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Abstract. Weather radars measure rainfall in altitude whereas hydro-meteorologists are mainly interested in rainfall at ground

level. During their fall, drops are advected by the wind which affects the location of the measured field.

The governing equation of a rain drop motion relates the acceleration to the forces of gravity and buoyancy along with the

drag force. It depends non-linearly on the instantaneous relative velocity between the drop and the local wind; which yields

to complex behaviour. Here, the drag force is expressed in a standard way with the help of a drag coefficient expressed as5

a function of Reynolds number. Corrections accounting for the oblateness of drops greater than 1-2 mm are suggested and

validated through comparison of retrieved “terminal fall velocity” (i.e. without wind) with commonly used relationships in the

literature.

An explicit numerical scheme then is implemented to solve this equation for 3+1D turbulent wind field, and hence analyse

the temporal evolution of the velocities and trajectories of rain drops during their fall. It appears that multifractal features of the10

input wind are simply transferred to drop velocity with an additional fractional integration whose level depends on drop size,

and a slight time shift. Using actual high resolution 3D sonic anemometer and a scale invariant approach to simulate realistic

fluctuations of wind in space, trajectories of drop of various size falling form 1500 m are studied. For a strong wind event,

drops located within a radar gate in altitude during 5 min are spread on the ground over an area of size few kilometers. Spread

for drops of a given diameter are found to cover few radar pixels. Consequences on measurements of hydro-meteorological15

extremes which are needed to improve resilience of urban areas are discussed.

Copyright statement. TEXT

1 Introduction

During their fall, drops are advected by wind. Quantitative rainfall estimation with the help of weather radars are affected by

this issue since drops can be displaced horizontally between their measurement location in altitude and their ground impact20

location which is of interest for hydro-meteorologists. This effect is usually called wind drift in the literature and sometimes

wind advection. The potential bias and uncertainty introduced in radar measurement is stronger at higher resolution, i.e. typi-

cally with pixel size smaller than 1-2 km2 which are needed for urban applications for example. Collier (1999) suggests that
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correction schemes should be implemented for this kind or higher radar resolution. Lauri et al. (2012) reported that far from

radar (i.e. typically more than 150 km), even with low elevation (0.3°), displacements of few tens of km are found, which25

actually distort the measured area.

Most correction schemes rely on the use of 4D wind profiles derived from numerical predictions models (Mittermaier et al.,

2004; Lack and Fox, 2007; Lauri et al., 2012; Sandford, 2015) or combination of such with reanalysis (Dai et al., 2013, 2019).

The latter also accounts for drop size distribution (DSD). With such, they report an improvement by ≈ 3% of the correlation

between radar and rain gauge measurement and a reduction of discrepancy of ≈ 18% over eight selected events. Lack and Fox30

(2007) used directly Doppler radar wind measurement at 2.5 km scale to adjust for wind drift effect. In general, correction

schemes use wind data at rather coarse resolution (typically km(s)) and assume a constant wind shear. Nevertheless, some

variability at smaller space-time scales is usually acknowledged, especially during convective events, i.e. the ones for which

wind drift causes the greatest uncertainty (Lack and Fox, 2007).

Wind effects on rainfall drops is also reported to generate discrepancies between measured vertical velocities and expected35

terminal fall ones. For example, Montero-Martinez and Garcia-Garcia (2016) studied events with calm, light and moderate

wind with various rainfall levels, and found a widening of the fall velocity distribution under windy conditions. They found

super-terminal drops only for diameters < 0.7 mm and more often under wind conditions. Sub-terminal fall velocities for

drops of size up to 2 mm are reported. Bringi et al. (2018) found that under low wind speed and turbulence, no discrepancies

are found with expectations while under high wind speed and turbulence, there is a clear widening of the distribution. A40

linear decrease of mean fall velocity with increasing turbulent intensity is reported. Maximum decreases of 25–30 % are

observed. Thurai et al. (2019) also found such decrease for drops greater than 2 mm in high turbulence intensity conditions.

It is associated to an asymmetry also appearing in the drop shape. They also found that drop horizontal velocities in both

direction and magnitude show “remarkable agreement” with the wind sensor at 10 m. Stout et al. (1995) explored the effect

of non linear drag coefficient on fall velocity through numerical simulations. They showed that even heavy drops exhibited a45

reduced settling velocity in isotropic turbulence.

Turbulence is found to have contradictory effects on the distribution of fall velocity. Indeed increasing turbulence level in

windy and rainfall condition will yield to more collision and breakup, resulting in smaller drops inheriting the speed of larger

parent ones, hence observations of super-terminal velocities. On the other end, turbulence is said to yield to a decrease in fall

velocities because drops (especially ones < 1mm) are more affected by eddies.50

Such findings on the discrepancies between observed and expected fall velocities has effects on the relation between rainfall

and kinetic energy, i.e. the erositivity ’power’ of rainfall (Pedersen and Hasholt, 1995) and also building performance to outdoor

conditions (Tian et al., 2018; Blocken et al., 2011).

The studies previously mentioned basically do not account for small scales wind fluctuations in both space and time. In

this paper, we suggest to study the behaviour of individual rainfall drops of various sizes in a high resolution turbulent wind55

field. The variability of the wind is accounted for through the framework of Universal Multifractals (UM) (see Schertzer and

Tchiguirinskaia, 2020, for a recent review). Such physically based framework is designed to analyse and simulate geophysical

fields exhibiting extreme variability over wide range of space-time scales as wind. Drop oblateness is also accounted for.
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The paper is organized as follow. In section 2, a deterministic equation for the fall of individual oblate drops in a 3D field

is derived and validated through the comparison of obtained terminal fall velocity with commonly used formulas. In section 3,60

the framework of Universal Multifractals is briefly reminded. Then, the drops are subjected to simulated multifractal fields as

wind input and multifractal behaviour of horizontal drop velocity is assessed. Finally, in section 4, 3D wind is reconstructed

from high resolution 3D sonic anemometer data and strong scaling assumptions. This field is used to study the trajectories of

drops between falling from 1500 m down to the ground.

2 A deterministic equation for oblate drops in a wind field65

2.1 Formulation of the equation

Let us denote (x,y,z) the horizontal, lateral and vertical coordinates in a standard Cartesian framework with unit vectors

(ex,ey ,ez). We aim at writing the motion equation of a particle of water (a drop) of velocity vp, density ρp and falling in

the atmosphere under the influence of the gravity g =−gez (where g = 9.81 m.s−2) and the wind vwind (with three compo-

nents). The density of the atmosphere is denoted ρair. The water particle is characterized by its equivolomic diameter Deq70

which corresponds to the diameter of the sphere having the same total volume. Hence we have V ol = π
6D

3
eq . Finally the rel-

ative velocity between the wind and the falling particle is vrel = vwind− vp (vrel is the vector with three components while

vrel is its euclidean norm).

The drop is subjected to three forces:

– The gravity equal to ρp V olg75

– The buoyancy equal to −ρair V olg

– The drag, which is commonly written as 1
2
πD2

4 cDρairvrelvrel. Re is the common Reynolds number Re= ρairvrelD
µair

where µair is the absolute viscosity of air. cD is the drag coefficient and depends in general of Re and Deq . The next

section is devoted to its determination.

As a consequence, the equation of motion of the falling particle is given by Newton’s second law which equals the mass80

times the acceleration to the net force (here it was divided by the mass):

dvp
dt

=
3

4D
cD
ρair
ρp

vrelvrel+ g
ρp− ρair

ρp
(1)

2.2 Determination of the drag coefficient

Before discussing how the drag coefficient is determined, it should be reminded that rainfall drops which are considered in this

paper are not spherical. Indeed drops greater than typically 1.5 mm become oblate in their fall. This oblateness increases with85

size. A very commonly used model consists in an ellipsoid with an axis ratio varying depending on the size. Thurai et al. (2007)

showed that such model is too simplistic since drops are not symmetric in the direction perpendicular to their fall. Following
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an in-depth analysis of the drop shape assessed with the help of a 2D-video disdrometer (Kruger and Krajewski, 2002) in the

measurement campaign of an artificial rainfall experiment; they suggested the following formula for the shape:

x= a1

√
1−

(
z

a2

)2 [
cos−1

(
z

a2a3

)][
a4

(
z

a2

)2

+1

]
= f(z) (2)90

with:

a1 = 1
π

(
0.02914D2

eq +0.9263Deq +0.07791
)

a2 = −0.01938D2
eq +0.4698Deq +0.09538

a3 = −0.06123D3
eq +1.3880D2

eq − 10.41D2
eq +28.34

a4 = −0.01352D3
eq +0.2014D2

eq − 0.8964D2
eq +1.226 if Deq > 4mm

a4 = 0 if 1.5mm≤Deq ≤ 4mm

(3)

This shape corresponding to a solid of revolution around z axis is used in this paper. It is displayed in Fig. 2.a for drops with

equivolumic diameter ranging from 1.5mm to 5.5mm. It should be mentioned that computing the volume as an integral of the

shape ( V ol =
∫ zmax

zmin
πf(z)2dz, see Fig. 1) yields to minor differences with the expected volume of

πD3
eq

6 . They are highlighted95

in Fig. 2.b. In order to account for this small difference, once an equivolumic diameter is set, the corresponding one that would

lead to the expected volume from Eq. 2 and 3 is computed from a correspondence table. The relationship, which is obviously

close to the bisector is displayed in Fig. 2.c with the horizontal axis corresponding to the real Deq of the drop and the vertical

axis the Deq to be input in Eq. 2 and 3 to retrieve the correct expected volume. A consequence is that oblateness of drops will

be considered only from equivolumic diameter greater than 1.527 mm.100

For non spherical shapes, it is quite tricky to compute the corresponding drag coefficient as a function of the Reynolds

number. The literature about this issue is quite abundant and the interested reader is referred to chapter 4 of the PhD dissertation

of Baheri (2015) or Hölzer and Sommerfeld (2008) for details. In the approach they implemented, three parameters are used

to characterize the non spherical shapes of the falling particle with the help of three dimensionless parameters: The sphericity,

the crosswise sphericity and the lengthwise sphericity. The two last depend on the orientation of the particle with regards to the105

flow. Here it is assumed that drops are oriented perpendicularly to the flow, i.e. the ’z’ axis of Eq. 2 is parallel to vrel. In the

general case, these parameters may be complex to assess but with the shape derived from Eq. 2 (Thurai et al., 2007), theoretical

formula can be obtained. See Fig. 1 for an illustration of the computations via integral calculus. The three parameters are:

– The sphericity ψ which is equal to ratio between the surface area (SA) of the equivolumic sphere to the actual surface

area of the particle. It is equal to one for sphere and decreases for less and less spherical particles. ψ =
piD2

eq

Surface Area . In110

the framework of this paper, i.e. we have SA=
∫ zmax

zmin
2πf(z)

√
1+ f ′(z)2dz

– The crosswise sphericity ψ⊥ which is equal to ratio between the projected area of the volume equivalent sphere and

the projected area of the particle normal to the falling direction (here ez). ψ⊥ =
D2

eq

D2
max

. It is equal to one for sphere and

decreases for larger drops since they become oblate.

4



Figure 1. Illustration on how the volume (V ol), the surface area (SA), and the mean projected longitudinal cross-sectional area (MPA∥) of

the particle used in this paper can be computed via integral calculus. The drop is actually a solid of revolution around the ’z’ axis.

– The lengthwise sphericity ψ∥ which is defined as to the cross-sectional area of the volume equivalent sphere divided by115

the difference between half the surface area and the mean projected longitudinal cross-sectional area of particle (MPA∥).

ψ∥ =
π(

Deq
2 )2

SA
2 −MPA∥

. In the specific drop model of this paper, we have MPA∥ =
∫ zmax

zmin
2f(z)dz (it basically corresponds

to the area in 2D of the drop plotted in Fig. 1).

The evolution of these parameters as a function of Deq for the considered drops is in Fig. 2.d. The increasing oblateness of

drops with increasing size is translated through the fact that the parameters are getting further away from 1. In order to define120

the drag coefficient, the corrections suggested by Hölzer and Sommerfeld (2008) to account for non sphericity of particles are

then implemented on the formula of White (1974) previously used by Stout et al. (1995) who worked only on spherical drops.

This yields:

cD =
8

Re
√
ψ∥

+
16

Re
√
ψ⊥

+
6

(1+
√
Re)ψ3/4

+
0.25× 100.4(−logψ)

0.2

ψ⊥
(4)

The evolution of cD as a function of Re for various drop parameters is displayed in Fig. 2.e and follows standard patterns.125

2.3 Validation of the formula

In order to validate the developed equation, the retrieved terminal fall velocity is assessed for each equivolumic diameter. It

corresponds to the velocity of the permanent regime with no wind, i.e. the drag plus the buoyancy exactly compensate the

gravity. Computations are carried out with ρair = 1.205 kg.m−3, µair = 1.81 10−5 kg.m−1.m−2, ρwater = 998.2 kg.m−3

g = 9.81m.s−2 as in Stout et al. (1995).130

The relation between obtained terminal fall velocity vs. equivolumic diameter is displayed in red in Fig. 2.f. The developed

equations enables to retrieve commonly used relation (Beard, 1977; Lhermitte, 1988; Best, 1950; Atlas et al., 1973) for drops
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Figure 2. (a) Drop shape model used in this paper; (b) Drop volume vs. equivolumic diameter; (c) Diameter relation to retrieved wanted

volume; (d) Parameters characterizing non spherical shape of drops vs. equivolumic diameter; (e) Drag coefficient cD vs. Re number; (f)

Terminal fall velocity vs. equivolumic diameter

of diameter up to 4 mm. The deviations found when considering spherical drops (in green) are visible for diameter greater

than 2 mm which highlights the need to account for drop oblateness.

2.4 Numerical scheme for solving the equation135

Eq. 1 is solved numerically through the implementation of a simple Eulerian numerical scheme. In such framework: (i) a

discretisation of time with time step ∆t is introduced yielding to discrete time steps tn = n×∆t where n is an integer; (ii)

we aim at finding an approximation of vp at time step n denoted vp,n; (iii) the first derivative in Eq. 1 is approximated as
dvp
dt (tn)≈

vp,n+1−vp,n
∆t . This yields to the following equation for the numerical scheme:

vp,n+1 = vp,n+∆t

[
3

4D
cD,n

ρair
ρp

vrel,nvrel,n+ g
ρp− ρair

ρp

]
(5)140

where vrel,n and cD,n are computed at time step tn using the formulas discussed in section 2.1 and 2.2. Assuming some

initial conditions (always no horizontal velocity and a vertical one equal to the terminal fall for the corresponding diameter), it

is then possible to reconstruct the time series of velocity for the drops. From it, the temporal evolution of the position (i.e. the

trajectory) is derived. It is needed to properly assess the wind accounting for the current position of the drop. A time step of

∆t= 0.01 s is used in this paper, and it was checked that it ensured a stability of the numerical scheme.145
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3 Behaviour of horizontal drop velocity with multifractal input

3.1 Brief reminder on Universal Multifractal framework

It is outside the scope of the paper to introduce in details the framework of Universal Multifractals (UM). Hence, only the most

important elements are reminded here and interested readers are referred to the references mentioned or to a recent review by

Schertzer and Tchiguirinskaia Schertzer and Tchiguirinskaia (2020) for more details.150

Let us consider a field ϵλ at a resolution λ defined as the ratio between the outer scale (L) and observation scale (l); λ= L/l.

For multifractal fields, the moment of order q of the field is power law related to the resolution:

⟨ϵqλ⟩ ≈ λK(q) (6)

where K(q) is the scaling moment function. It fully characterizes the variability across scales of the field. In the specific

framework of UM (Schertzer and Lovejoy, 1987, 1997), towards which multiplicative cascades processes converge, only two155

parameters with physical interpretation are needed to characterize K(q) for conservative fields:

– C1, the mean intermittency co-dimension, which measures the clustering of the (average) intensity at smaller and smaller

scales. C1 = 0 for an homogeneous field;

– α, the multifractality index (0≤ α≤ 2), which measures the clustering variability with regards to the intensity level.

For UM, we have:160

K(q) =
C1

α− 1
(qα− q) (7)

A non-conservative field (ψλ), i.e. whose mean is not preserved across scale can be written as ψλ ≈ ϵλλ
−H , where H is

the non-conservativeness parameter. H = 0 for conservative fields. Positive values correspond to a fractional integration to go

from ϵλ to ψλ and to stronger correlations within the field ψλ. Negative values correspond to a fractional differentiation. H is

typically between 0 and 1 for geophysical fields.165

The first step of a multifractal analysis usually consists in a spectral analysis. For multifractal fields the power spectra (E)

should scale with wave number k:

E(k) = k−β (8)

with the spectral slope β

β = 1+2H −Kc(2) (9)170

where Kc is the scaling moment function (Eq. 7) of the conservative part of the field. To analyse the latter, a Trace Moment

(TM) is implemented. It notably enables to assess the quality of the scaling behaviour. It basically consists in plotting Eq. 6
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in log-log. Straight lines should be retrieved and the slope gives K(q). Finally, UM parameters are estimated with the help of

the Double Trace Moment (DTM) technique which is tailored for UM fields and enables robust estimation of UM parameters

(Lavallée et al., 1993).175

3.2 Methodology

In this section, the scaling behaviour of horizontal drop velocity is assessed using numerical simulations. Working with such

input whose features are fully known is helpful to understand how drops react to wind.

More precisely, a horizontal input vx,wind for Eq. 1 is simulated with the help of blunt multifractal discrete cascades (Gires

et al., 2020). Such process yields only positive values which is not realistic for wind. Hence a standard ’complex trick’ was180

used to generate a field with both positive and negative values (Schertzer and Lovejoy, 1995). To implement it, two fields X1

and X2 are generated with the wanted features, and a third one is obtained with the help of the following equation (Real is the

real part):

X =Real [exp(logX1 + i logX2)] (10)

Such field divided by two was used as input. 1024 time step long series are generated with UM parameter α= 1.7 andC1 = 0.2,185

which corresponds to typical value for turbulent wind fields (Fitton et al., 2011). The time step is assumed to be of 0.01 s which

means that drops are basically studied over 10 s. For the initial conditions, drops are assumed to have no horizontal velocity

and a vertical component equal to its corresponding terminal fall velocity. Since scaling is a statistical behaviour, an ensemble

of 100 independent samples was generated and the corresponding ensemble of horizontal drop velocity was simulated using

Eq. 5 for drops of various sized (Deq ⊂ [0.1,0.2,0.4,0.6,0.8,1,1.5,2,3,4])190

3.3 Results and discussion

Fig. 3 displays the temporal evolution of drops’ horizontal velocity over 10 s for a sample of wind input (in black). Three drop

diameters are displayed (0.1, 0.6 and 2 mm). It can be seen, notably on the zoomed part of the figure (lower panel) that the

smaller drop (Deq = 0.1 mm, in blue) follows well wind fluctuations with only a limited dampening of the fluctuations. A

small delay (≈ 0.01 s) corresponding to a reaction time is noted. As it can be expected larger drops (Deq = 0.6mm, in green;195

and Deq = 2mm, in red) tend to dampen even more wind fluctuations.

In order to quantify more precisely this qualitative behaviour, a multifractal analysis on the retrieved ensembles was per-

formed. Fig. 4 displays the outcome of spectral and TM analysis for drops of equivolumic diameter ranging from 0.1 to 2

mm. The spectral analysis reflect a good scaling behaviour over the whole range of scales. Spectral slopes (β in Eq. 8) of 0.86

and 2.25 are retrieved respectively. For the 2 mm drop, the value corresponds to non-conservative fields. In order to ensure200

that a conservative field is studied in TM analysis, which is needed (Lavallée et al., 1993), a fractional differentiation with

an exponent (β− 1)/2 is implemented on the field before implementing this TM analysis. TM analysis is displayed in the

right column of Fig. 4. For the 0.1 mm drop, an excellent scaling behaviour is retrieved with coefficient of determination r2

for q = 1.5 greater than 0.99. DTM analysis yields estimates of UM parameters α, C1 and H equal to 1.68, 0.21 and 0.12
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Figure 3. Top: temporal evolution of the drop horizontal velocity during 10 s for various drop diameters (it is the equivolumic diameter that

is indicated) with the same multifractal wind input (in black). Bottom: a zoom of the above curve on a shorter period

respectively, which is close to the features of the input series. For the 2 mm drop, the scaling is slightly degraded but remains205

good (r2 = 0.95 for q = 1.5) and we find α= 1.69, C1 = 0.14 and H = 0.79.

Fig. 5 displays a summary of the UM analysis carried out on the generated series for the various drops. The scaling behaviour

is excellent for small drops and remains good for all drop sizes with r2 for q = 1.5 always greater than 0.95 (Fig. 5.e). The need

for a fractional differentiation before implementing TM analysis is visible with the very poor scaling found when analysing

directly the field. The non-conservativeness parameter rapidly increases from 0.1 to 0.8 with drop size increasing from 0.1mm210

to ≈ 1− 1.5 mm. For larger drops it remains rather stable. This increase of H is basically a quantification of the increased

dampening of wind fluctuations observed for larger drops discussed with Fig. 3. With regards to the UM parameters α and C1,

the former remains stable and close to the input value of 1.7 for all drop size. The latter exhibits a small decrease with larger

drops. It should be reminded that this approach is somehow artificial since all drops are perceiving the same wind, which would

not be the case in reality because they do not fall at the same vertical speed. In summary, this investigation shows that horizontal215

drop velocity basically reproduces the multifractal properties of the wind input with an increased level of non-conservativeness

H . H strongly increases for drops smaller than 1 mm and then stabilizes.
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Figure 4. Scaling behaviour of the simulated drop velocity for Deq equal to 0.1 mm (top row) and 2 mm (bottom row). Spectral analysis

(i.e. Eq. 8 in log-log) on the direct simulations is displayed in the left column. TM analysis (i.e. eq. 6 in log-log) on the velocity after

implementing a fractional integration is displayed in the right column

4 Ground impact location of drops falling in a turbulent wind field

4.1 Methodology

The purpose of this section is to investigate where drops falling from a height of 1500 m reach the ground. Given the time220

step of 0.01 s used in the equation and the fact that drops are moving in space during their fall, it means that having high

resolution space-time 3D wind data over an area of typical size few kilometers is needed to fully address the issue. Such data

is unfortunately not available. Hence we suggest here to reconstruct a somehow realistic wind from a punctual measurement

relying on previous findings on turbulence.

4.1.1 Wind data225

More precisely, we use 100 Hz 3D sonic anemometer data collected at by a device installed at 78 m on meteorological mast

located on the Pays d’Othe wind farm in the framework of the ANR RW-Turb project. The wind farm is at roughly 120 km

South-East of Paris on a slightly sloppy area. More details can be found in the data paper under discussion at ESSD (Gires

et al., 2022) and in the data set (Gires et al., 2021). Two wind series with very different average horizontal wind speed (i.e. 1.8

vs. 11.8m.s−1) were extracted for this study. They are later denoted low wind event and strong wind event. The corresponding230
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Figure 5. Summary of the multifractal analysis performed on the ensembles of simulated drop horizontal velocities using a wind input with

α= 1.7, C1 = 0.2. The various multifractal parameters are displayed vs. D (the equivolumic drop diameter)

Figure 6. Temporal evolution of the 100 Hz wind data from 3D sonic anemometer for low (top) and strong (bottom) wind event used in this

paper

time series of the three components of the wind for both events are displayed in Fig. 6 over approx. 900 s. The low wind event

was collected on 20/01/2021 while the strong one occurred on 06/01/2021.

4.1.2 Generation of an anisotropic 3D turbulent field

In this section we discuss how to stochastically generate a turbulent field reproducing as well as possible the physics of such a

flow constraint to have the empirical velocity values v(x,y,z, t) of the 3D sonic anemometer located at (x,y,z, t).235

Scaling and anisotropy

11



It is quite obvious that gravity has such a strong impact on drop trajectories and dynamics of drops that classical scaling

approaches just fail because they presuppose isotropy. On the contrary, the anisotropy between the vertical and the horizontal

induced by gravity is so ubiquitous in geophysics that it has led to the general concept and framework of ‘generalised scale

invariance’ for the analysis and simulation of anisotropic fields (Schertzer and Lovejoy, 1985, 1988, 1989; Lazarev et al., 1994;240

Schertzer et al., 2012) and new extensions have been developed for vector fields (Schertzer and Tchiguirinskaia, 2015, 2020).

While classical approaches consider scaling only after assuming isotropy, general scale invariance first posit scaling and then

study the remaining non trivial symmetries. Because this paper deals with scalar discrete cascades, and therefore their limi-

tations, we consider an oversimplification of the generalised scale invariance. Recall that for the simplest case of generalised

scale invariance, a v horizontal component of a statistically translation invariant velocity field satisfies the following self-affine245

scale invariance:

∆v(Tλ∆x)
d
=λHh∆v(∆x) (11)

where d
= stands for equality in distribution, ∆x for a (vector) pair separation, ∆v = |v(x+∆x)−v(x)| for the induced velocity

component shear, Hh for the horizontal scaling exponent (Hh = 1/3 for Kolmogorov’s scaling) and Tλ for a self-affine change

of scale:250

Tλ = λG = exp(log(λG);G=


1 0 0

0 1 0

0 0 Hz

 (12)

where G is the generator of Tλ, Hz =Hh/Hv is the scaling anisotropy exponent, Hv the scaling exponent along the vertical.

Hv = 3/5 for a Bolgiano-Obukhov scaling along the vertical and therefore Hz = 5/9, while for isotropic 3D turbulence Hz =

1,Hh =Hv . The main property of Tλ is that it broadly generalises in a straightforward manner scales |.| from classical isotropic

frameworks (Hz = 1) to generalised scales ∥.∥ of anisotropic frameworks (e.g., Hz ̸= 1), so that any isotropic cascade can be255

transformed in this manner into an anisotropic cascade without anything else. Just recall the canonical example of generalised

scales for a diagonal generator (p≥ 1):

Gi,j = giδi,j : ∥x∥p = (
∑
i

|xi]p/gi)1/p ⇒∥Tλx∥p = λ∥x∥p (13)

which displays the (generalised) scaling property of the generalised scales.

Equation 11 is valid for any direction of ∆x ( x= (x,y,z)), in particular along the horizontal ∆x and the vertical ∆z:260

∆v(λ∆x)
d
=λHh∆v(∆x); ∆v(λ∆z)

d
=λHv∆v(∆v) (14)

which can be respectively interpreted like:

∆v(∆x)
d
=ε(∆x)ah∆xHh ; ∆v(∆z)

d
=ϕ(∆z)av∆zHv (15)
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with scaling exponents ah = 1/3 for the kinetic energy flux density ε and av = 1/5 for the buoyancy force flux density ϕ. Due

to the fact that eddies can be defined as structures having a given velocity shear ∆v, we have in fact the following balance265

between both flux densities:

ε(∆x)ah∆xHh
d
=ϕ(∆z)av∆zHv (16)

and finally:

ε(∆x)ah
d
=ϕ(∆z)av , with :∆xHh ≈∆zHv (17)

due to the respective scaling of the horizontal and vertical eddy sizes defined by the scale change Tλ (Eq.12).270

This confirms that ϕ and ε are both sites of the same coin (Eq.11). In summary, what is only needed is an anisotropic cascade

defined by an anisotropic scale compatible (e.g., Eq.14) with the anisotropic scale change Tλ (Eq.12), the intermittency being

introduced either by the flux density ε or ϕ (Eq. 15), which respect their equivalence (Eq. 17).

Practical difficulties only occur with discrete scales because they cannot easily deal with arbitrary Hz .

Discrete scales and an ad-hoc approximation275

To get around these difficulties, it was tentatively proposed (REF EGU conf.?) to consider the following 3D model:

vx(x+∆x,y+∆y,z+∆z, t) = vx(x,y,z, t)+ cϵx ϵx(x+∆x,y+∆y,t)ah∆lHh + cθx θx(z+∆z, t)av∆zHv

vy(x+∆x,y+∆y,z+∆z, t) = vy(x,y,z, t)+ cϵy ϵy(x+∆x,y+∆y,t)ah∆lHh + cθy θy(z+∆z, t)av∆zHv

vz(x+∆x,y+∆y,z+∆z, t) = vz(x,y,z, t)+ cϵz ϵz(x+∆x,y+∆y,t)ah∆lHh + cθz θz(z+∆z, t)av∆zHv

(18)

where ∆l =
√
∆x2 +∆y2 is the (classical), horizontal distance from the anenometer and θ is the buoyancy force flux but it is

supposed independent of ε contrary to ϕ (Eq.17 ). Unfortunately, this model suffers from a number of basic problems:

– equalities in distribution are replaced by deterministic equalities, which oversimplify and trivialise the dynamics for each280

realisation

– the flux density ε is defined only along 3 directions instead along all directions (Eq.11), whose corresponding components

(εx, εy , εz) are supposed to be independent, which is not a tenable assumption

– the introduction of θ independent of ε is purely ad-hoc to additively (!) introduce a second isotropic scaling (!), therefore

the change of scaling is reduced to a linear cross-over285

– the scale of the flux densities ε and θ are implicitly taken as the scale of the simulation resolution instead of the pair

separation scale(Eq.15). The resulting mismatch between both scales will introduce a statistical bias

– moreover the density values are arbitrary taken at the locations (x+∆x,y+∆y for ε) and z+∆z for θ. This introduces

a dissymmetry that is not without consequences.
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– all time steps are fully independent with the exception of the empirical velocity values v(x,y,z, t) measured by the 3D290

sonic anemometer

The limitations of this model are therefore extremely strong. Many of them would have been resolved with the help of

scalar anisotropic cascades, recalled above (see previous paragraph). But to fully overcome them would require to consider

their extension to vector fields (Schertzer and Tchiguirinskaia, 2015, 2020). This remains outside the scope of this paper

and this simplistic approach is used for a sort of exploratory step focused on the interaction of drops and a given velocity295

field. The obtained results have therefore to be critically examined, since many of them are sensitive to the aforementioned

oversimplifications.

4.1.3 Practical implementation

The fields ϵ (i.e. the ones for the horizontal shift) are simulated in space time with a size 729 x 729 x 64 using discrete UM

cascades and Eq. 10 to obtain either positive or negative values. The 729 refer to space while the 64 refer to time. Before300

stating the physical resolution of the field, it should be explained that a simple anisotropy between space and time is accounted

through a scaling anisotropy coefficient Ht. In such framework, when the spatial scale of the data is changed by a ratio of λxy ,

then the temporal scale should be changed by a factor of λt = λHt
xy . Ht is expected to be equal to 1/3 (Marsan et al., 1996),

hence when the spatial scale is multiplied by 3, the temporal scale should be multiplied by 2 (i.e. 31−1/3 ≈ 2.08) (Biaou et al.,

2005; Gires et al., 2014). These fields are assumed to cover an area of size 40 km x 40 km x 1024 s, which is needed for drift305

of 0.1 mm drops during their fall when wind is strong. It means that a voxel is of size is 53 m x 53 m x 16 s.

The fields θ (i.e. the ones for the vertical shift) are of size 512 x 64 covering a physical are of 1600 m x 1024 s, meaning

that a pixel size 3 m x 16 s. All UM fields are simulated with α= 1.7, C1 = 0.2 as in the previous section.

Finally, at any point (x,y,z,t) a bi or tri-linear interpolation is implemented to obtain the value of the field from the nearest

points. The value of the prefactor were set to cϵx = cϵy = 0.3, cϵz = 0.1 and cθx = cθy = cθz = 0.01, through an heuristic310

approach of trial and error to get some realistic fluctuations. In the future, it would obviously be needed to tune them to local

wind properties. However such tuning is outside the scope of this section, which aims more at being a proof of concept.

4.2 Illustration

In order to illustrate the suggested process, let us consider a 0.5 mm drop during the low wind event. Its initial position is

(0,0,1500) in m. It is ’dropped’ with no horizontal velocity and a vertical one equal to its terminal fall one. The anemometer315

is assumed to be located at at (0,0,100) m. Then Eq. 5 is implemented. At each time step the local wind is assessed using the

methodology described in the previous paragraphs.

The actual total wind perceived by the drop (i.e. input in Eq. 5) is recorded and displayed in last row of Fig. 7. It corresponds

to the sum of the wind from the anemometer (first row in Fig. 7) plus a wind shift field (middle row in Fig. 7). This yields

to a given trajectory in space which is shown in Fig. 8. Projected trajectory on the plans (x,y) and (x,z) are also shown. This320

trajectory exhibits a non linear complex pattern which results from the turbulent nature of the wind. It should be mentioned that
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Figure 7. Temporal evolution with 0.01 s time steps of the wind data from 3D sonic anemometer (a), the wind shift (b) and the total wind

perceived (c) by the 0.5 mm drop falling from the position (0,0,1500) during the low wind event. (c) is actually the wind input used to obtain

the trajectory of Fig. 8.

Figure 8. Trajectory (solid line) of a 0.5 mm drop in a turbulent wind field for the low wind event. The dotted lines correspond to the

trajectory projected on the (x,z) and (y,z) plan

not accounting for oblateness affects not only the vertical velocity but the whole trajectory as well. Depending on the model

(spheres or oblate drops), shifts of more than few hundreds meters are found even for large drops for some events.
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Figure 9. (a) and (b) Trajectories of drops of various sizes falling from the (0,0,1500) position, projected on the (x,z) and (y,z) plan respec-

tively. Low wind event is used. The 10 curves correspond to different realizations of the wind shift field. (c) Position of the ground impact of

the various drops

Figure 10. Same as in Fig. 9 but for the strong wind event

4.3 Sensitivity to the wind shift field

The process to generate an estimation of a 3D wind field is actually stochastic through the UM fields ϵ and θ used in Eq. 18.325

In this section, the sensitivity to the given realization of the process is discussed. In order to achieve that, 10 wind samples are

generated with the same input parameters (described in section 4.1) and the corresponding trajectories for drops of size 0.5, 1,

2 and 3 mm are computed.

For the low wind event, the projected trajectories are displayed in Fig. 9.a and b. The position of the drop when they reach

the ground is in Fig. 9.c. The spread of the drops strongly depends on their size, with a decrease as drop size increases. Indeed330

∆x (xmax−xmin) is equal to 1238, 591, 415 and 404 m for drop of size 0.5, 1, 2 and 3 mm respectively. For ∆y the values

are 2123, 897, 461 and 322 m. Such decrease is due to a combination of the fact that smaller drops are more subject to wind

fluctuations (Section 3), and that they spend more time in the atmosphere (section 2) before they reach the ground. Similar

trends are retrieved for the strong wind event (Fig. 10) with a stronger absolute shift. In that case the value for ∆x are 890,

868, 500 and 448 m respectively. For ∆y they are 2382, 1003, 568 and 448 m.335

4.4 Illustration of impact on rainfall retrieval with weather radars

In this last section, initial investigations toward understanding the consequence of previous work on quantitative rainfall

measurement with weather radars are carried out. Indeed, weather radar measure rainfall at a given altitude while hydro-
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Figure 11. (a) and (b) Trajectories of drops of various sizes falling from a 100 m cubic voxel centered on (0,0,1450) position, projected on

the (x,z) and (y,z) plan respectively. Low wind event is used. For each size, the 20 drops are dropped every 15 s (hence over a total duration

of 5 min). A single realization of the wind shift field is used. (c) Position of the ground impact of the various drops

Figure 12. Same as in Fig. 11 but for the strong wind event

meteorologist are interested about rainfall at ground level. During their fall, significant shift can occur. In order to study it, the

following process is implemented. During five minutes, one rainfall drop is dropped every 15 s from a random position within340

a voxel of size 100 m centered on (0,0,1450) m. Hence it covers a total duration of 5 min. The trajectories and positions on

the ground of the drops is then studied. This enables to basically mimic the measurement of a weather radar at its typical gate

size and temporal resolution.

Fig. 11 displays the trajectories and ground impact location in the case of the low wind event for a given realisation of the

stochastic wind shift. A shift of more than 1 km for small drops is found and more than 300 m for 3 mm drops. As noted in345

the previous section, the spread of drops at ground level tends to decrease with increasing drop size. Indeed ∆x (xmax−xmin)

is equal to 206, 119, 165 and 121 m for drop of size 0.5, 1, 2 and 3 mm respectively. For ∆y the values are 184, 134, 112 and

88 m. For the strong wind event (Fig. 12), shifts of more than 6 km and 1.5 km are reported for drops of size 0.5 mm and 3

mm are retrieved. Similar results as for the low wind event are found with regards to the spread. The corresponding figures are

of 665, 450, 284 and 307 m for ∆x, and of 819, 664, 429 and 420 m for ∆y.350

As previously pointed out, this spread is due to the fact that smaller drop spend more time in the atmosphere and are more

sensitive to wind fluctuations. Indeed the duration of fall from 1500 m to the ground at 0 m is equal to 716, 378, 238 and 192

s for drops of size 0.5, 1, 2 and 3 mm respectively. Given that high resolution radar pixels are typically of size few hundred

meters, one should note that drops within a given voxel at measurement height can reach ground within an area of size 3 km x
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6 km. Even within a drop diameters class, shifts are of few radar pixels. Given that drop size distribution also varies, such shift355

can significantly affect rainfall retrieval, even in low wind conditions.

5 Conclusions

In this paper we aimed at better understanding the behaviour of individual rainfall drops falling from typically 1500 m. In a

first step we developed a new approach to compute the drag coefficient accounting for drop oblateness and findings in fluid

mechanics. This was validated for drop of equivolumic size of up to 4 mm through the comparison between retrieved terminal360

fall velocity and commonly used formula.

Then the temporal evolution of horizontal drop velocity under turbulent wind constraints was studied. It appears that mul-

tifractal features of the input wind are simply transferred to drop velocity with an additional fractional integration and slight

time shift. UM parameter α and C1 are basically conserved while H is increased. The increase ranges from 0.1 for 0.1 mm

size drops to 0.8 for 1-1.5 mm size drops. It remains rather constant for larger drops.365

Finally the trajectories of drop of various size falling form 1500 m was studied as a proof of concept. For this, 100 Hz

anemometer data was used and an approach to simulate realistic fluctuations of wind in space was developed. It notably

enables to analyse how drop are shifting during their fall between their location measurement by weather radars and ground

impact. For a strong wind event, drops located within a radar gate in altitude during 5 min are spread on the ground over an

area of size few kilometers. Spread for drops of a given diameter are found to cover few radar pixels.370

In order to explore further the consequences of these findings on quantitative rainfall estimation with weather radars, further

investigations are needed. More precisely (i) the model to simulate wind fluctuations should be improved, notably to use vector

simulations and tune the prefactors according to local wind conditions; (ii) space-time outputs of numerical weather prediction

models could also be tested to retrieve wind fields; (iii) actual drop size distribution should be used to assess better the impact

for ground estimation of precipitation, which implies making some simulations for a much larger number of drops. ; (v) longer375

period of time should be tested to investigate where the water volume (i.e. all the drops) of a given radar gate fell during

an event. For the two last points, data is available within the RW-Turb project. Such step would then need to be repeated

over various radar gates to derive updated radar maps. Given limited computation power that will not allow to simulate the

trajectories of all the drops, some statistical behaviour according to each radar gate and wind conditions would need to be

designed and then computed. It should also be stressed that only individual drop are currently handled. This means that the380

developed methodology does not account neither for collision, aggregation between drops, nor for breakup. Such processes are

also known to affect drop velocities by changing their size and shape. Future investigations should also aim at accounting for

them.
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