 Retrieval methodology 

One of the most robust approaches in cloud property retrievals is the optimal estimation method (OEM). It is 

increasingly used in satellite measurement inversion (Cooper et al., 2003; Poulsen et al., 2012; Sourdeval et al., 2013; 195 

Wang et al., 2016). It provides a rigorous mathematical framework to estimate one or more parameters from different 

measurements. The OEM also characterizes the uncertainty on the retrieved parameters while taking into account the 

instrument error and the underlying physical model errors. A complete description of the optimal estimation method 

for atmospheric applications is given by Clive D. Rodgers (Rodgers, 2000). In this book, Rodgers described 

exhaustively the information content extraction from measurements, the optimization of the inverse problem, and the 200 

solutions and error derivations. In the following, we will go through the basics of this method that define the core of 

our retrieval algorithm. 
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3.1 The formalism of the optimal estimation method 

Considering a vector 𝒚 (of dimension ny) containing the measurements and a state vector 𝒙 (of dimension nx)  205 

containing the unknown properties to be retrieved, these two vectors are connected by the forward model 𝐅, which can 

model the complete physics of the measurements to an adequate accuracy. The errors associated with the measurement 

and the modelling are represented by the error vector 𝝐. Eq. (1) states the relationship between these variables. Note 

that, hereafter, bold variables represent vectors or matrices. 

𝐲 = 𝐅(𝐱) + 𝛜              (1) 

The OEM aims to find the best representation of parameters 𝒙 that minimizes the difference between simulations 𝐅(𝒙) 210 

and observations 𝒚 while considering the linearity of the direct model near the solution. Therefore, the best estimate of 

the properties vector 𝒙 corresponds to the minimum of the so-called cost function 𝐉(𝒙): 

𝐉(𝐱) = [𝐲 − 𝐅(𝐱)]𝐓𝐒𝛜
−𝟏[𝐲 − 𝐅(𝐱)] + [𝐱 − 𝐱𝐚]

𝐓𝐒𝐚
−𝟏[𝐱 − 𝐱𝐚]       (2) 

The first term of 𝐉(𝒙) represents the difference between the measurements and the forward model calculated for a given 

state vector 𝒙, weighted by 𝐒𝝐 the covariance matrix associated with the measurement error and the forward model. 

The second term represents the difference between the state vector 𝒙 and the a priori state vector 𝒙a weighted by 𝐒a 215 

the covariance matrix associated with 𝒙a. In line with the cost function, the optimal state estimation emerges from a 

balance between the information carried by the measurement about the state and what we already know about it before 

the measurement. In our case, we do not have a prior estimate of the state vector. The iterations are initiated by a first 

guess while applying a large 𝐒a. The difference between the measurements and the forward model will be the decisive 

element in the minimization of the cost function. It will ensure that the estimated cloud properties have the optimal fit 220 

with the observed system only. 

The minimization is done through the Levenberg-Marquardt approach (Marquardt, 1963; Levenberg, 1944) based on 

the “Gauss-Newton” iterative method. Each iteration is calculated following the Eq. (3):  

𝒙𝑖+1 =   𝒙𝑖 + 𝐒𝒙𝑖
−1[𝐊𝑖

T𝐒𝛜
−1(𝐲 − 𝐅(𝒙𝑖)) − 𝐒a

−1(𝒙𝑖 − 𝒙a)]       (3) 

where 𝒙i is the state vector at the 𝑖𝑡ℎ iteration, 𝐊𝑖 is the sensitivity (or Jacobian) matrix and 𝐒𝑥𝑖
 is the covariance matrix 225 

of the state vector defined in Eq. (4). 

𝐒𝐱𝐢
= [(𝟏 + 𝛄)𝐒𝐚

−𝟏 + 𝐊𝐢
𝐓𝐒𝛜

−𝟏𝐊𝐢]
−𝟏

          (4) 

The parameter 𝛾 affects the size of the step at each iteration. If the cost function increases at an iterative step 𝑖 then 𝛾 

is increased and a new smaller step (𝒙𝑖+1) is calculated until the cost function decreases. 

The iterative process stops when the simulation fits the measurement (Eq. (5)) or when the iteration converges (Eq. 

(6)). The left side of Eq. (5) represents the cost function without taking into account the a priori negligible contribution 230 

and should be smaller than 𝑛𝑦 to stop the iterations. Eq. (6) deals with the iterative steps and will make sure that the 

iterations will stop when the difference between two successive steps weighed by 𝐒𝒙 is less than 𝑛𝑥. In other words, 

when further changes in the state vector have small to zero changes in the minimization. 
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[𝐲 − 𝐅(𝒙𝒊)]
T𝐒𝛜

−1[𝒚 − 𝐅(𝒙𝒊)] ≤ 𝑛𝑦          (5) 

[𝒙𝒊 − 𝒙i−1]
T𝐒𝒙[𝒙𝒊 − 𝒙𝑖−1] ≤ 𝑛𝑥          (6) 235 

3.2 Basic setting of the retrieval algorithm 

In order to apply this theoretical framework into our retrieval algorithm, we define next the basic elements stated in 

the previous subsection. 

The state vector 𝒙 contains the properties to be retrieved. In our case, they are the cloud optical thickness (COT) and 

the effective radius of water droplets (Reff): 240 

𝒙 =  [ 
COT
Reff

 ]              (7) 

The measurement vector 𝒚 contains the radiances (R) measured by OSIRIS at two wavelengths and for several view 

directions represented in Eq. (8) (8)by λ and 𝜃 respectively. 

𝐲 =

[
 
 
 
 
 
 
 Rλ𝑎

(𝜃1)

Rλb
(𝜃1)

⋮

Rλa (𝜃𝑛𝑦
)

Rλb (𝜃𝑛𝑦
)]
 
 
 
 
 
 

             (8) 

The forward model is based on the adding-doubling approach (De Haan et al., 1987; Van de Hulst, 1963) to solve the 245 

radiative transfer equation and simulate the radiances measured by OSIRIS for the corresponding observation 

geometries and wavelengths. It is a major element of the retrieval and describes the radiation interaction with the cloud, 

the surface, and the atmosphere while fixing several parameters (e.g. wind speed, cloud altitude…). We assume a 

standard atmosphere with a mid-latitude summer McClatchey profile (McClatchey et al., 1972) for the computation of 

molecular scattering. As all the channels used in the retrieval are in atmospheric windows (as seen in Figure 1), the 250 

atmospheric absorption is not accounted for. Our case study is purely above an ocean surface. The reflection by the 

surface can affect the measured radiances even in cloudy conditions and particularly for the optically thin clouds. The 

anisotropic surface reflectance of the ocean surface is characterized by a bidirectional polarization distribution function 

(BPDF). We used the well-known Cox and Munk model to compute the specular reflection modulated by ocean waves 

(Cox and Munk, 1954) with a fixed ocean wind speed based on measurements of the National Oceanic and Atmospheric 255 

Administration (NOAA). 

As in current operational algorithms, the cloud model used for the retrieval is a plane-parallel and homogeneous (PPH) 

cloud, which implies the independent column approximation (ICA). The case study is a liquid water cloud scene. 

Therefore, we used a log-normal distribution of liquid spherical particles (Hansen and Travis, 1974) described by an 

effective radius and an effective variance (veff). The altitude of the cloud is determined by the measurements of the 260 

LIDAR-LNG that was onboard the research aircraft Falcon-20 during the airborne campaign. All simulations are 

monochromatic computations at the central wavelength of OSIRIS channels. The altitude of OSIRIS and the 

illumination and observation geometries are calculated based on the coordinates of the aircraft inertial unit. 
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The Jacobian matrix 𝐊 includes the partial derivatives of the forward model to each element of the state vector (Eq. 

(9)). The columns of 𝐊 define then the sensitivity of the radiances (each with a specific wavelength - viewing angle 265 

configuration) to COT or Reff. The rows of the Jacobian define the sensitivity of each radiance configuration to the two 

retrieved properties. 

 𝐊 =

[
 
 
 
 
 
 
 
 

 ∂Fλ𝑎
(𝜃1)

𝜕COT
 ∂Fλ𝑏(𝜃1)

𝜕COT

⋮
 ∂Fλ𝑎(𝜃𝑛𝑦)

𝜕COT

 ∂Fλ𝑏(𝜃𝑛𝑦)

𝜕COT

 ∂Fλ𝑎(𝜃1)

𝜕Reff

 ∂Fλ𝑏(𝜃1)

𝜕Reff

⋮
 ∂Fλ𝑎(𝜃𝑛𝑦)

𝜕Reff

 ∂Fλ𝑏(𝜃𝑛𝑦)

𝜕Reff ]
 
 
 
 
 
 
 
 

            (9) 

3.3 Error characterization 

During the retrieval process, every element is associated with a random or systematic error embedded in the error 270 

covariance matrix 𝐒𝝐. The implantation of errors in the inverse problem adjust the solution from just a unique value of 

𝒙 to a Gaussian probability distribution function (PDF) where 𝒙 is the expected value and 𝐒𝑥 is its covariance. 

𝐒𝑥   is calculated after a successful convergence using the Jacobian at the retrieved state and 𝐒𝝐. 

𝐒𝑥 = [ σCOT
2

0

0
σreff

2  ]                      (10) 

It leads to a representation of the uncertainty on a particular parameter 𝒙𝒌 defined as the square root of the 275 

corresponding diagonal element σ𝑘 = √𝐒𝑥𝑘𝑘, where 𝑘 is the index of the parameter in the state vector 𝒙 (Eq. (10)). 

We chose to express this uncertainty using the relative standard deviation (RSD) in % (Eq.(11)). The RSD will be used 

to characterize the quality of the retrieval.  

RSD = (
𝝈𝒌

𝒙𝒌
) × 100                      (11) 

𝐒𝝐 regroups measurement errors (𝐒𝑚𝑒𝑠) and forward model errors. Indeed, the forward model 𝐅 uses ancillary 

information provided by a set of fixed parameters  𝒃 (listed in section 3.3.2). Errors related to an uncertain estimation 280 

of these fixed parameters are represented by the covariance matrix 𝐒𝐟𝐩 described in the next section.  

Besides the fixed parameters, the cloud model used in the radiative transfer computation adds a source of uncertainty. 

The uncertainties on the retrieved parameters related to these approximations are regrouped in the covariance matrix 

 𝐒𝐅 described in the next section. 𝐒𝝐 is then addressed as a sum of these three components: 

𝐒𝛜 = 𝐒𝐦𝐞𝐬 + 𝐒𝐟𝐩 + 𝐒𝐅                      (12) 

Previous studies (Wang et al., 2016; Iwabuchi et al., 2016; Poulsen et al., 2012; Sourdeval et al., 2015) have already 285 

computed and presented the uncertainties on the retrieved properties for all error contributions using 𝐒𝝐. The 

contribution of each type of error was not separated. To highlight their magnitude and better understand the sources of 

errors in cloud retrieval algorithms, we separate the contributions of each type of error. It is realized by propagating 
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the covariance matrices of errors from the measurement space into the retrieved state space (Rodgers, 2000). The gain 

matrix 𝐆𝒚 representing the sensitivity of the retrieval to the measurement is used: 290 

𝐆𝒚 = 𝐒𝒙𝐊
T𝐒𝝐

−𝟏                       (13) 

The total variance-covariance matrix of the retrieved state vector (𝐒𝒙) can then be decomposed into three contributions 

(Eq. (14)), with each term originating from its corresponding error covariance matrix.  

𝐒𝒙 = 𝐒𝒙mes
+ 𝐒𝒙fp

+ 𝐒𝒙F                     (14) 

Each term in this equation is developed and discussed in the following three subsections. 295 

3.3.1 Uncertainties related to the measurements 

Any type of measurement is subject to errors. It is necessary to apply calibration processes to study the relationship 

between the electrical signals measured by the detectors and the radiances and quantify its uncertainty. Calibration is 

done during laboratory experiments before the airborne campaign or the instrument launch into space (Hickey and 

Karoli, 1974) or in-situ if calibration sources are available onboard the sensor (Elsaesser and Kummerow, 2008). The 300 

uncertainty of the measurements determined during calibration is usually random, uncorrelated between channels, and 

can be quantified as probability density function over the measurement space. 

As errors between measurements are supposed to be independent, the covariance matrix of measurement noise (𝐒mes) 

is diagonal with dimensions equal to the measurements vector dimension (𝑛𝑦 × 𝑛𝑦). The diagonal elements 𝜎𝑚𝑒𝑠𝑖
2  are 

the square of the standard deviation of measurement errors. In our retrievals, we calculated the covariance matrix based 305 

on 5% of measurement errors that cover the measurement errors of OSIRIS: σmes = R𝜆,𝜃  × 5%. 

𝐒mes =

[
 
 
 
 
σmes1

2 0 … 0

0 σmes2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … σmes𝑛𝑦

2
]
 
 
 
 

                    (15) 

The error covariance matrix for the retrieved parameters due to measurement errors is then expressed by mapping the 

covariance matrix 𝐒mes from the measurements space to the state space by using the gain matrix 𝐆𝑦: 

𝐒𝑥mes
= 𝐆𝑦𝐒mes𝐆𝑦

T                      (16) 310 

The uncertainty on a particular parameter 𝒙𝒌 originating from the measurements error is defined as the square root of 

the corresponding diagonal element corresponding to the standard deviation 𝜎𝑘𝑚𝑒𝑠
= √𝑆𝑥𝑚𝑒𝑠𝑘𝑘

. It is expressed using 

the RSD (mes) as in Eq. (11). 

3.3.2 Uncertainties related to the fixed parameters 

Any retrievals from remote sensing observations require prior knowledge on several unknown parameters to complete 315 

the forward model. Those parameters are not retrieved due to a lack of sufficient information. To compute the fixed 

parameters (fp) errors, we quantified the possible error in our estimation of the fixed model parameters. In our case 

study, they are the altitude of the cloud (alt), the effective variance of the cloud droplet distribution (veff), and the ocean 
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wind speed (ws). These errors are set in the diagonal covariance matrix 𝐒σfp. They are weighed by 𝐊fp the Jacobian 

matrix containing the gradient of the forward model with respect to the fixed parameters. Finally, as previously, the 320 

errors are mapped from the measurements space to the state vector space through 𝐆𝑦 to estimate their contribution in 

the retrieval uncertainty as follows: 

𝐒𝑥fp
= 𝐆𝑦 𝐒fp𝐆𝑦

T = 𝐆𝑦𝐊fp 𝐒σfp𝐊fp
T 𝐆𝑦

T                    (17) 

Every column in 𝐊fp and  𝐒σfp is dedicated to one fixed parameter. Therefore, we can separate the contributions of 

every element of the fixed parameters vector as follows: 325 

𝐒𝑥fp
= 𝐒𝑥fp,𝑎𝑙𝑡

+ 𝐒𝑥fp,𝑤𝑠
+ 𝐒𝑥fp,𝑣𝑒𝑓𝑓

                    (18) 

Each covariance matrix from the right side of Eq. (17) is developed as shown in Eq. (18). 𝜎𝑏𝑖  is the standard deviation 

of the fixed parameter error and 𝐊𝑖 is a column vector containing the gradient of the forward model in regard of the 

same fixed parameter 𝑏𝑖. 

𝐒𝑥𝑓𝑝,𝑏𝑖
= 𝐆𝑦𝐊𝑏𝑖

σ𝑏𝑖

2 𝐊𝑏𝑖

T 𝐆𝑦
T                                 (19) 330 

In order to develop 𝐒𝑥fp,𝑏𝑖
 for each element of 𝒃, the forward model has been constructed in a flexible way that permits 

to initiate small variations of any fixed parameter and then calculate the partial derivatives of the forward model in 

regard the ancillary data, called the Jacobians of the fixed parameters 𝐊𝑎𝑙𝑡, 𝐊𝑣eff
, and 𝐊𝑤𝑠. 

The last elements needed to resolve in Eq. (19) are the error standard deviations of the cloud altitude, the effective 

variance of water droplets and the ocean wind speed,  𝜎𝑎𝑙𝑡, 𝜎𝑣𝑒𝑓𝑓
 and 𝜎𝑤𝑠 respectively. 335 

To estimate the uncertainties originating from the fixed cloud altitude, we used the backscattering altitudes of the 

LIDAR-LNG signal obtained around the case study of CALIOSIRIS, from 11:01:06 to 11:03:06 (time where the same 

cloud scene is apparent). It varies between 5.57 and 5.73 km in our cloud scene. A standard deviation of σ𝑎𝑙𝑡 = 0.16 

km (3% of the cloud altitude) is then retained for the cloud altitude. 

Concerning the effective variance veff, for which the polarized radiance is highly sensitive in the supernumerary arcs 340 

near the cloud bow (Bréon and Goloub, 1998), we fixed a value of 0.02 based on the position of the cloud bows and 

supernumerary arcs in the polarized radiances. After simulating radiances with several values of veff, we choose to add 

a  𝜎𝑣eff
= 0.003 (15%) possible error in the estimation of this parameter. 

For the ocean wind speed fixed to 8 m/s obtained from the database of the National Oceanic and Atmospheric 

Administration, we used an error 𝜎𝑤𝑠 = 0.8 m/s (10%). It covers the possible sources of error in the surface wind speed 345 

retrievals. 

3.3.3 Uncertainties related to the forward model 

Forward models are usually formulated around some limitations and assumptions that can contribute to the uncertainty 

on the retrieved parameters. The forward model used to simulate the radiances measured by OSIRIS follows the cloud 

plane parallel assumption. This assumption is known to cause errors on the retrieved parameters (see section 1) that 350 

can be assessed and included in the total uncertainty. The evaluation of these modeling errors requires an alternative 
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forward model 𝐅′ that includes more realistic physics. The contribution of this error is represented by the following 

equation: 

𝐒𝑥F
= 𝐆𝑦𝐒F𝐆𝒚

T                       (20) 

𝐒F  is diagonal with dimensions equals to the measurements vector dimension (𝑛𝑦 × 𝑛𝑦). Each diagonal element is the 355 

square of the difference between radiance computed for a specific direction with the simplified forward model 𝐅 and 

the one computed with the more realistic forward model 𝐅′ while maintaining the same state vector and the fixed 

parameters vector 𝒃: (𝐅(𝒙, 𝒃) − 𝐅′(𝒙, 𝒃))
2
. 

The uncertainties related to the cloud vertical homogeneity and the cloud horizontal homogeneity are quantified 

separately. In the following, we present the elements of the forward model used to quantify the uncertainties of these 360 

assumptions. 

 

Non-uniform cloud vertical profile model 

The vertically heterogeneous cloud model to assess the uncertainties of the assumed homogeneous cloud model is 

described by: 365 

- an effective radius profile and possibly an effective variance profile but for simplification, we will consider that veff 

is constant over the entire vertical profile with a value of 0.02.  

- an extinction coefficient (σext) profile 

- a cloud geometrical thickness (CGT) characterized by the difference between the altitude of the cloud top (𝑧top) and 

the cloud base (𝑧bot). The values of CGT, 𝑧top and 𝑧bot are fixed based on the LIDAR measurements. 370 

The effective radius and extinction coefficient profiles are computed using an analytical model already presented in 

(Merlin, 2016). It is based on adiabatic cloud profiles, which are described and used in several studies (Chang, 2002; 

Kokhanovsky and Rozanov, 2012). In the adiabatic scheme, the effective radius increases with altitude. However, 

several studies proved that a simple adiabatic profile is not sufficient to describe a realistic cloud profile (Platnick, 

2000; Seethala and Horváth, 2010; Nakajima et al., 2010; Miller et al., 2016) because turbulent and evaporation 375 

processes can reduce the size of droplets at the top of the cloud. The description of a more realsitic vertical cloud profile 

is obtained with two adiabatic profiles (Figure 3) that are joined at the altitude of maximum LWC (𝑧max): 

- The first profile from 𝑧bot to 𝑧max is considered adiabatic. 

- The second profile from 𝑧max to 𝑧top follows an adiabatic LWC profile decreasing with altitude. 
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Figure 3: The heterogeneous vertical profile of effective radius (black line) and extinction 

coefficient (blue line) used to assess uncertainties due to the assumption used for the vertical 

profile. The equivalent homogeneous vertical profiles are shown in dashed lines. 

Considering that LWC is equal to zero at the base and top of the cloud, and relying on the linear variation model of the 380 

LWC with altitude (z) established in (Platnick, 2000), we can write that: 

LWC(z) = LWCmax

𝑧 − 𝑧𝑏𝑜𝑡

𝑧𝑚𝑎𝑥 − 𝑧𝑏𝑜𝑡
; 𝑧 ∈ [𝑧𝑏𝑜𝑡 , 𝑧𝑚𝑎𝑥] 

LWC(z) = LWCmax

𝑧𝑡𝑜𝑝 − 𝑧

𝑧𝑡𝑜𝑝 − 𝑧𝑚𝑎𝑥
; 𝑧 ∈ [𝑧𝑚𝑎𝑥 , 𝑧𝑡𝑜𝑝] 

(21) 

The profiles of effective radius (Eq. (22)) and extinction coefficient (Eq. (23)) can then be computed by considering 

that the particle concentration is constant over the entire cloud which makes it possible to obtain analytical functions 

of LWC, Reff and σext. 

Reff(𝑧) = Reffmax (
𝑧 − 𝑧bot

𝑧max − 𝑧bot
)

1
3
; 𝑧 ∈ [𝑧bot, 𝑧max] 

Reff(𝑧) = Reffmax (
𝑧top − 𝑧

𝑧top − 𝑧max
)

1
3

; 𝑧 ∈ [𝑧max, 𝑧top] 

(22) 

 385 

σext(𝑧) = σextmax
(

𝑧 − 𝑧𝑏𝑜𝑡

𝑧max − 𝑧𝑏𝑜𝑡
)

2
3
; 𝑧 ∈ [𝑧bot, 𝑧max] 

σext(𝑧) = σextmax
(

𝑧top − 𝑧

𝑧top − 𝑧max
)

2
3

; 𝑧 ∈ [𝑧max, 𝑧top] 

(23) 

A form factor 𝑝 (Eq. (24)) allows the adjustment of the altitude 𝑧max where the extinction coefficient and the effective 

radius are the largest:  

𝑝 =
𝑧top−𝑧max

𝑧top−𝑧bot
                     (24) 
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This unitless parameter 𝑝 varies from 0 to 1 representing the shape of the profile. The value 0 corresponds to 𝑧max =

𝑧top (adiabatic cloud) and the value 1 corresponds to 𝑧max = 𝑧bot (a reverse adiabatic cloud with a negative gradient 390 

of water content). In the following results, a value of 0.15 is assigned which allows to have a profile close to the one 

studied in (Miller et al., 2016) from large-eddy simulations (LES) cloud scenes. 

To assess the error due to the vertical heterogeneity of the cloud, we need to specify the maximum value of the 

extinction coefficient  σextmax
 and the effective radius Reffmax

 of the vertically heterogeneous cloud, corresponding to 

the “equivalent” homogeneous clouds. We use Eq. (25) to assign σextmax
 which leads to the same integrated exctinction 395 

profile and Eq.  (26) to assign Reffmax
  to what ensures that the mean Reff of the heterogeneous vertical profile is equal 

to the Reff of the homogeneous cloud (ReffF). σextmax
 and Reffmax  are found analytically by integrating the profiles 

described in Eq. (22) and Eq. (23).  

σextmax
=

5

3
COTF(𝑧top − 𝑧bot)                                              (25) 

Reffmax =
4

3
ReffF                                   (26) 400 

 

A vertically heteregenous cloud is computed for each pixel using the retrieved value based on the homogeneous 

assumption. The error-covariance matrix describing the error due to the simple homogenous cloud assumption (Eq. 

(20)) is calculated from the difference between radiances computed with homogeneous and heterogeneous vertical 

profiles, denoted 𝐅 and 𝐅′ respectively. 405 

 

The 3D radiative transfer model 

The other assumption that might affect the retrieved cloud optical properties in the current operational algorithms is 

the horizontally plane-parallel and homogeneous (PPH) assumption for each observed pixel. It implies that each pixel 

is horizontally homogeneous and independent of the neighboring pixels (known as the independent pixel approximation 410 

(IPA)). The homogeneous IPA assumption affects the cloud-top radiances and leads to differences between 1D and 3D 

radiances that are the result of several effects discussed in numerous publications and briefly summarized in section 1. 

To assess the uncertainties in the retrievals arisen from this assumption, Eq. (20) is used. 𝐒F is then the difference 

between the radiances computed with a 1D radiative transfer code (1D-RT), following the Adding-doubling scheme 

(Hansen and Travis, 1974), and the radiances computed with a 3D radiative transfer (3D-RT) code called 3DMCPOL 415 

(Cornet et al., 2010). The 3D simulations used for each pixel, the COT and Reff  retrieved  using the PPH assumption. 

Errors on cloud model assumptions are assessed independently so vertical homogeneous profiles are assumed. We also 

assume a flat cloud top, differences, and errors are thus minimized as cloud top variation may increase the differences 

between 3D and 1D radiances (Várnai and Davies, 1999; Várnai, 2000). 
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4 Retrieval and uncertainty estimation for a liquid cloud case study measured by OSIRIS 420 

Our strategy to assess the different types of uncertainty follows two steps. In a first step, we retrieve COT and Reff 

using a bispectral multi-angular method by considering the uncertainties related to the measurement errors alone. We 

use a weak absorbing channel centered at 1240 nm that is mainly sensitive to COT, and a channel partially absorbed 

by the water droplets centered at 2200 nm, and thus sensitive on Reff. In this case study, up to 13 viewing angles are 

available for each pixel. In the first step, only the measurement errors are accounted for and included in 𝐒𝝐. This error 425 

is straightforward and usually well characterized but does not change once the measurements are realized. Not 

considering the other errors at this stage allows benefiting from a faster retrieval algorithm without the calculation of 

𝐊𝐛 and the heavy computation cost of heterogeneous cloud profiles and 3D-RT calculations. The second step consists 

of computing the error due to ertically and horizontally inhomogeneous cloud from the retrieved Reff and COT. 

In Figure 4, COT (a) and Reff (b) retrieved from multi-angular SWIR radiances are presented. Spatial variations are 430 

mainly due to variations in the observed cloud structures. The COT range is between 0.5 and 6 with a mean value of 

2.1 while Reff varies between 2 and 24 µm around a mean value of 8.8 µm. 

 

Figure 4: COT (a) and Reff (b) retrieved from a liquid cloud case observed during the CALIOSIRIS airborne campaign 

on 30 June 2014 at 11:02 (local time). 

As detailed in section 3.3, the final error is divided into three categories. Figure 5 shows the uncertainties originating 

from a 5% measurement error on the retrieved COT (RSD COT (mes)) and Reff (RSD Reff (mes)). RSD COT (mes) 

ranged from 0.5 to 5% with a mean value of 3.2% while RSD Reff (mes) ranged from 2 to 12% with a mean value equal 435 

to 6.2%. Both cloud properties have relative uncertainties that increase mainly with the magnitude of the retrieved 

values. This is related to the quasi-linearity of the radiance as a function of COT and Reff in this cloud regime (small 

COT). When the radiance-COT (or Reff) relationship is quasi-linear, the sensitivity of the forward model to COT (or 

Reff) is high, which will consequently lead to parameters retrieved with high accuracy (low RSD). As COT (or Reff) 

increases, the gradient of the radiance-COT (or Reff) relationship decreases causing larger uncertainties. 440 
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Figure 5: Uncertainties (RSD (%)) on COT (a) and Reff (b) originating from the measurement errors for the case study 

of CALIOSIRIS. 

The second type of uncertainty is related to the fixed parameters in the forward model. In Figure 6, we show the 

uncertainty on COT and Reff in % due to an incorrect estimation of each fixed parameter in the forward model. Panels 

(a) and (b) represent the uncertainties originating from the fixed cloud altitude, RSD COT (alt) and RSD Reff (alt) 

respectively. Both show null values of uncertainties. In fact, in the visible range, the altitude of the cloud mainly 

determined the amount of Rayleigh scattering that occurs above the cloud. This type of scattering is dominant at shorter 445 

wavelengths and becomes negligible at the studied wavelengths (1240 and 2200 nm). Consequently, at these 

wavelengths, an error in the fixed cloud altitude does not contribute to the uncertainty on the retrieved COT and Reff. 

The (c) and (d) panels in Figure 6 represent the uncertainties on the retrieved COT and Reff originating from the fixed 

effective variance of droplets. They are nearly null on COT with a mean value of 0.05% as the 15% uncertainty on the 

value of veff (0.02) does not modify the total radiances. On the other hand, RSD Reff (veff) reaches 0.5% with a mean 450 

value of 0.25%. Indeed, veff modifies the width of the cloud droplet distribution and consequently slightly the absorption 

by cloud droplets, which gives information to retrieve Reff. For Reff higher than 15 µm, the relationship between SWIR 

radiances and Reff tends to flatten which make them less sensitive to veff and thus the uncertainties are smaller than 

0.1%. 

The panels (e) and (f) in Figure 6 shows that an error in the estimation of the ocean wind speed affects the retrieved 455 

COT and Reff mainly for small COT. The water-air interface is reflecting mainly in the direction of specular reflection, 

but the ocean is not perfectly smooth; the surface is modulated by waves that enlarge the directions of reflection due 

to the specular reflection. These waves are mainly formed by the wind. The higher the surface wind speed is, the greater 

the amplitude of the waves leading to a larger reflection angle (wider sun-glint). The Sun-glint reflection is seen by 

OSIRIS only for very small values of COT and implies uncertainties on the retrieved parameters of about 0.5%. At 460 

higher COT, the surface is non-apparent to OSIRIS measurements, and uncertainties are thus close to zero. 

We note that all the uncertainties of the studied fixed parameters remain below 1%, which shows that retrieval of all 

the COT-Reff couples does not have a high dependence on the fixed parameters. 
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Figure 6: The uncertainties (RSD (%)) on COT (left column) and Reff (right column) originating from the 

ancillary parameter errors: altitude (a and b), the effective variance of water droplet distribution (c and d), 

and the surface wind speed (e and f).  

 

The uncertainties due to the assumptions of the forward model are presented in Figure 7. The panels (a) and (b) 465 

represent the uncertainties on COT and Reff respectively, originating from the vertically homogeneous assumption. 

RSD COT (Fpv) ranges between 1 and 8% with a mean value of 4.9% while RSD Reff (Fpv) varies from 2 to 20% with 

a mean value of 13.3%. We note that when the cloud is optically thin, RSD COT (Fpv) and RSD Reff (Fpv) tend to be 

lower. When the extinction is small, the radiations penetrate deeper into the cloud and bring information on the whole 

cloud, similar to the one obtained with the homogenous vertical profile. The differences between radiances issued from 470 

the vertical heterogeneous and homogeneous profiles are small since the integrated extinction over the cloud is 

approximately the same in both cases. For larger COT, the radiations penetrate less in the cloud and are only affected 

by the upper part of the cloud where the extinction coefficient is different from one profile to another. In this case, RSD 

COT (Fpv) and RSD Reff (Fpv) are larger up to 20%. 
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Figure 7: The uncertainties (%) on COT and Reff originating from the assumptions in the forward, for not 

considering: the heterogeneous vertical profile (a and b) and the 3D radiative behavior of radiations (c and d). 

The uncertainties originating from the use of a 1D radiative transfer code instead of a more realistic 3D radiative 475 

transfer are represented in Figure 7 (c) and (d) for COT and Reff respectively. RSD COT (F3D) ranges between 1 and 

20% with a mean value of 4.35%, while RSD Reff (F3D) varies from 2 to 18% with a mean value of 9.25%. At high 

spatial resolution, these differences can be caused by several effects that can add or oppose each other. Considering the 

solar zenith incidence angle (59º), illumination and shadowing effects can be present depending on the viewing 

geometries and roughness of the radiative fields (Várnai, 2000). 480 

However, in this work, we are dealing with multi-angular measurements where the same cloudy pixel is viewed under 

different viewing angles, which tends to mitigate the influence of illumination and shadowing effects. Therefore, 

contrary to MODIS mono-angular retrieval (Várnai and Marshak, 2002), 3D effects due to solar illumination do not 

appear in the retrieved cloud properties. 

The plane-parallel and homogenous (PPH) approximation (Cahalan et al., 1994) strongly depends on the sensor spatial 485 

resolution (Oreopoulos and Davies, 1998). The high spatial resolution of OSIRIS (around 50 m) makes the sub-pixel 

cloud variabilities can be fairly well represented leading to a low PPH bias.  At this scale, the effects related to the 

Independent Pixel Approximation (IPA) are dominant since the horizontal transfers of photons between pixels are 

important.. The smaller these columns are considered in the simulations, the more the real behavior of radiation in the 

atmosphere will be misrepresented. The horizontal radiation transport (HRT) tends to smooth the radiative field as it 490 
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is shown in Figure 8. The panels (b) and (d) representing the radiances computed with 3DMCPOL at 1240 and 2200 

nm respectively show the smoothest field compared to the radiances computed in 1D in (a) and (c). The variabilities 

in the 3D radiative field are indeed less pronounced compared to the 1D field. 

 

Figure 8: The simulated 1D (a) and 3D (b) radiances at 1240 nm using the retrieved COT and Reff presented 

in Figure 4 for the central image. (c) and (d) are the same as (a) and (b) but for 2200 nm. 

 

In Figure 9, the histograms of the relative difference between the radiances computed in 1D (R1D) and the radiances 495 

computed in 3D (R3D) at 1240 nm for different bins of optical thickness are plotted. We can see the shift of the 

histograms from negative value for small optical thickness (R1D < R3D) towards positive difference for larger optical 

thickness (R1D > R3D) that is explained by the horizontal radiation transport between columns. 
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Figure 9: Histograms of the relative difference between the radiances computed in 1D and 3D at 1240 nm for 

the central image. Each histogram corresponds to a domain of COT. 

 500 

Overall, we note that the uncertainties due to the forward model assumption are much more important than the one due 

to the fixed parameters. The forward model is not sensitive to small variations in the fixed parameters. However, while 

assessing uncertainties due to the vertical profile or radiative transfer assumptio, we change the parameters that our 

forward model is proven to depend on, thus minor changes in the integrated profile can lead to relatively large variations 

in the radiance fields, and consequently large uncertainties. 505 

5 Advantage of using multi-angular versus mono angular information 

The same strategy applied in section 4 is applied using a bispectral mono-angular method used for the MODIS 

instrument for example. Using the MODIS-like approach, the measurement vector 𝒚 for each pixel contains two mono-

angular total radiances, one at 1240 nm and the other at 2200 nm to retrieve COT and Reff. 

 510 

 

 

Figure 10: COT (a) and Reff (b) retrieved using MODIS-like method for the CALIOSIRIS liquid cloud case study on 30 

June 2014 at 11:02 (local time). 
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The retrieved COT over the whole field varies between 1 and 12 with a mean value equals to 3.44. The range of 515 

retrieved Reff has a mean value of 15.65 µm affected by the high value of Reff retrieved around the scattering angles 

130-140° where the sensitivity of 2200 nm radiances to the water droplet size is known to be small. As a matter of fact, 

(Cho et al., 2015) show indeed that in liquid marine cloud cases, the phase functions of different Reff converge to the 

same value for these scattering angle range leading to the failure of water droplets size retrieval from MODIS 

measurements. This reduced sensitivity explains also the high uncertainty on Reff due to measurement errors around 520 

the cloud bow (Figure 11). The reduced sensitivity on Reff, in this case, is not limited to the cloud bow directions and 

supernumerary bows but is also visible at small scattering angles (70-80°) that can be affected by specular reflection 

over the ocean. 

 

 525 

Figure 11: Uncertainty on the effective radius originating from the measurement error, RSD Reff (mes) as a function of the 

scattering. The red line represents the mean RSD Reff (mes) = 12.55%. 

Multi-angular retrieval presents the major advantage, that no aberrant values of Reff are retrieved near the scattering 

angles at 140° (comparing Figure 4b to Figure 10b). Clearly, the multi-angular measurements contain more information 

and allow to resolve the problem encountered with the MODIS-like method which is also clear in the reduction of 530 

failed convergences from 5.9% to 2.4% (not shown here). In the overall scene, smaller Reff values (and consequently 

lower COT values) are obtained. 

The relation between radiances and COT/Reff being monotonical, the mono-directional method always allows us to 

find a retrieved value as it is always possible to find a cloud model (a pair of COT and Reff) that matches a single 

measured radiance of a given target. However, this value can be more or less far from the real value and is not 535 

necessarily an indication of an accurate retrieval, but only that a fit occurred. On the other hand, multi-angular retrieval 

makes the constraining of the forward model much more challenging. It uses jointly all the available measurements. 

The retrieved state is then consistent at the best with all the measurements associated with different viewing angles. 
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On this basis, it is not suitable to compare the cost function of a mono-directional method where one value of COT fits 

one radiance and the cost function of a multi-angular method where one value of COT corresponds to ~13 radiances. 540 

To overcome this problem, we compare the accuracy of the retrievals by the response of the state vector to the errors, 

represented by the relative standard deviation (RSD). In Figure 12, we present the spatially average of the different 

types of errors, presented in section 4, for the mono-angular method (light green for COT and light blue for Reff) in 

comparison with the multi-angular method (dark green for COT and dark blue for Reff). We divide the source of errors 

in two panels, the left panel groups the lowest values of RSD and the right panel for the highest values of RSD.  545 

Overall, Reff uncertainties are larger than the one on COT for any type of error. In the left panel of Figure 12, the three 

fixed model parameters errors related to an incorrect estimation of the fixed parameters of the model are weak 

compared to the others and remain below 0.3% for mono-angular retrievals. As explained in section 4, the fixed altitude 

does not contribute to the uncertainty on the two retrieved parameters. The average uncertainties originating from the 

fixed value of veff are about 0.05% for COT and slightly higher (0.15%) for Reff since veff affects the cloud bows that 550 

are also sensitive to Reff. Concerning the surface wind speed, the uncertainties are around an average of 0.05%. 

In the right panel, for mono-angular retrieval, the measurement error contributes to the uncertainty of about 8% on the 

retrieved COT and of about 12% on the retrieved Reff. The uncertainties are reduced by a factor two with multi-angular 

retrieval. The multi-angular approach leads indeed to more information available for each cloudy pixel and each 

additional information reduces the uncertainty on the retrieved parameters in the presence of the same 5% random 555 

noise in the measurements. 

The following two groups of bars correspond to the to the error introduced by the homogeneous assumption in the 

forward model. They are the main source of errors. For mono-angular retrieval, the assumption of a vertical 

homogenous profile contributes to an uncertainty of about 16% on COT and 54% on Reff. These uncertainties are 

reduced by a factor four in the case of multi-angular retrieval. As discussed previously, the principal effects of 1D 560 

assumptions errors at the spatial resolution of OSIRIS come from the non-independence of the cloud columns that lead 

to smooth the 3D radiative fields. They lead to an uncertainty of 28% on COT and 45% on Reff when a mono-angular 

instrument is used. 
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Figure 12: Bar chart of the mean uncertainties on the retrieved COT and Reff: green bars correspond to RSD 

COT and blue bars to RSD Reff. Dark colors correspond to multi-angular retrieval and light colors to mono-

angular retrieval. The errors originating from the fixed parameter errors are in the left panel and the 

measurements and forward model errors in the right panel. 

The multi-angular approach provides additional information for each pixel and constrains the forward model to match 565 

all the angular radiances at once. Indeed, the OSIRIS multi-angular characteristics have the advantage of decreasing 

the angular effects around the cloud bow directions by adding the contribution of other geometries. It avoids most of 

the failed convergences that occurred with the MODIS-like method and retrieved more homogeneous and coherent 

COT and Reff fields. 

6 Conclusions 570 

In this study, we present a method to retrieve retrieve two important microphysical and optical parameters of liquid 

clouds, COT and Reff and their uncertainties using NIR/SWIR multi-angular airborne measurements. The algorithm is 

based on the mathematical framework of the optimal estimation method (Rodgers, 2000) and focuses on assessing the 

different uncertainties on the retrieved properties originating from different sources of errors. 

The studied case uses the measurements of the airborne radiometer OSIRIS obtained during the CALIOSIRIS 575 

campaign. It consists of a monolayer water cloud located at 5 km altitude over the ocean with tilted solar incidence 

(𝜃𝑠=59º). 

In the first step of the retrieval, COT and Reff are retrieved by considering only the measurement error (without 

introducing any error linked to the forward model).The uncertainties originating from different sources of error are 

computed afterward by using the previously retreved COT and Reff, and are decomposed into 3 different sources related 580 

to (a) the instrument measurement errors, (b) an incorrect estimation of the fixed model parameters such as the ocean 

surface wind, the cloud altitude and the effective variance of water droplets distribution, and (c) the errors related to 

the vertical and horizontal homogeneous cloud assumptions. The computations are done using the multi-angular 
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method and for comparison a mono-angular method, which is the usual approach in the operational algorithm called 

here the MODIS-like algorithm. 585 

In the multi-angular retrieval, a 5% measurement error contributes to around 3% of uncertainty on the retrieved COT 

and 6% on the retrieved Reff. It increases with increasing values of COT and Reff for which the sensitivity of radiances 

starts to decrease. These uncertainties are doubled when considering a mono-angular retrieval

The uncertainties related to the fixed parameters remain low with both mono or multi-angular retrieval. The largest one 

is due to the miss-knowledge of the effective variance of the droplet size and is respectively equal to 0.15% and 0.25% 590 

for the mono and multi angular case. 

This study clearly shows that the largest uncertainty is due to the homogeneous cloud assumption made in our forward 

model.  First, the uncertainties related to the homogeneous vertical profile were quantified using a heterogeneous LWC 

profile with a triangle shape (known as quasi-adiabatic) composed of two adiabatic profiles. This more realistic profile 

takes into account the transition zone at the top of the cloud related to turbulent and evaporation processes. The scene 595 

averaged values reach 5% and 13% for COT and Reff respectively in the multi-angular retrieval of our case study and 

go up to 13% and 54% for COT and Reff respectively when using mono-angular measurements. The largest 

uncertainties are obtained for the largest cloud optical thickness as the radiations sample only the higher layers of the 

cloud where the information is different between the homogeneous and heterogeneous vertical profiles. 

The other source of uncertainty related to the simplified cloud physical model comes from the radiatively non-600 

independence of cloudy columns that dominate at the high spatial resolution of OSIRIS. In the optically thin overcast 

cloud case, studied here, the scene average uncertainties originating from the 3D effects are 4% for COT and 9% for 

Reff when using multi-angular measurements, and 28% for COT and 45% for Reff when using mono-angular 

measurements. The non-independence of the cloud columns dominates and tends to smooth the 3D radiative field 

compared to radiances computed with the independent pixel approximation. Moreover, at the high solar incidence 605 

(59º), illumination and shadowing effects can be present. However, the use of multi-angular measurements mitigated 

their effects. Consequently, the uncertainties are lower when using multi-angular measurements. 

The method presented here addressed the exploitation of OSIRIS and can be easily adapted to the future 3MI imager. 

The first step that consists of including the uncertainties related to the measurement errors is implementable in an 

operational algorithm. The second step that consists of computing the uncertainties resulting from the cloud model is 610 

computationally expensive but can be applied to case studies to obtain a distribution of the error according to the cloud 

characteristic. In addition, the results obtained in this study show, not surprisingly regarding the numerous studies 

already published, that the vertical and horizontal homogeneity assumptions are major contributors to the retrieval 

uncertainties. One way to reduce it would be to define a more complex cloud model that can take into account the 

vertical and horizontal heterogeneity. This adds more complexity in the forward model as it would implies to retrieve 615 

more sophisticated cloud parameters (e.g. extinction or effective size profile). It appears however possible given the 

important and complementary information provided by OSIRIS or 3MI measurements but more sophisticated retrieval 

methods need to be developed. Recent studies were proposed to retrieved vertical profile using cloud side information 

(Ewald et al., 2018; Alexandrov et al., 2020) or to realize multi-pixels retrieval to account for the non-independence of 

the cloudy pixels (Martin et al., 2014; Okamura et al., 2017; Levis et al., 2015).  620 
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