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Abstract.

Atmospheric observations in remote locations offer a possibility to explore trace gas and particle concentrations in pristine
environments. However, data from remote areas are often contaminated by pollution from local sources. Detecting this
poHutiencontamination is thus a central and frequently encountered issue. Consequently, many different methods exist today
to identify local peHutiencontamination in atmospheric composition measurement time series, but no single method has been
widely accepted. In this study, we present a new method to identify primary pollution in remote atmospheric datasets, e.g.,
from ship campaigns or stations with low background signal compared to the peHution-contaminated signal. The Pollution
Detection Algorithm (PDA) identifies and flags periods of polluted data in five steps. The first and most important step
identifies polluted periods based on the gradientderivative (time-derivative) of a concentration over time. If this
gradientderivative exceeds a given threshold, data are flagged as polluted. Further pollution identification steps are a simple
concentration threshold filter, a neighboring points filter (optional), a median and a sparse data filter (optional). The PDA only
relies on the target dataset itself and is independent of ancillary datasets such as meteorological variables. All parameters of
each step are adjustable so that the PDA can be “tuned” to be more or less stringent (e.g., flag more or less data points as
poHutedcontaminated).

The PDA was developed and tested with a particle number concentration dataset collected during the Multidisciplinary drifting
Observatory for the Study of Arctic Climate (MOSAIC) expedition in the Central Arctic. Using strict settings, we identified
62 % of the data as influenced by local peHutioncontamination. Using a second independent particle number concentration
dataset also collected during MOSAIC, we evaluated the performance of the PDA against the same dataset cleaned by visual
inspection. The two methods agreed in 94 % of the cases. Additionally, the PDA was successfully applied on a trace gas dataset
(COy), also collected during MOSAIC, and on another particle number concentration dataset, collected at the high altitude
background station Jungfraujoch, Switzerland. Thus, the PDA proves to be a useful and flexible tool to identify periods affected
by local peHutiencontamination in atmospheric composition datasets without the need for ancillary measurements. It is best
applied to data representing primary pollution. The user-friendly and open access code enables reproducible application to a
wide suite of different datasets. It is available at: https://doi.org/10.5281/zenodo.5761101.

1 Introduction

Aerosol and trace gas measurements in remote environments, such as polar or high altitude regions, are essential to improve
our understanding of key climate and biogeochemical processes and to constrain numerical models (Carslaw et al., 2010;
Bukowiecki et al., 2016; Reddington et al., 2017). A major challenge associated with obtaining atmospheric composition
measurements in such locations is that data are often impacted by emissions from local activities, which are not representative
of the remote environment and interfere with the observation and data analysis objectives (Bukowiecki et al., 2021). Such local
pollution emissions can originate from the measurement platform itself, e.g., research vessels (Schmale et al., 2019; Baccarini

et al., 2020; Humphries et al., 2016), or from touristic (Bukowiecki et al., 2021), local anthropogenic (Asmi et al., 2016) or
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nearby industrial (Kolesar et al., 2017) activities. Local emissions often originate from combustion processes and can directly
affect trace gas mixing ratios (hereafter referred to as concentrations), aerosol concentrations, and other particle properties.
For subsequent analysis, the influence of local peHutiencontamination must be correctly detected to separate polluted from
unaffected data. Local peHutiencontamination influence is typically characterized by enhanced particle or trace gas
concentrations and strong variations in the signal amplitude on time scales varying between a few seconds (Bukowiecki et al.,
2021; Baccarini et al., 2020) to several hours, depending on the nature of the emitting activity and wind direction. Pollution
“spikes” disturb the measurement of the regional or remote background concentrations, which are inherently continuous and
vary over time due to meteorological factors such as the boundary layer evolution (Bukowiecki et al., 2021), synoptic situations
(Alroe et al., 2020) or relatively slow natural processes such as marine biogenic emissions (Frossard et al., 2014) or sea ice
related new particle formation (Baccarini et al., 2020).

Numerous atmospheric composition measurements have been conducted in remote environments, such as the Arctic (Leck et
al., 1996; Uttal et al., 2002; Tjernstrom et al., 2014) and the Southern Ocean (McFarquhar et al., 2021; Schmale et al., 2019),
or at regional background sites around the Arctic (Uttal et al., 2016; Freud et al., 2017) or throughout Europe as part of the
established monitoring network Aerosols, Clouds, and Trace gases Research Infrastructure (ACTRIS) (Herrmann et al., 2015;
Asmi et al., 2013; Bukowiecki et al., 2021). Different approaches have been applied to detect and remove polluted data from

these-a large variety of measurement sites. We provide a short overview here.

In one approach, Herrmann et al. (2015) removed polluted data based on visual inspection of the submicron particle size
distribution spectra. Other approaches are based on the application of statistical filters that identify peHutiencontamination
based on outliers that deviate from a curve fitted to the data. Bukowiecki et al. (2002) developed a method for aerosols based
on the 5 percentile within each minute, assuming it reflects uncontaminated background concentrations. This method has the
caveat that for times without contamination, the background is biased low, while for highly contaminated data, the background
is biased high. Ruckstuhl et al. (2012) assumed that a trace gas background signal is a combination of a baseline signal with
the contribution of pollution. The background signal is estimated by applying a linear regression. The outliers are detected as
the data points that exceed the estimated background by a factor of 34. This method is called ‘robust extraction of baseline
signal’ (REBS). El Yazidi et al. (2018) applied the REBS method to four datasets of trace gas measurements and compared it
to the standard deviation method for particles (Drewnick et al., 2012), which detects pellutioncontamination as data points that
differ by more than 3¢ from the median of the data, and to the coefficient of variation (COV) method (Hagler et al., 2012),

which uses the 99 percentile of the COV as a threshold for contamination. Hereby, the COV is defined as the standard

deviation of a moving time window (5 min), divided by the mean value of the whole dataset. Brantley et al. (2014) compared

a standard deviation-based method to the COV method to detect exhaust plumes from air quality measurements on a road.

Both these methods work for datasets in which the signal of plumes is characterized by high variability and magnitude

(Brantley et al., 2014). McNabola et al. (2011) applied baseflow separation techniques, such as low pass filters, or moving

interval filters, known from stream-flow hydrology, to separate background concentrations in urban PM10 measurements and

compared the result to background PM10 measurements. Gallo et al., (2020) developed a method to retrieve the regional

3
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aerosol number concentration baseline at the Eastern North Atlantic (ENA) Atmospheric Radiation Measurement (ARM) user
facility from the U.S. Department of Energy’s{BOE). The ENA Aerosol Mask (ENA-AM) identifies data points, which exceed

the standard deviation of the data below the median (c_b) of'a 1- month period by more than a factor a.. They found the method

to work best for time periods between two weeks and one month, and less than half of the data points influenced by local

contamination.- Liu et al. (2018), used a de-spike algorithm, based on a 24 h running median window, to remove short-term

local contamination events of less than 1h duration from an aerosol time series measured at McMurdo Station in Antarctica.

Giostra et al. (2011) used a statistical approach where they extract the baseline with a decomposition of the probability density

function of the data. Polluted data shows a gamma distribution, the baseline is represented as a Gaussian distribution. This

method was applied on halocarbon data from remote marine or alpine stations. Most recently, Bukowiecki et al. (2021)

developed a new spike detection method for regional background observations. First, a signal baseline was determined for the
1-min total particle number concentration data based on a running 5™ percentile, with an optimized time window and percentile
threshold. This baseline was then subtracted from the original time series to isolate spikes in the time series. Finally, a spike
flag was applied by removing data when the 1-min spike time series exceeded the 80™ percentile of the surrounding 1-h time
window by a user-defined fixed threshold. Generally, such statistical methods are not suited to reveal background signals at
times when they are dominated by non-background signals, because this carries a risk that the non-background signals are
falsely included in the background signals (Ruckstuhl et al., 2012).

Another commonly used pollution filtering method is based on wind direction. In this case, a peHutiencontamination source
sector can be defined to flag all time periods in a dataset with wind coming from this sector; winds from outside the source
sector are assumed to be peHutiencontamination free (Leck et al., 1996; Asmi et al., 2016; Kyrd et al., 2013). For the Arctic
Summer Cloud Ocean Study in 2008 on the Swedish icebreaker Oden, the measurement of a pollution tracer (toluene) was
used in addition to a wind filter. If the toluene concentration running mean exceeded a threshold, the data were flagged as
polluted (Tjernstrom et al., 2014). Toluene concentration measurements require complex instrumentation and are therefore not
routinely observed. An inherent limitation of wind filters is that they cannot take into account the effect of recirculation of the
emitted pollution, which can lead to contaminated measurements from different wind sectors. Humphries et al. (2019) used a
combination of a carbon monoxide (CO) concentration threshold with a statistical filter applied to carbon dioxide (CO.) and
black carbon (BC) data to clean particle number concentration and cloud condensation nuclei datasets. Data were collected on
the Australian research vessel Investigator in 2016 in the Tasman Sea. The statistical filter flags the data points that deviate
from the 5-min mean of each variable by a certain threshold. Additionally, a window filter was applied that sums all data points
in a 20 min time window. If the sum of the polluted data points surpassed 10 % of the data points in the time window in one
of the three datasets (CO, CO; or BC), all data points within this time window were flagged as polluted. Similarly, Schmale et
al. (2019) and Moallemi et al. (2021) used a combination of CO, and particle number concentration data to detect
contamination from ship exhaust. A binomial smoothing was applied to each time series, and when the ratio of the smoothed

data over the original time series exceeded certain thresholds, the data were flagged as polluted.
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The above examples demonstrate that there are many different ways of detecting local pelutioncontamination in a dataset and
that no single method has established itself and is widely used. While custom-made methods have the advantage that they are
designed to work particularly well for a specific dataset, they have the disadvantage that they cannot necessarily be applied to
other datasets, because they rely on ancillary information that might not be readily available at all measurement sites. This
means that pollution-detection methods are not always reproducible and make comparison between cleaned datasets more
challenging. Therefore, a common filtering method, which relies on a minimal number of input variables, is desirable to
achieve reproducible pollution detection across a variety of datasets.

Here, we propose an algorithm to clean up particle number concentrations, particle number size distribution and trace gas
concentration datasets collected at remote or background sites that experience random influence from local primary pollution
sources. This method only requires a time series of the target particle number or trace gas concentration data and is independent
of ancillary datasets such as BC or meteorological variables. As a result, the method can be applied to a large number of

measurement sites. A

contaminated periods in five steps. To increase the usability of this algorithm, the parameters can be “tuned” to adapt to

different datasets, ambient conditions and requirements. This makes the algorithm an efficient and consistent way to detect

local contamination in large remote atmospheric time series, as they exist for example from ship campaigns or from remote

stations. This method is objective as the treatment of the data is consistent throughout the whole time series considered, because

the same value of each parameter is applied to the entire dataset.

After introducing the PDA in detail in the methods, we evaluate its performance in the results section in three steps. First, the
general evaluation is based on particle number concentration data measured during the MOSAIC expedition (Multidisciplinary
drifting Observatory for the Study of Arctic Climate) between September 2019 and October 2020 (Shupe et al., under review).
Second, we test results from the PDA against other common pollution identifying methods. Third, we evaluate its applicability
to further ship-based datasets such as aerosol number size distributions, aerosol mass composition, and trace gases

concentrations, as well as to a particle number concentration dataset from a high altitude observatory. We also provide an open

source, python-based, tool for download on zenodo (https://doi.org/10.5281/zenodo.5761101), including a manual, which

allows users to apply the same method to other datasets.

2 Methods

In this manuscript, we use the terms “contamination’ and “pollution” interchangeably to describe local contamination. We

define local contamination as fresh exhaust plumes from the ship, skidoos, snow groomers and other local, anthropogenic

sources of pollution. We define the background concentration as unaffected from local contamination andbut well-mixed

ambient concentrations. This means that background observations can contain aged pollution, stance-€.9. an aged plume

which is long-range transported to Polarstern (Dada et al., 2022). Note, that the aim of the PDA is to identify fresh local

contamination and we do not aim at detecting aged, well-mixed contamination. In this section, we first present the datasets
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and instruments used for this study. In Sect. 2.2 and 2.3., we describe alternative filtering methods used to test the performance
of the PDA. In Sect. 2.4., we describe the PDA with each of the five filtering steps in a dedicated subsection.

We developed and tested the PDA using atmospheric aerosol and trace gas concentrations measured in the Swiss Container
during the year-long MOSAIC expedition in the central Arctic. The expedition started in September 2019 in Tromsg, Norway
and ended in October 2020 in Bremerhaven, Germany, whereby the Research Vessel (RV) Polarstern (Alfred-Wegener-
Institut Helmholtz-Zentrum fiir Polar- und Meeresforschung, 2017) drifted with sea ice in the central Arctic Ocean. The drift
track is shown in Fig. Al. The aim of the expedition was to study sea ice, ecological, biogeochemical, ocean and atmospheric
processes in the Arctic Ocean. A research camp was set up on the ice around the ship. A comprehensive introduction to the
atmospheric measurements carried out during the expedition is presented in Shupe et. al. (under review). The Swiss Container
was placed on the D-deck of the ship (see Fig. A2) to monitor the aerosol and gas phase atmospheric composition. Aerosols
and trace gases were sampled from two different inlets: (i) a whole air inlet (total inlet) which allowed sampling all particles
and droplets up to 40 um and (ii) an interstitial inlet equipped with a cyclone to cut off particles larger than 1 um, designed to
sample particles that do not activate in cloud and fog (Fig. A3). The total inlet was built after the Global Atmosphere Watch
recommendations (World Meteorological Organization, 2016). An automated valve inside the container switched hourly
between the total and interstitial inlets to allow instruments connected behind the valve to sample from each of the inlets
alternately. The measurement setup and the instrumentation used during the expedition are shown in appendix A in Fig. A3.
The flow of the inlets was kept constant at 10 (total inlet) and 16.7 L/min (interstitial inlet). The inlets above the container had
a length of 1.5 m and sampled at a height of approximately 15 m above sea level. The temperature inside the Swiss Container
was kept constant at 20°C. The sampled air was dried when entering the container due to the strong temperature gradient
between outside and inside, but additional inline heating was applied when necessary. Relative humidity (RH) in the inlet lines
was continuously measured and maintained below 40 %.

Aerosol and trace gas measurements were regularly impacted by a variety of local pollution sources (e.g., ship stack, snow
groomers, diesel generators, helicopters, ship vents). Polluted periods varied in time from seconds up to hours or days and the
intensity of contamination varied with the distance from and type of source and with the wind direction, wind speed and
turbulent air motion around the ship.

To segregate polluted from unaffected data for final analysis, we developed an algorithm that detects and tags polluted periods
independent of the pollution source’s position relative to the measurement site. For the development of the PDA, we used a
particle number concentration dataset. In the following subsections, we describe the methodology used to develop and evaluate

the performance of the PDA.
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2.1 Instruments and data
2.1.1 Particle number concentration data

We used a particle number concentration dataset collected with a condensation particle counter (CPC) model 3025 by TSI
(referred to as CPC3025) to develop the PDA. The CPC3025 has a minimum detectable particle diameter (50% counting
efficiency) of Dy _so= 3 nm and a maximum detectable particle concentration of 9.99x10* cm. It collected data at 10 s intervals
during the expedition. The instrument was connected to the interstitial inlet. The sample flow of the CPC was set to 0.3 L/min
during the entire expedition and was checked daily. We performed weekly zero tests with High Efficiency Particulate Air
(HEPA) filters.

In addition to the CPC3025, we used particle number concentration data from the Aerosol Observing System (AQOS) to evaluate
the performance of the PDA. It was operated as part of the United States Department of Energy Atmospheric Radiation
Measurement (ARM) facility during the same expedition. The ARM AQOSs are measurement containers capable of measuring
a suite of aerosol microphysical and chemical properties in a standardized, field-deployable design. Only a brief summary of
the AOS is given here; a more comprehensive overview of the ARM AOS design, instrumentation, deployment history, and
measurement objectives for the different facilities can be found in Uin et al. (2019).

The AOS was also located on the D-deck, at the port side of the Swiss Container, 2 m away (see Fig. A2). The aerosol
instrumentation inside the AOS sampled from a single, shared total aerosol inlet on top of the AOS container. The inlet itself
was 5 m in length, the inlet height was approximately 18 m above sea level. The particle number concentration data in the
AOS container was obtained from a CPC model 3772 from TSI (referred to as CPCf) with a minimum detectable particle
diameter of Dy_so = 10 nm (Kuang et al., 2021). It ran with a flow rate of 1 L/min, and a sampling resolution of 1 second. The
air to the CPC was dried before sampling using a Nafion dryer. Weekly filter tests and daily flow rate checks were performed.
The temperature inside the AOS was maintained between 18-22°C. The AOS inlet was equipped with a purge blower that was
designed specifically for this campaign to prevent ship stack pollution from entering the instruments. The purge blower was
set up to trigger automatically according to elevated carbon monoxide (CO) concentrations, which were measured from a
separate sample line that was collocated with the aerosol inlet. The purge blower was able to provide a high flow rate of
continuous particle-free air into the AOS inlet, effectively purging the inlet of ship stack pollution. However, due to relatively
low sensitivity of CO concentrations to pollution from the ship stack plume (see Fig. A4), the automated triggering system did
not work automatically as planned. Thus, the purge blower was turned on manually when the bow of the ship was exposed to
pollution for extended periods of time. As a result, the ARM CPC datasets show periodic gaps during local pollution events,
but there are still times when the datasets are influenced by local peHutiencontamination and additional cleaning is required.
Therefore, the ARM CPC datasets are well suited to test the performance of the PDA.

To test the broader applicability of the PDA to datasets from sites with different characteristics, we used a particle number
concentration dataset collected at the high-altitude GAW and ACTRIS research station Jungfraujoch (JFJ) in the Swiss Alps

(Bukowiecki et al., 2016). The station is located at 3580 m.a.s.l. In winter it often represents the remote European free
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troposphere, while in warmer seasons, intrusions of boundary layer air masses are frequently observed (Herrmann et al., 2015).
The site also is a touristic destination, meaning that local petutioncontamination affecting the measurements interferes with
the aim to achieve unpolluted background measurements (Bukowiecki et al., 2021). Data were collected by a CPC model 3772
by TSI. The measurement setup is described in more detail by (Bukowiecki et al., 2021). The results of this application are
presented in Sect. 3.4.4.

2.1.2 Description of particle number concentration characteristics

During MOSAIC, local contamination occasionally originated from other sources than the stack, such as helicopters, snow

groomers_and snowmobiles, as well as small diesel generators on the ice. Therefore, the algorithm needs to detect

contamination from different sources and directions. Figure 1 shows the whole dataset of minute-averaged particle number

concentrations, as a function of the relative wind direction. Note that we used this particle number concentration dataset to

develop the PDA. The stack is located at 180° from the bow and is marked as a grey vertical line in the figure. The majority

of high concentration events (>10* cm™) are related to emissions from the stack, but there were occasions where high

concentrations came from different directions. We define high concentrations as > 10* cm™ because empirically we did not

find any situation where the particle number concentration would increase to such high values in the Arctic without

involvement of expedition-related activities (see Sect. 2.3.1). In contrast, we find low particle number concentrations of < 100

cm2 for almost all wind directions, including from the stack direction. A stable and very low boundary layer occasionally

avoided the polluted air from the stack to down-mix to the inlets of the Swiss Container so that the measurements remained

unaffected by it despite the air coming directly from the exhaust (this is illustrated in the picture in Fig. A5). This makes it

difficult to apply a simple, but commonly-used (Leck et al., 1996; Cox et al., 2003) filter based on wind direction. In addition,

introducing a maximum concentration as a single threshold below which data are considered clean is not feasible, because

natural particle concentrations vary across several orders of magnitude (Fig. 1). Pollution influence can also occasionally be

so small that it would not surpass the threshold, e.g., when it is on the order of hundreds of particles on top of a low (e.g., <

100 cm3) natural concentration (background concentration).

Generally, concentration data from remote regions, characterized by the absence of dominant local (anthropogenic) sources,

vary only slowly with time, compared to when influenced by local contamination. This means that the concentration gradient

(time derivative) is small. In contrast, concentration data show distinct variations, such as rapid fluctuations, when affected by

contamination from nearby sources (e.q., Fig. A4). The PDA builds on this abrupt variation in concentration and detects

polluted data based on the rate and magnitude of change in the concentration signal over a given time period. The basic

principle of the PDA was developed and used for the 2018 Microbiology-Ocean-Cloud-Coupling in the High Arctic

(MOCCHA) campaign on the Swedish ice breaker Oden by Baccarini (2021). Here, we further develop this algorithm and test

it against different datasets. Importantly, the algorithm is only based on target concentration data and does not rely on ancillary

datasets, such as particle size distribution or meteorological variables.
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2.1.2-3 Particle number size distribution data

Furthermore, we applied the PDA to a particle size distribution dataset collected by a Scanning Mobility Particle Sizer (SMPS).
The custom built SMPS (Schmale et al., 2017) was located in the Swiss Container behind the switching valve and recorded
the size distribution of particles between 17 and 600 nm with a time resolution of three minutes. We applied the PDA to the

SMPS integrated particle number concentration. The results are presented in Sect. 3.1.2.

2.1.3-4 Aerosol chemical composition data

In addition, we tested the performance of the PDA against the aerosol chemical composition dataset obtained by the High-
Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) from Aerodyne Research Inc., located in the Swiss
Container. The AMS measures the chemical composition of non-refractory aerosols, i.e., species that evaporate at temperatures
up to 600°C. It typically detects sulphate (SO4%), nitrate (NO3’), ammonium (NH4*), chloride (CI), and organics (DeCarlo et
al., 2006) from particles in the size range 0.07 — 1 um, defined by the type of aerodynamic lens. The AMS was operated behind
the switching valve to sample both interstitial and total inlet aerosol populations. Here, we use the mass signal of the ion
fragment C4Ho* at a mass to charge ratio of m/z = 57. This fragment is a typical indicator of fresh fossil fuel combustion
(Enroth etal., 2016; Massoli et al., 2012) and has been used before to detect peHutioncontamination in remote regions (Schmale
et al., 2013). The results of the application of the PDA on the chemical composition data will be discussed in Sect. 3.4.2.

2.1.45 Trace gas data

We also used trace gas data collected in the Swiss Container to test the algorithm on datasets other than particle number
concentration (Sect. 3.4.3). A detailed description of trace gas measurements during the MOSAIC expedition is given in Angot
et al. (in prep.). Briefly, carbon dioxide (CO2), methane (CH.), and CO ambient air mixing ratios were monitored by cavity
ring-down spectroscopy using a Picarro instrument (model G2401) behind the interstitial inlet. Regular calibrations were
carried out during the expedition with gas mixtures of known CO,, CH4 and CO mixing ratios. As described in Angot et al. (in
prep.), nitric oxide (NO) ambient air concentrations were measured in a different container (University of Colorado) with a
custom-built single-channel chemiluminescence analyzer (Fontijn et al., 1970), which was regularly calibrated by dynamic

dilution of a 1.5 ppm compressed NO gas standard.

2.1.5-6 Wind data

Wind speed and direction were measured with a 2D sonic anemometer on the main mast of RV Polarstern. We used this wind

dataset at a time resolution of 1 minute in this study (Schmithuesen, 20213, b, c, d, e).



270

275

280

|285

290

295

2.2 Wind based filtering method

The main source of local pollution during the MOSAIC expedition was the stack of the ship. Based on Fig. 1, it is possible to
define a polluted wind sector from 90 - 270° relative to the bow of the ship. The wind-based filter flags all data points collected
when the relative wind direction was coming from the polluted sector. This wind filter is introduced here for comparative
purposes only. The comparison of the wind-based filtering method to the PDA is presented in Sect. 3.2.1.

2.3 Visual filtering method

The following visual filtering method is introduced here for comparative purposes: Every pollution filtering method contains
a certain level of subjectivity since the final decision about polluted vs non-polluted must be made by the user. Therefore, we
compared the performance of the PDA to the result of a visual-only filtering method, which was applied to the dataset of the
CPCf. Impact from local peHutioncontamination is often evident from the time series of pollution-related variables, such as
wind direction, wind speed, total particle number concentration, one standard deviation of particle number concentration within
one minute periods (Nsw_1m), and particle number size distribution. Time series of these variables were visually inspected for
each day to identify the periods impacted by the local peHutiencontamination. Nsw_1m Was used as the core feature of pollution
influence. In periods unaffected by pollution, it was below 30 cm3. When the total particle number concentration was higher
than ~600 cm™ (such as during new particle formation events in the summertime, or during Arctic haze events in the
wintertime), Nsq 1m Often increased to between 30 to 100 cm™. However, these periods were not treated as local
peHutioncontamination influenced. Data were flagged as polluted when Nt 1m Was above10® cm, the Aitken mode particle
(i.e. diameter below 100 nm) number concentration was greatly enhanced and wind was coming from the stack direction.
Periods moderately influenced by the local peHutiencontamination, during which N _1m Was typically between 10?to 10% cm-
% and the wind direction was usually not directly from the stack direction, are also flagged in this dataset. The visual filtering
method also considered spikes and neighboring points. A spike of Nsqg 1m Was defined as a point having a value that was 2
times higher than the 5-min moving average of Nsw 1m. When two polluted flags were within 5-min of each other, all data

points in between were flagged as polluted.

2.4 Pollution detection algorithm (PDA)
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can be applied in various combinations to identify polluted data. Figure 2 shows a schematic of the workflow. First, data points

with a gradientderivative exceeding a given threshold are tagged as polluted (Sect. 2.3.1). Second, a simple threshold filter
tags data points which exceed a specific threshold, e.g., > 10* cm™ in our case because such concentrations are beyond the
expected range for the central Arctic (see Sect 2.3.2). Optionally, for every tagged data point, the neighboring point can be
tagged, too (Sect. 2.34.3). An optional median filter identifies outliers in the dataset which are left untagged (Sect. 2.3.4).
Lastly, sparse data points left untagged in a series of tagged data points are also tagged (Sect. 2.3.5). Individual parameters
and thresholds in each step can be adjusted to customize the PDA and to adjust its strictness. The neighboring and the statistical
median filters are optional and can be skipped, for example if the resulting segregation of polluted data points satisfies the
needs of the user already after the first steps. This allows retaining more data points in the final dataset. The different steps of
the PDA are explained in detail in the following subsections. Table 1 summarizes all the parameters of the PDA described in

Sect. 2.
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Figure 1: Particle number concentrations averaged over one minute as a function of relative wind direction (0° indicates wind coming

from the bow) and color-coded by relative wind speed. Concentrations were higher with winds from the broader direction of the

stack (located at 180° from the inlet position, this position is marked with a vertical line).
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Figure 1: Schematic of the pollution detection algorithm. The key is the power law filter (highlighted in a dotted rectangle), which

is followed by a series of steps. The neighboring points and the median filter are optional and can be skipped. Parameters of each

step can be adjusted. IQR stands for interguartile range (see Sect. 2.4.1).
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2.4.1 Step 1.and 2: GradientDerivative and threshold filter

The gradientderivative filter is used to separate periods characterized by rapid fluctuations in concentrations (we consider them
as polluted periods), from those dominated by slow changes in concentration (we consider them as unaffected periods). At
each data point in the native time resolution (10 s in our dataset) we calculate the absolute value of the time derivative (i.e.,
change in concentrationthe-gradient-over-time) of the concentration_using the central differences formula.

ldC’y| =

Cz+1;Cz—1| Eq. (1)

where dC’, _refers to the derivative of concentration C at time t, C,,, and C,_, refer to the_previous and following measured

concentrations at time (t+1) and (t-1), respectively. Note that the derivative cannot be calculated with Eqg. (1) at the edges of

the dataset (very first and very last data points in the time series). Instead of the derivatives, the algorithm calculates the

difference between the first (last) two data points at the beginning (end) of the dataset and uses those values for the derivative

filter. This ensures that the edges of the dataset are also considered in the PDA. The derivative filter also ignores data gaps.

For data points at the beginning and the end of a data gap, the derivative will still be calculated considering the previous and

dc
dt/¢

between-two-data-points: To separate polluted from unaffected data we developed two methods:
Method A separates polluted from unaffected data with a power law. We average the time derivatives of the particle number

following data points, regardless of the duration of the gap (see Eg. 1).

concentration over one minute_(6 values) and plot them against the one minute-averaged particle number concentrations (Fig.
3). The averaging time can be varied and adapted to datasets with different time resolutions. This is discussed in Sect. 3.1. We
choose one minute for a pragmatic reason: At one minute time resolution we can still see influences of short-lived changes in
particle number concentration (e.g., from pelutioncontamination) and it makes data processing faster as the size of the one-
year long dataset is large. Figure 3a shows two “branches” of data points (visually emphasized by the relative wind direction
color code): One with higher gradients-derivatives representing periods of high concentration variability, i.e., due to local
poHutiencontamination, and one with lower gradientsderivatives, indicating smooth variation, i.e., not affected by local
poHutiencontamination. Separating the polluted and unaffected branch is the fundamental step of the PDA developed here.
The time-derivative of the particle number concentration can be described as a power law of the particle number concentration,
and the two branches distribute around two different power laws. Thus, for the separation, we use a power law r=-a-+x=)
between those two branches
(r=axx™) Eq. (2)

m_corresponds to the slope, and log(a)_to the intercept with the logarithmic y-axis. Values for the power law fits are

empirically selected.
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Finding optimal values for a and m is an empirical process which can be verified-validated by looking at the time series of the
polluted and unaffected data together. This process likely needs several iterations until values for a and m are found which
satisfy the needs of the intended data analysis. A higher slope in the separation line means that, for a fixed particle number
concentration, the threshold of separation moves towards higher gradients-derivatives of particle number concentration, and
therefore allows more variability in the data, i.e., the method is less strict. A higher intercept sets the threshold of separation
to higher gradients—derivatives at lower concentrations, allowing for more variability there. Examples of four different
separation lines are shown in Fig. 3a. For the MOSAIC dataset, we found a value of m = 0.55 s*and a = 0.5 cm™3s™ (red line)
to work well with our dataset (see Sect. 3.1).

Method B separates data based on the interquartile range (IQR) of the gradientderivatives within a defined period. Not all
datasets show an equally clear separation of the gradientderivatives into two branches like the particle number concentration
shown in Fig. 3a. An example is the particle number concentration dataset from Jungfraujoch (Fig. 3b). An alternative method
is thus to separate polluted from unaffected data based on the deviation of the gradientderivatives from their centered IQR. For
this, we calculate the centered IQR of the gradientderivatives of each data point in a moving window-efa-set-duration-time
window (called IQR window) (24h in the case study described in Sect. 3.4.4, which is equal to 1440 data points). This means

that for each data point, we calculate the IQR from the data +/- half of the IQR window before and after the data point. When

the absolute gradientderivative of a data point exceeds the 75™ percentile by a given factor (hereafter called IQR factor), the
data point is flagged. We use an IQR factor of 1.7 to identify peHutiencontamination in the JFJ dataset. Both the IQR window
size and the separation-IQR factor of the IQR method can be adjusted in the PDA code. Method B is well suited to separate

datasets with less obvious difference between pollution and unaffected periods._As a first start, we therefore suggest to try an

IOR window size of 1440*x, where X is the time resolution of the dataset. We found the factor 1440 to work for datasets with

1 minute time resolution, where it represents a time window of 24 hours.

Note that the moving centered IQR can only be calculated for data points with a distance of half of the IQR window from the

edges in the dataset. To also account for the edges of the dataset, we fill the first (last) data points with the calculated IQR

value of the first (last) calculated data point. This means that the IQR is assumed constant for half of the IQR time window at
the edges. In our case (with an IQR window of 24 h), this affects the first and the last 12 h of the dataset.
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Simultaneously with the derivative filter, we introduce an upper and lower concentration threshold (step 2), as described below,
beyond which data are removed. Giventhesimphicity-of this stepitis-subsumed-underthe derivative filter step-

For specific regions, like the central Arctic in our case, one can assume concentrations not to exceed a certain threshold as

long as they are not influenced by local peHutiorcontamination sources. Based on the particle number concentration dataset
throughout the whole MOSAIC and MOCCHA observation periods, we argue that it is safe to assume that particle number
concentrations above 10% cm can be considered as influenced by local pellutioncontamination with the detection limits of the
instruments used for the two campaigns. Note that new particle formation events, which typically lead to the highest number
concentrations second to ship activities during the expedition, do not exceed this threshold. See Fig. 3, where the branch of
unaffected data below the separation line does not show any data points > 10* cm™. A similar principle is applied to a lower
limit, here 60 cm™. Below this threshold, we assume the dataset is not influenced by pelutiencontamination. This threshold
helps to maintain the baselinebackground when a sudden concentration drop (e.g., from a precipitation event) would trigger
the gradientderivative filter. We choose 60 cm to be a suitable threshold for this dataset because we did not observe such low
values during polluted time periods, except in very rare occasions, but those data points would be detected by the sparse filter
(sect. 2.3.5). Both thresholds can be adjusted in the tool, because they will vary with location, the detection limit of the
instrument, averaging time, and target compound. For example, a higher lower-limit threshold might be appropriate in a remote
forest region, where lower particle number concentration limits can be as high as 500 cm (Schmale et al., 2018). If the lower
threshold is set to zero, all data below the upper limit threshold are included in the filtering algorithm. The threshold filter
activates automatically with the application of the gradientderivative filter. Hereafter we also mean the threshold filter when
we talk about the gradientderivative filter.
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Figure 3: Absolute value of the minute-averaged particle number concentration gradientderivative as a function of the minute-
averaged particle number concentration. A) The dataset collected during the MOSAIC expedition. The color-code indicates the
relative wind direction. The four lines show potential separation lines between polluted and unaffected data points for four different
combinations of slope and intercept (y=a*x™). Here we used the red line. B) The binned dataset collected at Jungfraujoch station in
the Swiss Alps in 2016 (Bukowiecki et al., 2021). The color-code indicates the number of observations per bin.

2.4.23 Step 3: Neighboring points filter

It can be useful to discard points at the beginning and end of polluted periods where single data points might not be tagged
because the deviation of their values from previous or subsequent points is too small to be detected by the PDA. This filter
targets data points at the transition from polluted to unaffected periods and vice-versa. Applying this filter is optional as it
discards additional data, but in return results in a dataset less affected by local peHutiencontamination. We show and discuss

the results of this step in Sect. 3.1.

2.4.34 Step 4: Median filter

The median filter aims at detecting false negatives, i.e. data points which are not representative of the background signal but

were not flagged by the previous filter. For each data point, we calculate its deviation from the running median over a time

interval (the median time interval).

median—over—the—median—time—interval—If the deviation exceeds a given factor above this median, it is flagged as
poHutienpolluted. The factor can be adjusted to lower (stricter) or higher (less strict) values with the trade-off of more false

positive data points (i.e., unaffected data points flagged as polluted) or false negative data points (i.e., polluted data points
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which are not flagged), respectively. We found an empirical deviation factor of 1.4 to support the detection of outliers for
MOSAIC and keep the number of false positively detected data points as small as possible. This is further discussed in Sect.
3.1

2.4.45 Step 5: Sparse data filter

As a last step, we apply a sparse data filter to tag leftover unaffected data points in periods affected by local

poHutioncontamination. More quantitatively, if the sum-number of polluted data points in a given time window (subsequently

called sparse window) exceeds a given threshold (termed sparse threshold), all points in the sparse window are flagged as
polluted. We use a sparse threshold of 24 within 30 data points (which corresponds to 30 minutes in our case). The sparse
threshold and the associated time-window can be adjusted in the PDA. The sparse data filter is automatically activated as the
final filtering step. To de-activate the sparse data filter, one can simply set the sparse threshold to the same number of data

points as in the sparse window.

Table 1: Overview of all filter steps and parameters of the PDA applied to different datasets.

Filter step Parameter Particle Particle size | CO2 Particle Particle
number distribution | MOSAIC number number
concentration | MOSAIC dataset concentration | concentration
MOSAIC JFJ CPCf

1A. a 0.5 cm3s? 1.4 cm3st - - 0.5 cm3s?

GradientDerivative | m 0.55s1 05st - - 055

filter (Power law)

1B. IQR factor - - 15 1.7 -

GradientDerivative | IQR window | - - 24 h 24 h -

filter (IQR) size

2. Threshold filter | Upper 10* cm3 10* cm® none 10* cm3 10* cm®

threshold 60 cm 60 cm none 60 cm™® 60 cm™®
Lower
threshold

3. Neighboring | On/off On On On On On

points filter

4. Median filter Median time | 30 min 30 min 30 min 30 min 30 min

interval 14 1.4 1.001 15 1.3
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Median
deviation

factor

5. Sparse data filter | Sparse 30 10 30 30 30
(no. of data points) | window 24 3 20 24 23
Sparse

threshold

3 Results and discussion

In this section, we present and discuss the performance of the PDA and compare the results to other commonly used approaches
to identify local peHutiencontamination (wind direction and visual inspection methods). We test the PDA on different types
470 of atmospheric measurements as well as on particle number concentration datasets with different time resolutions.

3.1 Performance of the PDA

First, we demonstrate the effect of the successive application of the various pollution filter steps, and second, we evaluate the
performance of the final PDA settings against characteristic situations from the MOSAIC expedition. While the algorithm was
applied to the entire dataset, below we show 24-hour case studies to illustrate the results.

475  Figure 4a-c shows, for the case study from March 6, 2020, how the individual filtering steps (the gradientderivative filter, the
gradientderivative filter combined with the neighboring points filter and all filters together) affect the final cleaned particle
number concentration dataset. The original time series is marked in red, while the cleaned dataset appears in blue. The case
study shows a stable signal with concentrations around 100 cm, which is interrupted by a pollution event with particle number

| concentrations up to 10° cm from 09:00 to 12:00 UTC. The gradientderivative filter (Fig. 4a) detects the majority of the

480 polluted data points. Only 10 data points in this period remain untagged. Including the neighboring points filter (Fig. 4b) and
the median and sparse data filters (Fig. 4c), removes all those points, improving the performance of the algorithm. Figure 4d
shows histograms of the entire MOSAIC particle number concentration record for the original dataset, and after application of
the gradientderivative filter, the gradientderivative and neighboring points filter and all filters. Concentrations below 200 cm-
3 remain nearly untouched by all filters in the PDA. The strongest filter effect is visible at larger number concentrations (>

485 3000 cm?®), where only a few counts remain in the cleaned dataset. In accordance with the threshold filter, number
concentrations above 10* cm are removed. The application of all the filters combined is not always necessary, as shown in
Fig. A6. Here, the gradientderivative filter already detects all the polluted data points and no further filters are needed.—Fhis

ows-retaining-mere-datafor-further-analy ers-are-apphed: Table 2 shows how the year-round dataset is
reduced in size after applying the gradientderivative filter, the gradientderivative and neighboring points filters, or all filters
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combined. The second row shows the percentage of the original dataset that is left after applying the respective filters. After

application of the gradientderivative (and threshold) filter, 44 % of the data points are retained, showing the importance of the

application of a filtering method in general. Applying further filtering with the neighboring points and median filters removes

only 5 % and 1 % of additional data points, respectively. This demonstrates that the gradientderivative filter alone captures the

majority of locally polluted data points (90 %), while the additional filters have a “fine tuning” effect. This effect can still be

very important for individual cases as shown in Fig. 4a-c. Figure A7 summarizes the percentage of clean data per day after

application of the PDA for the whole expedition. The data were most affected from peHutioncontamination in spring and

summer and least affected in winter. Note, this graph is indicative of pelutiencontamination visible in the particle number

concentration data and not necessarily for all atmospheric chemical and microphysical measurements taken during MOSAIC.

To assess the effect of each filtering step, we applied each of them individually to the CPC3025 dataset and discuss this in

Appendix B.
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Figure 4: Comparison of the gradientderivative filtering method with additional filtering steps. Cleaned data (in blue) are plotted

over raw data (in red). a: only gradient-derivative filter applied. b: gradient-derivative and neighboring points filters applied. c: all
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filters applied. d: Histogram of the original (in red) and the remaining datasets after steps ba) (black contour line) and c¢)_ (purple).

“PDA filtered” means all options of the PDA were applied. For all plots we used data from the CPC3025. Raw data have only been
pre-cleaned for zero filter measurements. The orange circles indicate areas where the additional filters remove additional data

points.

Table 2: Number of data points and percentage (relative to raw data) of data left when different filtering steps are applied. Fhe-wind

Original data, no GradientDerivative GradientDerivative  and  neighboring | All filters
filter filter points filter applied
Dataset 521593 231269 204077 196628
size
Percentage =~ 100 44 39 38

3.1.1 Case studies

Particle number concentrations in the Arctic can vary by orders of magnitude. To verify that the algorithm can be used in
different environmental and pelutiencontamination conditions, we tested its performance in characteristic situations
throughout the expedition.

First, in conditions when the dataset is not affected by strong pollution spikes, it is required that the algorithm still detects
small influences from local peHutiencontamination. Figure 5a shows a day in January with a very stable and low boundary
layer, resulting in a stable particle number concentration baselinebackground around 150 cm~ and occasional pollution spikes
around noon. The algorithm successfully detects polluted data points and leaves the basehinebackground untouched. In contrast,
the wind filter would not detect any of the peHutioncontamination. In this case, a stricter wind filter would not be possible
since it would basically have to be extended to all wind directions. Second, under very polluted conditions, the requirement
for the algorithm is to detect the full pellution-contaminated period and to not leave polluted data points undetected (false
negatives).

In Fig. 5b, a transition from unaffected to polluted conditions can be seen around 09:00 UTC due to changes in wind direction
that resulted in stack exhaust contamination. The variability in the signal increases strongly and so does the gradient between
data points. The PDA detects all relevant points as pollution. The wind filter would, in this case, also detect all the relevant
points, but would become effective much earlier and thus detect false positives.

Third, new particle formation (NPF) and subsequent growth of particles is a common process in the Arctic which leads to an
increase in particle number concentrations over a relatively short time (Kulmala et al., 2014; Baccarini et al., 2020; Schmale
and Baccarini, 2021; Beck et al., 2021). This could potentially cause the gradientderivative algorithm to accidentally flag
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naturally high concentrations as pollution (false positives). We analyze one NPF event observed on June 21, 2020 where the
particle number concentration increased from < 100 cm™ to more than 1000 cm™ within 3 hours (Fig. 5¢). In addition, a few
pollution spikes were observed during the NPF event. The gradientderivative filter detects the pollution spikes and leaves the
baselinebackground untouched during the NPF-driven rise as well as during the subsequent drop in particle number
concentration later in the day. If a specific case study on this NPF event was done, the user could decide to apply the PDA
only to this event and tune the parameters specifically. Here we show that the settings chosen for the entire campaign treat the
NPF event adequately.

Fourth, another potentially challenging situation for the algorithm are wet-removal events. Aerosols can be washed-out of the
atmosphere by rain or snow and their number concentration can decrease fast, leading to elevated gradientderivatives. We
report such event observed on September 13, 2020 from 09:00 to 12:00 (Fig. 5d). The rate of change of the particle number
concentration is not strong enough to cause false positives. These results demonstrate that the algorithm is able to deal with
relevant situations and is therefore an adequate tool to clean particle number concentration datasets, which are influenced by
both natural variability and local peHutioncontamination sources.

To verify that the spikes in particle number concentration ean-be-assumed-to-beare caused by pollution and not by a natural
local (or regional) event, we compare the particle number concentration data during a pollution event with several other signals
like nitric oxide (NO), CO and BC (Fig. A4). The main pollution spike in this example (ca. 18:00) coincides with the NO
signal, which also shows a distinct spike at the same time (panel a). The BC signal also reacts during this event with elevated

concentrations (panel d). The CO signal does not react at this time. Note, that the CO signal does not react strongly to ship

pollution. This is in agreement with what we observed during the expedition and highlights the issues in operating the
automated purge system in the AOS container (Sect. 2.1). The ship exhaust from RV Polarstern during the MOSAIC
expedition did not consistently show elevated CO signals that could allow CO to be used to identify pollution reliably.
However, there were cases where apparent pollution events did result in higher observed CO concentrations. During the event
described here, there are two minor spikes at 08:00 and 10:00 where the particle number concentration shows spikes that
coincide with the CO signal (panel b). In contrast to the first example at 18:00, the wind direction was not coming from the
stack. This points towards a different local source of peHutiencontamination, e.g., a skidoo, snow groomer or ship vent. These
indicators let us conclude that the particle number concentration signal is sensitive to peHutiencontamination from different

sources and therefore provides a good base for the development of the PDA.
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Figure 5: Performance test of the PDA method in four different situations. a) Under overall stable conditions, b) Transition from
clean to polluted conditions, ¢) A natural increase in particle number concentration due to new particle formation, and d) A natural
decrease in particle number concentration due to a precipitation event (freezing rain) in the morning (from 9 to 12 UTC). Green
shaded areas indicate where the wind filter would flag data as polluted. Green points show the wind direction, red points show the
raw particle number concentration, overlaid with the cleaned data points in blue.

3.1.2 Application of the PDA to particle size distribution

We applied the PDA with the parameters given in Table 1 to the measured total particle number concentration time series (i.e.,

the sum of the concentration of all size bins) of an SMPS dataset, collected during the MOSAIC expedition in the Swiss
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575 Container. The result is shown in Fig. 6 on a seven days subset of the particle size distribution (PSD) dataset. The polluted
periods are clearly visible in the PSD and show as distinct yellow vertical lines. At the same time, the total number
concentration shows strong spikes. The PDA detects the polluted periods (shown as red data points) and leaves unaffected data
(shown as black data points). This validates the functionality of the PDA. The SMPS data have a time resolution of three
minutes, which shows the ability of the PDA to detect peHutioncontamination in datasets with different time resolutions. More

580 tests of the PDA with datasets of different time resolutions are discussed in appendix BC.

«  Original
PDA filtered

Size [nm]
Tot. part. numb. conc. [cm™3]

dN/dlogDp [cm ™3]

Figure 6: Application of the PDA to the total number concentration dataset (black line) collected by an SMPS. Data points identified
as polluted by the PDA are marked in red. The dataset is plotted over the particle size distribution data of the same instrument.

585 3.2 Comparison of the PDA to other commonly-used methods
3.2.1 Comparison to the wind filter

The majority of pollution events is associated with wind arriving from the direction of the stack of the ship (Fig. 1). Thus,
applying a simple filter based on wind direction might be sufficient to discard most polluted data. An example is shown in Fig.
7 where we assumed a polluted wind sector between 90° and 270° and marked all tagged data points with a red band. The

590 wind filter flags 59 % of the data as polluted, compared to the PDA, which flags 62%.. However, apart from detecting a large

portion of polluted data, it also creates false positives, i.e., it flags unaffected data as polluted, as described in Sect. 3.1. It also

does not detect any polluted data outside of the polluted wind sector. This is illustrated in Fig. 8 for the 17" of February, 2020,
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where we compare the wind filter (panel b) with the PDA (panel a). On that day, the wind came from the port side of the ship
and carried polluted air from a snow groomer. The PDA (panel a) detects and tags alk-more polluted data_than the wind filter;
whereas-the-wind-filter-does-net (panel b). In addition, the PDA allows keeping unaffected data in the polluted wind sector
(Fig.7). The wind direction method might, however, be simple and easy to clean data when the only source of local pollution

is a point-source, and if the only pelutiencontamination source is in a fixed wind direction from the measurement point.
Although widely used on ship campaigns (see Sect. 1), the wind filter is not well suited for those campaigns; where multiple

and moving emission sources exist.
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Figure 7: Same as Fig.1 but after applying the PDA to the dataset. Flagged data points were removed to visualize the data product
after application of all filtering steps. The red shaded area indicates where the wind filter would flag polluted data (between 90° and
270° relative to the bow). The direction of the stack is marked at 180° as a vertical line.
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Figure 8: Comparison of the PDA (a) with the wind-based method, assuming a polluted-air sector of 90° to 270° from the bow (b,
mirrored). Both filtered time series (blue) are underlaid with the original raw data (red). The wind-based filter method is-ret-case-
sensitive-and-thus-cannot detect pollution events coming from other directions than the given wind sector. Panel (c) shows histograms
of particle number concentrations before (blue) and after application of the PDA (green) and the wind mask (red).

3.2.2 Comparison of the PDA to the visual inspection method

We applied the PDA to a dataset independently cleaned by visual inspection and compared the results of these two methods.
The dataset used for this test was collected from the ARM AOS container during the MOSAIC expedition. The visual filtering
method is described in Sect. 2.3. The parameters used to apply the PDA to the dataset are listed in Tab. 1.

Both methods detect roughly the same fraction of clean data and agree in 93.9 % of all data points (see Table 3). The visual
filtering method identifies slightly more clean data. Figure 9 shows the results of both methods in histograms. It shows the
distribution of the raw data points (in grey) and the fraction of data points where the two methods do not agree, i.e., the fraction
of data points which are identified as clean by the visual inspection but not by the PDA and vice versa.

The fact that the visual method keeps slightly more data points unaffected at lower concentrations compared to the PDA could
be an indication that visual inspection detects slightly less false positives (unaffected data points detected as polluted).
However, the advantage of the PDA is that it can be applied to other datasets with relatively little effort. Also, it applies strict
thresholds to the dataset, which makes the result reproducible, while the visual filtering method depends on the users and their
experience which makes it more prone to user bias. A comparison of both filtering methods in a time series is shown in Fig.
A8.

25



Table 3: Fraction of clean data points of the derivative filtering method and the visual filtering method compared to the total number
of data points (total counts) in numbers and in percent of the total counts. This table is based on the CPCf dataset in 1 min time

resolution.
# Data points | Percentage
Total counts 308750 100.00%
PDA clean 197671 64.02%
PDA polluted 111079 35.98%
Visual inspection clean 214540 69.49%
Visual inspection polluted 94210 30.51%
PDA clean, visual polluted 947 0.31%
PDA polluted, visual clean 17816 5.77%
Both clean 196724 63.72%
Both polluted 93263 30.21%
630 able 3+ Fracti ea i gradientfiltering-me 3
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Figure 9: Comparison of the visual inspection method to the PDA on the dataset of the CPCf of ARM. Original data are shown in
grey. The blue contour line shows the fraction of data points where only the visual inspection method, but not the PDA, considered
data to be clean (6 %). The red contour line shows the opposite, i.e., the fraction of data points where only the PDA, but not the
visual inspection method, considered data to be clean (<1 %). The dark grey contour line shows the fraction of data points where
both methods considered data to be clean (~64 %).

3.3 Broader application of the PDA

We test the performance of the PDA on datasets with different characteristics using time series of particle chemical
composition and ambient air CO» concentrations collected during MOSAIC (see Sect. 3.4.1 and 3.4.2, respectively) and on a
particle number concentration dataset collected at JFJ in the Swiss Alps (Sect. 3.4.3).

3.3.1 Application to aerosol chemical composition datasets

To check whether the algorithm works on other datasets than particle number concentration data, we applied it to the ion
fragment signal of CisHo* (m/z = 57) measured by the AMS, which characterizes fresh pelutioncontamination from
combustion. In a perfect scenario, our developed algorithm is able to group the signal of this fragment (C.H,*) into high mass
(and high gradientderivative) resulting from ship emissions in comparison to low background mass concentration (and low
gradientderivative), the latter associated with a relative wind direction away from the stack (90° to 270° relative to the bow).
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Figure 10a shows the relation of the gradientderivative of the mass concentration of CsHe* (averaged over 5 minutes) as a
function of its mass concentration. We observe a separation of the gradientderivatives into two branches with two different
slopes as in Fig. 3a. However, the mass concentrations do not overlap in the two branches of the gradientderivatives (dM/dt)
of clean and polluted periods, therefore a separation based on the gradientderivative is impossible. This is also visible based
on the wind direction (indicated by the color); a separation between the ‘pollution’ and ‘clean’ data points occurs at
approximately 102 pg/md, resulting in a critical concentration threshold rather than a defined slope. However, such a separation
at a defined mass concentration grouped certain ‘clean’ data points into the ‘polluted’ category and thereby failed to produce
a reliable pollution mask. Our hypothesis for the failure of the gradientderivative algorithm when applied to AMS data is that
the AMS has a lower particle cut-off of 70 nm and the > 70 nm particles detected by the AMS are affected by
pehutioncontamination in a different way than the entire particle population also containing smaller particles, as reflected by
the CPC data, which contains particles as small as 3 nm. We found the typical peak diameter of ship pollution observed on RV
Polarstern was approximately 30 nm. An alternative way to produce a pollution tag for AMS data is to apply a chemically
resolved method, where the mass spectrum as a whole is compared to a previously defined chemical pollution spectrum. This
method is described in more detail in Dada et al. (in prep.).

3.3.2 Application to trace gas datasets

Figure 10b shows the distribution of the gradientderivatives for the CO- dataset. We used CO;data in a 1 s time resolution and
averaged the gradientderivative over 1 minute. The CO; signal varies by less than one order of magnitude when affected by
pollution. The majority of the data points do not deviate from the observed atmospheric background concentration around 400
parts per million (ppm). The color-coded wind direction also gives no indication of separation of the data by wind direction.
One reason is that the magnitude of the gradientderivative of the CO; signal in case of pollution is low compared to its relatively
high background concentration, and therefore, polluted data points do not separate clearly from the main “branch” of data
points. Therefore, the separation of polluted and unaffected data points based on two branches of gradientderivatives (step 1A)
does not work for the CO; dataset. We thus applied the PDA with step 1B (the derivative filter based on the deviation from
the running interquartile range) to the CO, dataset. We-thus-applied-the PDA-with-step-1B-to-the CO,-dataset-The parameters

used for the PDA are shown in Table 1. An example of the resulting time series is shown in Fig. A9 on the same case study on

July 27 as we described in Sect. 3.1.1. The CO; signal is noisy and shows a strong spike between 16:00 and 20:00. This spike
matches the observations described in Fig. A4. The PDA detects and flags data points within the spike as polluted. Situations
like this example with a noisy signal are further discussed in Sect. 3.5. Angot et. al. (in prep.) applied this method and describe

the CO; dataset in more detail.
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Figure 10: (a) Fime-dDerivative of the ion mass signal of C4Hs (m/z=57) compared to its total mass concentration, measured by the
Aerosol Mass Spectrometer. (b) Fime-dDerivative of the CO2 concentration signal compared to its concentration, measured by cavity
ring-down spectroscopy. Colors indicate the relative wind direction.

3.3.3 Application of the PDA to a long-term high-altitude site monitoring dataset

We applied the PDA to a particle number concentration dataset collected at the high-altitude research station JFJ in the Swiss
Alps. The data has a time resolution of 1 minute. The calculated gradientderivatives show a very different pattern compared
to those from the MOSAIC expedition (Fig. 3a,b). The difference in magnitude between peHutioncontamination and the JFJ
background dataset is much smaller (Fig. A10) compared to MOSAIC. The JFJ dataset is therefore well suited for separating
polluted data using the IQR filtering method (step 1B). The parameters used in the PDA are shown in Table 1. The PDA was
applied to an example time series from two days in July 2016 (Fig. A10), where a diurnal cycle of the baselinebackground and
pollution spikes during daytime are visible. This example demonstrates how the baselinebackground is distinguished from the
spikes even when the basehlinebackground varies by an order of magnitude. Given the different approach by Bukowiecki et al.
(2021), i.e. detecting and counting spikes versus masking polluted time periods with the PDA, we cannot make a direct
comparison between the two methods like in Sect. 3.2.2 (visual method). The final decision about flagging individual data

points remains the user’s responsibility and will depend on the objective of the analysis.
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3.4 Limitations of the PDA

This study shows that the PDA is capable of cleaning peHutiencontamination from a variety of particle and trace gas datasets.
However, a challenge for the algorithm remains to deal with false negatives, which are left after applying the gradientderivative
filter (step 1 of the PDA). In situations with small pollution peaks, which occur on top of a clean baselnebackground, this is
often the case at the beginning and at the end of the affected period. The application of the neighboring points filter on top of
the gradientderivative filter improves the result significantly, but might not catch all pollution-affected points. An example of
this is shown in Fig. Alla and b.

Another challenge for the PDA is situations where the signal is influenced by subtle peHutiercontamination, which does not
result in large spikes but rather in a very noisy signal with low amplitude above a baselinebackground. Two examples are
shown in Fig. A9 and All. These situations are also difficult to assess for an expert using the visual inspection method. The

boundary between polluted and unaffected data is blurred, and the gradientderivative filter in Fig. A11 only flags a subset of

data points that protrude from the main signal. In this example, some of the flagged data points do not exceed the “baseline”

concentration at all. The difference between an unaffected and a flagged data point can be 2 cm™ at concentrations of 190 cm-

3 or 10 cm-3 at 390 cm3 (the derivative filter threshold depends on the concentration). If we choose a stricter derivative filter,

for example, with a = 0.45 (instead of 0.5) and m = 0.5 (instead of 0.55), more data points are flagged as contaminated and

hence less false negatives remain (Fig. Al2).Fhe-application—-ofa-strict PDA-with-—al-filtersincluded-could-aveid-false

negatives: However, this might also remove unaffected data points, and it is up to the user to make this decision.

The applicability of the PDA to a dataset also depends on the response time of the instrument. A response time which is slower
than the occurrence of pollution (i.e. the instrument cannot capture the sharp rise and fall in concentrations) leads to smaller
gradientderivatives of the measured particle number concentrations. This would set an upper limit to the measured
gradientderivative. Still, pollution could be detected as long as this upper limit is substantially higher than the
gradientderivatives of the natural signal. This does not matter for the measurements with the CPCs, since the response time is
typically lower than 1 second (Enroth et al., 2018). In essence, this issue is similar to recording data in coarse time resolution,

which would smear out the difference in magnitude between baseline-background and pollution (see Appendix BC).

4. Conclusions

We developed a pollution detection algorithm (PDA) to identify periods of local peHutioncontamination in atmospheric aerosol
and trace gas concentration time series. The PDA was successfully tested with particle number concentration datasets from
two different sites - a ship-based expedition in the high Arctic Ocean and a background station in the Swiss alps affected by
tourism - as well as with a CO; concentration dataset from the high Arctic. In comparison to the commonly used wind direction
method to clean datasets, the PDA is capable of identifying peHutiencontamination from different sources and directions and

reduces false positive and false negative results. Compared to a visual filtering method the PDA identifies a similar amount of
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poHutiencontamination (41 % with the visual method compared to 43 % with the PDA). The PDA only uses the target
concentration data and does not rely on ancillary datasets to identify polluted data points. It works for datasets with a relatively
low baseline-background where pollution spikes exceed the baselinebackground significantly and the sampling rate is fast
enough so that the gradientderivative of polluted signals separates clearly from that of unaffected. “Fast enough” depends on
the variability of the baseline-background and occurrence of pollution. In our case the methods worked for time resolutions
between 10 seconds and 10 min. The PDA is primarily designed for remote locations, but it might also be applied to locations
where local peHutiencontamination interference is so frequent that the majority of data points exceeds the contribution from
the underlying baselinebackground in the period of interest, like in urban areas for example.

The relative magnitude of interference from local pellutioncontamination varies between different measurement campaigns
and may depend on the type of instrument. The PDA is best suited to identify primary pollution, i.e., for particle number
concentration, or trace gases directly emitted by the pollution source (e.g., CO>), or size distribution datasets with a clear
primary pollution mode. For other variables, such as for accumulation mode particle chemical composition data, which are not
representative of the main pollution size range (around 30 nm), a different approach might be better (e.g., Dada et al., in prep.)
because the PDA will discard too many data points.

The PDA is published open-source in a user-friendly code toolkit downloadable from zenodo
(https://doi.org/10.5281/zenodo.5761101). All PDA parameters can be adjusted to adapt it to specific datasets or to customize
the filtering level for specific needs. This makes it flexible and allows its application to locations where no ancillary datasets
might be available. It also allows a fast application to multiple datasets and provides an objective, reproducible method to
identify local peHutiencontamination in remote or background conditions.
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Appendix A

-100
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Sea ice concentration [%)]

755  Figure Al: Track of RV Polarstern during the MOSAIC expedition in the central Arctic (Schmithuesen, 20214, ¢, d, €, b). Drift
(red line) started in October 2019 and ended in September 2020. The black lines show periods where the ship was on transit. The
sea ice extent is displayed from September 2019 at the annual minimum. We used sea ice data from the National Snow and Ice Data
Center (Maslanik and Stroeve, 1999). The background map is made with Natural Earth (https://www.naturalearthdata.com/).
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measurements were performed on the port side of the ship in the white container at the front with a higher inlet. Photo credit:
Michael Gutsche
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Figure A3: Full setup of the Swiss Container during the MOSAIC expedition (not all elements are discussed in this manuscript). In
yellow the total inlet, in green the interstitial inlet. The valve switched between the two inlets to allow the instruments behind it
(aethalometer, aerosol mass spectrometer, scanning mobility particle sizer, cloud condensation nuclei counter) to measure from both

inlets. The blue inlet is the new particle formation inlet. CI-Api-ToF stands for chemical ionization atmospheric pressure interface
time of flight mass spectrometer. NAIS stands for neutral cluster and air ion spectrometer.
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Figure A4: Particle number concentration (left axis) along with a) NO (in parts per billion (ppb)), b) CO (in parts per billion (ppb)),

775 c) relative wind direction and d) equivalent BC (ng/m-) at 880nm with standard manufacturer settings for the correction factor and
mass absorption cross section during a local pelutioncontamination event in the afternoon of July 27, 2020. Starting around noon,
the particle number concentration, NO and BC concentrations increased as wind came from the stack. Note that CO concentrations
did not exhibit any significant variability during that event.
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Figure AS: A situation when the wind was coming from the stack’s direction and the exhaust plume went directly over the Swiss
Container, but due to the surface inversion no pollution spikes were measured in the Swiss Container. The container was located at
the bow of the ship, below the crane (left hand side in this picture). Photo credit: Ivo Beck.
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Figure A6: Same as Fig. 4 but for another day (January 16, 2020). Panels a-c show the original particle number concentrations data
in red, overlaid with the unaffected data in blue. The application of additional filters in panels b and ¢ do not show an effect. Panel
d shows the distribution of the particle number concentrations of the complete dataset in bluered, and-after the application of
different-the gradient filters as a black contour line, and after the application of all filters of the PDA in purple. in-erange-green-and

red.
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Figure A7: Percentage of clean particle number concentration data points per day during the MOSAIC expedition after application
of the PDA. Missing data are indicated in grey and correspond to data removed when Polarstern was within Svalbard’s 12 nautical
miles zone. Please note this figure is indicative only and does not necessarily reflect the percentage of clean data points collected by
other instruments during the expedition.
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Figure A8: Time series with a comparison of the visual identification method and the PDA between 1 and 5 of March. In red: Data

800 points which are detected as contaminated by both methods. In blue: Data points which are detected as unaffected from pollution
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by both methods. In black: Data points which are detected as unaffected from pollution only by the visual identification method. In
magenta: Data points which are detected as pollution-free only by the PDA.
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Figure A9. Time series of CO2 mixing ratios after the application of the PDA using step 1B. Original data are shown in red, overlaid
with unaffected data filtered by the PDA.
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Figure A10. Time series of particle number concentration dataset from JFJ after the application of the PDA. Original data is shown
815 inred, overlaid with unaffected data filtered by the PDA.
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Figure A11: Case study of January 1, 2020. The particle number concentration signal is influenced by peHutiorcontamination which
820 shows as a noisy signal and not in distinct spikes. Panels a-d show the original particle number concentrations data in red, overlaid
with the unaffected data in blue after applying different filtering steps of the PDA. The orange circles highlight situations where
applications of the neighbors filter and the sparse data filter improve the detection of polluted data significantly.
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Figure A22: Same as figure A11, but with slightly stricter coefficients of the derivative filter. We chose a derivative filter with a =
825 0.45 and m = 0.5 to flag more data points in this case study.
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Appendix B: Comparison of individual filtering steps

In figure B1, we compare how the application of each individual filtering step to the 1min resolution dataset of the CPC3025

performs on the case study from March 6" to March 8. Panel a) shows the result after the application of the derivative filter

and the lower threshold filter only (but not the upper threshold filter) with a = 0.5 and m = 0.55 and a lower threshold of 60

cm3. As we can see, the application of the derivative filter detects and flags most data points during the polluted time periods,

but leaves some during the contamination event on the 6™ of March. The application of the derivative filter leaves 43% of the

data unaffected and it reduces the mean concentration from 5198 cm to 202 cm. Panel b) shows the application of the upper

threshold filter alone. Here we set the upper threshold to as low as 130 cm™ to be able to retrieve the background signal as

much as possible. With this threshold, 23% of the data are left unaffected with a mean concentration of 70 cm=. However, the

application of a single threshold to a longer time series is difficult, since the background concentration can rise to higher

concentrations (as can be seen for example in Fig. 6). The upper threshold can be useful in cases, when the measured

concentration stays at the upper detection limit of the instrument over a long time period and thus the derivative filter would

not catch those contaminated data points. Panel c) shows the application of the median filter alone with a median window of

360 data points (6 hours) and a median threshold of 1.05. The application of the median filter alone with these parameters

leaves 68% of the data unaffected, with a mean concentration of 2979 cm=. It is not satisfying because it is not able to flag the

strong contamination on the 8" of March after 12:00. Too many contaminated data points raise the median concentration. The

median filter relies on a pre-cleaned dataset, where most of the contaminated data points have been removed already. Therefore,

it can only be applied after the application of the derivative filter. Finally, Panel d) shows the result after the application of the

whole PDA, with the parameters presented in Table 1. The application of the whole PDA leaves 38% of the data unaffected

with a mean concentration of 191 cm. Evaluated visually by expert’s judgement, we find that it performs better than the

application of the single filters, it detects more contaminated data points and results in a time series which represents the

background concentration. Table B1 shows an overview of how many data remain unaffected after the application of the

different filtering steps. Additionally, the mean concentrations and the standard deviations are shown. The derivative filter is

by far the most powerful step of the PDA, as it detects already 64% of the total contamination and reduces the mean

concentration drastically. The other filters of the PDA only have a “fine-tuning” effect and add another 6% of flagged data
points. This effect can still be very important for individual cases as shown in the case study during March 6 around noon (Fig.

4).
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Figure B1: Intercomparison of individual filtering steps on a case study of March 6 to 8. Clean data (in blue) is overlaid over the
original data (in Red) after the application of one filtering step individually to the data: a: derivative filter. b: threshold filter. c:
median filter. d: All filtering steps of the PDA were applied. For all plots we used data from the CPC3025 at 1 min time resolution.
Original data have only been pre-cleaned for zero filter measurements.

860

Table B1: Percentage of data declared as unaffected when different filtering steps are applied and the mean concentrations and
standard deviations of the corresponding particle number concentrations.

Remaining Mean Sdandard
data concentration | deviation
Comparison of single filters Parameters [cm3]
Total counts 100% 5198 14598
Derivative filter only a=0.5,m=0.55 43% 202 618
Threshold filter only Threshold = 130 cm™® 23% 70 37
Median time = 360 min , 979 10646
Median filter only median factor = 1.05 68%
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Derivative and threshold filter AsinTab. 1 43% 198 244
Derivative, threshold and 191 221
neighbors filter Asin Tab. 1 39%

All PDA Asin Tab. 1 38% 191 214

Since local contamination often shows in fast changing concentration spikes, it is worth exploring whether a low-pass filter is

applicable. For this, we looked at the power spectral density of the CPC3025 particle concentration data by means of a Fourier

frequency decomposition (Fig.B2). No high frequency is visible which would allow a low-pass filter to be applied. Local

contamination in this dataset does not show in a high-frequency signal, which is distinguishable from the background signal.

The detection of pollution based on frequency analysis is therefore not possible here.

0.00 0.01 0.02 0.03 0.04 0.05
frequency [Hz]

Figure B2: Power spectral density (PSD) of the particle number concentrations of the CPC3025 as a function of the frequencies. The
dataset has a time resolution of 10 seconds. For this figure we used the subset of the month March.

In order to elaborate on the effect of changes in the parameters of individual filtering steps, we let the PDA run several times

and thereby only change one parameter at the time. The resulting size of the filtered dataset is shown in Table B2. The first

row shows the initial setting, as we used them in Table 1. For example, the largest change is caused by turning off the neighbors

filter. This increases the dataset by 11.4%. Relatively small changes in the power law slope and intercept of the derivative
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filter change the size of the dataset by roughly 5-10 %, whereby the effect of changes of the slope are stronger. Changes in the

median filter only cause small changes by < 1% to the final dataset. And setting the sparse threshold from 24 to 18 out of 30

data points (from 80% to 60% allowed polluted data points in the sparse window) reduces the dataset by ca. 3%. The table

illustrates again that the derivative filter is responsible for the largest part of the filtering by the PDA. Even though the filtering

steps 2 to 4 only contribute little to the PDA, they are valuable to avoid false negatives after the application of the derivative

filter.

Table B2: The effect of changes in the parameters of individual filtering steps on the number of unaffected data points. The first
row shows the standard settings used to filter the CPC3025 dataset and the number of remaining data points. The following rows
show changes in different parameters and again the number of unaffected data points with these changes in the PDA.

# Data points

after

application of
Initial parameters of the PDA PDA Percentage
a= 0.5 cm3s?!
m= 0.55s!
lower threshold = 60 cm®
median time interval = 30 min
median deviation factor = 1.4
sparse window = 30
sparse threshold = 24 190358 100.0%
Changed parameter
a= 0.45 cm3s! 184297 96.8%
a=0.6 cm=3s? 198733 104.4%
m=0.5s? 171060 89.9%
m=0.6s" 202292 106.3%
lower threshold = 100 cm™ 196471 103.2%
median time interval = 120 min 188503 99.0%
median_factor = 1.8 191316 100.5%
median_factor =5 191893 100.8%
sparse_threshold = 18 185578 97.5%
sparse_threshold = 27 192761 101.3%
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no neighbors filter 212073 111.4%
no sparse filter 193680 101.7%

Appendix BC: Application of the PDA to various time-resolutions

We use the averaged time series from the gradientderivative filter for further filtering steps in the PDA. This comes with the
trade-off that the dataset loses time resolution when applying the PDA. In many applications this might not be a problem since
data are often collected in higher time resolutions than needed for further analysis. We applied the PDA to the original dataset
of the CPC 3025 (10 s time resolution). Figure Bia-Cla shows the gradientderivatives plotted against the total number
concentrations for this dataset, which is used to determine the separation line (in red) for the gradientderivative filter. It is less
intuitive to find a good position of the separation line, compared to the one-minute averaged gradientderivative (Fig. 3) because
the two branches do not separate as clearly. We chose a separation line with the parameters a = 0.6 cm=3s™* and m = 0.44 s
Figure B1b-C1b shows the same graph for the 10 min averaged time series of the same dataset. Here, we used a = 1 cm3s’!
and m = 0.49 s for the separation line. In both cases, it is possible to distinguish between the two gradientderivative branches,
which indicates polluted and unaffected data. We observe that the separation line tends to go to higher gradientderivatives with
coarser time resolution, which is a result of the longer averaging time, because this smoothens the variability. Figure B2-C2
shows the original (in red) and filtered (in blue) time series over three days after application of all PDA filtering steps to the
two datasets (10 sec time resolution in panel a, and 10 min time resolution in panel b). The used parameters of the PDA are
listed in table BAC1. The PDA detects the polluted spikes in both cases and is able to separate clean from polluted data. Even
though the lower time resolution data do not have as distinct pollution "spikes". Potential outliers could have been smoothened
when averaging. We conclude, the possibility to “tune” different parameters of the PDA makes it applicable to datasets with

different temporal resolutions.

Table BAC1: Parameters used for the application of the PDA to two datasets with different time resolutions

Filter step Parameter Particle number Particle number
concentration in 10 sec time | concentration in 10
resolution min time resolution

1A. GradientDerivative filter | a 0.6 cm3s? 1cm3s?

(Power law) m 0.44s? 0.49s?

2. Threshold filter Upper threshold 10* cm® 10* cm®

Lower threshold 60 cm® 60 cm3

3. Neighboring points filter On/off On On
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4. Median filter Median time window 30 min 60 min
Median deviation factor 14 1.4
5. Sparse data filter (no. of | Sparse window 180 12
data points) Sparse threshold 144 10
910
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| Figure B1C1. Relation of the absolute value of the particle number concentration gradientderivative to the absolute number
concentration for two different time resolutions. a: 10 sec, b: 10 min. The color-code indicates the relative wind direction. The red
lines separate polluted from unaffected data points with a slope of 0.44 s and an intercept of 0.6 cm™3stin panel a and a slope of

915 0.49 s'and an intercept of 1 cm3stin panel b.

47



920

925

(@)

Original P
PDA filtered 3
b

Wl
et

3

10°F

"
|
£
L 407 . - ‘
c Q AL Q A Q AT o
ke © \ it 1 @ \ o
= o o o0 O o°
c
@ (b)
Q
S R
(8]
g
£ .
z 10¢
. * -~ . .
. e Sy N
; . e P, 2 VL
10° A \W Wit s ‘
W AL W AL o AL o
© © t q ® ® 9
@ @ @ @ o o »°

2020

Figure B2C2: Performance test of the PDA on datasets with two different time resolutions. a) 10 sec time resolution data b) 10 min
time resolution data. Filtered data in blue is shown on top of the original data of the corresponding time series in red.

Code availability

The pollution mask code is available via zenodo (https://doi.org/10.5281/zen0d0.5761101).

Data availability

All Swiss Container MOSAIC data will be publicly accessible from 1 January 2023 via PANGAEA. Datasets of the raw and
the corrected particle number concentrations in 10s time resolution of the CPC 3025 were submitted to PANGAEA on
December 6, 2021. A one minute averaged dataset of the CPC 3025, together with a pollution flag created by the PDA was
submitted to PANGAEA on December 6, 2021. The ARM datasets are available via the ARM Data Discovery tool:

https://adc.arm.gov/discovery/#/ (Kuang et al., 2021). The Jungfraujoch data are available via ebas.nilu.no.
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