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Abstract. The structure of the urban boundary layer, and particularly the surface layer, displays significant complexity, which

can be exacerbated by coastal effects for cities located in such regions. Resolving the complexity of the coastal urban boundary

layer remains an important question for many applications such as air quality and numerical weather prediction. One of the

most promising new techniques for measuring the structure of the surface layer is fibre-optic distributed temperature sensing

(DTS), which has the potential to provide new significant insights for boundary layer meteorology by making it possible to5

study thermal turbulence with high spatial and temporal resolution.

We present 14 weeks of profile measurements with a DTS system at an urban site in Helsinki, Finland, during the winter

and spring of 2020. We assess the benefits and drawbacks of using DTS measurements to supplement sonic anemometry for

longer measurement periods in varying meteorological conditions, including those found difficult for the DTS method in prior

studies. Furthermore, we demonstrate the capabilities of the DTS system using two case scenarios: a study of the erosion of10

a near-ground cold layer during the passage of a warm front, and a comparison of the near-ground thermal structure with and

without the presence of a sea-breeze cell during springtime convective boundary layer development.

This study demonstrates the utility of DTS measurements in revealing the internal surface layer structure, beyond the pre-

dictions of traditional surface layer theories. This knowledge is important for improving surface layer theories and parametri-

sations, including those used in numerical weather prediction. The study also highlights the drawbacks of DTS measurements,15

caused by low signal-to-noise ratios in near-neutral atmospheric conditions, especially when such a system would be used to

supplement turbulence measurements over longer periods. Overall, this study presents important considerations for planning

new studies or ongoing measurements utilising this exciting and relatively new instrumentation.

1 Introduction

The atmospheric boundary layer (ABL) is a dynamically and structurally complex layer directly influenced by the surface20

characteristics of the Earth and which controls the interaction between the surface and the atmosphere. Due to the turbulent

nature of the ABL, it has remained notoriously difficult to study and theoretically describe. This applies especially to the urban

boundary layer (UBL), a subtype of the ABL, where human influence has a high impact with surface characteristics heavily
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modified compared to natural surfaces (Barlow, 2014). The vertical structure of the UBL is strongly influenced by an increase

in the surface roughness due to buildings and other structures, and the additional anthropogenic heating coming from sources25

such as buildings and traffic. The UBL can be considered to be an internal boundary layer (IBL) forming in conjunction with

surrounding surfaces with different surface characteristics. This is especially the case where there are sharp borders between

different surface types, such as coastal urban areas. The presence of an IBL causes spatial generalisation loss for point-like in

situ measurements, as they represent only the specific IBL that the measurement instrument is located within.

In the lowest part of the UBL the flow and turbulence are strongly influenced by the surface. This layer is the roughness30

sublayer (RSL) and in some situations it can be deep enough that it extends up to the surface layer top, preventing an inertial

sub-layer (ISL) from forming (Rotach, 1999; Cheng et al., 2007). Instruments for measuring the ABL structure are commonly

installed within the ISL in order for them to be representative for the urban surface. Understanding the structure of the RSL and

possible ISL above are fundamental for several meteorological applications such as pollutant transport and wind conditions.

A vast number of in situ and remote sensing observational methods have been utilised in ABL research over the years.35

Since the 1990s and early 2000s, sonic anemometers have formed the modern in situ backbone of micrometeorological studies

(Aubinet et al., 2012). Sonic anemometers, by their capability of providing both the three-dimensional wind components and

sonic temperature at high frequency, are particularly suited to providing surface fluxes using the eddy covariance (EC) method.

However, sonic anemometry, like other point-like in situ methods, lack the desired spatial coverage unless multiple instruments

are deployed. Deploying multiple instruments increases however the total cost of the system and thus have been rarely applied.40

Additionally, especially for horizontal setups, flow distortion by the instrumentation and their supporting structures adds a

limit to the number of instruments that can be reasonably used. Therefore, methods that can provide better spatial and vertical

coverage with fewer instruments and with less supporting structures can prove highly beneficial for ABL studies (Foken, 2017).

This is especially true for RSL studies, where the inhomogeneous nature of turbulence requires detailed spatial coverage.

One increasingly utilised approach to provide three-dimensional spatial coverage of the ABL is to use ground-based remote45

sensing methods. Ceilometers provide information on the evolution of the boundary layer structure (Kotthaus et al., 2020)

whereas scanning Doppler lidar can provide the wind profile (Päschke et al., 2015) and the turbulence structure (Manninen

et al., 2018) in addition to the ABL depth (Tucker et al., 2009). These techniques provide great value for ABL studies but they

commonly lack information on the RSL due to limitations in their resolution and the lowest altitude from which measurements

are possible (Emeis, 2011). Other remote sensing instruments utilised in urban ABL studies include sodar (Bradley et al., 2015)50

and scintillometers (Ward, 2017), however, finding appropriate location in urban areas can be challenging.

One of the most promising new techniques for measuring the structure of the ABL is fibre-optic distributed temperature

sensing (DTS) (eg. Selker et al., 2006; Tyler et al., 2009; Thomas et al., 2011). In a DTS system, laser pulses of a specific

wavelength are sent from an instrument through an optical fibre. Some of this light is scattered within the fibre due to imperfec-

tions, but also due to the non-crystalline structure of glass. This scatter is composed of Rayleigh, Brillouin and Raman scatter.55

Raman backscattering is when the material (here the fibre) absorbs and then remits photons at a different wavelength to the

transmitted wavelength; Stokes scattering refers to photons emitted at longer wavelengths, and anti-Stokes scattering refers to

photons emitted at shorter wavelengths. The intensity of anti-Stokes scattering depends on temperature, whereas Stokes scat-
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tering is independent of temperature. Through this temperature dependency of the anti-Stokes signal, it is possible to derive

the temperature of the fibre at high frequency, and provide along-fibre resolution using time-of-flight with the very short laser60

pulses (Selker et al., 2006).

DTS has already been used in a growing number of studies of the surface layer, including one-dimensional profile measure-

ments of temperature (Keller et al., 2011; Higgins et al., 2018; Fritz et al., 2021; Peltola et al., 2021) and studies with two- or

three-dimensional arrays (Thomas et al., 2011; Zeeman et al., 2015; Pfister et al., 2017, 2019; Mahrt et al., 2020). Furthermore,

by usage of heated or wetted cables, DTS can be used to study wind speed (Sayde et al., 2015) or humidity (Schilperoort et al.,65

2018; Izett et al., 2019). However, most studies up to now span only a few days or a few weeks at maximum, and have generally

focused on specific research questions well-suited for the technique. The performance of the DTS method for longer campaigns

or continuous measurements has not been previously assessed. Various meteorological conditions can be challenging for DTS,

as the method requires a relatively high amount of thermal turbulence to provide reliable estimates of thermal turbulence statis-

tics (Peltola et al., 2021). Solar radiation can also induce an error in the measurements (De Jong et al., 2015), as does wetting of70

the cable due to precipitation or fog (Izett et al., 2019). These hinder the possibilities of DTS for supplementing, for example,

eddy covariance (EC) instrumentation. Therefore, it is important to study the behaviour and performance of the method to

better understand the suitability for supplementing further ABL studies.

This article presents an overview of 14 weeks of profile measurements with a DTS system at an urban site in Helsinki during

the winter and spring of 2020. The main aims are to assess the benefits and drawbacks of DTS measurements for longer mea-75

surement periods in varying meteorological conditions, and demonstrate the usefulness of temperature profile measurements

with DTS in a coastal surface layer beyond traditional turbulence statistics estimation using two case studies. The first case

study investigates the erosion of a near-ground cold layer during the passage of a warm front. The second case study compares

the near-ground thermal structure with and without the presence of a sea-breeze cell during springtime convective boundary

layer (CBL) development. We demonstrate multiple ways of extracting useful information from the DTS measurements in80

varying environmental conditions, including those which could be described as challenging for the instrumentation used.

2 Materials and methods

2.1 Measurements

2.1.1 Measurement site

The DTS measurement campaign was conducted at the SMEAR III Kumpula station (Järvi et al., 2009), located in Helsinki,85

Finland, approximately 4 km north-east from the city centre (60.203◦ N, 24.961◦ E) from 25 January to 5 May 2020. The ma-

jority of the inner city is located on a 7 km long north-south oriented peninsula on the northern coastline of the Gulf of Finland.

The peninsula is surrounded by two narrow bays to the east and west, with the minimum distance from the measurement site

to the eastern bay being approximately 1 km.
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The measurement site is on top of a 27-metre hill (Fig. 1), 29 m above sea level (a.s.l.). The site is separated from dense90

urban development in the south-west by a 500-metre wide valley with the bottom at 2 m a.s.l. To the east the terrain slopes

towards the sea, with the steepest gradient next to the measurement site. On top of the hill, immediately to the north-north-west

from the measurement site, are buildings with rooftop heights between 9 and 24 metres. The slopes of the hill are mainly

covered with deciduous broad-leaved trees in all directions, with canopy tops reaching up to 40 m a.s.l. north-west, 33 m a.s.l.

west to south, and 35 m a.s.l. east to north-east of the measurement site. The measurements took place during the leaf-free95

season.

Overall, the distinctive upwind features around the site can be labelled based on wind direction (WD) as follows (Vesala

et al., 2008):

Sector =


Campus buildings, 320◦ ≤WD< 40◦,

Main road, 40◦ ≤WD< 180◦,

Vegetation, 180◦ ≤WD< 320◦.

(1)

2.1.2 DTS instrumentation100

The DTS system consisted of an optical fibre installed vertically on a 31 metre high measurement mast. The measurement

instrument (ULTIMA-S, 0–5 km variant; Silixa Ltd, Hertfordshire, UK) was located in an air-conditioned equipment container

next to the mast. 50 l cooler tanks were filled with water and used as calibration baths, as in Peltola et al. (2021). One bath

was located outside the container and hence the bath water temperature followed the ambient temperature slowly, whereas the

other bath was inside the container and the bath water temperature remained at the indoor temperature (around 26 ◦C). Given105

the timing of the measurement campaign (winter, early spring), the temperature difference between the baths was adequate

for DTS calibration. The water temperatures were monitored with PT100 sensors (supplied and logged with the instrument at

0.01◦C precision) to provide reference temperatures for post-calibration. Both baths were equipped with an aquarium pump to

prevent stratification of the water through continuous mixing.

An aramid-reinforced 50 µm multimode fibreoptic cable (AFL Telecommunications LLC, Duncan, SC 29334, US) was used110

for the measurements. The total length of the cable was approximately 198 metres. A small diameter white coated fibre was

selected in order to minimise the impact of shortwave radiation exposure, which can potentially have a significant effect on

DTS measurements (De Jong et al., 2015). This may be especially important in urban environments, where buildings and other

structures can cast hard shadows on the fibre. The fibre was installed to run out of the instrument, through both calibration

baths, up and down the mast, again through the calibration baths and back to the instrument allowing reference measurements115

at both the beginning and end of the cable. The fibre extending from 1.8 to 29 m above ground level (a.g.l) was attached to the

SW side of the mast at five points, with approximately one metre horizontal separation from the mast. Despite careful mounting

of the fibre, the connection points caused disturbances in the data, and consequently, data points close to the connection points

were removed from subsequent analysis. The measurement setup provided a double measurement of the vertical profile of
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Figure 1. A hill-shaded digital surface model (including vegetation) of the measurement site and surroundings. The mast location is marked

with a white circle. Wind sectors defined in Eq. (1) are separated with white lines with corresponding labels. The underlying lidar-derived

digital surface model is provided by the City of Helsinki (2017) (CC-BY 4.0).

air temperature at 12.7 cm spatial and 1 Hz temporal resolution. In double-ended mode, each direction along the cable was120

measured sequentially, so that the temperature data at the end were available at 0.5 Hz resolution.

A total of 2202 hours of DTS data were recorded over the period of the measurement campaign, covering approximately

90 % of the whole period. The longest measurement break was from 18 March 17:30 UTC to 25 March 12:00 UTC. Three

shorter breaks occurred in February: 4 February 13:30 UTC to 6 February 00:00 UTC; 11 February from 01:00 UTC to

midnight; and 25 February from 09:00 UTC to midnight. All of these data gaps were due to data transfer issues not related to125

the instrument itself.

2.1.3 Supporting instrumentation

The measurement mast on which the DTS system was installed features continuous eddy covariance (EC) measurements and

auxiliary meteorological measurements. These measurements are part of the ICOS (Integrated Carbon Observation System)

research infrastructure. The EC measurement system uses an ultrasonic anemometer (USA-1, Metek GmbH, Germany) to130

measure 3-D orthogonal wind speed components (u, v, and w) and the sonic temperature (Ts) at a 10 Hz sampling rate. The

anemometer is located at the top of the 31-metre (60 m a.s.l.) mast.

The data from the anemometer were used in this study as a reference for the DTS-derived temperature statistics as well as

for mean wind speed and direction. Measurements from a 4-component net radiometer (Huskeflux NR01, Hukseflux Thermal
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Sensors B.V, The Netherlands) were used to estimate the global radiation exposure. The radiometer is located at the mast top135

and is sampled at one minute intervals. Humidity and 2-metre temperature observations from Vaisala HMP 155D (Vaisala Oyj,

Finland) probe used at an official weather station located at the site were used, as well as precipitation accumulation measured

using an OTT Pluvio2 raingauge (OTT Hydromet GmbH, Germany).

2.2 Data post-processing

The DTS measurements were post-calibrated using the double-ended calibration method described in detail by de Giesen et al.140

(2012). First, the raw temperature signal was determined from the ratio of the Stokes and anti-Stokes backscatter using the

equation (Farahani and Gogolla, 1999; Hausner et al., 2011)

T (x,t) =
γ

ln
(
Ps(x,t)
Pas(x,t)

)
+C(t) +

∫ x
0
δα(x′)dx′

, (2)

where T is the post-calibration temperature, γ is a calibration constant, x distance from the instrument along the fibre,

Ps(x,t)/Pas(x,t) the ratio of the Stokes and anti-Stokes backscatter received at the instrument, C(t) is a time-dependent145

calibration function and the last term in the denominator represents the cumulative differential attenuation computed sepa-

rately for each 30-min averaging period. γ and C(t) were determined in a two-step process described by Peltola et al. (2021):

1) both C(t) and γ were fitted as time-dependent variables, and 2) C(t) was re-fitted while γ was fixed to a constant value

equal to the mean of the γ values from the first step. In order to reduce the noise, the two simultaneous T profiles (up and

down) were averaged prior to analysis. Furthermore, the potential temperature θ used in the analysis was computed from T by150

reducing them to the mast base height using the standard dry lapse rate.

Two datasets, one containing 30-min turbulence statistics and one containing denoised high frequency data, were computed

post-calibration. 30-min turbulence statistics were derived using the methodology described by Lenschow et al. (2000) follow-

ing Peltola et al. (2021). Prior to estimating the statistics the DTS data were averaged vertically over 0.5 m distance in order

to further reduce the noise. After Reynolds averaging, the fluctuating part of the raw DTS-estimated T signal (T ′raw) can be155

written as a combination of the true signal T ′(t) and time-dependent instrument noise ε(t) as T ′raw = T ′+ε. The second-order

autocovariance of the signal can be then written as

M11 (t1) = (T ′+ ε)(T ′1 + ε1), (3)

where the overline denotes a temporal average and the subscript 1 lag-t1 time series. Given that T ′ and ε are uncorrelated, it

can be shown that160

M11(0) = T ′2 + ε2. (4)

Assuming uncorrelated noise, the true signal variance T ′2 and the instrument noise variance ε2 can be estimated by extrapolat-

ing the autocovariance function to lag zero

σ2
T = T ′2 =M11 (t1→ 0) (5)
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ε2 =M11 (0)−M11 (t1→ 0) . (6)

For third-order moments, a third-order autocovariance function (M21) can be used similarly

T ′3 =M21 (t1→ 0) (7)

ε3 =M21 (0)−M21 (t1→ 0) . (8)170

The signal-to-noise ratio (SNR) was computed from the second order statistics

SNR =
σ2
T

ε2
. (9)

To assess the comparability of DTS-estimated higher order statistics against those estimated from the EC system, the absolute

differences between DTS and EC 30-minute variance and skewness estimates were computed. For variance, the absolute

difference scaled to unit variance175

Dσ2
θ

=

∣∣σ2
θEC
−σ2

θDTS

∣∣
σ2
θDTS

(10)

and for skewness the absolute difference of Pearson’s moment coefficients of skewness (Sθ)

DSθ = |SθEC −SθDTS | (11)

were used as a difference metric. The highest measurement height in the post-prosessed dataset (28.64 m a.g.l.) was used in the

comparison. The height separation between the DTS measurement point and the sonic anemometer (31 m a.g.l) causes a small180

systematic error in the observed differences between the two measurement methods, but the size of this systematic error was

qualitatively assumed to be small enough to be ignored in this study. Furthermore, the root-mean-square-difference (RMSD)

and 95th percentile range were computed for the deviations for ten equally sized data bins sorted and allocated based on SNR,

in order to find a level of SNR above which the DTS estimates are reliable enough.

The high frequency dataset was constructed by de-noising the calibrated raw temperature signal using a singular value185

decomposition (SVD) -based de-noising methodology, similar to that used by Epps and Krivitzky (2019). SVD of a data

matrix T ∈ <n×m is

T =

n∑
i=1

uk sk v>k , (12)

where uk is the left singular vector, sk is a singular value and vk is the right singular vector of the kth SVD mode. s2k
corresponds to the variance of the data matrix at the kth SVD mode and hence the overall variance of the data can be estimated190

from the sum of all s2k values. Following Epps and Krivitzky (2019), it was assumed that at high i, the SVD modes were
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dominated by noise and hence sk at high i follows the Marchenko-Pastur distribution (see Epps and Krivitzky, 2019, for

details). Based on this the clean (i.e. noise-free) singular values (s̃k) were reconstructed as

s̃k =


√
s2k − s2noise,k, k < kc

0, k ≥ kc
,

where s2noise,k represent the noise variance at the kth SVD mode estimated based on the Marchenko-Pastur distribution and kc195

is the minimum index k for which sk > snoise,k. Then the de-noised data matrix T̃ was reconstructed via

T̃ =

n∑
i=1

uk s̃k v>k . (13)

Note that here the reconstruction was performed using all SVD modes and s̃k, not just the few lowest modes as in Epps and

Krivitzky (2019). The de-noising algorithm described above was applied to the temperature profiles using 30-min blocks. The

strength of the SVD-based de-noising over de-noising using, for example, wavelets is that SVD is fully data-driven, meaning200

that it is not necessary to find a suitable mother wavelet for the dataset in question.

The turbulent statistics and fluxes were computed from the EC data using commonly accepted procedures following Aubinet

et al. (1999), with a data post-processing pipeline used at the site as described in Nordbo et al. (2013). Flux stationary screening

using the 0.3 limit had the most significant effect on EC data availability, reducing the total EC data availability over the

measurement period from 2401 hours to 1559 hours.205

2.3 Theoretical vertical profiles of potential temperature and its variance in the surface layer

The Monin-Obukhov similarity theory (MOST) can be used to predict 1D-profiles of scaled mean and turbulent quantities

within the surface layer. Whilst it is well-known that the assumptions used in MOST are not valid in the RSL (Rotach, 1999;

Barlow, 2014), which can cover a large portion of the surface layer of the UBL, it is nevertheless a widely used theoretical

reference for lower boundary layer profile studies. MOST predicts that the mean and turbulence profiles can be parametrised210

as unique functions of the stability parameter (Monin and Obukhov, 1954):

ζ = z/L, (14)

where z is the effective measurement height (measurement height reduced by possible displacement height) and L is the

Obukhov length defined as

L=
−u3∗θ
kgw′θ′

, (15)215

where u∗ is the friction velocity, θ is the mean potential temperature, k is von Kármán’s constant, g is the gravitational

acceleration and w′θ′ is the kinematic heat flux.

Using the surface layer temperature scale

θ∗ =−w
′θ′

u∗
, (16)
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the surface layer temperature gradient can be parametrised as a function of ζ:220

∂θ

∂z
=
θ∗
kz
φθ (ζ) , (17)

where φθ is a similarity function for mean temperature. The temperature profile in the surface layer can then be obtained by

integration:

θ (z2)− θ (z1) =
T∗
k

z2∫
z1

1

z
φθ (ζ)∂z. (18)

Various forms of φθ have been proposed over the years, with the so-called Businger-Dyer form (Businger, 1988)225

φθ (ζ) = 1 +C1ζ, when ζ > 0

φθ (ζ) = (1−C2ζ)−1/2, when ζ < 0, (19)

where constants C1 and C2 are to be determined empirically, being one of the most commonly used.

Instead of the detailed temperature profile described by Eq. (18), it is often enough and useful to describe the overall

stratification within an air column between z1 and z2 using a single measure. For this, column-integrated buoyancy B (Lareau

and Horel, 2015)230

B = g

z2∫
z1

[
θz1 − θz2
θz1

]
∂z (20)

can be used. As the name suggests, this represents the integrated buoyant force across the defined column. MOST-predicted B

can be estimated and subsequently compared to the observed B by further integrating Eq. (18) as above.

Similarly to mean quantities, the integral turbulence characteristics (ITC), i.e. the standard deviations of turbulent variables

normalised using their respective scaling, can be parametrised using MOST. Using the surface layer temperature scale θ∗ we235

can write the parametrisation for the standard deviation of potential temperature as (Panofsky et al., 1977)

σθ
θ∗

= φσθ (ζ) , (21)

where φσθ is a similarity function for temperature ITC. A widely suggested form for φσθ in unstable conditions is (eg. Panofsky

et al., 1977; J. C. and J. J., 1994; Liu et al., 1998; Andreas et al., 1998; Wilson, 2008)

φσθ (ζ) = C1 (1−C2ζ)
C3 , (22)240

with constants C1, C2 and C3 to be determined empirically. A recent large eddy simulation based study by Maronga and

Reuder (2017) found values of C1 =−2.1, C2 = 9 for C3 =−1/3, which is the power traditionally used in the literature.

These values produce similar results to the sonic anemometer measurement based studies by Andreas et al. (1998) and Liu

et al. (1998), who found values of C1 =−2.0, C2 = 8 and C1 =−3.2, C2 = 28.4 respectively. Maronga and Reuder also
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suggested a slightly different shape for the similarity function with C3 =−0.4 based on the simulation data, but due to the lack245

of measurement-based evidence, we used the values for the traditional C3 =−1/3 form suggested by the study.

Assuming the validity of MOST and vertically-constant fluxes, θ∗ and L are expected to be near constant in the surface

layer, and Eqs. (21) and (22) can be used to predict profiles of θ and σθ respectively using EC measurements only from one

level. In reality, the presence of a constant flux layer depends on how developed the flow is, which itself depends on upwind

surface heterogeneities, large-scale atmospheric forcing (e.g. Rotach, 1999). Additionally, closer to the ground, namely in the250

roughness sublayer, local heterogeneity of the flow breaks the assumptions of a constant flux layer and subsequently those of

MOST. Thus, observed profiles of ITCs are expected to deviate from those predicted using MOST in the lower portions of the

surface layer.

2.4 Wavelet analysis

To study the spectro-temporal properties of the measured time series, we utilise the continuous wavelet transform (CWT). In255

CWT, as for wavelet transforms (WT) in general, a wavelet function is used to unfold a signal into time-frequency space.

CWT of a finite discrete signal of a turbulent quantity q(tm) with an uniform time step δt is obtained by convolving it with

a scaled and translated analysing wavelet Ψ(ηm). After normalisation to unit energy, this can be written as

Wq(s, tn) =

(
δt

s

)1/2 N∑
m=0

q(tm)Ψ∗0 (ηm)δt, (23)

where ηm = (tm− tn)/s, Ψ∗0 (ηm) is the complex conjugate of Ψ(ηm) normalised to unit energy and (δt/s)
1/2 is a scaling260

factor. By altering the wavelet scale s and translating along the localised time index tn, one can evaluate the functionWq(s, tn)

on a time-scale plane, producing a scalogram. The finite bounds used in Eq. (23) induce significant edge effects when the

wavelet’s cone of influence, i.e. e-folding time of Ψ(ηm), extends beyond the bounds of the original time series (Torrence and

Compo, 1998).

Although the selection of scales to be used for CWT can be theoretically arbitrary, for reconstruction purposes it is convenient265

to construct the scales as fractional powers of two (Torrence and Compo, 1998):

sj = s02jδj , for j = 0, 1, ..., J, (24)

where s0 is the smallest resolvable scale, δj is the spacing factor and J is the number of scales plus one. To include scales up

to the largest scale possible given the length of the time series, one can select J = δ−1j log2 (Nδt/s0).

Following bias rectification proposed by Liu et al. (2007), the discrete wavelet power of the signal can be computed from270

the normalized transform as the square of the norm of the transform divided by the associated scale: |Wq(sj , tn)|2 /sj . From

this, the global discrete wavelet variance spectrum can be reconstructed as

Eq(sj) =
δjδt

Cδ

1

N

N∑
n=0

|Wq(sj , tn)|2

sj
, (25)
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where Cδ is a wavelet-specific reconstruction factor. Eq is defined here in such a way that an estimate of the global variance of

the time series can be reconstructed as the sum of Eq(sj) over all sj defined in Eq. (24):275

σ2
q =

J∑
j=0

Eq(sj), (26)

analogous to the Fourier discrete variance spectrum described in Stull (1988). The accuracy of this variance estimate depends

on the spacing factor δj used and the analysing wavelet (Schaller et al., 2017). Similarly, a local variance estimate can be

reconstructed as

σ2
q (tn) =

δjδt

Cδ

J∑
j=0

|Wq(sj , tn)|2

sj
, (27)280

producing a temporally localised variance estimate with a time resolution of δt. Although localised in time, this estimate

includes variance contributions from all scales represented by sj , and is thus well suited to studying non-stationary conditions

and short-time events, as no steady-state assumption is required (Schaller et al., 2017). By limiting the sj range included in the

sum, band-passed localised variance estimates can be obtained.

The selection of a wavelet depends on multiple factors, which are discussed in detail for example in Farge (1992) and285

Torrence and Compo (1998). For our case, we selected the Morlet wavelet, a non-orthogonal complex wavelet which provides

a good relative balance between time and frequency localisation (e.g. Baars et al., 2015). Formally the Morlet wavelet is a

complex-valued plane wave carrier in a Gaussian envelope (Farge, 1992)

Ψ0(η) = π−1/4eiω0ηe−η
2/2, (28)

where ω0 is a non-dimensional frequency and subscript zero in Ψ0 indicates that the wavelet is normalised to unit energy. By290

varying ω0, the relative balance between time and scale localisation can be altered. A value of ω0 = 6 is commonly used. For

the Morlet wavelet, the equivalent Fourier wavelength λ of a given wavelet scale can be computed from the relation (Torrence

and Compo, 1998)

λ=
4πs

ω0 +
√

2 +ω2
0

. (29)

Subsequently, the spectral energy density can be estimated with the help of Eq. (25) as295

Sq =
Eq(sj)

∆f(sj)
, (30)

where f(sj) is the Fourier frequency corresponding to sj .

3 Results and discussion

3.1 Data quality and conditional sampling

To evaluate the influence of shortwave radiation exposure on the fibre, deviations of the DTS-estimated 30-min 2-metre av-300

erage potential temperature θDTS from the 2-metre reference temperature were studied as a function of mean global radi-
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ation Q (Fig. 2a). On average, the deviations show a near-zero dependency on Q, with a least squares linear fit slope of

β1 = 6.4× 10−5K W−1 m2. The overall root-mean-square-error (RMSE) for θDTS is 0.23 K, 23 times the reported temper-

ature resolution of the DTS sensor (0.01 K). The radiation-induced error is significantly smaller than reported for a white

fibre by De Jong et al. (2015) (0.61 K), potentially due to the smaller outer diameter of the fibre used (0.9 mm vs. 1.6 mm305

here). Moreover, De Jong et al. (2015) had their cables aligned horizontally whereas in our measurement setup the cables were

aligned to the vertical which should result in less radiation per unit of cable surface. As the fibre is unprotected from precipi-

tation, evaporative cooling of precipitation-wetted fibre causes the DTS system to measure wet bulb temperature instead of air

temperature. This is highlighted in Fig. 2b: the 30-min periods with accumulated liquid-phase precipitation of P ≥ 0.1 mm

show a negative bias compared to the reference, whereas the remaining data do not show such a bias. This is expected, as wet310

bulb temperature is always less than or equal to the air temperature, and equal only in water vapour saturated air. This also

explains the relatively high number of data points with negative deviations close to Q= 0 Wm−2 in Fig. 2a. This highlights

the usefulness of accompanying DTS measurements with precipitation and humidity measurements, and the importance of

knowing the meteorological conditions when analysing DTS measurements. The remaining deviations not explained by pre-

cipitation or shortwave exposure may yield from multiple sources, including horizontal separation between the sensors and315

longwave radiative cooling of the cable at night.

The comparisons of the DTS-estimated higher order statistics against those estimated from the EC system (Fig. 3) reveal a

divergence in estimates between the two measurement techniques as SNR approaches zero. This is caused by two factors. The

accuracy of the statistics estimation using the Lenschow method decreases with SNR and therefore, some conditional sampling

based on SNR is required in order to improve the reliability of the estimates. For variance estimates, RMSD does not decrease320

with SNR past the fifth data bin centred at SNR = 0.26, with the 95th percentile difference converging at the sixth data bin

centred at SNR = 0.37. However, the skewness RMSD decreases up to the seventh bin, centred at SNR = 0.55, with the 95th

percentile difference decreasing even up to the eighth bin. Determining a minimum acceptable level of SNR for which the

estimation of turbulent quantities is still reasonable requires a subjective interpretation. We chose SNR = 0.5 as a conservative

threshold value, based on both the variance and skewness RMSD curves. The same threshold value was used by Peltola et al.325

(2021).

As the magnitude of the signal noise is nearly constant, SNR-based screening of the 30-min averaged dataset effectively

results in conditional sampling biased towards conditions with higher temperature variance. Temperature fluctuations are gen-

erally produced by either thermal turbulence in unstable conditions or mechanically-induced turbulent mixing of a stably

stratified temperature profile, bringing gusts of warmer air aloft downwards. Neither of these are strong with low absolute330

values of ζ, corresponding to neutral or near-neutral conditions. Therefore, a significant portion of the data corresponding to

these conditions are removed in SNR-based screening. This is clearly visible in the frequency distributions of EC-derived ζ

after screening, as illustrated in Fig. 4. The ζ distribution corresponding to the filtered dataset is heavily biased towards unsta-

ble conditions. However, some of the more stable conditions are retained, likely due to mechanically.induced mixing across a

stably-stratified profile causing temperature fluctuations.335
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Figure 2. (a) Deviations of the DTS-estimated 30-min potential temperature (θDTS) from the corresponding mean reference potential

temperature (θref ) measured at an official weather station next to the measurement mast as a function of global radiationQ. The colour scale

illustrates the relative marker density. (b) A violin plot of the same deviations for two groups of data: 30-minute accumulated liquid-phase

precipitation Pl < 0.1 mm and Pl ≥ 0.1 mm. Violin bodies represent the data distribution, black whiskers the 5th to 95th interpercentile

range, and the red line the median.

In general, the measurement period in 2020 was stability-wise less variable than a 10-year reference period computed over

the same days of year as the for the DTS measurement period. With few clear sky days with strong temperature inversions,

near-neutral conditions prevailed, producing a more concentrated ζ distribution around zero compared to the reference period.

As a consequence, screening with SNR = 0.5 results in only 42% of the 30-min averaging periods retained. Had the weather

been more typical for the period, the percentage would probably been higher, as there would be more averaging periods with340

higher |ζ|. The consequential bias towards higher |ζ| emphasises the relatively high sensitivity of the DTS system performance

to meteorological conditions, which is important to keep in mind when planning DTS measurements.

When studying the portion of data retained as a function of height and time (Fig. 5), the role of solar radiation on generation

of temperature fluctuations becomes evident. More data are retained in late spring, around midday, and closer to the ground

when the occurrence of acceptable SNR values reach 60-80%. According to MOST, the temperature variance increases with345

decreasing height within the surface layer (Eq. 21), which in turn may cause SNR to cross the threshold value mid-profile
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Figure 3. Deviations of the DTS-estimated temperature (a) variance and (b) skewness from the corresponding estimates using the sonic

anemometer data. The red solid lines are the root-mean-square-deviations (RMSD) computed for 10 equally-sized bins (bin centres marked

with x). The blue dashed lines are the corresponding 95th percentiles for each bin.

in certain conditions. As expected, SNR shows a clear nocturnal cycle and an increasing trend over the whole measurement

period. This emphasises that SNR-screened DTS-estimated statistics are not equally representative for all times of day and

days of year.

3.2 Surface layer scaling350

One of the main benefits of DTS is the potential for larger spatial coverage than with conventional techniques, such as sonic

anemometers. In Fig. 6, the profiles of DTS-derived temperature ITCs for unstable conditions are compared to predictions

from the similarity function in Eq. (22) and to those estimated from the EC measurements. The similarity functions converge

to similar values in DTS and EC at the top of the mast, and are generally in good agreement with the DTS throughout the profile

for very unstable conditions (ζ <−0.3). For mildly unstable conditions (−0.3> ζ >−0.05) there is a considerably growing355

discrepancy between the profiles on moving down the profile towards the surface. This is not unexpected, since the lowest

measurement levels are in the roughness sublayer in all wind directions, where MOST scaling is not expected to hold. For the

main road wind sector especially, the deviation of the DTS profile from the similarity function is already considerable from
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Figure 5. Fraction of data preserved fulfilling SNR> 0.5 threshold as (a) a function of height, (b) month and (c) hour of day in local time

(EET/EEST). Note that January and May only contain data from five days.

quite far up the profile. It is possible that the deviation is caused by upstream inhomogeneities in the surface properties. Given

that the sea is approximately one-to-two kilometres away in the direction of the main road it is possible that in mildly unstable360

conditions there at least occasionally exists a thermal IBL with a height less than the mast top height. This would result in

the observed median temperature ITC profile, which drastically exceeds that predicted by the MOST similarity relation for the

lower sections of the mast.
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Figure 6. Median profiles of normalised temperature standard deviations (ITCs) in unstable conditions (solid lines) for three wind sectors:

(a) campus buildings, (b) main road and (c) vegetation, with p25−75 inter-percentile range shaded. The corresponding estimates from the EC

system are marked with "x" and reference similarity functions are drawn using dashed lines.

It is to be emphasised that zero-plane displacement height was ignored when computing the similarity functions assuming

minimal local displacement of the wind profile. As the mast is located on a hill top and the measurements were performed365

during the leaf-free season, the existence of a well-defined zero-plane displacement remains challenging. The DTS-estimated

profiles do not show any clear discontinuity in shape. With a taller measurement mast, the DTS profiles could be used to obtain

the displacement height by fitting a similarity function to the data with displacement height as the sole regressor. This could

only be done if a significant stretch of the fibre was located clearly above the roughness sublayer; the current measurement

mast is too short.370

3.3 Warm front on 27 January 2020

Despite many averaged DTS datapoints having been filtered out by the SNR criteria, the high frequency data can still be used

to study meteorological phenomena. To demonstrate the possibilities of using DTS data in low-SNR conditions, we studied

measurements made during a passage of a warm front in closer detail. Late in the evening of 27 January 2020, a warm front

associated with a North Atlantic low pressure system passed over Southern Finland and Helsinki eroded the near-ground cold375

layer beneath by downward mixing of the warm air aloft. Figure 7 presents the near-surface wind and temperature observations

from nearby weather stations at the time the surface front reached the measurement site (21:30 UTC, 23:30 local). The west-

northwest to east-southeast alignment of the front is visible as a strong surface temperature gradient and a turning of winds
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Figure 7. Surface observations of temperature and wind from official weather stations close to Helsinki on 27 January 2020 at 21:30 UTC.

from SE to SW. Due to the inherently stable conditions and low wind speeds (1.7 to 3.3 ms−1) during the passage of the

front, the average SNR value was only 0.13 during this approximately one-hour event, significantly less than the SNR = 0.5380

threshold used in the quality screening for the 30-min averaged datasets. Furthermore, the nature of the event caused EC data

to also be flagged during flux stationarity screening, emphasising the non-stationary nature of the event. From 16:00 to 23:20

UTC, 100% relative humidity was constantly observed at the official weather station, indicating very humid conditions.

Plotting the DTS-observed high frequency θ̃ time series (Fig. 8a) reveals a turbulently progressing mixing process during

the front passage. Warmer air aloft is mechanically entrained relatively slowly downwards, progressively increasing the tem-385

peratures along the profile. Time series of the column-integrated buoyancy (B) along the DTS profile (Fig. 8b) provide a more

comprehensive overall picture of the thermal structure and propagation of the front. The averageB starts to decrease from near-

neutral at approximately 20:50 UTC, reaching −0.57 m2 s−2, and returns to near-neutral at 22:10 UTC. This demonstrates

how, with the lack of thermal turbulence production in the stably stratified boundary layer, turbulence is generated through

shear instability allowing entraining of warmer air aloft during the passage of the front. Inspecting the high frequency B time390

series reveals considerable deviations from the 10-min moving average, with peaks up to−1.1 m2 s−2. These deviations are of

the same order as the mean value and one deviation causes the profile stability to return back to neutral briefly at 21:51 UTC.

By plotting the θ̃ over the event at individual heights, it was empirically determined that a logistic function of the form

θ̃(t) =
∆θ

1 + exp(−k (t− t0))
, (31)

where ∆θ is the difference in θ before and after the event, k is the rate parameter and t0 is the temporal midpoint parameter,395

describes the general temporal evolution of θ̃ over the event reasonably well (demonstrated for two heights in Fig. 9a). Using

this logistic regression to describe the θ̃ evolution is particularly useful in this case, as it permits the analysis of the downward
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Figure 8. (a) De-noised high frequency potential temperature (θ̃) time series for the event on 27 January 2020. Linear interpolation was used

to interpolate the data gaps along the fibre caused by fibre attachment point interference. (b) Column-integrated buoyancy (solid grey line)

over the DTS profile and the respective 10-min moving average (dashed red line).

propagation of the inversion layer using t0, and the gradient of θ̃ in time using k. The rate parameter k increases as the inversion

propagates downwards until z ≈ 6 m, from where it starts to decrease towards the ground. The inversion layer can be estimated

to propagate downwards at an average rate of 2.5×10−2 m s−1 when determined from the t0 profile (Fig. 9c), i.e. on average the400

temperature curve lags 40 seconds behind the one measured from one metre above. This rate is relatively constant throughout

the profile.

To study the turbulence behaviour in detail during the passage, a wavelet transform of θ̃ at two heights (28 m and 12 m) was

computed, with wavelet transforms of Ts measured by the sonic anemometer and the noise signal θ− θ̃ = ε from respective

heights for reference. The resulting wavelet-derived spectral energy density (Fig. 10a) reveals that during the event the vast405

majority of the DTS signal for f > 10−2 Hz is noise. However, the spectral peaks in the EC-derived energy density supports

our assertion that the scales dominant in the event lie at frequencies below f = 10−2 Hz. The EC and DTS (28 m) spectra
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Figure 9. (a) Time series of θ̃ from two heights (solid lines) and the corresponding logistic regression curve (dashed lines) for the event on

27 January 2020. (b) The rate parameter (k) of a logistic regression on θ̃, as a function of height. (c) Same as b, but for the temporal midpoint

parameter (t0) of the function.

compare relatively well, with the major difference being a peak missing from the DTS spectrum at around f = 8× 10−4 Hz

(corresponds roughly to 21-min time scale). The underestimation of the variance at this scale might be caused by the fact

that the de-noising algorithm was applied with a 30-min time step and hence the underestimation is not directly related to410

the instrument. Within the frequency band 6.2× 10−4 Hz< f < 1.0× 10−2 Hz, which contains 84% of the total temperature

variance according to the EC data, the average SNR at the two heights is 3.3, a number much higher than that for the whole

spectrum.

Reconstructing a band-passed (6.2×10−4 Hz< f < 1.0×10−2 Hz) variance from the wavelet transforms (Fig. 10b) reveals

a difference in the processes at 28 m and 12 m. The event is shorter-lived with higher peak thermal turbulence intensity at the415

lower level: the 28 m and EC variances have relatively smooth appearances between 21:05-21:45 UTC, whereas the 12 m

variance increases rapidly from 21:20 UTC to a peak at 21:36 UTC and extending until 21:45, after which all three variances

behave similarly. It is also worth noting that, whereas the onset of thermal turbulence at 12 m is much faster and delayed

compared to 28 m, the decrease in the intensity after 21:50 UTC follows relatively similar paths at both heights.
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Figure 10. Wavelet analysis for the event on 27 January 2020. (a) Wavelet-derived temperature spectral energy density for DTS θ̃ from

two heights and for EC Ts. (b) Corresponding band-passed wavelet variance of temperature, including variance contributions only from the

unshaded area of (a). 5-min running average smoothing has been applied in (b). The noise is the estimated average DTS noise at the two

heights.

This overall behaviour of the frontal passage can be explained with the help of these findings; during the onset phase the420

profile is increasingly stable, with the inversion decoupling the flow at the two heights, with no gusts able to mix the profile to

neutral. However, towards the end of the event, as the warm airmass mixes downwards, some gusts are able to mix the whole

profile, which increases the overall turbulent mixing across the profile. Mixing effectively leads to increasing the decay in the

inversion strength, which in turn reduces the amount of negative buoyancy that a warm gust has to work against, increasing

the coupling of the flow across the inversion. This can be seen as increased peak variance, shorter duration of the event (higher425

k and narrower variance peak), and stronger fluctuations in the observed B as the inversion progresses towards the ground.

However, as no increase in the downward propagation of the inversion can be observed from the t0 profile despite the shorter

duration of the event, the depth of the inversion layer has to decrease towards the ground to compensate. This seems reasonable,

as the eddy sizes associated with the mixing gusts scale with height in the surface layer, reducing the vertical length scale of the

eddies as the inversion layer approaches the ground. At z < 6 m, k decreases, possibly due to the influence of nearby vegetation430

or other obstacles.
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3.4 Convective boundary layer development during 21-23 April 2020

Our second case study focuses on demonstrating the usability of DTS measurements in understanding convective boundary

layer development on three subsequent mornings during 21-23 April 2020 (Fig. 11). All three mornings share a similar environ-

mental setting: NNW to NNE synoptic scale flow coming over the land, clear skies and almost-equal inbound solar radiation.435

However, on the 22nd and 23rd, a front associated with a sea-breeze cell forming on the northern coast of the Gulf of Finland,

caused by differential heating of land and sea surfaces, passes over Helsinki moving inland. During the passage of the front

the low-level flow turns southerly in Helsinki and at the measurement site. Compared to the air being heated by the land, this

southerly flow brings colder surface air from the sea to the coast. The passage of the sea-breeze fronts over the measurement

site (the onset of the sea-breeze wind) on the 22nd and 23rd can be easily identified from the DTS θ̃ time series (Fig. 12a)440

as a sudden halt and decline in rising values. The onset of the sea-breeze happens at approximately 07:00 UTC on the 22nd,

and almost three and a half hours later at 09:20 UTC on the 23rd. The overall behaviour of the sea-breeze cell on the northern

coast of the Gulf of Finland is out of scope of this article (previous studies on the matter include Savijärvi, 1985; Savijärvi

et al., 2005; Gahmberg et al., 2010), but the setting causes a good opportunity to study thermal IBL caused by the discrepancy

between the cold incoming marine air and solar-heated urban surface. Additionally, a day with similar setting except without445

the formation of a sea-breeze on the 21st provides a good baseline for comparison.

MOST-predicted B (Eqs. (18) and (20)) is generally in good agreement with the DTS-observed B during 21 April 2020

(Fig. 12b). There are two peaks not predicted by MOST, at 05:30-06:30 UTC and 08:00-09:00 UTC, but otherwise the predicted

B follows surprisingly close to the observed B, given the assumptions made in MOST. However, for 22 and 23 April 2020,

MOST significantly underestimates B after the onset of the sea-breeze. This indicates that the observed profile was more450

unstable than what was predicted with EC-estimated ζ and MOST. Such a discrepancy can be caused by a thermal IBL which

has not yet grown to mast top height (Venkatram, 1986; Garratt, 1990). Figure 12c gives more indication of a developing IBL;

the temperature variance at 6 m increases significantly after the onset of the sea-breeze. A similar increase is not seen at 28

m, further indicating the presence of a thermal IBL caused by the differential surface heating between urban and sea surfaces.

Investigating these observed temperature profiles individually (Fig. 13) shows that the profiles for each day are very similar to455

each other above about 12 m. However, the negative gradient of the profiles below about 12 metres increases noticeably after

the onset of the sea-breeze on the 22nd and the 23rd, indicating a possible thermal IBL corresponding to the land and urban

surface.

It is also interesting to note that the two peaks in observed B mentioned earlier are common to all three days, which could

be an indication of local phenomena intrinsic to the location, such as advection of air mixed from a nearby cold air pool, or460

more general phenomena related to the morning transition itself.

4 Conclusions

We have presented the results of a 14-week measurement campaign utilising high-frequency DTS temperature profile measure-

ments at a coastal urban site, with a focus on the performance of the measurement system in varying meteorological conditions
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Figure 11. Surface observations of temperature and wind from official weather stations close to Helsinki at 11:00 UTC on (a) 21 Apr 2020,

(b) 22 Apr 2020, and (c) 23 Apr 2020.

as previous studies have mainly made short-term analyses in selected meteorological conditions. Beyond performing statistical465

analysis over the whole measurement period, we have demonstrated the potential of the setup for studying the surface layer

structure in two different meteorological scenarios.

The performance of the DTS system depends heavily on the atmospheric stability. The abundance of near-neutral conditions

during the campaign severely affected the overall availability of DTS-estimated turbulence statistics. This is caused by the lack

of temperature fluctuations induced by buoyancy effects or mechanical forcing in near-neutral conditions, which results in the470

instrument SNR falling below the threshold required for the reliable estimation of second or third order statistical moments.

Conditionally sampling a DTS dataset based on SNR produces a stability-wise biased dataset which will miss most near-neutral

conditions. Therefore, care must be taken when making conclusions based on such datasets. Further instrument development
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Figure 12. An overview of convective boundary layer development on 21-23 April 2020. (a) time series of θ̃ estimated from the DTS system

from two heights, 28 m (solid lines) and 6 m (dotted lines). (b) Column-integrated buoyancy observed using the DTS system (solid lines)

and predicted using MOST (circles). Some of the predictions are missing due to flux stationarity screening performed on the EC data. (c)

Wavelet-estimated localised variance estimates for 28 m (solid lines) and 6 m (dotted lines). A 10-minute moving average smoothing has

been applied to the data in all panels.

could mitigate this problem, as it is directly dependent on the instrument noise. Using data with high enough SNR shows that

the DTS-derived temperature variance matches EC measurements well and the vertical profile follows MOST-predicted profiles475
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Figure 13. Observed temperature profiles for 21-23 April 2020 during three different averaging windows: (a) before the sea-breeze front has

passed, (b) after the front has passed on 22 April but not on 23 April, and (c) after the front has passed the site on 22 and 23 April. The

corresponding averaging intervals are given at the top of each panel.

surprisingly well at this complex urban measurement site. This was the first time that the EC measurements were shown to be

measuring the constant flux layer despite the relatively short measurement mast at the site.

The first case study, focusing on a warm front mixing event, demonstrated that, through careful investigation of the scales of

turbulence associated with the event, it is possible to extract useful information on turbulence and mixing processes from the

DTS data even in low SNR-conditions. In this case, wavelet analysis proved useful, since it allowed the analysis of the scales480

relevant to the event, which were not impacted heavily by the instrument noise. Additionally, by using column-integrated

buoyancy instead of individual measurements at individual heights, a more comprehensive picture of the behaviour of the

temperature profile during a mixing event was possible to construct. The case highlighted the potential of the DTS system for

providing new insights in the near-ground mixing of airmasses, a process not well covered by more conventional surface layer

measurements.485

The second case study, focusing on springtime convective boundary layer development in the presence of a sea-breeze cell,

presented the possibilities for investigating the surface layer structure in the presence of an IBL with DTS. We demonstrated

that DTS can capture the modification of the temperature profile due to differential surface heating between urban and sea

surfaces. For the non-sea-breeze case, the surface layer profile is predicted well by measurements higher in the ISL and by

MOST, but is not predicted well in the presence of a sea-breeze cell. Hence, DTS measurements will help in developing490
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better parametrisations for surface layer flows, which are required for improving the prediction of near-surface temperatures

by numerical weather forecast and climate models.

Analyses of surface layer structure and turbulence often incorporate simultaneous knowledge of both the temperature and

wind profiles and/or their horizontal variations. Our decision to measure only the temperature profile, supplemented by a

sonic anemometer at one height, reduced the potential for further analyses of the surface layer. Hence, for further studies, we495

recommend supplementing the DTS profile measurements with sonic anemometers at multiple heights for evaluating other

aspects of the surface layer such as turbulence production via wind shear. Furthermore, using a taller measurement mast would

also aid interpretation of the surface layer structure (RSL and IBL) in varying meteorological conditions.
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