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Abstract. Low-cost sensors are considered as exhibiting great potential to complement classical air quality measurements

in existing monitoring networks. However, the use of low-cost sensors poses some challenges. In this study, the behaviour

and performance of electrochemical sensors for NO and NO2 were determined over a longer operating period in a real-world

deployment. After careful calibration of the sensors, based on co-location with reference instruments at a rural traffic site during

six months and by using robust linear regression and random forest regression, the coefficient of determination of both types of5

sensors were high (R2 > 0.9) and the root mean square error (RMSE) of NO and NO2 sensors were about 6.8 ppb and 3.5 ppb,

respectively, for 10 minute mean concentrations. The RMSE of the NO2 sensors, however, more than doubled, when the sensors

were deployed without re-calibration for a one year period at other site types (including urban background locations), where

the range and the variability of air pollutant concentrations differed from the calibration site. This indicates a significant effect

of re-location of the sensors on the quality of their data. During deployment, we found that the NO2 sensors are capable of10

distinguishing general pollution levels, but they proved unsuitable for accurate measurements, mainly due to significant biases.

In order to investigate the long-term stability of the original calibration, the sensors were re-installed at the calibration site after

deployment. Surprisingly, the coefficient of determination and the RMSE of the NO sensor remained almost unchanged after

more than one year of operation. In contrast, the performance of the NO2 sensors clearly deteriorated as indicated by a higher

RMSE (about 7.5 ppb, 10 minute mean concentrations) and a lower coefficient of determination (R2=0.59).15

1 Introduction

Severe negative impacts of urban air pollution on human health is still a major concern. Today, millions of city dwellers suffer

from exposure to increased levels of air pollutants (Mage et al., 1996; Pascal et al., 2013; WHO, 2016). Nonetheless, existing air

quality monitoring approaches are not always sufficient for a detailed understanding of urban air quality and human exposure

as large spatial and temporal variability of air pollutants challenges any monitoring (Marshall et al., 2008; Tan et al., 2014).20

Conventional instruments for air quality monitoring provide precise information on pollutant concentration and approach based

on a limited number of point measurements. Their high acquisition and operational costs, as well as the requirement of specific

expertise in operation of the instruments are, however, main obstacles for using them in larger numbers for achieving a denser

spatial coverage of air pollutant observations in a city (Snyder et al., 2013; Kumar et al., 2015). Therefore, new techniques and
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strategies for measuring urban air quality with higher spatial and temporal resolution are highly desirable. Low-cost sensors25

(LCS) have lately attracted a lot of attention as they have the potential to fill this gap. They are cost-effective, can be employed

in large numbers, they are very simple to use and, in principle, require little maintenance (Karagulian et al., 2019).

LCS systems have already been used in various studies and their potential for air quality monitoring was demonstrated (e.g.

Jiao et al., 2016; Cross et al., 2017; Hagan et al., 2018; Malings et al., 2019). However, the data quality that can be achieved with

LCSs is often the main issue and a limiting factor. It is emphasized in multiple studies that high reliability of the sensors and30

appropriate calibration strategies are prerequisites for meaningful applications. Factors that can have a large influence on the

data quality of LCSs for atmospheric measurements are the interference with ambient temperature and relative humidity (Bigi

et al., 2018; Zimmerman et al., 2018), and insufficient sensitivity and selectivity. Low-cost sensors for reactive atmospheric

gases have shown to be cross-sensitive to other gases, for example, electrochemical sensors for nitrogen dioxide (NO2) were

found to be cross-sensitive to ozone (Mead et al., 2013; Mueller et al., 2017).35

Low-cost sensors need to be calibrated before they are used for atmospheric composition measurements (Castell et al., 2021).

Laboratory calibration against reference material often has major drawbacks and calibration of LCSs is therefore predominantly

done based on co-location with reference instruments operated in traditional air quality monitoring stations. Thus, the sensor

output and relevant other environmental variables (e.g., temperature and relative humidity) are related to the true concentration

values as represented by the reference measurement in parametric (e.g. Jiao et al., 2016; Kim et al., 2018; Malings et al., 2019)40

and non-parametric regression models (e.g. Cross et al., 2017; Hagan et al., 2018) or by using machine learning techniques

(Bigi et al., 2018; Smith et al., 2019). The obtained (mathematical) relationship forms a calibration model that can be used

for converting the raw sensor data into a concentration of the air pollutant to be measured. Such a sensor calibration approach

works generally well, although there are some challenging aspects that need to be taken into account. Firstly and for achieving

a robust calibration model, it is important that during the co-located measurements all environmental conditions and the full45

concentration range of the measured pollutant, which the sensor will experience in a subsequent deployment, are covered

(Castell et al., 2021). This requirement can often only be fulfilled through selection of a well suited reference station and a

rather long duration of co-location measurements (Hagler et al., 2018), which may be in conflict with the rather short lifetime of

air quality sensors. Secondly, it is currently unclear how long a sensor calibration model derived from co-location measurements

can be applied and how often re-calibration of sensors needs to be done. Finally, the limited transferability of calibration models50

to new locations can be an important issue. This means that re-location of calibrated sensors may lead to data quality of the

sensors that differs from that during co-location (Bigi et al., 2018).

In the present study, the above mentioned challenges related to the calibration of sensors by co-location measurements are

investigated. Four low-cost sensor systems for measuring ambient NO and NO2 were co-located to reference instruments for

six months at a rural measurement location next to a motorway (Haerkingen site) with widely varying NO and NO2 levels.55

After co-location, the LCSs were deployed for one year at four locations in the city of Zurich (Switzerland) co-located to NO2

diffusion tube samplers for NO2 sensor performance assessment. After deployment, the sensor units were brought back to

the original co-location site (Haerkingen) where the LCSs were again measuring in side-by-side to reference instruments for

another four months and for evaluation of the long-term stability of the employed calibration models.

2



2 Materials and Methods60

2.1 Sensor unit

Four sensor units (denoted as AC009, AC010, AC011, AC012) utilized in this study were jointly developed by Empa and

Decentlab GmbH. They were already utilized and described in detail in a previous study (Bigi et al., 2018). In each sensor unit,

two electrochemical sensors for NO (Alphasense NO-B4) and NO2 (Alphasense NO2-B43F), a combined relative humidity

and temperature sensor (Sensirion STH21) are included (Bigi et al., 2018). It should be pointed out here that the used NO265

sensors have an O3 scrubber membrane mounted on top of the inlet to prevent the interference from ambient O3. The O3

scrubber has reported to have a capacity of 250 ppm h of O3 (Li et al., 2021) and thus a limited lifetime. The four electro-

chemical sensors in each sensor unit are denoted as NO_A, NO_B, NO2_A, and NO2_B in this study. All sensors recorded

the measured data as 10-minute mean values, and the data were transmitted and saved with the corresponding timestamp in a

database operated by Decentlab GmbH.70

2.2 Co-location and deployment sites

The four sensor units were deployed next to reference instruments during two co-location campaigns. The first co-location

campaign had a duration of 6 months (2018-06-29 - 2018-12-12; for AC009, the start date was 2018-07-25) and was done for

sensor calibration and evaluation of sensor performance. The second 4 months long (2019-12-12 - 2020-03-31) co-location

campaign was done about one and a half year after the first co-location campaign with the aim of assessing the long-term75

stability of calibrated sensors and re-evaluation of sensor performance after an extended time period of operation. During the

time between the two co-location campaigns, the sensors have been deployed in a small sensor network in Zurich.

2.2.1 Co-location site

The co-location measurements were done at the Haerkingen air-quality monitoring site. The Haerkingen site (HAE: 47.31◦

N, 7.82◦ E, 480 m.a.s.l) is part of the Swiss National Air Pollution Monitoring Network NABEL and situated 20 m north80

of a major highway (A1, 90’000 vehicles per day) in an open and rural environment. Thus, the concentrations of traffic

related air pollutants like NO and NO2 strongly depend on wind direction and traffic activity or daytime and span a wide

concentration range (Bigi et al., 2018). Reference NO and NO2 concentrations at HAE were measured as 10 minute mean

values using a chemiluminescence instrument (T200, Teledyne Technologies Inc.), measurements of other air pollutants and

meteorological variables are also available. As mentioned above, data from the first co-location campaign were used for finding85

the best calibration models and for evaluation of the performance of recently calibrated sensors. The data from the second

campaign were used for evaluation of the long-term stability of the sensor calibration (i.e. the applicability of the calibration

models determined during the first co-location campaign) and determination of changes of the performance of the sensors after

deployment over an extended time period without re-calibration.
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2.2.2 Deployment sites90

In between the two co-location campaigns, the sensor units were deployed at four different locations in the city of Zurich for

measurement of the NO and NO2 concentration during 11 months from 2018-12-13 to 2019-10-31. However, the data acqui-

sition of AC011 was paused from 2019-08-09, and that of AC010 from 2019-09-27 due to insects interrupting the air flow into

the sensor units. Geographical information including the site labels are presented in Table 1. An objective of this deployment

was to analyze the sensor performance in various locations in the city with different ranges of air pollutant concentrations.95

It is highlighted that the sites ZSBS and ZMAN are urban traffic sites next to major roads in the city of Zurich. The total

traffic volume on the roads nearby ZSBS and ZMAN are 20,000 and 50,000 vehicles per day. Consequently, high NO and

NO2 concentrations can be expected at these two sites. On the contrary, ZBLG is located in an urban green area surrounded

by residential buildings, and ZRIS is in a rural area on the outskirts of the city. Hence, it was expected that NO and NO2

concentrations will be lower at this two sites compared with the two traffic sites.100

NO2 passive diffusion samplers (Palmes et al., 1976) were located at the four deployment sites close to the sensor units.

These four samplers are part of the NO2 passive diffusion sampler network operated by the department of Environment and

Health Protection of the City of Zurich (UGZ). For comparison with the sensor data, integrated values of NO2 concentrations

were available bi-weekly from 2018-12-04 to 2019-11-05. In total, 24 values of concentration pairs were considered at each site.

Even though the passive sampler produces data with insufficient temporal resolution (bi-weekly averaged), the observations105

are known for their accuracy.

Table 1. Four deployment site of low-cost sensors. The coordinate system refers to the world geodetic system, WGS84, obtained from the

geo-mapping platform of the Swiss Confederation. © Swisstopo

Street name (Abbreviation) Site characteristic Sensor Deployment period Coordinate system (WGS84)

Im Ris (ZRIS) Rural/Suburban AC009 2018-12-13 - 2019-10-31 47◦ 19’ 30.87” N 8◦ 30’ 20.59” E

Bullingerhof 5 (ZBLG) Residential AC010 2018-12-14 - 2019-09-27 47◦ 22’ 44.42” N 8◦ 30’ 44.87” E

Seebahnstrasse 229 (ZSBS) Urban-traffic AC011 2018-12-13 - 2019-08-09 47◦ 22’ 41.96” N 8◦ 31’ 8.66” E

Manessestrasse 34 (ZMAN) Urban-traffic AC012 2018-12-13 - 2019-10-31 47◦ 22’ 7.00” N 8◦ 31’ 27.88” E

2.3 Sensor calibration

Two calibration methods were utilized and evaluated in this study: Robust linear regression (Huber, 2004) and random forest

regression (Breiman, 2001). For finding a suitable calibration model for the individual NO and NO2 sensors in a sensor unit,

the concentrations measured by the reference instrument have been used as target variables, the voltage of the corresponding110

sensor (VSensor), the temperature (VTemperature), and the relative humidity (VRelative Humidity) as provided by the sensor unit have

been used as predictors. It is well known that low-cost sensors for measurement of atmospheric trace gases can be influenced

by external factors like temperature and relative humidity (Castell et al., 2021). In an earlier study by Mueller et al. (2017), it

was observed that for the NO2 sensors the amplitude of the sensor response caused by varying relative humidity is of similar
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magnitude than the sensor response caused by typical ambient levels of NO2. In addition, it was found in Mueller et al. (2017)115

that the NO2 sensors showed a delayed and exponentially decaying response upon changes in relative humidity. Therefore,

an additional variable, DRH , was introduced for compensation of the effect of changing relative humidity on the raw sensor

signal.

DRH =

−500∑
∆t=0

∆SRH(t+∆t) ∗ exp( ∆t

∆t0
). (1)

∆SRH represents the change in relative humidity (in %), ∆t is the corresponding time lag in minutes and ∆t0 is a time120

constant. Changes in relative humidity up to 500 minutes back in time are considered and weighted using the exponential term

exp( ∆t
∆t0

). Similar to Mueller et al. (2017), various values for ∆t0 were examined in this study (60, 90, 120, and 150 minutes)

for finding the value that leads to the best performing sensor calibration models.

2.3.1 Robust linear regression

Robust multiple linear regression is a commonly used method in the field of calibration. The effectiveness of the methodology125

for calibration of air quality low-cost sensors has already been shown in several studies (e.g. Spinelle et al., 2015; Hagan et al.,

2018). Robust regression is a technique that reduces the model distortion and bias induced by unusual observations and outliers

(Andersen, 2008) by limiting their impact. The rlm() function from the R package MASS (Venables and Ripley, 2002, Ver.

7.3-54) was used for robust regression modelling.

2.3.2 Random forest regression130

Random forest regression is an ensemble learning method in which numerous decision trees are examined to identify a superior

model of a classification or regression. Each node in a decision tree is split by using the best option among a subset of

predictors that are randomly chosen at that node (Breiman, 2001). Subsequently, multiple decision trees are ranked and the

best option gets selected as an output. Random forest models showed great performance in previous studies, however, it was

also shown that overfitting of the model may occur during calibration (Zimmerman et al., 2018). Moreover, the method can135

not adequately predict values that are beyond the range of the training data set (Malings et al., 2019). In the present work, the

randomForest() function in R package randomForestwas employed for this modelling task. (Liaw and Wiener, 2002).

For the random forest models the number of decision trees was set to 1000 and the chosen minimum number of observations

in a terminal node was 100.

2.4 Evaluation of sensor performance140

2.4.1 Model selection

Owing to the numerous possible combinations of predictor variables including their interactions in the above mentioned mod-

elling approaches, a selection of 22 robust linear regression models and 9 random forest models were evaluated. The variables
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in each model are introduced in Table S1 and S2. Among the total of 31 calibration models, two models (1 robust linear regres-

sion model and 1 random forest model) were identified as the best performing models and selected for further investigation in145

the study. For the evaluation, 80% of the sensor data from the first co-location campaign was randomly chosen and used for

model training. The other 20% was applied for model testing. In every model, only a single validation with one training and

testing data was implemented because of the computational limitation. The selection was based on the normalized root mean

square error (nRMSE) calculated for each model, and the models with the least nRMSE for both NO and NO2 were chosen.

2.4.2 K-fold cross validation150

Unlike the single validation process in the model selection, the chosen calibration models were then evaluated by K-fold

cross-validation. The method is widely used to estimate the prediction error and the model accuracy. In the present study, the

number of the fold (K) is 5 considering the literature recommendation (Rodriguez et al., 2010). For the validation, low-cost

sensor data were randomly split into five different sub-groups. In each fold, four sub-groups of data (80% of total) were used

as training data in each fold, and the remaining group was used for testing the model. As a result of the 5-fold cross-validation,155

predictions of the five test data sets were obtained and combined into a single data set that was evaluated by comparison with

the corresponding reference NO and NO2 concentrations.

Figure 1. A scheme of the 5-fold cross validation utilized for the calibration model evaluation.

2.4.3 Evaluation approach

For the evaluation of the sensor calibration performance, several statistical metrics (see table 2) in combination with target

diagrams and taylor diagrams have been considered. The structure of target diagrams have been detailed in studies by Bigi160
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et al. (2018) and Zimmerman et al. (2018). The statistical measures were calculated using the tdStats() function in the R

package tdr (Lamigueiro, 2018).

Figure 2. A schematic of the structure

of the target diagram. The red point

indicates the position of an exemplary

point in the diagram.

Table 2. Statistical metrics visualized in target diagrams. In the terms in the third column, ŷi

represents a concentration measurement with a calibrated low-cost sensor and yi represents

the corresponding concentration measurement with the reference instrument, σŷ and σy are

the empirical standard deviations of sensor and reference data.

Metrics Abbreviation Term

Root mean square error RMSE

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

Normalized root mean square error nRMSE
RMSE

σy

Mean bias error MBE
1

n

n∑
i=1

(ŷi − yi)

Centered root mean square error CRMSE
√
RMSE2 −MBE2

A schematic of a target diagram is presented in Figure 2 and its related statistical metrics are introduced in Table 2. The

statistical metrics represented in target diagrams are the root mean square error (RMSE) and the mean bias error (MBE). The165

RMSE is a non-negative measure for the error of the model predictions (or here the sensor measurements) and defined as the

mean squared difference of the model predictions and the reference values. Similarly, the MBE is the average mean difference

between predicted and reference values representing the mean bias of the model predictions. With the help of the MBE, the

bias part in the RMSE can be corrected leading to a metric denoted as the centered root mean square error (CRMSE). For the

target diagram, both CRMSE and MBE are normalized by the standard deviation of the reference values (σy) and plotted on170

the x-axis and the y-axis, respectively. Note that for reference sites where the range of prevailing concentrations is high, σy is

also high and consequently normalised MBE and nRMSE tend at such sites to be smaller. Also note that CRMSE is generally

positive, the sign of CRMSE/σy in target diagrams is, however, determined by the sign of (σŷ −σy). The interesting feature

of target diagrams is that multiple information about the model behavior can easily be captured (Zimmerman et al., 2018). (i)

A vector distance between the coordinate and the origin represents the normalized RMSE (nRMSE, RMSE/σy). (ii) (MBE/σy175

> 0) and (MBE/σy < 0) indicate model predictions that systematically overestimate or underestimate the reference. (iii) The

standard deviation of the model prediction is larger (CRMSE/σy > 0) or smaller (CRMSE/σy < 0) than that of the reference

data. (iv) The standard deviation of the model residuals is larger (outside of the circle of radius 1) or smaller (inside of the

circle of radius 1) than that of the reference measurements.

In addition, Taylor diagrams are presented to visualize three statistical metrics: (1) Pearson’s correlation coefficients (r) are180

presented as the azimuthal angles from the y-axis. (2) Normalized standard deviations (σŷ/σy) of models are given as the

distance from the origin. (3) CRMSE (see Table 2) is proportional to the distance between the data points and the reference
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points on the x-axis (Taylor, 2001). The diagrams can demonstrate the metrics which target diagrams are not illustrated.

Depending on the range of r, the shape of a diagram is either a semi-circle (-1≤ r ≤1) or a quad (0≤ r ≤1).

2.4.4 Sensor data filtering185

The sensor systems had some obvious malfunctioning periods. The data acquired during such periods were eliminated and

excluded from sensor performance evaluation. A malfunction period in this study has been defined as a period when the raw

signal of an electrochemical sensor only recorded stable, non-fluctuating voltages and was only detected during the second co-

location period. In contrast to the sensors, the corresponding measurements from the reference instrument during the identified

malfunctioning periods showed temporally varying pollutant concentrations. Figure S15 illustrates an example of such a sensor190

malfunctioning period. The reasons of sensor malfunctioning could, however, not be discovered. The exact time periods of

malfunctioning sensors and a detailed description how erroneous sensor data has been identified and eliminated is given in the

Supplementary Information (Section S-3.3.1).

3 Results and Discussion

3.1 Sensor calibration195

The individual sensors for NO and NO2 in the four sensor units were calibrated using the measurements of the first co-location

campaign at the air quality monitoring site in Haerkingen. First, the calibration models with the most accurate prediction

of NO and NO2 were selected and the sensor performance was assessed. Second, the selected models were applied for the

determination of the data quality of the sensors during the urban deployment and for re-assessment of the sensor performance

during the second co-location campaign. In the present study, the air pollutant measurements are for the reason of practicality200

and readability presented in parts-per-billion (ppb), although nmol ∗mol−1 is a more accurate representation for the mole

fractions of chemical species. For the same reason, the term concentration is also used when discussing mole fractions of

measured air pollutants.

3.1.1 Selection of calibration models

A total of 22 robust linear regression (RLM) models and 9 random forest (RF) models (see Table S1 and S2) were evaluated and205

the best RLM and RF models (in terms of normalised root mean square error) were selected for further investigation and sensor

performance analysis. Figure 3 demonstrates that for calibration models, which include DRH as a predictor, the selection of

∆t0 = 150 minutes leads to the lowest mean nRMSE for both NO and NO2. For the next step, models with DRH (∆t0 = 150

minutes) and all other models without DRH as predictor were compared with respect to nRMSE. Figure 4 depicts the nRMSE

of each model. It is prominent that the models that do not include the temperature signal (T) as predictor variable showed higher210

nRMSE than the models including T. This is mainly due to the temperature dependence of the electrochemical sensors and the

wide range of temperatures encountered during the first co-location period (-4◦C to 35◦C). In addition, including DRH in the
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model decreases the nRMSE of the NO2 sensors more than including relative humidity (RH), while there is only a negligible

difference for NO (see nRMSE between RLM_5 and 9, and between RF_6 and 8). The effect of relative humidity on the gas

sensor was observed in previous research (Mueller et al., 2017). However, our current results emphasize that the temporal215

variability or history of relative humidity is more influential than the present relative humidity itself. Overall, RLM_22 and

RF_6 models were chosen for further investigation in this study as they resulted in the smallest nRMSE in each class of models.

For NO2 the two selected models clearly outperformed all other models, whereas for NO other models showed similarly good

performances (Figure 4). The predictor variables for the two models are presented in Table 3.

Figure 3. Boxplots of nRMSE by ∆t0 of DRH . Five models (4 RLM and 1 RF model) were considered for a ∆t0, hence 40 data points are

contained in each boxplot.
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Figure 4. nRMSE values for each model. 8 data points from individual sensors of NO and NO2 are shown separately and mean nRMSE

values by pollutant are depicted in larger points.

Table 3. Model variables considered in the selected RLM and RF calibration model. Two models were denoted in the study as ‘RLM’ and

‘RF’ model.

Model Label Model variables

RLM_22 RLM Vsensor, T, Vsensor*T, DRH_150

RF_6 RF Vsensor, T, DRH_150

3.1.2 Calibration evaluation220

The calibrated sensor data from the first co-location campaign were analysed and the different statistical metrics were calcu-

lated. Tables 4 and 5 provide the statistical metrics for sensor performance evaluation calculated as the mean of all sensors in

the four sensor units and for concentration measurements with 10 minute time resolution. The considered statistical metrics

and their graphical illustration in target and Taylor diagrams as shown in Figure 5 demonstrate that no significant difference

between the performance of sensors calibrated using RLM or RF models can be found. The considered statistical metrics were225

also calculated for different concentration ranges set at the rounded 25%, 50%, and 75% quantiles of the reference concentra-

tion measured at the Haerkingen site. The intention of this division into sub-groups was to investigate the sensor performance
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for different air pollutant levels. The performance evaluation for such different sub-groups was motivated by the fact that for

sensor calibration, a co-location site that covers the full range of the target pollutant concentration and of all other influential

environmental variables is needed. Indeed, as shown in Figure 6(a), the sensors were exposed to a wide concentration range in230

Haerkingen station, from 0 ppb up to 232 ppb for NO and from 0.1 ppb up to 67 ppb for NO2. However, for deployment in a

sensor network, the sensors may be used at locations representing different site types and more narrow concentration ranges,

including background environments.

The division demonstrated two important features that were not revealed when calculating the metrics from the full data set.

First, at low concentrations (up to 25% quantile), nRMSE for the NO sensors was much higher (RLM: 11.23, RF: 8.35) than235

for the full concentration range (RLM: 0.30, RF: 0.26; see Table 4). The same behavior was observed for the NO2 sensors,

where nRMSE for the RLM was 1.80 (RF: 1.39) at low concentrations and 0.43 (RF: 0.30) at the full concentration range. This

demonstrates a clear limitation of the LCSs utilized in this study; even though the sensors were frequently exposed to low target

pollutant concentrations, the physical properties of the sensor (e.g. high sensor noise) fundamentally limits the measurement

accuracy in this concentration range. Second, the mean bias error in each of the considered concentration ranges elaborate that240

the overall MBEs, which were close to zero, are actually the result of compensation between over-estimation at low NO and

NO2 concentrations and under-estimation at high concentrations. To be specific, the MBE values at low concentration (25%

quantile) were 2-4 ppb, whereas those in the highest concentration quantile were similar but negative. The calibration models

were able to amend the bias completely, and the residual plots in Figure S9 - S12 did not clearly reveal this behavior and did not

clearly indicate any model deficiency. Instead, the opposite sign of the significant sensor bias at low and high concentration is245

masked when the overall MBE is considered, bearing the risk of misinterpretation of the sensor performance when deployed in

a network and predominantly operating in a more narrow concentration range. Figure 5(a) and 5(c) also illustrate that MBE/σy

is near zero, but Figure 6(b) and 6(d) depict that MBE should be interpreted more carefully.

Furthermore, Figure 5(a) and 5(c) indicate that all the CRMSE/σy values were negative in the first co-location period, which

means that the standard deviation of the model prediction is smaller than that of the reference data. The low standard deviation250

in the predicted concentration is not surprising, because the prediction could not completely estimate the extreme value of

concentration in the reference data. Same feature was identified in σŷ/σy of the highest concentration range (NO ≥ 28 ppb,

NO2 ≥ 26 ppb), where the values are ∼ 1 in both RLM and RF model (illustrated in Figure 6(c) and 6(e)). This implies that

the predictions have small dynamics in this range, meaning that the extreme concentrations are poorly captured by the sensors.

Moreover, the scatter plots in Figure S5 - S8 depict that RF models exhibit an upper limit in their predictions. The models255

cannot predict the concentration of NO above ∼ 130 ppb, and that of NO2 above ∼ 40 ppb, and these limits lead to relatively

lower standard deviations of RF model compared to RLM, as shown in the Figure 5(b) and 5(d). The main reason for this

flaw is that RF models can only adequately predict within the concentration range that is covered by the training data. This

deficiency was already reported previously (Bigi et al., 2018; Zimmerman et al., 2018).
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Figure 5. Target diagrams (figure (a) and (c)) and Taylor diagrams (figure (b) and (d)) of each pollutant during the calibration evaluation

period (1st) and the sensor re-location period after the deployment (2nd). In the target diagram, the centered root means square error (CRMSE)

normalized by the standard deviation of reference data (σy) is stated on the x-axis, whereas the normalized mean bias error (MBE/σy) is

stated on the y-axis. A distance from the origin indicates the nRMSE. Note that by convention the sign of CRMSE/σy in target diagrams is

determined by the sign of (σŷ−σy). A Taylor diagram illustrates three statistical metrics (Taylor, 2001): (1) Pearson’s correlation coefficients

(r) are presented as the azimuthal angles from the y-axis. (2) Normalized standard deviations (σŷ/σy) of models are given as the distance

from the origin. (3) CRMSE is proportional to the distance between the data points and the reference point (Ref ) on the x-axis. The reference

point (Ref ) is the point where an ideal sensor (r = 1, σŷ/σy = 1) locates in Taylor diagrams.
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Table 4. Statistical metrics calculated for 10 minute concentration values from all NO sensors in the period of calibration evaluation (1st)

and of the assessment after deployment (2nd). The sensor data were divided by rounded values of the 25%, 50%, and 75% quantile of the

reference concentration of Haerkingen station in the first co-location campaign in order to keep a comparable number of data points in each

sub-group. R2 denotes the coefficient of determination.

RMSE [ppb] MBE [ppb] R2 [-] nRMSE [-] σŷ/σy [-]

RLM RF RLM RF RLM RF RLM RF RLM RF

Reference [ppb] 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

X < 2 6.50 4.89 4.83 5.38 2.20 -2.24 4.00 4.42 0.02 0.14 0.01 0.00 11.23 8.90 8.35 9.79 10.64 8.22 4.66 5.47

2 ≤ X < 10 6.92 4.78 3.82 4.58 2.46 -0.71 1.86 2.17 0.05 0.30 0.16 0.17 2.93 2.05 1.61 1.97 2.77 2.39 1.47 1.88

10 ≤ X < 28 7.76 6.40 6.39 5.83 -1.60 0.44 -2.17 0.28 0.24 0.41 0.34 0.42 1.52 1.25 1.25 1.14 1.69 1.63 1.43 1.49

X ≥ 28 10.12 11.78 10.44 7.85 -4.08 6.20 -4.13 -0.23 0.90 0.93 0.88 0.92 0.36 0.44 0.37 0.29 1.05 1.22 0.96 0.97

Entire range 7.93 7.63 6.84 6.08 -0.23 1.05 -0.03 1.52 0.91 0.96 0.94 0.95 0.30 0.29 0.26 0.23 0.96 1.18 0.91 0.96

Table 5. Statistical metrics calculated for 10 minute concentration values from all NO2 sensors in the period of calibration evaluation (1st)

and of the assessment after deployment (2nd). The sensor data were divided by rounded values of the 25%, 50%, and 75% quantile of the

reference concentration of Haerkingen station in the first co-location campaign in order to keep a comparable number of data points in each

sub-group. R2 denotes the coefficient of determination.

RMSE [ppb] MBE [ppb] R2 [-] nRMSE [-] σŷ/σy [-]

RLM RF RLM RF RLM RF RLM RF RLM RF

Reference [ppb] 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

X < 9 3.77 10.49 2.91 10.87 1.97 8.46 1.62 9.39 0.17 0.00 0.26 0.00 1.80 5.34 1.39 5.53 1.65 3.03 1.29 2.62

9 ≤ X < 17 3.31 7.11 2.71 6.61 0.10 3.77 0.29 4.50 0.26 0.03 0.37 0.06 1.45 3.12 1.19 2.90 1.68 2.63 1.49 2.14

17 ≤ X < 26 4.00 6.27 3.27 4.69 -0.60 0.75 -0.23 0.89 0.30 0.10 0.37 0.12 1.54 2.44 1.26 1.83 1.81 2.55 1.58 1.88

X ≥ 26 7.38 6.92 4.63 5.92 -2.89 -0.82 -1.88 -3.15 0.34 0.37 0.63 0.39 1.10 1.17 0.69 1.00 1.18 1.45 0.97 0.95

Entire range 4.86 7.91 3.45 7.45 -0.31 3.25 -0.02 3.27 0.82 0.55 0.91 0.59 0.43 0.76 0.30 0.72 0.91 0.91 0.92 0.72
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Figure 6. Statistical metrics calculated for each reference concentration sub-group from the first co-location period. The sub-groups were

defined by rounded values of 25%, 50%, and 75% quantile of the NO and NO2 concentration during the period. (a) represents the density

plots of pollutants concentration; (b) and (d) elaborate the target diagrams of each concentration range in both co-location periods; (c) and

(e) illustrated the Taylor diagrams for same concentration ranges.
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3.2 Sensor performance260

3.2.1 Deployment period

After the first co-location period, the four sensor units were relocated and deployed at four sites in Zurich. Figure 7 illustrates

the comparison between the measurements with the NO2 sensors and the NO2 passive samplers at the four deployment sites. It

should be mentioned again, that two of the deployment sites, ZRIS and ZBLG, were located in suburban and urban background

locations as shown in Figure S4(a) and S4(c), with relatively low concentrations of NO2 compared to the two other locations265

(ZSBS and ZMAN), which were strongly influenced by emissions from nearby road traffic. At ZRIS, where sensor unit AC009

was deployed, the bi-weekly NO2 concentration measured with the passive samplers were 2-9 ppb, and at ZBLG (AC010)

NO2 concentration ranged between 6-22 ppb. At the two urban traffic locations ZSBS (AC011) and ZMAN (AC012), the

NO2 concentrations were higher and ranged from 19-31 ppb (ZSBS) and 33-48 ppb (ZMAN), respectively. In general, AC011

agreed well with the passive sampler data for both calibration models, although the sensor measurements were biased high270

by on average 3.5 ppb (RLM) and 2.4 ppb (RF) (Figure 7 and Figure 8). For the suburban and the urban background sites

ZRIS and ZBLG, the measurements with the sensor units (AC009 and AC010) showed clear mean biases for both calibration

modelling approaches. Finally, at the highest polluted site ZMAN, the RF models resulted in substantial under-estimation of

the passive sampler data (Figure 7), also visible in the time-series in Figure S13. The observed under-estimation of peak NO2

concentrations by RF models results from the fact that predictions cannot go beyond the concentration range that has been275

covered by the training data. Compared to RF models, the RLM calibration applied to AC012 resulted in a much smaller bias,

although the scattering between sensor and passive sampler data was high as expressed by a large CRMSE (Figure 8). Figure 7

shows that the used LCSs for NO2 enable a distinction between lower (ZRIS and ZBLG) and higher polluted sites (ZSBS and

ZMAN) and therefore a general differentiation of locations with regard to the prevailing NO2 levels. However, the limitations of

the used LCSs for providing accurate measurements of the bi-weekly NO2 are clearly visible. This can also be seen from Figure280

8, where RMSE, CRMSE and MBE are shown for the co-location and the deployment periods. For comparison, the statistical

metrics provided in Figure 8 were for the two co-location periods also calculated from bi-weekly averaged data. Figure 8(a)

illustrates that the RMSEs during the deployment period were much larger than during the first co-location period, which

was mainly resulting from an increasing bias (MBE) as discussed above, but also from increasing CRMSE. This observation

implies an effect of re-location on the performance of the sensors, i.e. a change in the data quality provided by the sensors285

when they are operated in other locations than the location chosen for co-location measurements and sensor calibration. A

reason for the observed decreasing data quality during the deployment was likely the smaller range of NO2 concentrations

prevailing at the deployment sites compared to the co-location site, in particular for the suburban and urban background sites

ZRIS und ZBLG. As also seen in the co-location period, the applied sensor calibration models tended to over-estimate NO2 at

low concentrations (Tables 4 and 5). Another reason for the decreasing data quality of the sensors during the deployment might290

be differing combinations of influencing external factors like air temperature, relative humidity and interfering gases during

deployment, leading to a reduced applicability of the calibration models and possibly larger measurement errors as expressed
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by the higher CRMSE. Figure 8 also implies that for achieving the best possible data quality, implementation of strategies for

the detection and the correction of sensor bias during deployment are needed.

Finally, we find that in agreement with the first co-location period, the RF calibration model generally performed slightly295

better than the RLM model. This can be seen in the somewhat smaller RMSE of the sensors calibrated using RF models

and also the lower CRMSE in particular for the sensors that were deployed at the higher polluted sites (AC011 and AC012).

However, AC012 showed a highly negative MBE, indicating the earlier mentioned inability for correctly predicting air pollutant

concentrations for conditions, that have not been covered in the data used for training the calibration model. This should be

kept in mind when sensors are calibrated using this modelling approach.300

Figure 7. NO2 sensor performance during the deployment in Zurich illustrated by the sensor concentration comparison to that of NO2

passive samplers in each sites.
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Figure 8. RMSE and CRMSE (a) as well as MBE (b) for NO2 during the co-location periods and the deployment period. The metrics for

the co-location periods are also calculated from from bi-weekly averaged data in order to facilitate the comparison with sensor performance

during deployment.

3.2.2 Assessment of sensor performance after deployment

After the deployment at the four locations of the small sensor network in Zurich, the sensors were again installed at the co-

location site Haerkingen for 4 months (2019-12-12 - 2020-03-31). During the second co-location period we observed some

distinct sensor malfunctioning for several short periods. Hence, data filtering was implemented prior to performance analysis.

Figure 9 illustrates that the data obtained during the identified malfunctioning periods caused severe under-estimation of the305

true NO and NO2 concentrations and therefore had to be removed. Specific malfunctioning periods for each sensor unit are
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elaborated in Table S6. An exact cause or single influence factor for sensor malfunctioning could not be identified. However,

it is hypothesised that specific weather conditions may be the reason for the sensors not working properly. Meteorological

data collected at the co-location site indicates that rain events occurred before and after most of the time periods that had

to be filtered. Electrochemical sensors are known for their vulnerability towards humidity. Thus, the penetration of raindrops310

into the housing of the sensor units may cause significant disturbance of the sensors or other components of the sensor units.

Nevertheless, rain events were not the sole factor for the sensor malfunction, because rain also occurred during the first co-

location campaign without noticeable sensor malfunctioning, and rain events during the second co-location campaign did not

always result in erroneous sensor signals. In addition, the possibility of interference by low battery was checked, however,

none of the issues were detected from sensor log files. It is therefore speculated that an interaction between rain events and315

other meteorological factors such as wind speed caused the sensor malfunctioning. However, because the exact reasons for the

erroneous sensor data remain unknown, the applied data filtering was therefore based on visual screening of the sensor signal.

The air pollutant concentrations reported by the sensors were for the second co-location period calculated using the models

developed in the first co-location campaign and applied during deployment. Tables 4 and 5 present the statistical metrics for

hourly concentration measurements and a comparison with the values from the first co-location period. Surprisingly, the sensors320

showed for NO after more than a year of operation still a comparable performance. The average RMSE of the 10 min NO

sensor measurements slightly decreased from 7.9 ppb to 7.6 ppb for the RLM models and from 6.8 ppb to 6.1 ppb for the RF

models. The target and Taylor diagrams in Figure 5 depict no substantial change in the shown metrics calculated from the NO

measurements. In contrast to NO, the performance of the NO2 sensors clearly decreased over this extended time period of

operation, for example the average RMSE for 10 minute NO2 measurements increased by 3-4 ppb for both calibration models325

(Table 5 and Figure 8). The target diagram for NO2 in Figure 5 indicates that this increase in RMSE is due to both, an increase

in mean bias and an increase in the random component of the error as expressed by the CRMSE. The latter is also visible in the

Taylor diagram for NO2 and the reduced correlation coefficient during the second co-location period. In addition, the target

and Taylor diagrams separated for the different quartiles of observed 10 minute mean values (Figure 6) show that the above

described change in sensor performance over the extended time period is also visible when the different concentration ranges330

are separately evaluated.

A similar degradation of the performance of the same NO2 sensor type has been reported by Li et al. (2021). In their study,

sensor performance degradation was noticeable after 200 - 400 days of deployment, a time period that was in agreement with

the expected lifetime of the O3 scrubber as calculated from its reported capacity and the O3 concentration at the deployment

site. It is therefore reasonable to assume that the decrease in NO2 sensor performance observed in this study is also influenced335

or caused by saturation of the O3 scrubber of the NO2 sensors. At the co-location site Haerkingen and in the urban background

of Zuerich, annual mean concentrations of O3 are about 21 ppb and 25 ppb, respectively. This means that the expected lifetime

of the O3 scrubber is about 13 to 17 months, which is comparable to the situation described by Li et al. (2021).
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Figure 9. Scatter plots of sensor concentrations calibrated using the RLM model versus reference measurements during the second co-

location period for (a) NO and (b) NO2 from AC010 (10 minute values). Sensor malfunctioning periods were visually identified and filtered

(red dots). Similar scatter plots for the other sensor units can be sound in the supplementary material (Figure S16 - S19).

4 Conclusion

In this study, some of the main difficulties associated with the use of low-cost sensors for measuring air quality were inves-340

tigated. In particular we analysed calibration, long-term stability of the sensor output, and the effect of re-location on sensor

performance, i.e. the change of sensor behavior when used at a different location than the site used for calibration through

co-location with a reference instrument. Although only two specific types of sensors were used in this study, some general con-

clusions can be drawn. Co-location with reference instruments is a pragmatic and appropriate approach for the calibration of

individual low-cost sensors. However, the duration of the co-location measurements should be sufficiently long so that a wide345

range of environmental conditions, which may occur during deployment, are covered. In addition, the chosen co-location site

should allow to cover the full concentration range expected during deployment. Otherwise, the calibration model extrapolates

to conditions that have not been covered in the data used for training, leading to higher uncertainty and for some approaches

(e.g., random forest regression) to significant bias.

In this study, duration and site of co-location were been chosen accordingly. The sensors were calibrated using two widely-350

used statistical approaches and the corresponding sensor performance was evaluated. During co-location with reference instru-

ments, the sensors showed no overall bias and had a rather small CRMSE, when the full data set was analysed. However, when

the performance metrics were calculated for different concentration ranges (i.e., the quartiles of the observed concentrations),

it was observed that the applied calibration models led to sensor measurements that were biased high at low concentrations

and biased low at high concentrations. A similar behavior was observed for the NO2 sensors when deployed in a small sensor355

network in the city of Zurich. In this case, the data quality of the sensors was much lower than expected from their perfor-
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mance during co-location with a reference instrument. For a relatively clean city like Zurich, the achieved data quality was

not sufficient for meaningful quantitative measurements of NO2. However, the sensors were capable of distinguishing between

locations with lower (0 - 20 ppb), medium (20 - 30 ppb) and higher (40 - 50 ppb) NO2 levels as shown in Figure 7. An im-

portant factor for lower than expected data quality was seen in the fact that sensors were typically deployed in locations where360

the concentration range of the target air pollutant was considerably smaller than at the co-location site (e.g., at urban back-

ground locations). The calibration models derived from co-location with reference instruments might strongly be influenced

by measurements at the highest prevailing concentrations and might therefore not be optimal for cleaner locations.

Another important limitation of low cost air quality sensors may be their lifetime and the frequency of re-calibration. For

the electrochemical sensors for NO we found no change in response behavior over a time period of more than 18 months365

and the data quality was therefore constant over time. In contrast, the electrochemical sensor for NO2 showed decreasing

performance over time and frequent interventions such as re-calibration or replacement may be needed for achieving the best

possible data quality. After about 18 months of deployment, the electrochemical sensors started to malfunction sporadically

and during shorter time periods. Although the exact reasons remained unknown, this behavior might indicate the aging effects

of the sensors themselves or of other parts of the sensor unit. The occurrence of these malfunctions with increasing time of use370

might indicate that the quality control of sensors deployed in networks needs to be strengthened over time.
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