Characterization of tandem aerosol classifiers for selecting particles: implication for eliminating multiple charging effect

Yao Song¹, Xiangyu Pei¹, Huichao Liu¹, Jiajia Zhou¹, Zhibin Wang¹,²,³,⁴*

¹College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
²Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
³Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
⁴Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, 310058 Hangzhou, China

correspondence to: Zhibin Wang (wangzhibin@zju.edu.cn)

1 Calculation of volume equivalent diameter

The fitted PNSD ae for each experiment was converted to number volume-equivalent size (d_{ve}) distribution (PNSD ve). According to Eq. 26, d_{ve} is determined by,

$$m = \frac{\pi n C \rho d_{ae}^3}{6 C \rho d_{m}^3},$$

$$\frac{\pi n C \rho d_{ve}^3}{6 C \rho d_{m}^3} = \frac{\pi n C \rho d_{ae}^3}{6 C \rho d_{m}^3},$$

where $d_{ve,n}$ is volume equivalence diameter, ρ_m is particle density, and $\rho_m = 1.8 \text{ g cm}^{-3}$ is used, $d_{m,n}$ is the corresponding electrical mobility diameter for particles with n charges. Assuming that all the particles have the same electrical mobility as it classified by DMA, according to Eq. 1, the $d_{m,n}$ of particles with single, double and triple charges can be calculated, respectively. It should be noted that in Fig. 5b, three peaks have the same d_{ae} range but different d_{m}. As a result, their d_{ve} ranges were different. The number concentration of $dN/d\log(d_{ae})$ were converted to $dN/d\log(d_{ve})$ using the calculated d_{ve} range.
Figure S1: Variations of the critical D_{m} as a function of classified d_{m} and d_{ac}. The following parameter set was employed for the calculations: $\beta_{DMA} = 0.1$, $\beta_{AAC} = 0.1$. The background color coding denotes the critical D_{m}. The background color coding denotes the critical D_{m} of particles that DMA-AAC can select monodispersed particles.
Figure S2: (a) The transfer functions of DMA-CPMA when selecting 100 nm particles. The following parameter set was employed for the calculations: \(d_{\text{mi}} = 100 \text{ nm}, \beta_{\text{DMA}} = 0.1, m_1 = 0.27 \text{ fg}, Q_{\text{CPMA}} = 0.3 \text{ L min}^{-1}, R_m = 8 \). (d) The transfer functions of DMA-CPMA when selecting 150 nm particles. The following parameter set was employed for the calculations: \(d_{\text{mi}} = 150 \text{ nm}, \beta_{\text{DMA}} = 0.1, m_1 = 0.66 \text{ fg}, Q_{\text{CPMA}} = 0.3 \text{ L min}^{-1}, R_m = 8 \). The red solid line is the generated soot particle population. (b) and (e) are the aerodynamic size distributions of particles classified by DMA-CPMA for 100 and 150 nm particles, respectively. The circles are data measured by AAC-CPC and the black, green and red lines are log-normal fitted distributions of bulk, singly charged and doubly particle population. (c) and (f) are the contributions to light absorption of particles with single and double charges when selecting 100 and 150 nm particles.