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Abstract 

Mineral dust particles dominate aerosol mass in the atmosphere and directly modify Earth’s radiative balance through 

absorption and scattering. This radiative forcing varies strongly with mineral composition, yet there is still limited knowledge 

on the mineralogy of atmospheric dust. In this study, we performed X-ray diffraction (XRD) and reflectance spectroscopy 

measurements on 37 different dust deposition samples collected as airfall in an urban setting to determine mineralogy and the 10 

relative proportions of minerals in the dust mixture. Most commonly, XRD has been used to characterize dust mineralogy; 

however, without prior special sample preparation, this technique is less effective for identifying poorly crystalline or 

amorphous phases. In addition to XRD measurements, we performed visible and short-wave infrared (VSWIR) reflectance 

spectroscopy for these natural dust samples as a complementary technique to determine mineralogy and mineral abundances. 

Reflectance spectra of dust particles are a function of a nonlinear combination of mineral abundances in the mixture. Therefore, 15 

we used a Hapke radiative transfer model along with a linear spectral mixing approach to derive relative mineral abundances 

from reflectance spectroscopy. We compared spectrally derived abundances with those determined semi-quantitatively from 

XRD. Our results demonstrate that total clay mineral abundances from XRD are correlated with those from reflectance 

spectroscopy and follow similar trends; however, XRD underpredicts the total amount of clay for many of the samples. On the 

other hand, calcite abundances are significantly underpredicted by SWIR compared to XRD. This is caused by the weakening 20 

of absorption features associated with the fine particle size of the samples, as well as the presence of dark non-mineral materials 

(e.g., asphalt) in these samples. Another possible explanation for abundance discrepancies between XRD and SWIR is related 

to the differing sensitivity of the two techniques (crystal structure vs chemical bonds). Our results indicate that it is beneficial 
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to use both XRD and reflectance spectroscopy to characterize airfall dust, because the former technique is good at identifying 25 

and quantifying the SWIR-transparent minerals (e.g., quartz, albite, and microcline), while the latter technique is superior for 

determining abundances for clays and non-mineral components.  

1 Introduction  

Mineral dust aerosols are lofted from the surface into the atmosphere, mainly in the arid regions of the world, either affecting 

the area nearby or traveling long distances causing global impacts (Goudie and Middleton, 2006). Suspended mineral particles 30 

affect air temperature by scattering and absorption of incoming sunlight and outgoing long wave radiation (Miller and Tegen, 

1998). Mineral dust-radiation interactions (e.g., absorption and scattering) directly modify Earth’s radiative balance and energy 

budget, consequently contributing to climate change (Tegen and Lacis, 1996; Tegen et al., 1996). Past studies have discussed 

that dust particles’ distinctive radiative forcing strongly depends on their particle size distribution (PSD) and mineral 

composition (Sokolik and Toon, 1999; Sokolik et al., 2001; Ginoux 2017). Atmospheric dust particles contain a diverse mix 35 

of minerals. Such dust is dominantly composed of quartz, carbonates, iron oxides, clays, sulfates, and feldspars (Engelbrecht 

et al., 2016; supplement). Therefore, the relative quantity of the various minerals defines the optical properties of these aerosols. 

 

 As a common approach, particulate matter deposited by air fall is collected at different geographic locations to determine 

mineralogical composition and abundance as well as particle size distribution. Despite the fact that the physico-chemical 40 

properties of minerals have a substantial impact on dust-related radiative forcing, there is no ideal measurement technique for 

identifying these properties. To date, X-ray diffraction (XRD) has been frequently used in various research studies as a primary 

or complementary technique to measure the mineral content of dust particles (e.g., Caquineau et al., 1997; Kandler et al., 2009; 

Engelbrecht et al., 2009, 2016, 2017; Nowak et al., 2018). For example, Engelbrecht et al., (2017) performed XRD 

measurements on 27 dust samples collected from the Arabian Red Sea coast in order to obtain mineralogy and fractional 45 

abundances of minerals. In that study, they found that the dust samples were mainly dominated by quartz, feldspars, micas, 

clays, and halite and to a lesser extent by carbonates, iron oxides, and gypsum. While XRD is a powerful technique for 
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characterizing crystalline phases, it is less effective at measuring poorly crystalline and amorphous phases (Moore and 

Reynolds, 1997).  50 

 

In this research, we use visible and short-wave infrared (VSWIR) reflectance spectroscopy as a complementary method to 

obtain mineral identification and abundances. To date, very limited studies have used VSWIR to determine natural dust particle 

mineralogy (e.g., Reynolds et al., 2020); however, it can provide quantitative measurements and identify both amorphous and 

crystalline phases (Clark, 1999). This approach has been widely used to obtain mineral compositional information in laboratory 55 

and remote sensing applications with particular attention to mineral mixtures (e.g., Mustard and Pieters, 1987; Combe et al., 

2008). Reflectance spectra of mixtures are modelled using radiative transfer (RT) theories, such as developed by Hapke (1981), 

or linear spectral mixing (LSM) (e.g., Ramsey and Christensen, 1998). LSM is employed when a sample reflectance spectrum 

is simply a linear combination of the constituents’ spectra, whereas RT is commonly utilized when materials are intimately 

mixed, and light is interacting with several minerals resulting in a nonlinear relationship between abundance and spectral 60 

feature strength. Since planetary surfaces are mostly composed of intimately mixed minerals with nonlinear spectral 

interactions, RT has been found to be an effective way to derive mineral abundances from reflectance spectra measured from 

spacecraft and in the laboratory (e.g., Mustard and Pieters, 1987, 1989; Hiroi and Pieters, 1994; Lucey, 1998; Cheek and 

Pieters, 2014; Robertson et al., 2016; Lapotre et al., 2017). Additionally, many studies have employed RT to model reflectance 

spectra of synthetic or laboratory mineral mixtures, validating the derived abundances. For example, Robertson et al., (2016) 65 

demonstrated that physical mixtures of clay and sulfate at varying abundances were accurately determined (within 5 %) using 

a Hapke RT model.  

 

Moreover, multiple past studies have shown that the mineral abundances (for rocks and rocking forming fine grained mineral 

samples) derived from visible and infrared reflectance spectra are in good agreement with mineral abundances that are obtained 70 

using XRD (e.g., Pan et al., 2015; Thorpe et al., 2015; Leask and Ehlmann, 2016). For example, Leask and Ehlmann (2016) 

performed measurements on 15 rock samples (with various particle sizes) collected from Oman, and they found that VSWIR 
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reflectance spectroscopy paired with linear spectral unmixing yields quantitative mineral abundance estimates that are 

consistent (within 10-15 %) with XRD abundance estimations. 

 75 

Here, we used both XRD and reflectance spectroscopy as complementary techniques to investigate the variation of both 

mineral composition and abundance in natural samples of atmospheric dust deposited in Ilam city, Iran. We estimated mineral 

abundances of these homogenous samples using their reflectance spectra, a Hapke RT model combined with linear mixing, 

and compared those results with semi-quantitative abundances determined by XRD. We examined the ability of widely used 

spectral mixing approaches to determine if they can be used accurately to quantify mineral abundances in dust samples 80 

collected in urban settings.  

2 Methods and Material 

2.1 Sample Collection  

For this study, we conducted measurements on 37 samples of dust captured with marble dust collectors (MDCO), located in 

Ilam city, Iran. Based on an original design by Ganor (1975), we chose MDCO due to the efficiency and popularity in desert 85 

research (e.g., Offer et al., 1992; Goossens and Offer, 1994; Goossens and Rajot, 2008). In general, the representation of dust 

in the sample depends on the selected sampling method, which may result in underestimation or overprediction of some 

important minerals (von Holdt et al., 2021). MDCO (like many other dust catchers) is less efficient in dust collection in high 

wind regimes (Goossens, 2005). However, it was proven to be efficient at collecting dry deposition and less sensitive to local 

weather conditions (Goossens and Offer, 1994; Sow et al., 2006; Goss et al., 2013). Sadrian et al. (2012) selected Ilam city as 90 

their study area, because it is located in western Iran and is affected by large dust sources in neighbouring countries including 

Iraq, Kuwait, and Saudi Arabia (Shahsavani et al., 2012), and thus it is commonly impacted by severe dust storms. To collect 

deposition of airborne dust, 13 dust samplers were distributed and installed throughout the city area (Fig.1). Deposited dust 

was collected in three intervals from September, 2011 through June, 2012 (Appendix A, Table A1). Specific three-month 

periods were September 23 to December 21, 2011 (Fall) and December 22, 2011 to March 19, 2012 (Winter), and March 20 95 
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to June 20, 2012 (Spring). As part of sample collection procedure, first, dust samples in MDCO were dried at  room temperature 

to preserve the mineralogical and physical properties of the surface soils from which they were transported. Then, the dry 

samples were collected from the samplers by thoroughly cleaning the dust depositions using a brush. All samples were 

transferred to separate plastic bottles for the further experiments. A total of 39 samples were collected in order to determine 100 

their mineralogy, heavy metal content, and deposition rate in different areas of Ilam city (Sadrian et al., 2012). In the current 

research, we revisit the compositional information of these dust samples. The mass for the collected dust samples ranges from 

minimum ~ 0.01 g to maximum ~ 5 g. Since two samples did not contain enough dust for our analysis, as shown in Table A1, 

the measurements for this study were conducted on 37 samples. It should be noted that there was no special sample preparation 

that performed for the purpose of dust measurements (with XRD and spectroscopy) described in the next sections. Prior to 105 

these measurements unwanted debris as well as detectable manmade and plant materials were removed from the samples and 

we made sure to use similar quantity of dust ( ~ 1 g) for each of experiments that were conducted with spectroscopy, and for 

the measurements that were collected using XRD. 

 

 110 

Figure 1. Map (©Google Earth) shows the distribution of samplers throughout Ilam city. Annotations note sample numbers 

identified in Appendix A, Table A1. Latitudes and longitudes are the coordinates for the corners of the map.  
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2.2 X-Ray Diffraction (XRD) 

XRD is a technique used to obtain the unique crystal structure of a material. Diffracted beams are measured over a range of 

angles (2-theta) and peaks at specific angles are related to the crystal structure of the mineral (Klein, 2002). For the Ilam 120 

samples we used a Bruker D2 Phaser benchtop X-ray diffractometer. Qualitative phase identification was performed using 

XRD evaluation software (DIFFRAC.EVA), that helps to identify phases in a specimen by comparison with standard patterns 

existing in a library. Figure 2 displays standard reference minerals with unique diffraction patterns extracted from an accessible, 

established dataset (American Mineralogist Crystal Structure Database (AMCSD) (Downs and Hall-Wallace, 2003)) compared 

with unknown peaks in an Ilam sample (S11). As shown in Fig. 2, matches for quartz (Q), calcite (C), albite (Al), microcline 125 

(M), gypsum (G), kaolinite (K), and actinolite (Ac) (representative amphibole) were found in S11. The identification of the 

illite peak in Fig 2 uses data from the published literature such as from Gualtieri (2000) and Drits et al., (2010). While this 

peak pattern was available for our analysis in the DIFFRAC.EVA software we were not able to export the reference patterns 

in order to show them in Fig 2.  We used the AMCSD database for other minerals shown in Fig 2, but this database does not 

include a pattern for illite. Montmorillonite was readily identified in most of the samples using spectroscopy (Fig. 3). However, 130 

in XRD plots it is difficult to discriminate without special sample preparation (e.g., clay separation). Because the volumes of 

dust samples were low, XRD sample preparation specifically for clay minerals was not conducted. Also, we could not follow 

sample preparation developed for low mass atmospheric dust samples (Caquineau et al., 1997) due to a lack of access to 

specialized equipment. In order to account for montmorillonite, we included the standard reference pattern in all diffractograms 

and mineral abundance determinations. Semi-quantitative (S-Q) assessment of mineral abundances was obtained through 135 

integrated band area ratios and relative intensities of several lines after removing background and source peak noise. The result 

from S-Q analysis of all dust samples is discussed in Sect. 3.1. S-Q abundances made from the diffraction measurements are 

derived from the relative proportion of minerals in the sample (weight percentage %) and should add up to 100 %. Given that 

the XRD is less effective at detecting and quantifying poorly crystalline minerals and amorphous phases (Moore and Reynolds, 

1997), the obtained abundance results for other existing well crystalline minerals can be overestimated. Past studies reported 140 

a detection limit which is generally < 2 % for well crystalline minerals and an uncertainty of approximately ±10 % related to 

mineral quantification. (e.g., Bish and Chipera, 1991).  
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Figure 2. XRD pattern of sample S11 is compared with those of standard reference minerals from AMCSD.  Dotted lines connect 

the diagnostic XRD peak in quartz (Q), calcite (C), albite (Al), microcline (M), gypsum (G), kaolinite (K), and actinolite (Ac) to the 145 
corresponding XRD patterns in S11 confirming the presence of these minerals in this particular dust sample. Illite (I) was identified 

as described in the text. 

2.3 VSWIR Reflectance Spectroscopy 

Minerals have distinctive spectral characteristics, and band center, strength, shape, and width are utilized to confidently identify 

species (Gaffey et al. 1993; Clark, 1999). In the VSWIR (350 to 2500 nm) diagnostic absorption bands arise from transition 150 

electrons (generally caused by iron oxides) in various crystallographic sites and from the overtones and combinations of the 

fundamental vibrations of species such as hydroxyl, water, and carbonate (Hunt, 1977; Clark et al., 1990). VSWIR reflectance 

measurements of dust samples were carried out using a fine resolution and high sensitivity Spectral Evolution (SE), model RS-

5400 portable spectroradiometer. To collect sample spectra, dust samples were placed in a holder and a contact probe with a 

halogen light source was used to capture VSWIR data. As part of routine calibration, the contact probe measures a white 155 

Spectralon plate. All sample measurements are automatically ratioed to the Spectralon calibration target. We subsequently 

multiplied measured spectra by the absolution reflectance of Spectralon, resulting in a measurement that is in reflectance 

(Kokaly et al., 2017). Sample spectra were measured with a 0° incidence angle and a 38° emergence angle, yielding a 38° 

phase angle. Because sample volumes were small (lowest mass ~ 0.01 g) and to minimize the effect of the aluminium holder 
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reflectance, we measured the sample on a holder covered with black tape. Measurements of the tape alone confirmed there 160 

were no features introduced by this method.  

 

Mineralogy for the reflectance spectra of the Ilam dust samples was determined by comparing the samples with the well 

characterized USGS library (Kokaly et al., 2017). Mineral constituents were identified with an iterative procedure and 

inspection where phases were identified on the basis of H2O, OH, and Al-OH absorption features for phyllosilicates, the H2O 165 

band in sulfates, and CO3 in carbonates (Hunt, 1977; Gaffey, 1986; Clark et al., 1990). Figure 3 shows representative spectra 

from three Ilam samples (S25, S26, S30) having varying mineralogy. These samples (S25, S26, S30) represent a range of 

mineral compositions including calcite, montmorillonite, illite, and gypsum. In this spectral range (1350-2500 nm), common 

silicates such as microcline, quartz, and albite have no absorption features (dotted flat lines in Fig. 3) and are thus known as 

transparent minerals in the VSWIR spectral range (Clark, 1999). Iron oxides have strong diagnostic spectral signatures in the 170 

visible and near infrared (up to around 1000 nm), however we did not see absorption features attributed to them in these 

samples. Therefore, we truncated all spectral plots at 1350 nm in order to focus on spectral range above 1350 nm with the 

strongest features (SWIR range). Hence, Exclusion of the spectral range from 350 to 1350 nm will not miss any major mineral 

components.  Deleted: Since we did not see absorption features attributed to iron 175 
oxides in these samples, we truncated all spectral plots at 1350 nm in 

order to focus on spectral range above 1350 nm with the strongest 

features (SWIR range). Therefore, exclusion of the spectral range 

from 350 to 1350 nm will not miss any major mineral components.
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 180 

Figure 3. SWIR spectra for three representative samples (S25, S26, S30) and library spectra of pure minerals showing diagnostic 

features for calcite, montmorillonite, illite, and gypsum. All spectra are offset for clarity. Arrows near 1400, 1900, 2200, and 2345 

nm call out features arising from OH, water, and Al-OH in mineral structures, common to many clay minerals such as 

montmorillonite and illite. Arrows targeting 2340 and 2480 nm show the wavelengths of dominant absorption features in calcite. 

Arrow at 1945 nm represents the unique spectral signature attributed to water in sulfates such as gypsum. 185 
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2.4 Optical Microscopy (OM) 

An Olympus petrographic optical microscope was used to assess mineralogical composition and relative abundance of minerals 

in the samples. Mineral grains were mounted on a glass slide immersed with Cargille 1.544 refractive index oil. Particles were 

identified based on their diagnostic properties such as color, cleavage, refractive index, and texture. We were able to detect 

some coarser particles such quartz, carbonates, and amphibole (Figs. 4a and 4b), however, fine grain clay minerals were not 190 

identifiable due to the petrographic microscopy limitation for grain sizes less than 10 µm. The presence of manmade materials 

(which could be related to asphalt and tar) was revealed by visual inspection of OM images. Figures 4a and 4b illustrate the 

relative abundances of these dark materials in samples compared to mineral particles. Additionally, there are numerous angular 

particles, particularly in Fig. 4b, that have no cleavage, a refractive index significantly lower than 1.544, no crystal structure, 

and seem to be amorphous and isotropic. Because these samples were collected in an urban setting, they contain a variety of 195 

different anthropogenic particles that are difficult to identify using OM.   

 

Figure 4. (a) and (b) are OM images of representative samples S6 and S11, respectively, depicting the presence of quartz, calcite, 

amphiboles (red rectangles), and dark materials (yellow circles).  Quantitative and visual assessment reveals that both images contain 

a high abundance of dark materials and other unknown particles, that have no diagnostic mineral properties. 
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2.5 Particle Size Distribution (PSD) 

PSD was determined for all Ilam samples using a Malvern Mastersizer 3000. This instrument is based on a compact optical 

system that uses laser diffraction to measure particle size distribution for both wet and dry dispersions (known as hydro and 200 

aero methods). We selected the wet dispersion method for PSD analysis because this technique will separate sand-sized micro-

aggregates of particles into their smaller constituents for the final results (Hartshorn et al., 2021). This method also allows for 

full sample recovery. For subsequent analysis, the particle size fractions that make up the samples were categorized into three 

groups: clay (< 2 µm), silt (2-63 µm), and sand (63-500 µm). The 37 dust samples were dominated by silt sizes but showed 

variable size range distribution, as shown in Figure 5. The mean for each size ranges are clay ~ 7 %, silt ~ 83 %, and sand ~ 205 

10 %.   

 

Figure 5. Ternary diagram showing volume distributions for 37 dust samples analysed with Malvern Mastersizer 3000. Silt is the 

most prevalent size class in the samples with a minimum ~ 69 % and maximum ~ 93 %.   

2.6 Mineral Abundance Estimation from Reflectance Spectra 210 

In order to determine dust mineral abundances from reflectance spectra, we initially used linear spectral mixing (LSM) of the 

reflectance spectra. This approach assumes that the spectrum of the sample is a linear combination of the spectra of individual 

minerals (endmembers) and it has been extensively used to characterize materials on the surface of Earth (e.g., Metternicht 

and Fermont, 1998; Roberts et al., 1998; Dennison and Roberts, 2003) and Mars (e.g., Bell et al., 2002; Combe et al., 2008). 

Based on LSM, the reflectance spectra of a mixture can be expressed as (Keshava and Mustard, 2002),   215 
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Y(λ) = ∑ αᵢX(λ)ᵢ + ε(λ)𝑛
𝑖=1  ,                                                                                                                                                      (1) 

where Y denotes the reflectance for the mixed spectrum, αᵢ is the abundance of the ith endmember in the mixture spectra, λ is 

the wavelength, ε represents the residual error between sample and modelled spectra, and X(λ) is the matrix of input 

endmembers reflectance spectra obtained from the USGS spectral library (Kokaly et al., 2017).     

 220 

To solve equation 1 for αᵢ, we employed a non-negative linear least squares (NNLS) algorithm which calculates a component’s 

coefficient or abundance, which must be a positive number (Rogers and Aharonson, 2008). Our NNLS algorithm was designed 

using Matlab R2019a and an available function called non-negative linear least squares (lsqnonneg). The inputs for the NNLS 

model are the dust reflectance and the matrix of endmember reflectance spectra from the USGS library, and outputs are the 

vectors of abundances and the root mean square error (RMSE) between the dust sample spectra and the model fit. In order to 225 

assess the quality and the accuracy of the modelled spectra, both visual comparison of the calculated fit and the RMSE were 

evaluated. While application of this method resulted in a very low RMSE for the fit between the sample and modelled spectra, 

the modelled spectra did not match band centers and strengths for the absorption features and did not produce reasonable 

mineral abundances. As these samples are very fine-grained, with an intimate association with one another, multiple scattering 

effects are expected to be important, and thus reflectance spectra of the mixture are a nonlinear combination of constituents’ 230 

abundances (Nash and Conel, 1974; Singer, 1981). In order to address this nonlinear mixing, we implemented a widely used 

radiative transfer model based on Hapke (1981) that has been shown to provide reliable mineral abundances from laboratory 

particulate mixtures (e.g., Mustard and Pieters, 1987, 1989; Hiroi and Pieters, 1994; Lucey, 1998; Robertson et al., 2016; 

Lapotre et al., 2017). In order to determine abundance, the dust sample and library mineral endmember reflectance spectra are 

converted to single scattering albedo (SSA) according to Equation 2 (Hapke, 1981). SSA is the ratio of the scattering to the 235 

extinction of the medium. A combination of the SSA of mineral endmembers do mix linearly [Johnson et al., 1983] and thus 

are able to accurately reproduce the mixture reflectance spectra. Mixture reflectance spectra are related to the average SSA (w) 

through  
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where r is the reflectance, µ˳ and µ are the cosines of the angles of incident and reflected light, w is the average single scattering 240 

albedo, H is the Chandrasekhar function for isotropic scatterers, B(g) is backscatter function, P(g) is the average single particle 

phase function, and (g) is phase angle. Following the reasoning of Mustard and Pieters (1989) that there is negligible 

backscattering at intermediate phase angles, we set backscatter function B(g) to zero. We assume these particles scatter 

isotropically and we can set P(g) = 1. Hapke’s approximation of Chandrasekhar’s H function is defined by Eq. 3,  

𝐻(𝜇) =
1+2µ

1+2µ𝛾
 ,                                                                                                                                                                      (3)  245 

Where γ = √1 − 𝑤 . We now invert Eq. 2 to calculate w based on the reflectance measurement, which yields the expression,  

𝑤 =
4(µ+µ˳)𝑟

𝐻(µ)𝐻(µ˳)
 ,                                                                                                                                                                     (4)     

where we use Eq. 3 to obtain H(µ) and H(µ˳). This equation includes w on both the left side and in the H functions. In order 

to solve this, w is subtracted from both sides of the equation and we solve for the value of w that results in zero, using the 

Matlab command “fzero”. This command is used to find the roots for nonlinear equations of a single variable. As r, µ (38°), 250 

and µ˳ (0°) are known, the root is the value of w that makes the whole equation zero. Using this method, we derived SSA at 

each wavelength for both dust sample spectra and the mineral endmembers from the library. Because the average SSA (w) of 

a sample is a linear combination of individual mineral SSA, we employ a linear spectral mixing approach (Eq. 1), but Y is now 

w of the measured sample and X is the SSA spectra of pure minerals from the USGS library. Using Eq. 5, we determine the 

fractional contribution of a given mineral.  255 

 

 

where wmix is the average SSA, wi is the SSA for individual endmember i, and fi is the fractional geometric cross-section for 

component i. Based on Lapotre et al., (2017), fi can be expressed as,  

𝑓𝑖 = (
𝑚𝑖

𝜌𝑖𝑑𝑖
)/ ∑(

𝑚𝑛

𝜌𝑛𝑑𝑛
)                                                                                                                                                                   (6) 260 

 𝑟 = 
𝑤

4
 

1

µ˳+µ
 {[1 + 𝐵(𝑔)]𝑃(𝑔) + 𝐻(µ˳)𝐻(µ) −  1},                                                                                                               (2) 

 

𝑤𝑚𝑖𝑥 =  ∑ 𝑓𝑖

𝑁

𝑖=1

𝑤𝑖  , 

 

(5) 
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for an n component mixture. In Eq. 6, di, ρi, and mi are the grain size, density, and mass abundance of endmember i. Past 

studies reported the density of dust particles between 2 to 3 g cm-3 (e.g., Delany et al., 1967; Maring et al., 2000; Reid et al., 

2003; Fratini et al., 2007), so we set the density as 2.5 g cm-3 for all dust samples. Based on information provided in the USGS 

library, we selected spectra measured at finer grain sizes when available. For some samples, the USGS library includes multiple 265 

samples for a given mineral type. Through trial and error, we selected individual samples that provided the best fits. These 

spectra are shown in Appendix B (Fig. B1). Most library minerals used were in the grain size range < 150 μm. Our samples 

have narrow size distribution (Fig. 5) so that our model assumes all components have the same grain size and does not allow 

this to vary as a free parameter.  

 270 

To derive fractional abundances, the NNLS Matlab solver is used to input a matrix of mineral endmember SSA and dust sample 

w. This algorithm attempts to find the mass abundances that reproduce the best model fit for a dust sample spectrum. Figure 6 

displays the calculated linear least squares fit of the model to the measured spectra of three representative dust samples (S15, 

S33, S17). In addition to minerals, we found hydrocarbon (C-H) absorption features related to asphalt and tar in many of the 

samples in our preliminary analysis, and thus we included their spectra (Fig. 7a) in the input endmember bundles for modelling 275 

all 37 samples. Our analysis determined the RMSE between the sample and the modelled spectrum with variable small numbers 

between 0.022 to 0.16 (Appendix A, Table A1 and Appendix C, Fig. C1). Sample S15 (Fig. 6a) displays a relatively well-

modelled fit based on our visual evaluation and a low RMSE (0.044). Many of the samples, such as S33 (Fig. 6b), used a 

substantial amount of asphalt or tar to reproduce a good fit in the wavelength region between 2300-2370 nm.  Some parts of 

the fit for S15 and S33 have minor discrepancies (e.g., near 2255 nm for S15 and between 1550-1730 nm for S33), but 280 

absorption feature shapes and centers are accurately determined. We found many spectra (e.g., S17, Fig. 6c) are not well 

modelled due to the contribution and presence of other materials. We visually identified dry grass, plastic, and styrofoam in 

some samples. Figure 7b shows the spectra for dry grass and plastic extracted from the USGS library (Kokaly et al., 2017), as 

well as styrofoam that we characterized in the laboratory. These urban materials have strong absorptions with a wide range of 

spectral features (Kokaly et al., 2017). Not including them in the model likely prevents a good match to the measured spectra. 285 

Because the focus of this research was on the mineral constituents, we did not attempt to include other non-mineral components 
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in order to obtain good fits for all samples. Asphalt and tar were included in all models because their absorption bands occur 290 

in many samples and provide good match to the overall SSA. 

 
Figure 6. 6a, 6b, and 6c display the model fit for the representative samples S15, S33, and S17. Measured spectra are shown with 

solid blue lines and modelled with dash-dot red lines. The smaller plots on the bottom show the root mean square error (RMSE) as 

a function of wavelength and the total RMSE. The fit uses SSA derived from library endmembers reflectance spectra. Out of 37 295 
modelled spectra, S15 (a) and S33 (b) represent relatively good fits and low RMSE; however, S17 (c) shows misfits and relatively a 

high RMSE. Materials contributing to the misfits are discussed in the text. 

 

 

Figure 7. Plots (a) and (b) show the spectra for non-mineral materials common in urban settings. The arrows in plot (a) point to a 300 
doublet arising from C-H bonds in asphalt and tar. Spectra in (b) are for other materials that were visually identified in the samples 

whose absorption features may lead to poorer model fits. All spectra for both figures are offset for clarity.  
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3 Results 

3.1 XRD (Total Mineral Abundance) 

S-Q analysis, as described in Sect. 2.2, resulted in mineral mass abundances shown in Fig. 8. The XRD bar chart (Fig. 8) 305 

indicates that individual mineral abundances vary from sample to sample, yet there is some regularity. Quartz and albite 

(plagioclase), followed by illite (clay) are the most common minerals in the samples. Kaolinite and montmorillonite (clays) 

are dominantly detected in minor and trace levels in the samples, and thus make up a small fraction of the total abundances. 

Some minerals in the XRD bar chart are more variable both in their presence and abundance. Calcite (carbonate) shows the 

highest variation with a range between 0-63 % of the total mineral abundance. Microcline (K-feldspar), actinolite (amphibole), 310 

and gypsum (sulfate) are among the least common minerals. XRD detected gypsum in only three samples collected close to 

construction sites. Since sulfate is a common mineral on many construction sites, its infrequent and rare presence may be 

derived from nearby building materials.  

 

Figure 8. Bar charts demonstrate the relative phase concentration (wt. %) calculated from the total diffracted peak area of various 315 
minerals obtained by XRD analysis.     

3.2 SWIR Reflectance Spectroscopy (Total Mineral Abundance)  

As discussed in Sect. 2.6, all spectra were modelled to derive mineral abundances. Goodness of the fit is highly dependent on 

the input endmembers. While additional endmembers can improve the quality of the model, incorporating extra endmembers 

just to improve the fit can lead to erroneous abundances. Therefore, we included only the phases that were identified with 320 

SWIR and XRD based on diagnostic features. Figure 9 demonstrates mineral abundance variations obtained from linear mixing 

of SSA. This figure depicts high abundance of microcline, quartz and albite in the samples, although these minerals are 
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featureless in the SWIR range (Fig. 3). As also shown in Fig. 3, pure library minerals have much stronger absorption features 

(greater depth) than observed in the Ilam samples. This is referred to as higher spectral contrast. Therefore, the model 

automatically uses microcline, quartz, and albite as neutral endmembers to create a model spectrum that fits weaker features. 325 

By incorporating featureless material, the overall spectral contrast is reduced at all wavelengths (Hamilton et al., 1997 and 

2000). This results in relatively low abundances of other minerals (Fig. 9). In order to better compare to XRD, we removed 

microcline and other spectrally neutral minerals (quartz and albite) and then re-normalized the abundances for both XRD and 

SWIR (Fig. 10). 

 330 

Figure 9. Bar charts show the relative mass fraction (%) calculated from a linear combination of SSA of minerals and asphalt.  The 

unrealistically large proportions of microcline, quartz, and albite is discussed in the text. 

Figure 10 displays normalized mineral fractions (%) after removing microcline, quartz, and albite from both SWIR and XRD. 

Comparison of these bar charts reveals that SWIR models are dominated by the abundance of clays, with often a lower 

abundance of carbonate and asphalt. Montmorillonite, kaolinite, and illite are the most prevalent components, and are highly 335 

variable in the samples. Since it is difficult to distinguish montmorillonite from illite using XRD, we will compare abundance 

of all clay minerals in the next section. Surprisingly, asphalt has a relatively high fraction and is included in the models of the 

majority of samples, but would not be observed by XRD due to its lack of crystal structure. This suggests that asphalt may act 

as an agent to reduce spectral contrast and contributes to the lower relative abundance of carbonate, similarly to that of 

microcline and other transparent minerals. The three samples that contain gypsum are the same in both SWIR and XRD. 340 

Although actinolite (amphibole) is a variable component in the XRD data, it is not apparent or used in the SWIR models at a 

detectable level. 
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Figure 10. Bar charts show XRD (top) and SWIR (bottom) normalized abundances after removing the transparent minerals. Those 345 
samples with check marks had relatively well-modelled spectral fit (e.g., Figs. 6a and 6b) as described in the text, and are used for 

subsequent comparison as described in Sect. 3.3. 

3.3 Comparison of Mineral Abundances from XRD and SWIR Spectroscopy  

Due to the contribution of the non-mineral materials in the samples, many model fits were poor (e.g., Fig. 6c) and hence did 

not retrieve mineral abundances correctly. Poor models may omit, underestimate, or even overestimate the abundance value 350 

for specific minerals. In order to better compare the mineral abundances derived from the spectra and XRD S-Q results, a 

thorough examination inspected both model fit match quality and RMSE (Appendix C, Fig. C1) and identified 21 samples that 

had well-matched absorption feature centers and strengths (check marks in Fig. 10 and Appendix C, and e.g., Figs. 6a and 6b) 

and RMSE values below 0.07. In order to compare equivalent abundances, transparent mineral amounts were first removed 

from both SWIR and XRD (Fig. 10), and then endmember fractions that had non-zero values were re-normalized to 100 %. 355 

Illite and kaolinite are among the most common minerals detected with XRD, but in SWIR, both display a very high variability. 

Montmorillonite presents as a small fraction in XRD abundances but is often quite high in SWIR. In order to compare illite, 

kaolinite, and montmorillonite abundances from XRD and SWIR, we collected their abundances together into a clay group. 

Figure 11 compares the abundance of the dominant non-transparent mineral components (clays and carbonates) for the 21 

samples having good spectral fits. Figure 11 demonstrates a positive correlation for both clay and carbonate abundance values 360 
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from XRD and SWIR. However, where the best fit correlation for clays displays a linear relationship between abundances 

generated from these two approaches, the one-to-one comparison of the fractions mostly shows an underestimation of the 

amount of clay by XRD. On the other hand, the best fit correlation plot for calcite (Fig. 11b) indicates that SWIR significantly 

underestimates calcite abundances compared to the corresponding XRD percentages.   365 

 

 

Figure 11. Plots display the difference between abundance values in wt. % derived from XRD and SWIR. Data and the best fit line 

are in blue, a 1:1 correspondence is shown in red. In (a) clay abundances obtained from SWIR demonstrate a relatively higher value 

suggesting underestimation by the XRD. In (b) the SWIR derived abundances strongly underestimate the amount of calcite 370 

compared to XRD.   

4 Discussion - Discrepancies in Derived Abundances between XRD and SWIR 

In this study, we obtained compositional information and mineral mass abundances for dust samples from both XRD and 

SWIR. The goal was to compare spectrally derived abundances with S-Q determined abundance values via XRD. We also 

aimed to evaluate if combining the Hapke model for SSA and the LSM can accurately predict mineral abundances in natural 375 

dust samples collected in urban areas. SWIR vastly overpredicts microcline, quartz and albite abundances as these spectrally 

neutral minerals are automatically employed in modelling to uniformly decrease spectral contrast between measured spectra 

and model fit. After normalizing both data sets for the influence of transparent minerals on the SWIR data, our analysis 

illustrates that XRD somewhat underpredicts total clay mineral content (Fig. 11a), but underpredicts montmorillonite by a 

significant margin (Fig. 10). In contrast, spectral modelling predicts a considerable amount of montmorillonite (up to 47 %) in 380 

the samples. Comparison of clay abundances from these two techniques showed a positive correlation. However, individual 

sample comparisons mostly showed a higher abundance for clays derived from spectroscopy. Calcite abundances determined 

from XRD and SWIR also have a linear correlation (Fig. 11b), albeit SWIR greatly underestimates its abundance. These results 

also reveal that SWIR is highly sensitive to non-mineral components such as manmade and plant materials (Figs. 6c, 7a, and 
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7b). In Fig. 10, asphalt is one of the most common constituents detected by SWIR and it substantially contributes to the total 385 

abundances for many samples. XRD detected actinolite in a few samples, with varied level of abundance; however, the SWIR 

models did not use this mineral even though it was included in the endmember bundle. Possible reasons for the discrepancies 

in the results obtained from XRD and SWIR are discussed next.  

4.1 Nature of Techniques  

X-ray diffraction (XRD) is the most frequent technique used to characterize dust mineralogy, nevertheless, it is less effective 390 

at detecting weakly crystalline or amorphous phases. Given that S-Q mineral abundances tend to underpredict clay mineral 

abundances, when the sum of all phases in the mixture is normalized to 100 percent, the abundance value for calcite and other 

crystalline minerals may then be overestimated. SWIR spectroscopy, being sensitive to molecular bonding, provides additional 

information. In SWIR, clay minerals have unique features and strong absorptions, hence their abundances can be best estimated 

using this wavelength range. Our result determined that XRD underpredicts total clays and, in particular, montmorillonite 395 

abundances compared to SWIR. Therefore, we recommend using SWIR in combination with XRD for identifying and 

quantifying mineral dust particles, as the latter traditional approach may overlook some clay phases in the sample.  

4.2 Limitation of Library and Modelling for Fine Grains    

Natural samples have a range of particle sizes, and the minerals in the library used for modelling should match the particle size 

of the sample. Variable size classes (clay, silt, and sand) were present in our dust mixtures, which substantially altered the 400 

strengths of absorption features (Fig. 3) and the overall brightness of the reflectance in each sample spectrum (Gaffey, 1986; 

Cooper and Mustard, 1999). Gaffey (1986) showed that calcite absorption feature depth is weakened with decreasing particle 

size. The well characterized suite of minerals used in the USGS spectral library (Kokaly et al., 2017) often contains minerals 

at smaller grain sizes, but for the most part, published data use a grain size of 74-250 m.  This larger particle size results in a 

relatively high spectral contrast for the library minerals. We used Hapke's equation to convert reflectance spectra to single 405 

scattering albedo (SSA). The model was able to fit the absorption features in most cases. However, as a result of the different 

particle sizes encountered in our samples and the library, our model used neutral endmembers (microcline, quartz, and albite) 

to reduce spectral contrast and match absorption feature strength of the samples (Hamilton and Christensen, 2000, and Fig. 9).   

 

We explored whether sample particle size distribution had an effect on the quality of the model fit, particularly for the fraction 410 

of particle size greater than 30 µm. We found no systematic relationship between the quality of the model fit and the fraction 

of particles larger than 30 µm in the samples. Samples S15 and S17 (Fig. 6), respectively have 14 % and 40 % of their particle 

sizes larger than 30 µm, however, S15, with a higher fraction of fine particles, has a better modelled fit. Although we found 

no link between particle size and fit quality, there may still be some uncertainty in the derived abundances. Hapke models were 
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initially derived for grain sizes larger than the wavelength, allowing geometric optics assumptions to be utilized. Many models 415 

did not match the measured spectra and so did not produced accurate mineral abundances. As a result, we recommend 

constructing a suite of endmembers for LSM from a spectral library that is within the same size range as typical natural dust 

samples. This will help to reduce differences in absorption band intensities across the spectrum, which should lead to improved 

model fits and more accurate mineral abundances. 

4.3 Contribution of Non-Mineral Constituents  420 

Inspection of all model fits identified 16 samples that had poor matches (e.g., Appendix C and Fig. 6c). These samples showed 

a strong contribution of known and unknown manmade and plant materials (Figs. 7a and 7b) in their measured spectra. Among 

the possible additional materials are a variety of particles such as asphalt, tar, styrofoam, plastic, and dry grass, some of which 

were visually identified. Absorption from these materials can contribute strongly to the measured spectra prohibiting a good 

match. Additionally, many studies have demonstrated that mixing dark grains with other minerals can diminish the mixture’s 425 

reflectance and considerably weaken the absorption bands observed (Nash and Conel, 1974; Singer, 1981; Clark, 1983). We 

note that the absolute reflectance values for asphalt and tar in the USGS library (Kokaly et al., 2017) are less than 23 %, thus 

contributing as dark agents in dust samples. Calcite has a strong diagnostic absorption feature around 2340 nm, but this appears 

only weakly in our measurements (e.g., Figs. 3 and 6). The absence of this feature may be due not only to fine grain size, but 

also to the contribution of strong absorption from dark manmade constituents. This also leads to the underestimation of calcite 430 

abundance obtained from SWIR. XRD is not sensitive to non-crystalline phases, and thus is not sensitive to their presence in 

the samples. Therefore, it is preferable to use XRD to obtain abundances for crystalline phases when mixed with other 

materials.  To characterize and quantify urban dust, reflectance spectroscopy should also be utilized to account for non-mineral 

materials that are present in mixtures as XRD would miss them. As Fig. 7 displays, SWIR can quickly identify non-mineral 

diagnostic absorptions (such a hydrocarbon bonds). These materials can contribute strongly to dust mixtures collected from 435 

urban settings. Including various additional urban materials in spectral libraries would probably help improve the model fit 

but this was not in the scope of this research.  

 

XRD detected both actinolite and kaolinite in trace and minor levels. In SWIR, however, actinolite was included in endmember 

bundles, it was not selected by the models. Spectrally derived kaolinite, on the other hand, had highly variable amounts (0-50 440 

%), although we did not uniquely observe its diagnostic absorption features in any of the samples. The absence of abundance 

values for actinolite and unique spectral signatures for kaolinite could be due to their absorption features being suppressed 

when mixing with other minerals and with dark grains. In addition to the effect of non-mineral components, kaolinite 

absorption features can be weakened or disappear as montmorillonite abundances increase in the mixture (e.g., Ducasse et al., 

2020). 445 



22 

 

4.4 Obtaining Abundances from Long-wave Infrared (LWIR) 

In the VSWIR, reflectance spectra are shaped by electronic and vibrational transitions (Hunt, 1977) allowing detection of 

compositional information of surface materials. Clay minerals commonly display sharp and narrow diagnostic absorption 

bands in this wavelength range (Fig. 3) and thus can be best identified and abundances estimated. For other minerals, the 

vibrational absorptions detectable in VSWIR are weaker signals compared to corresponding features in the long-wave infrared 450 

(LWIR, ~ 2.5 to 25 µm). In particular, carbonates and silicates have very strong vibrational absorptions in LWIR and are 

readily detectable in this wavelength range (e.g., Salisbury and Walter, 1989). As noted above, SWIR is not sensitive to the 

common dust minerals quartz and feldspars (albite and microcline). LWIR water absorptions in clay minerals remain strong 

when mixed with dark grains (Clark, 1983). Therefore, employing LWIR may better estimate abundances of minerals that are 

either featureless or are obscured in VSWIR.  Additionally, LWIR mineral absorption features in a mixture combine linearly 455 

(e.g., Thomson and Salisbury, 1993) allowing interpretation of measured spectra as a linear combination of its components’ 

abundances. Thorpe et al., (2015) showed that LWIR spectra modelled with LSM can recover minerals abundances (such as 

for quartz and feldspars) that are relatively in a good agreement with XRD-determined abundances. Therefore, in future work, 

to identify all clays as well as quartz and feldspars, using combined VSWIR and LWIR is recommended, which should identify 

all minerals present in the samples.   460 

5 Conclusions 

In this research, we set out to test if SWIR reflectance spectroscopy combined with a Hapke model and linear spectral mixing 

of SSA can accurately estimate mineral abundance consistent with semi-quantitative values determined by XRD. The 

techniques showed better agreement after normalizing for the use of transparent minerals to match weak features in the 

measured spectra. Both total clay content and carbonate are linearly correlated between the two techniques. However, XRD 465 

underpredicted total clay content and SWIR significantly underpredicted carbonate content. Our analysis showed that SWIR 

is well-suited to identify clay phases that would be missed by XRD techniques and is also a quick and effective way to survey 

a group of samples with little preparation. Figure 11a shows that spectrally derived clay abundances correlate well with XRD 

derived abundances, but the latter technique underpredicts clay abundances unless samples undergo time consuming additional 

sample preparation (e.g., clay separations). From the evaluation of SWIR spectra of dust samples, we conclude that calcite 470 

dominant absorption features are weakened when mixtures are composed of very fine-grained minerals combined with dark 

manmade materials. This limitation consequently leads to underprediction of calcite in the SWIR abundance determinations. 

SWIR is advantageous in detecting absorption features attributed to non-mineral materials in samples. These materials are 

common in urban settings and may also be important for radiative forcing in the atmosphere. Optical microscope images 

confirm the presence of black and angular-shape materials but their composition is not readily identified with this technique. 475 
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XRD, on the other hand, is not sensitive to non-crystalline phases, so it does not have the ability to characterize them. While 

each of these approaches are useful for estimating abundances of different types of particles, a combination of the two for full 

characterization of urban dust has yielded complementary results. However, because quartz and feldspars are substantial 

fractions of total mineral abundances of dust samples (Fig. 8), we suggest the use of XRD as an initial reliable method for 

mineral identification and quantification. Based on our analysis, we recommend that future research include spectral 480 

measurements in both VSWIR and LWIR, as the latter spectral range can be complementary to the former and obtain 

abundances for VSWIR-transparent minerals (e.g., quartz and feldspars). As a result, the present minerals in the bulk sample 

can qualitatively and quantitatively assessed by both VSWIR and LWIR, and then confidently compared with XRD determined 

mineral abundances. 

 485 

Because our analysis uses VSWIR and contributes to fundamental measurements of dust, it can guide further dust mineralogy 

investigations by satellite imaging spectrometers such as The Earth Surface Mineral Dust Source Investigation (EMIT) (Green 

et al., 2020). VSWIR reflectance spectroscopy can readily identify clays, carbonates, and iron oxides, and distinguish them 

from non-mineral materials that are components of dust mixtures.  

 490 
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Appendix A 

Table A1. Locality of 13 deposition samplers in Ilam city. Sample numbers shown with N/A, did not have enough sample volume for 

analysis. Root Mean Square Error (RMSE) for Spectral Model Fit are also shown. Bold and Italic font on sample number and RMSE 

indicates those with a good spectral model fit as described in the text and shown with checks in Fig. 10 and Fig C 1. 500 

Samples Number Root Mean Square 

Error (RMSE) for 

Spectral Model Fit 

Sampling time Latitude Longitude Elevation 

(Meters Above 

the Sea Level) 

S1 0.062 December 21st, 2011 (Fall)    

S2 0.065 March 19th, 2012 (Winter) 33°38'5.97"N 46°24'38.26"E 1388 

S3 0.072 June 20th, 2012 (Spring)    

S4 0.052 December 21st, 2011 (Fall)    

N/A - March 19th, 2012 (Winter) 33°37'49.62"N 46°25'27.98"E 1404 

S5 0.036 June 20th, 2012 (Spring)    

S6 0.085 December 21st, 2011 (Fall)    

S7 0.054 March 19th, 2012 (Winter) 33°38'8.93"N 46°24'46.49"E 1400 

S8 0.05 June 20th, 2012 (Spring)    

S9 0.11 December 21st, 2011 (Fall)    

S10 0.043 March 19th, 2012 (Winter) 33°37'27.47"N 46°22'22.57"E 1295 

S11 0.057 June 20th, 2012 (Spring)    

S12 0.07 December 21st, 2011 (Fall)    

S13 0.035 March 19th, 2012 (Winter) 33°36'3.79"N 46°25'13.01"E 1438 

S14 0.027 June 20th, 2012 (Spring)    

N/A - December 21st, 2011 (Fall)    

S15 0.044 March 19th, 2012 (Winter) 33°38'35.23"N 46°24'54.96"E 1429 

S16 0.028 June 20th, 2012 (Spring)    

S17 0.12 December 21st, 2011 (Fall)    

S18 0.06 March 19th, 2012 (Winter) 33°37'34.57"N 46°25'15.31"E 1296 

S19 0.076 June 20th, 2012 (Spring)    

S20 0.12 December 21st, 2011 (Fall)    

S21 0.09 March 19th, 2012 (Winter) 33°38'29.05"N 46°24'47.64"E 1423 

S22 0.082 June 20th, 2012 (Spring)    

S23 0.041 December 21st, 2011 (Fall)    

S24 0.041 March 19th, 2012 (Winter) 33°38'19.72"N 46°26'24.21"E 1429 

S25 0.16 June 20th, 2012 (Spring)    

S26 0.14 December 21st, 2011 (Fall)    

S27 0.066 March 19th, 2012 (Winter) 33°37'26.04"N 46°24'46.38"E 1376 

S28 0.022 June 20th, 2012 (Spring)    

S29 0.075 December 21st, 2011 (Fall)    

S30 0.042 March 19th, 2012 (Winter) 33°38'42.44"N 46°24'57.64"E 1462 

S31 0.083 June 20th, 2012 (Spring)    

S32 0.061 December 21st, 2011 (Fall)    

S33 0.048 March 19th, 2012 (Winter) 33°38'21.68"N 46°23'56.16"E 1395 

S34 0.034 June 20th, 2012 (Spring)    

S35 0.11 December 21st, 2011 (Fall)    

S36 0.043 March 19th, 2012 (Winter) 33°38'1.49"N 46°23'58.75"E 1370 

S37 0.074 June 20th, 2012 (Spring)    
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Appendix B 

 

Figure B1. Mineral spectra from USGS library (Kokaly et al., 2017) used by model to retrieve mineral abundances for natural dust 

samples.  505 
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Appendix C 
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520 
Figure C1. Spectral model fit (red line) and RMSE are shown for all 37 dust samples SSA spectra (blue line). Check 

marks represent the relatively well model fits based on visual inspection and relatively low RMSE.   

Data and code availability. Data and code used in this study are available on request to msadrian@nevada.unr.edu or 

wcalvin@unr.edu.  
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