Complete Response to Reviewers
Reviewer 1

Comment 1: 1.152 The final inputs to the neural networks are listed. Line 91, however, states: "The
auxiliary information from AHl is also included in the collocated data, such as the latitudes, longitudes,
solar and observation angles." Are the latitudes and longitudes included as inputs for the neural
networks?

Reply 1: Only the final inputs described in line 152 are used in the final models. All other auxiliary
information was used for further analysis of the results. We have added a clarification of this point to
line 184, which reads, “Only these inputs are used for the models. Auxiliary data, such as satellite
zenith angle, latitude and longitude is used only for further analysis of results.”.

Comment 2: 1.172 The neural network training section lacks some minor details for reproducing the
results. For example, how many epochs were used to train the neural networks? Was there an early
stopping criterion to stop the optimization? How do the authors ensure the convergence of the
trained neural networks?

Reply 2: The NNs are trained over 200 epochs. This number ensures convergence as the cost can be
seen to asymptote before this value in all the models that were trained. Line 213 has been amended
to include “Each NN is trained over 200 epochs to ensure convergence”.

Comment 3: .227 Please describe what is meant by a collocated dataset ("30 collocated datasets").

For example, do a single dataset correspond to some specific time instant, or are the pixels selected

randomly, or something else?

Reply 3: We have added a short definition of a collocated dataset to line 256, which reads “where
each dataset is a CALIOP overpass that has been collocated with AHI data”.

Comment 4: |.252 Please clarify that by the surface type you mean land or ocean.

Reply 4: We have added the clarification of surface type to line 282, which reads “surface type (over
ocean or over land)”.

Comment 5: 1.267 Typo "Shapely". It should be "Shapley".

Reply 5: The typo “Shapely” in line 296 has been corrected to “Shapley”.



Reviewer 2

Comment 1: One of the issues is the innovative contribution of this paper. As the author mentioned,
using Machine Learning to facilitate satellite image recognition/categorization is a hot topic. Many
studies have tried using ML/CNN to identify cloud and/or aerosols from passive sensors, for example
Marais et al., 2020, Lee et al., 2021, Wang et al., 2020. Some of these studies also uses lidar as
benchmark to label particle types. The new contribution from this study that is differ from the already
published studies shall be clarified.

Reply 1: These studies have been added to the manuscript and a short description of the way in which

this study differs from those cited has also been added to the manuscript.

® Marais et al., 2020, has been cited alongside Hughes et al., 2019, in line 72 critiquing hand-
labeled datasets.

® Wangetal, 2020, and Lee et al., 2021, have been cited in line 80 and the way in which this work
differs described in lines 81-86, which read, “These studies all demonstrate the success of
machine learning algorithms trained on data labeled by active instruments, but do not extend
the technique to geostationary instruments, which require a more sophisticated collocation
technique to account for the parallax between the active and passive sensors. These studies do
not focus on biomass burning plumes, which are of particular significance over Australia. In
addition, in this paper we combine this technique with explainable machine learning models to
better understand the influence of passive instrument channels on the outcome of the
classification.”.

Comment 2: In addition, more information of the disadvantage and advantage of passive and active
remote sensing techniques of clouds and aerosols are needed to justify the benefits of using active
sensor to provide typing information.

Reply 2: Further discussion of the advantages and disadvantages of passive and active sensors have

been added to the manuscript to reinforce our justification for using labels assigned by active sensors.

® Acritique of passive instruments has been added to lines 38-40, which reads, “However,
individual passive sensors can only see in 2D. For example, to classify whether a bright, cold pixel
is snow/ice or a cloud top, a retrieval algorithm must be applied to the pixel to classify it. These
algorithms require evaluation using ground-based instruments and active instruments to ensure
that they are accurate”.

® Adiscussion about the advantages of using active sensors has been added to lines 42-45, which
reads, “As they have their radiation source on-board, active instruments can operate
independently of solar illumination and are more sensitive to thin atmospheric layers, such as
thin cirrus and aerosols, than passive instruments. In addition, active sensors can retrieve the
height of layers within a pixel by evaluating the strength of the return signal and time taken for
the pulse to return. This makes them able to detect clouds and aerosols within their pixels much
more accurately than passive instruments.”.

®  Finally, we have added a summary of the advantages of using active sensors for labeling in lines
47-50, which reads, “Combining the temporal and spatial resolution of passive instruments with
the more accurate classification of atmospheric layers achieved by active sensors is desirable to
create an optimal algorithm for classifying clouds and aerosols. By using active instruments to
label passive sensor pixels, classification algorithms for passive sensors can be developed that
take advantage of the increased accuracy of active sensors.”.

Comment 3: Discussions on potential misclassification in CALIOP of identify spherical fine particles as
clouds and how that is going to impact the outcome of this study needs to be discussed in the article.
Related to this issue, my biggest concern is that there is little information of the uncertainty/QA
procedures used when using CALIOP CAD to identify aerosols and clouds. The CAD > 50 thresholds will
likely mark some of the small clouds as aerosols, which is shown in Figure 12. The upper right corner
has many fine popcorn clouds, which is marked as potential cloudy in ML output and identified as
clear in binary mask. In contrast, the other two cloud products marked this area as cloudy. This can
cause large problem in aerosol retrieval. Due to this mislabeling is caused by how clouds are defined,



it will not be marked as missing detection of clouds in validation (accuracy score). Plus, an altitude
threshold of CAD will mark some elevated aerosols as clouds, such as volcano eruption/stratosphere
aerosols, although the percentage of these data will be very small.

Reply 3: This point has been addressed along with comments made by reviewer 3 by discussing the

CAD algorithm in section 3.2 and including a more complete description of the caveats of using

CALIOP as truth.

® At the end of section 3.2, lines 117-131 now read, “While the 5km algorithm is more sensitive to
optically thin clouds, after initial investigation optimum results were found using the 1km L2
cloud-layer version 4.20 product (CAL\_LID\_L2\_01kmCLay-Standard-V4-20) (Young et al., 2018)
because the higher spatial resolution leads to increased accuracy of identifying small-scale
clouds in AHI pixels at 2km resolution. The version 4 product is used for this study due to
improvements made in the cloud-aerosol discrimination (CAD) score algorithm for this product
(Liu et al., 2019). The CAD algorithm seeks to discriminate between cloud and aerosol particles,
such as fine spherical dust particles and water cloud, by using 5D probability density functions
(PDF)s to assign values between -100 and 100 to each layer, with -100 being certainly aerosol
and 100 being certainly cloud. The CAD algorithm improves on the previous version by applying
the algorithm to all single shot retrievals, which were previously classified as cloud by default, as
well as making improvements to identifying elevated aerosol layers and cloud layers under
dense aerosols such as smoke (Liu et al., 2019). The version 4 algorithm is validated on the 5km
product, but inspection of CAD scores between the 5km and 1km products indicate similar
performance. Therefore, although the 5km product is more suitable for use with the CAD score,
the 1km product is still appropriate for use in this study. However, it is important to note that
extreme cases of aerosols can still lead to classification of aerosol layers as cloud from the
CALIOP classification and that small scale (less then 1km across) clouds can be potentially
misclassified and be a source of error in the NNs and validation, i.e. the pixel classification by
CALIOP is assumed to be true throughout this study, but CALIOP misclassifying layers is a
potential source of uncertainty within this study.”.

Using the CAD score is, in of itself, a QA procedure that has been used in other studies (Winker et al.,
2013, (https://doi.org/10.5194/acp-13-3345-2013); Watson-Parris et al., 2018
(https://doi.org/10.1002/2013JD019527)) and is used in the same way as it has been in our study.
However, we have acknowledged that the CAD score may lead to some small clouds being
misclassified due to the CAD score.

With regards to the altitude limit, please see the statement given at the start of this document.

Comment 4: It is also not clear to me how the NN model is set up. Is small batch of horizontal pixel
from AHI used as input. If so, what is the size of batch? How is CALIOP labeling work for each batch?

Reply 4: The model uses information from a single pixel at 2km resolution and uses this to classify the
pixel. This is done for every pixel in an AHI scene. The phrase “to analyse a scene pixel-by-pixel” has
been added to line 179 to clarify this point.

Comment 5: In terms of validation, due to the ambiguity in determine CALIOP cloud and thick
aerosols, external data, such as ground lidar can be used to validate the cloud/aerosol mask as well as
more cases of intense smoke from wildfire and pollution are needed.

Reply 5: This is a great idea. Unfortunately, we could not identify any good quality LIDAR data for the
case studies over Australia. However, there are proposals to use weather radar for tracking biomass
burning plumes, although this is still in the very early stages of development and may be available for
future studies.

Comment 6: Another suggestion is that if the main purpose of the model is to separate thick aerosols
from clouds while maintain reliable cloud mask, instead of comparing the cloud/aerosol mask to
other cloud mask products, comparisons between ML cloud mask to cloud mask within other aerosol



products is more appropriate. Because cloud mask, which is made to remove “unclear” sky, is known
to have “clear sky bias”; while aerosol products try their best to preserve these aerosol scenes.

Reply 6: This is an interesting idea. However, from visual inspection of aerosol product masks, it can
be seen that these masks also have issues with removing cloud (see MAIAC mask for MODIS taken
during the 2019/2020 bushfires in response-specific figures at the end of this document). For example,
the JAXA AOD product is based on the deep-blue method (She et al., 2020
(http://dx.doi.org/10.3390/rs12244125)) over ocean and operates in a similar fashion to the JAXA
standard cloud mask. It is not obvious that comparing against these masks will make a difference to
the statistical analysis, but including these in future studies may be considered.

Comment 7: For reader’s benefits, reword the description of the parallax correction. From my
understand, the pseudo-CALIOP vertical profile is generated using layer information from different
CALIOP lidar pulse along the AHI airmass pathway. However, the description of the parallax correction
is very confusing mentioning the angle from CALIOP needs to match angles from AHI.

Reply 7: This description has been reworded to clarify that the AHI observation angle for each layer is

what must be matched to account for parallax.

® Lines 154-161 now read, “The parallax correction for each layer was performed by:
— Calculating the observation angles of the CALIOP layer as it would be seen by AHI at the
position and altitude specified in the CALIOP data, i.e. the angle that corresponds to the
dashed line beneath the cloud layer in Fig. 2.
— The observation angles of the CALIOP layer as seen by AHI were then matched with the
observation angles for AHI corresponding to the Earth’s surface.
— Where the AHI observation angles matched, the layer was assigned to the collocated AHI
pixel, i.e. the cloud layer in Fig. 2 would be assigned to the pixel that corresponds with the
red star. As the match is to the closest pixel, this leads to a spatial uncertainty of
approximately +1km at nadir for AHI.
— This was repeated for every layer and a pseudo-CALIOP profile was generated for each AHI
pixel. This includes thin layers that AHI may struggle to observe and are accepted as a
potential source of error in the final cloud mask.”
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Reviewer 3

Comment 1: Since much of this work depends crucially on the Cloud Aerosol Discrimination (CAD) by
CALIPSO, it is essential to be aware of some aspects of the latter. The authors state that they have
analyzed both the 5km and 1km CALIPSO cloud products and then decided to go for the 1km product.
Although the CAD algorithm in version 4 CALIPSO data has been extended to classify both the single
shot (333m) and 1 km layers, the training sets used to generate the 5 dimensional pdfs that are used
for the CAD algorithm never really used the optical properties of the 333m and 1km layers. In other
words, the pdfs were generated using the measured variables of 5km layer products only and then
applied to the 333m and 1km layers, so the quality of the CAD for 1km layers is largely unknown.
Clearly this has ramifications for using the collocated CALIPSO dataset for training and validation. |
would urge the authors to carry out a comparison of CAD at the two resolutions (5km vs 1km) to
check on this. On line 102, the authors state that optimum results were found using the 1km layers. It
is not clear how this was achieved, since no extinction retrievals are done for 1km cloud layers and an
evaluation of the cloud optical depth bias being ingested in the training set is difficult to estimate.
Perhaps a figure showing an example of the performance using both these resolutions and discussing
the trade-off will be good.

Reply 1: We have compared CAD scores between the 1km and 5km products, with 2 examples shown
in figures 1 and 2 in the response specific figures section at the end of this document. These figures
show the probability distribution of CAD scores for 2 overpasses that occurred during the 2019/2020
Black Summer bushfires at 1km and 5km resolution. One of these is from a night overpass, the other
is from a day overpass. It can be seen in both cases that the general distribution of CAD scores is
similar, although there are significantly fewer low CAD scores in the 1km product. Figure 3 shows a
section of the CALIOP overpass starting at 1% January 2020 03:59:16 UTC. In this figure, we can see
that the main reason for the difference between the 2 products comes from low CAD score layers;
they are present in the 5km product, but are omitted in the 1km product. This is likely because they
are misclassified thin aerosol layers that require increased horizontal sampling to determine. In terms
of the impact on this study, we can see that the low CAD score layers are declared as non-cloud in the
1km product, and would be assigned the same label by our NNs. Therefore, we believe that the 1km
product is suitable for this study.
® We have expanded section 3.4 to explain our reasoning, with lines 117-131 now reading as,
“While the 5km algorithm is more sensitive to optically thin clouds, after initial investigation
optimum results were found using the 1km L2 cloud-layer version 4.20 product
(CAL\_LID\_L2\_01kmCLay-Standard-V4-20) (Young et al., 2018) because the higher spatial
resolution leads to increased accuracy of identifying small-scale clouds in AHI pixels at 2km
resolution. The version 4 product is used for this study due to improvements made in the cloud-
aerosol discrimination (CAD) score algorithm for this product (Liu et al., 2019). The CAD
algorithm seeks to discriminate between cloud and aerosol particles, such as fine spherical dust
particles and water cloud, by using 5D probability density functions (PDF)s to assign values
between -100 and 100 to each layer, with -100 being certainly aerosol and 100 being certainly
cloud. The CAD algorithm improves on the previous version by applying the algorithm to all
single shot retrievals, which were previously classified as cloud by default, as well as making
improvements to identifying elevated aerosol layers and cloud layers under dense aerosols such
as smoke (Liu et al., 2019). The version 4 algorithm is validated on the 5km product, but
inspection of CAD scores between the 5km and 1km products indicate similar performance.
Therefore, although the 5km product is more suitable for use with the CAD score, the 1km
product is still appropriate for use in this study. However, it is important to note that extreme
cases of aerosols can still lead to classification of aerosol layers as cloud from the CALIOP
classification and that small scale (less then 1km across) clouds can be potentially misclassified
and be a source of error in the NNs and validation, i.e. the pixel classification by CALIOP is
assumed to be true throughout this study, but CALIOP misclassifying layers is a potential source
of uncertainty within this study.”



Comment 2: | think that more stringent filtering of CALIPSO data will be needed for using in the
training and validation of the neural networks. For instance, since late 2016, CALIOP has been having
issues with low energy laser shots---these primarily affect the data quality above the South Atlantic
Anomaly (SAA) region but are increasingly affecting other parts of the globe. This can lead to artifacts
in the data including false layer detections at all altitudes, particularly in the dayside (see data
advisory: https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/advisory/advisory_2018-
06-12/CALIPSO_Laser_Energy_Technical_Advisory.pdf ). In fact one can identify some of these false
layers as vertical streaks in Figure 4, say near 420S. These false layer streaks probably have low CAD
scores for the most part, which would take them out below 7.9 km by the CAD score filtering. It’s not
clear if the authors use the CAD score criterion above 7.9 km as well—if not, these false layer
detections will contaminate the training sets at higher altitudes. These effects can be alleviated by
using a threshold of minimum laser energy field (say >0.08 joules) provided in 1 km/5km layer data
files or vfm files.

Reply 2: Unfortunately, we do not have the laser energy data included in our collocated data and re-
running the entire collocation process is extremely computationally expensive and time-consuming.
Future analysis will consider this information. However, we did not apply the CAD filter above 7.9km.
We have since re-run the models with the CAD filter applied across all altitudes and updated all
results accordingly. For more information, please see the statement given at the start of this
document.

Comment 3: Section 3.2 on CALIOP should be expanded giving some details of CALIPSO version 4 CAD
algorithm and also more substantial references (see the special issue on CALIPSO version 4 algorithm
in AMT).

Reply 3: We have expanded the section regarding CALIOP by discussing the CAD algorithm in section
3.2 and including a fuller description of the caveats of using CALIOP as truth. At the end of section 3.2,
lines 117-131 have been updated to include this information (please see reply 1).

Comment 4: Lines 165-170---what are the implications of this altitude threshold? The Labonne et al.
(2009) paper that the authors use is rather old and more recent data from CALIPSO and other
instruments indicate that biomass burning plumes can be injected at altitudes higher than 7.9 km. In
particular the pyroCb events can transport smoke plumes to very high altitudes into the stratosphere.
These high altitude smoke plumes often have high depolarization ratio similar to clouds and CALIPSO
CAD algorithm classifies a good number of them as clouds which appear in CALIPSO browse images
side by side with smoke layers as can be seen in the browse image below. This scene is from January 2,
2020 and the arrows mark smoke plumes downwind from the Black Summer bushfires similar to the
one shown in Figure 10. (full CALIPSO imagery at:
https://wwwcalipso.larc.nasa.gov/products/lidar/browse_images/show_v4_detail.php?s=production
&v =V4-108&browse_date=2020-01-02&orbit_time=12-03- 45&page=3&granule_name=CAL_LID_L1-
Standard-V4-10.2020-01-02T12-03- 45ZN.hdf ) Note that smoke layers at low altitudes are classified
correctly as such by CALIPSO but at high altitudes near 12-15 km, there are a large number of layers
which are likely misclassified as clouds. As the authors point out in section 5.3.3, there is possibly
some ice mixed with smoke coming from the pyroCb event. However note the very high attenuated
color ratios (right panel) towards the base of the layers. This is a tell-tale signature of smoke in CALIOP
products and suggest that most of the layers should have been classified as smoke. This might relate
to the cloud misclassification by NN in Figure 10 that the authors discuss in lines 376-384 and
indicates the caveats in using CALIPSO as “truth label”.

Reply 4: We agree with this point. Although layers with CAD scores less than 50 above 7.9km
constitute appropriately just 2% of the total data, we re-ran the NNs with the altitude limit removed.
The results show improved classification of the dust storm with minimal change to the the results of
the other case studies and statistics. For more information, please see the statement at the start of
this document.



Comment 5: Lines 227-233 and Figure 4. Please provide the CALIOP granule information and also
state the month and day rather than in abbreviated form (for this Figure as well as others). Why is the
CAD score scale going from -100 to 100—for clouds it should be only from 0-100. What are the blue
layers poleward of 500S and why are they appearing below the surface level?

Reply 5: Figure 4 has been updated with the CALIOP granule information and all figures have been
updated with the month and day in full. The original plot for figure 4 is a standard diagnostic plot we
used and includes the full range of CAD scores in case of using merged layer data. It has also been
updated so that the range only goes from 0-100 and the surface artefacts that were plotted as blue
have been removed for clarity.

Comment 6: The case study dealing with a strong dust storm (section 5.3.2) is somewhat intriguing.
Asian dust and pollution events occur every year in spring (Huang et al., 2015, doi:10.1088/1748-
9326/10/11/114018, Di Pierro et al., 2011, doi:10.5194/acp-11-2225- 2011 ) and plumes from these
events often travel at high altitudes ~ 3-8 km towards the arctic. One major problem with CALIPSO
CAD in version 3 was the misclassification of these thick aerosol plumes as clouds, but these should
have been corrected in version 4 through improved CAD. Therefore | am somewhat surprised that the
NN didn’t classify the 2021 dust storm correctly and once again wondering about the CALIOP CAD
performance at 1km as possibly contributing to this.

Reply 6: Since we reran the NN model with the altitude limit removed, the dust plume over China is
no longer misclassified (please see the statement at the start of this document for more information).
Evidently, the relatively minor mislabelling due to this limit was causing the NN to incorrectly learn
that elevated dust looks like cloud, but this has been rectified. In addition, we believe this indicates
that the 1km product is not at fault.

Comment 7: Typo in line 413: “bask” > “mask”

Reply 7: Thank you, “bask” has been corrected to “mask” in line 453.

Comment 8: Line 94: CALIPSO-> CALIOP and Calipso—> CALIPSO

Reply 8: This has been corrected. “CALIPSO” and “Calipso” have been corrected to “CALIOP” and
“CALIPSO” respectively in line 110.

Comment 9: Line 339 and Figure 7: | had a hard time finding pale blue color in the sun glint area in the
mask comparison plot!

Reply 9: An improved description of the region and its location have been added to line 367, which
reads, “At approximately 10 S, towards the centre of the scene, there is a small region of sunglint.
Some very small areas within this region, concentrated just north of Australia, are shown as pale blue
in the mask comparison, indicating that the JMA and BoM cloud masks agree on the classification of
this region but the NN mask disagrees with the other masks.”.

Comment 10: Line 90: it would be better to specify the input variables for which the mean and
standard deviation are being used.

Reply 10: Lines 107-108 has been amended to read, “The mean and the standard deviation of these
high resolution channels (channels 1-4) over the downsampled area are calculated and considered as
inputs into the NN.”.



Comment 11: In Figures 7,8 and 10-12, in the cloud mask comparison panels, dark blue is labelled as
“all clear”—should it be “non-cloud” instead---as stated on line 328.

Reply 11: This is correct, panel f in figures 7, 8 and 10-12 have been updated to read “All non-cloud”
rather than “all clear”.



Response Specific Figures
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Figure 1: Probability density distribution for 1%t January 2020 03:59:16 UTC overpass during the day.
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Figure 2: Probability density distribution for 1%t January 2020 14:42:52 UTC overpass during the night.



Curtain Plots for CAL_LID_L2_05kmClLay-Standard-V4-20.2020-01-01T03-59-16ZD
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Figure 3: Curtain plots of a section of a CALIOP overpass from 1% January 2020 03:59:16 UTC overpass
during the day at 1km resolution (bottom) and 5km resolution (top) that passes over Australia.
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General Statement

Please note, upon reflecting on some of the comments made about this study, we have rerun the
models with labels set without the altitude limit to the CAD score filter. This has led to some minor
improvements in the models’ ability to classify cloud and aerosol when compared to the JMA and
BoM masks. We have updated figures 4-8 and 10-12, as well as table 2, with the results from the new
models (please see updated manuscript figures and tables section at the end of this document). With
the exception of the case study of the dust storm over China, where the NN mask no longer
misclassifies the dust plume, our analysis remains the same.

® Inline 11, “0.106 and 0.198” and “0.314 and 0.464” have been replaced with “0.160 and 0.259”
and “0.363 and 0.506” respectively.

® Inline 12, “1.11 and 1.28 times” has been replaced with “1.13 and 1.29 times”.

We have removed the reference to the Labonne et al., 2009, study in line 196.

® Inline 266, “a KSS of 0.691 versus 0.589 for the JMA product and 0.472 for the BoM product”
has been replaced by “a KSS of 0.632 versus 0.523 for the JMA product and 0.432 for the BoM
product”.

® Inlines 278-279, “the associated FPRs would be 0.314 versus 0.464 for NN and BoM algorithms
and 0.106 versus 0.198 for the NN and JMA algorithms respectively” has been replaced with “the
associated FPRs would be 0.363 versus 0.506 for NN and BoM algorithms and 0.160 versus 0.259
for the NN and JMA algorithms respectively”.

® Inline 279, “This implies that the NN accurately identifies 1.11 and 1.28 times” has been
replaced with “This implies that the NN accurately identifies 1.13 and 1.29 times”.

® Inlines 336-340, “Over land, bands 4, 10 and 14 have approximately equivalent significance in
the NN. Bands 4 and 14 serve the same role over land as they do over ocean. However, unlike
over ocean, some land surface types can be bright in band 4 at twilight. This causes the NN to
require a water vapour absorption band to effectively identify cloud over land during twilight
and the NN has found band 10 to be most useful for this purpose” has been replaced with, “Over
land, bands 11 and 14 have approximately equivalent significance in the NN. Bands 4 and 14
serve the same role over land as they do over ocean. However, unlike over ocean, some land
surface types can be bright in band 4 at twilight. This causes the NN to require an additional
cloud-detection band to effectively identify cloud over land during twilight and the NN has found
band 11 to be most useful for this purpose”.

® Inlines 383-394, “However, all the masks fail to effectively classify the dust plume, with the
exception of the NN mask accurately classifying a small section of the dust storm to the north of
the Korean peninsula. Given that this event was a historically significant event with an unusually
high plume (Filonchyk, 2022), the failure of the cloud masks might be expected. In particular, it
shows that the NN cloud mask is only as effective as its training data and extreme events that it
is not trained for will cause the mask to fail, although under more extreme scenarios than the
JMA and BoM masks. In panel b of Fig. 8, pleasingly it can be seen that the section of the dust
plume that is towards the centre of the scene is assigned scores significantly below values given
to clouds - the plume has values of approximately 0.5, whereas clouds have values close to 1 -
indicating that the NN mask is not confident the plume is cloud. A future algorithm could use this
information within a convolutional NNs to improve the performance for large plumes or to
develop uncertainty metrics” has been replaced with, “The JMA and BoM masks fail to
effectively classify the dust plume, which the NN mask accurately identifies as non-cloud. Given
that this event was a historically significant event with an unusually high plume (Filonchyk, 2022),
the failure of the cloud masks might be expected. However, large areas of the dust plume are
assigned relatively high values by the NN mask. In panel b of Fig. 8, it can be seen that the
section of the dust plume that is towards the centre of the scene is assigned scores slightly
below those assigned to cloud - the plume has values of approximately 0.5, whereas clouds have
values close to 1 - indicating that, although the NN mask is not confident the plume is cloud, the
dust storm poses a challenge to the NN masks classification algorithm. A future algorithm could
use this information within convolutional NNs to improve the performance further for large
plumes or to develop uncertainty metrics”.



® Inline 456, “the NN accurately detects 1.11 and 1.28 times” has been replaced with “the NN
accurately detects 1.13 and 1.29 times”.
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Mask Subset NN IMA Bol
Metric K55 TFPR FPR K55 TFR FPR K55 TPR FFR
0° €8 <30° OTIE 0858 0140 0656 0889 0233 0579 0923 0345
W < B <B0® 0729 0868 0139 0650 0376 019% 0563 0943 0380
Baae = 60° 0658 0853 0195 0499 069 0191 0376 0934 0558
Land 0693 0844 0151 0578 0761 0181 0467 0857 0389
Ocean 0685 0863 0178 0587 0794 0207 0451 0956 0505
Day 0694 0863 0169 0600 0832 0232 0457 0957 03501
Twilight a6l 0888 0226 0458 0627 0170 0320 0904 0.584
Might 0691 0851 015 0592 0729 0136 0533 0905 0372
Z<Amrmass<3 0658 0838 0180 0532 0766 0234 0404 0935 0531
I<Armass<4 0675 085 0179 0572 0773 0201 0425 0942 0517
Adrmass > 4 0682 0861 0172 0572 0799 0227 0462 0936 0475
Owerall 0691 0859 0068 0589 0787 0198 0472 0936 0464
Table 2 - Old
Mask Subset NN IMA BoM
Metric KSS TFPR FPR K58 TPR FPR K55 TPR FPR
0° <Bae<30° 0611 0854 0243 0547 0888 0341 0499 0928 0429
<\, <60° 0642 0864 0221 0595 0874 0279 0500 0943 0444
Bage = 60" 0630 0860 0230 0463 0687 0224 0357 0935 0578
Land 0.658 0837 0079 0529 0755 0227 0440 0859 0419
Ooean 0610 0867 0257 0512 0790 0278 0406 0957 0551
Day 0631 0862 0231 0529 0828 0299 0417 0959 0542
Twilight 0608 0921 0313 0430 0624 0094 0303 0903 0.600
Night 0.639 0852 0213 0535 0726 0.190 0490 0905 0415
2<Amrmass<<3 0592 0840 0248 0472 0762 0290 0366 0935 0569
3 < Airmass < 4 06le 0855 0232 0507 0767 0260 0391 0542 0551
Adrmass > 4 0617 0861 0243 0507 0795 0288 0422 0938 0515
Owerall 0632 0861 0229 0523 0783 0160 0432 0937 0363

Table 2 - Updated



