1	
2	Measurement of Enantiomer Percentages for Five Monoterpenes
3	From Six Conifer Species by Cartridge Tube-Based
4	Passive Sampling Adsorption/Thermal Desorption (ps-ATD)
5	
6	
7	
8	
9	Ying Wang, ¹ Wentai Luo ² , Todd N. Rosenstiel ³ , James F. Pankow ^{2*}
10	
11	
12	¹ Key Laboratory of Songliao Aquatic Environment
13	Ministry of Education, Jilin Jianzhu University
14	5088 Xincheng Street -Jingyue Economic Development District
15	Changchun 130118, China
16	² Department of Civil and Environmental Engineering
17	Portland State University
18	Portland, OR, 97207, United States
19	³ Department of Biology
20	Portland State University
21	Portland, OR, 97207, United States
22	
23	*Corresponding author: pankowj@pdx.edu
24	
25	
26	
27	June 13, 2022

Abstract

- Many monoterpenes have at least two different stereochemical forms, and many biosynthetic 29 30 pathways are known to favor one product over the other(s). A rapid method was developed and used in the determination of the (-/+) enantiomeric distributions for α -pinene, β -pinene, 31 camphene, limonene, and β -phellandrene as emitted by plant material from six conifer species. 32 33 The six species included two pine species *Pseudotsuga menziesii* and *Pinus ponderosa*, and four cypress species, Chamaecyparis lawsoniana, Thuja plilcata, Juniperus chinensis, and 34 Thuja occidentalis. The method involved passive sampling adsorption/thermal desorption (ps-35 ATD). During sampling, the cartridge tube was placed in a 60 mL glass vial with plant 36 material for 1 h. Sample analytes were thermally transferred to a chiral gas chromatography 37 (GC) column. Detection was by mass spectrometry (MS). The six species exhibited different 38 emission patterns for the five monoterpenes in the -/+ totals, although within a given species 39 the distributions among the five monoterpenes were similar across multiple plants. β -pinene 40 dominated in P. menziesii and P. ponderosa, and α -pinene dominated in T. plicata and T. 41 occidentalis. The chiral separations revealed differences in the -/+ enantiomeric distributions 42 among the species. The (-)-enantiomers of α -pinene and β -pinene dominated strongly in P. 43 menziesii and P. ponderosa; the (-)-enantiomer of β -phellandrene dominated in C. lawsoniana. 44 The dependence of the method precision on percent enantiomer abundance is discussed. 45
- **Key words**: monoterpenes, enantiomers, chiral distributions, conifers, passive sampling, ATD, ps-ATD

Introduction

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Atmospheric emissions of gaseous non-methane organic compounds from plants are both substantial and chemically complex (Guenther et al., 1995, Pankow et al., 2012; de O. Piva et al., 2019). Plant emissions are greater than those from animals, and are believed to be related to a variety of purposes, including repulsion of herbivorous insects and attraction of pollinators and parasites of herbivores (Dicke and Loon, 2000). Isoprene (C₅H₈) and compounds derived from isoprene are particularly prominent in plant emission profiles. Guenther et al. (1995) has estimated that isoprene and monoterpenes constitute approximately 11 and 55%, respectively, of global non-methane emissions. Their oxidation in the atmosphere leads to products that promote formation of ozone (Porter et al., 2017) and which condense as secondary organic aerosol particulate matter (Pankow 1994a; Pankow, 1994b; Zhang et al., 2018). Monoterpenes that possess chiral carbons can exist in two mirror-image "enantiomeric" forms; for α -pinene, (-) α -pinene and (+) α -pinene. For a given compound, different biochemical synthesis pathways in different plants can favor one enantiomer over the other, and many biochemical interaction loci are chiral (López et al., 2011). An example pertains to carvone. The form predominantly found in carraway seeds ($Carum\ carvi$) is S(+) carvone while the form predominantly found in spearmint (Mentha spicata) is R (-) carvone. In forests, where legion species are emitting innumerable compounds for which many have multiple enantiomers, the matter is obviously exceedingly complex. For example, it required careful study by Williams et al. (2007) just to be able to conclude that in tropical forests, emission of (-) α -pinene is light-dependent, and that in boreal forests emission of (+) α -pinene

is temperature-dependent. Stephanou (2007) has argued that careful and data driven studies of chirality will be required to fully understand the mechanisms of atmospheric emission of volatile organic compounds by plants. Accordingly, improvements in the requisite analytical methods will be useful.

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Table 1 provides a summary of the methodologies used to carry out chiral determinations of plant monoterpenes. Analyte collection has occurred using solvents in various ways, and by sorption of volatilized (gaseous) analytes in air. Following sampling, analytes are subjected to quantitation of the enantiomer forms using chiral gas chromatography (GC). The acquisition of terpenoid analytes from plant samples can be accomplished in different ways. With solvent **extraction** as executed in the examples cited in Table 1 (e.g., with hexane), there are the disadvantages of the: 1) difficulties posed by large organic solvent signals; 2) generally negative implications that solvent injection carries for peak sharpness in GC; and 3) sensitivity problems when the analytes in the extract are not sufficiently concentrated. With **sorptive** sampling and "SPME", gaseous monoterpenes can be acquired using passive diffusionlimited transfer into the coatings of solid phase microextraction (SPME) fibers. With sorptive sampling and "ATD", sample gas flow is pulled through an "adsorption/thermal desorption" (ATD) cartridge tube (Pankow, 1988). For sampling and placement of analytes on a GC column, SPME can lead to better chromatographic resolution than ATD: less time/gas volume is needed to thermally transfer the analytes from the sorption phase to the column. When optimized, automated SPME can be cost-effective if the main goal is the accurate determination of chiral ratios. Automated SPME, however, is less prevalent and more

complicated than automated ATD, the latter being well optimized and available on multiple commercial instrument platforms. Since ATD interfaced with chiral GC in our laboratory has been found to give adequate enantiomeric resolution for monoterpenes of interest, the goal of this work was to develop and test passive-sampling ATD (ps-ATD) as a simple and low-labor method for carrying out enantiomeric analyses of monoterpenes emitted by plant materials. The method is based on passive-sampling with ATD cartridges followed by automated ATD. Since only enantiomeric *fractions* and not actual enantiomer *concentrations* were sought in this work, use of passive diffusion sampling carried no drawbacks (*e.g.*, diffusion coefficients of enantiomer pairs are identical as indicated by Fuller's Equation (Tang et al., 2014)).

2 Materials and Methods

2.1 Percent (-) Enantiomer Format

Two distinctly different formats are available for presenting enantiomer data. The first is the abundance ratio for the two forms (or the log of the ratio); the second is as a percent of one form, *e.g.*, the percent of the (-) form. The ratio format has advantages in the study of the molecular specificity of biosynthetic pathways; the percentage format complements source apportionment work wherein abundances of 0.5% and 1% of a given (-) molecule would not likely lead to meaningfully different model conclusions. This work will use the (-) enantiomer format.

2.2 Plant Samples

Purchased Nursery Plants (Six Species). Six coniferous species were purchased as ~1 m high potted (~8 L pots) saplings from a local nursery in January of 2018. These included the two pine species *Pseudotsuga menziesii* (4 plants) and *Pinus ponderosa* (3 plants), and the

four cypress species *Chamaecyparis lawsoniana*, *Thuja plicata*, *Juniperus chinensis* and *Thuja occidentalis* (4 plants each). The saplings were placed on the roof of the SRTC Building on the PSU campus, and were watered daily. The high/low temperature ranges for Portland during 2018 were: March, 19.4/4.3 °C; April, 30.0/6.7 °C; May, 31.7/12.3 °C; June, 34.4/13.1 °C; July, 35.6/16.7 °C; August, 35.0/16.6 °C. The elevation of the PSU campus is 52 m (above sea level). A foliage sample was collected from each plant at mid height in March 2018 and again in June/July 2018 using a clean pruning shears. The samples were taken immediately to the laboratory for processing.

Purchased Nursery *T. occidentalis* – **Time of Day Samples.** Foliage samples from the purchased *T. occidentalis* plants were collected at mid height with clean shears on August 20, 2018 at 6 AM, 1 PM, 7 PM, and 9 PM. The temperatures and light intensities were recorded. The samples were taken immediately to the laboratory for analysis.

Established Residential *T. occidentalis*. Samples from 6 to 7 established (5+ years), ~3+ m tall) specimens of *T. occidentalis* were collected between February 13-26, 2018 from residential locations in each of three suburban vicinities in Oregon (Hillsboro, Seaside, and Sandy). The approximate time of day for the sampling, the annual mean high/low temperatures, the annual mean precipitation, and the elevation above sea level for each were as follows: Hillsboro, 6:30 to 7:30pm, 17.2 °C/6.7 °C, 97.0 cm, 52 m; Seaside, 8:30 to 10:00am, 13.9 °C/6.7 °C, 191.4 cm, 8 m; and Sandy, 2:00 to 3:30pm, 15.6 °C/6.1 °C, 198.9 cm, 299 m. For each sample, a 15 to 20 cm branch of foliage at ~1.5 m above ground was clipped using a clean shears. The cut end of each sample was wrapped with a wet paper towel at the cut. Each

sample was stored in an unzipped ziplock bag with the cut end inside of the bag. The samples from Hillsboro arrived within 14 h and were analyzed immediately. The samples from Seaside and Sandy arrived at the laboratory within 2 h and were processed immediately.

2.3 Sample Preparation

Plant samples were rinsed with deionized water; surface water was removed by blotting with a clean paper towel. Sample material was cut into ~1 cm pieces with a clean laboratory scissors. Each plant replicate subsample of ~0.3 g were transferred to clear 60 mL "VOA" vials (Restek Corporation, Bellefonte, PA). Each vial was sealed with a 0.125 in. thick PTFE lined septum (Restek Corporation, Bellefonte, PA) and held at 20±0.5 °C for 60 min. Passive sampling with an ATD cartridge then GC/MS analysis proceeded as described below.

2.4 Chemical Standards

The five monoterpenes examined here were α -pinene, β -pinene, camphene, limonene, and β -phellandrene. Authentic chiral and racemic standards were purchased from Sigma Aldrich Inc. (St. Louis, MO) at \geq 98% purity.

2.5 Gas Chromatography (GC)

Relative total amounts of the monoterpenes (total (+/-) α -pinene, total (+/-) β -pinene, etc.) and the enantiomeric fractions for the (-) forms were determined by GC. The elution order was established by analysis of standards. The chiral column stationary phase was Supelco Beta DEXTM 120 (Supelco Inc., Bellefonte, PA) with 0.25 μ m film thickness, 0.25 mm i.d., and 30 m length. After gaseous introduction of each sample into the column, the GC oven temperature program was: 1) hold at 60 °C for 2 min; 2) ramp to 90 °C at 1 °C/min; 3) ramp to

105 °C at 3 °C/min; 4) ramp to 220 °C at 10 °C/min; then 5) hold at 220 °C for 2 min. The gas flow rate (helium) through the column was approximately 1.0 mL/min. Figure 1 provides an example of a chromatogram for a sample.

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

2.6 Headspace Sampling, Analyte Transfer to GC, and Mass Spectrometric (MS) Analysis

The "VOA" vials used were from Restek Corporation (Bellefonte, PA). The 40 mL standard vials contained ~1 mg of neat liquid standard. As noted below, the 60 mL vials were loaded with ~0.3 g of plant material. In all cases, sampling proceeded in a passive manner by exposing the inlet end of an ATD gas sampling cartridge to the vial headspace. Before exposure, each cartridge was otherwise wrapped with clean aluminum foil. For standards, sampling of the gas phase involved a 2 s exposure with the cartridge held in the inlet in the headspace of an open vial. For samples, each cartridge was placed in its vial for 2 h with the vial capped. No flow through into the cartridge was required to acquire adequate analyte mass for any given analysis (~0.05 ng of an enantiomer on an ATD cartridge (or ~0.01 ng oncolumn) was required to obtain a signal to noise (S/N) ratio of 50:1). Passive sampling was used because the primary interest was the enantiomeric percentages of the subject compounds, and not emission rates or consequent ecosystem concentrations. The ATD cartridges were from Camsco Inc. (Houston, TX), as packed with 100 mg of 35/60 mesh Tenax TA on the inlet side followed by 200 mg of 60/80 mesh Carbograph 1 TD.

ATD cartridges were auto-processed using a TurboMatrix 650 ATD (PerkinElmer Inc., Waltham, MA) unit interfaced to a Leco Pegasus 4D GC×GC-TOFMS (Leco Corporation, St. Joseph, MI) used in 1-D GC mode (*i.e.*, without application of a secondary column). (TOFMS

= time of flight mass spectrometer.) In the Turbomatrix 650 unit, the analytes on each ATD cartridge were thermally desorbed (270 °C, 10 min, 40 mL/min He, backflush mode (outlet to inlet) direction) onto an intermediate Tenax-TA focusing trap held at –10 °C. 25 mL/min of the 40 mL/min desorption flow was discarded as "split" flow. The focusing trap was then thermally desorbed at 280 °C for 5 min at 16 psi constant He pressure. About 2 mL/min of the flow passed onto the GC column in the TOFMS unit via a 225 °C transfer line; the remaining ~20 mL/min split flow was discarded. MS data acquisition began upon initiating thermal desorption of the focusing trap.

For α -pinene, camphene, limonene and β -phellandrene, for the percent enantiomer determinations, the MS quantitation ion used was m/z = 93. For β -pinene, m/z = 69 was used. For each compound in a given sample, the percent of each enantiomer was calculated using the area for each deconvoluted peak (in any case of co-elution) for the enantiomer quantitation ion divided by the corresponding sum for both enantiomers. Note here that both enantiomers in a given pair will have exhibited the exact same: 1) diffusion coefficient during sampling; 2) transfer efficiencies during analysis; and 3) detector sensitivities.

The fractional mass distribution among the five monoterpenes was calculated for each sample using the peak pair sums, each of which was normalized using total ion chromatogram (TIC)-based relative response factors relative to α -pinene (RRF α -pinene). Obtained from analyses of replicate ATD cartridges onto which known amounts (~10 ng) of each monoterpene in 4 μ L of methanol/acetone had been loaded (by syringe), the measured TIC RRF α -pinene values were α -pinene, 1:00; β -pinene, 0.83; camphene, 0.93; limonene, 0.83; and β -

phellandrene, 0.44. Inherent in these calculations of the fractional mass distributions among the five monoterpenes are the assumptions that: 1) the passive sampling rate by gaseous diffusion was essentially the same for all of the compounds (per Fuller's Equation); and 2) the desorption transfer efficiencies to the analytical unit were very similar for all of the compounds.

The average of the above five TIC RRF $_{\alpha\text{-pinene}}$ values (0.81) was used to obtain an estimate of the mass percentage for each sampling of the sum of the five monoterpenes (10 enantiomers) relative to all detected monoterpenes (=(Σ^5/Σ^{all})×100%). The LECO software was used to deconvolute: 1) each of the 10 enantiomer TIC peaks for the five compounds; and 2) each of the other compound TIC peaks identified (based on mass spectral matching and GC retention time window) as probable monoterpenes. The most abundant of these were sabinene and myrcene. The deconvoluted TIC peak areas (A) were integrated then used with the TIC response factors with

$$\sum^{5} = \frac{A_{\alpha\text{-pinene}}}{RRF_{\alpha\text{-pinene}}} + \frac{A_{\beta\text{-pinene}}}{RRF_{\beta\text{-pinene}}} + \frac{A_{\text{camphene}}}{RRF_{\text{camphene}}} + \frac{A_{\text{limonene}}}{RRF_{\text{limonene}}} + \frac{A_{\beta\text{-phellandrene}}}{RRF_{\beta\text{-phellandrene}}}$$
(1)

$$\sum^{\text{all}} = \sum^{5} + \sum_{i}^{\text{other}} \left(\frac{A_{\text{other}}}{0.81} \right)_{i}$$
 (2)

2.7 Statistical Analyses

One-way ANOVA was used to analyze variables such as proportion of monoterpenes and enantiomeric ratios among six species, as well as enantiomeric ratios in *T. occidentalis* under different conditions. Multiple comparisons among different species, different sampling time and different positions were detected using the least significant difference (LSD) test, with a critical

significance level of p = 0.05. All analyses were performed using SPSS statistical software (version 27.0, IBM Inc., Armonk, NY, USA).

3 Results and Discussion

3.1 Proportion of Monoterpenes Among Different Nursery-Purchased Species

Mass percent values among the five target monoterpenes for the six nursery-purchased species and their $(\Sigma^5/\Sigma^{all})\times 100\%$ values are given in Figures 2.a and 2.b. (and Tables 2.a and 2.b). These values were obtained using the combined (enantiomer pair) deconvoluted TIC peak area data for each monoterpene together with the corresponding RRF $_{\alpha\text{-pinene}}$ values. $\alpha\text{-pinene}$ and β -pinene were found to be the dominant monoterpenes in the two pine species P. menziesii and P. ponderosa, and α -pinene and limonene dominated in C. lawsoniana. Limonene represented more than 90% of the five compounds for J. chinensis.

3.2 Enantiomer Percentages among Different Nursery-Purchased Species

The percentages of the (-) form for the five compounds in the six species for March and June/July are given in Figures 3.a and 3.b (and Tables 3.a and 3.b). For all species, the results were similar for the two sampling times. The results for the two pine species (P. menziesii and P. ponderosa) were similar, but the results varied among the four cypress species (C. lawsoniana, T. plicata, J. chinensis, and). In the two pine species, the percentages of the (-) form were >90%, >90%, and >50% for α -pinene, β -pinene and limonene, respectively. The lowest percentages of the (-) form for α -pinene and limonene were observed in C. lawsoniana and D. chinensis. The lowest percentages of the (-) form for β -pinene were observed in D. lawsoniana and D. plicata. The (-) form of camphene strongly dominated in D. lawsoniana.

3.3 Enantiomer Percentages in Nursery-Purchased T. occidentalis from 6 AM to 9 AM

The percentages of the (-) form for the five compounds in the nursery-purchased *T. occidentalis* plants in one day in August 2018 are given in Figure 4 (and Table 4). The enantiomeric profiles were very similar for the four different sampling times.

3.4 Enantiomer Percentages in Nursery-Purchased vs. Residential T. occidentalis

The percentages of the (-) form for the five compounds in nursery-purchased and residential *T. occidentalis* plants (sampled in March 2018 and February 2018, respectively) are given in Figure 5 (and Table 5). The enantiomeric profiles were all remarkably similar.

3.5 Enantiomer Percentage Method Precision

When relative enantiomer abundance is expressed in terms of the percent of one of the forms, a decreasing abundance will tend to be accompanied by an increasing coefficient of variation $CV = (standard deviation of abundance/mean abundance) \times 100\%$. For example, in the hypothetical data in Table 6, for both monoterpene 1 and monoterpene 2 the standard deviation of the (-) abundance is 0.28%; for monoterpene 1 at 99% abundance the CV value is much smaller than for monoterpene 2 at 1% abundance. For the data in Tables 3.a and 3.b obtained here, the effect of decreasing percent for the (-)-enantiomer on the CV (%) is shown in Figure 6. Nevertheless, CV < 20% for 75% of the data points.

4 Conclusions

The method allowed differences to be discerned in the relative abundances of the enantiomers for multiple monoterpenes in six plant species. The relative precision values tended to deteriorate at low percent values for the (-) enantiomer; since the replicates analyses

258 were carried out on plant sample replicates (i.e., each with a different plant subsample), that deterioration was due at least in some measure to biological variability in the subsamples. 259 Acknowledgements Support for this work was provided to Y.W. by the Education Department 260 of Jilin Province under Awards JJKH2016058 and JJKH20210273KJ. Additional support for the 261 project was provided by the Maseeh Foundation. 262 Code Availability: Not applicable 263 Data Availability: See tables. 264 265 Author Contributions: YW, WL, TNR, and JFP designed the experiments. YW and WL carried out the data reduction. YW, WL, and JFP prepared tables and figures. JFP and YW 266 wrote the manuscript.

References

- de O. Piva, L.R., Jardine, K.J., Gimenez, B.O., de Olivera Perdiz, R., Menezes, V.S.,
- Durgante, F.M., Cobello, L.O., Higuchi, N., Chambers, J.Q.: Volatile monoterpene
- 271 'fingerprints' of resinous Protium tree species in the Amazon rainforest, Phytochemistry,
- 272 160, 61-70, 2019.
- Dicke, M., Loon, J.J.A.: Multitrophic effects of herbivore-induced plant volatiles in an
- evolutionary context, Entomol. Exp. Appl., 97, 237-249, 2000.
- Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger,
- L., Lerdau, M., McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R.,
- Taylor, J., Zimmermann, P.: A global model of natural volatile organic compound emissions,
- 278 Geophys. Res., 100, 8873-8892, 1995.
- Inoue, R., Takahashi, K., Iiduka, Y., Arai, D., Ashitani, T.: Enantiomeric analysis of
- monoterpenes in Oba-kuromozi (*Lindera umbellata* var. membranacea), J. Wood Science, 64,
- ²⁸¹ 164–168, 2018.
- López, M.F., Cano-Ramírez, C., Shibayama, M., Zúñiga, G.: α-pinene and myrcene induce
- 283 ultrastructural changes in the midgut of *Dendroctonus valens* (Coleoptera: Curculionidae:
- Scolytinae), Annals of the Entomological Society of America, 104, 553-561, 2011.
- Ložienė, K., Labokas, J.: Effects of abiotic environmental conditions on amount and
- enantiomeric composition of α-pinene in Juniperus communis L, Biochemical Systematics
- and Ecology, 44, 36-43, 2012.
- Pankow, J.F.: Gas phase retention volume behavior of organic compounds on the sorbent poly

- 289 (oxy-m-terphenyl-2',5'-ylene), Anal. Chem., 60, 950-958, 1988.
- Pankow, J. F.: An absorption model of gas/particle partitioning in the atmosphere,
- 291 Atmospheric Environment, 28, 185-188, 1994a.
- Pankow, J.F.: An absorption model of the gas/aerosol partitioning involved in the formation of
- secondary organic aerosol, Atmospheric Environment, 28, 189-193, 1994b.
- Pankow, J.F., Luo, W., Melnychenko, A.N., Barsanti, K.C., Isabelle, L.M., Chen, C., Guenther,
- A.B., Rosenstiel, T.N.: Volatilizable biogenic organic compounds (VBOCs) with two
- dimensional gas chromatography-time of flight mass spectrometry (GC×GC-TOFMS):
- sampling methods, VBOC complexity, and chromatographic retention data, Atmos. Meas.
- 298 Tech., 5, 345-361, 2012.
- Persson, M., Borg-Karlson, A., Norin, T.: Enantiomeric composition of six chiral monoterpene
- 300 hydrocarbons in different tissues of *Picea Abies*, Phytochemistry, 33, 303-307, 1993.
- Persson, M., Sjödin, K., Borg-Karlson, A., Norin, T., Ekberg, I.: Relative amounts and
- enantiomeric compositions of monoterpene hydrocarbons in xylem and needles of *Picea*
- *abies*, Phytochemistry, 42, 1289-1297, 1996.
- Porter, W.C., Safieddine, S.A., Heald, C.L.: Impact of aromatics and monoterpenes on
- simulated tropospheric ozone and total OH reactivity, Atmospheric Environment, 169, 250-
- 306 257, 2017.
- Ruiz del Castillo, M.L., Blanch, G.P., Herraiz, M.: Natural variability of the enantiomeric
- composition of bioactive chiral terpenes in Mentha piperita, J. Chromatography A, 1054,
- 309 87–93, 2004.

- Sjödin, K., Persson, K., Borg-Karlson, A., Norin, T.: Enantiomeric compositions of
- monoterpene hydrocarbons in different tissues of four individuals of *Pinus sylvestris*,
- 312 Phytochemistry, 41, 439-445, 1996.
- Song, W., Williams, J., Yassaa, N., Martinez, M., Carnero, J.A.A., Hidalgo, P.J., Bozem, H.,
- Lelieveld, J.: Winter and summer characterization of biogenic enantiomeric monoterpenes
- and anthropogenic BTEX compounds at a Mediterranean Stone Pine forest site, J.
- 316 Atmospheric Chemistry, 68, 233-250, 2011.
- Song, W., Staudt, M., Bourgeois, I., Williams, J.: Laboratory and field measurements of
- enantiomeric monoterpene emissions as a function of chemotype, light and temperature,
- 319 Biogeosciences, 11, 1435-1447, 2014.
- Southwell, I., Dowell, A., Morrow, S., Allen. G., Savins, D., Shepherd, M.: Monoterpene chiral
- ratios: Chemotype diversity and interspecific commonality in *Melaleuca alternifolia* and *M*.
- *linariifolia*, Industrial Crops & Products, 109, 805-856, 2017.
- Staudt, M., Byron, J., Piquemal, K., Williams, J., Compartment specific chiral pinene
- emissions identified in a Maritime pine forest, Science of the Total Environment, 654, 1158–
- 325 1166, 2019.
- Stephanou, E.G. Atmospheric chemistry: A forest air of chirality, Nature, 446, 991, 2007.
- Tang, M.J., Cox, R.A., Kalberer, M.: Compilation and evaluation of gas phase diffusion
- coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic Compounds.
- 329 Atmos. Chem. Phys., 14, 9233–9247, 2014 (www.atmos-chem-phys.net/14/9233/2014/).
- Wibe, A., Mustaparta, H.: Encoding of plant odours by receptor neurons in the pine weevil

- 331 (*Hylobius abietis*) studied by linked gas chromatography-electrophysiology, J. Comp. Physiol.
- 332 A, 179, 331–344, 1996.
- Wibe, A., Borg-Karlson, A., Persson, M., Norin, T., Mustaparta, H.: Enantiomeric composition
- of monoterpene hydrocarbons in some conifers and receptor neuron discrimination of α -
- pinene and limonene enantiomers in the pine weevil, *Hylobius abietis*, J. Chemical Ecology,
- 336 24, 273–287, 1998.
- Williams, J., Yassaa, N., Bartenbach, S., Lelieveld, J.: Mirror image hydrocarbons from
- tropical and boreal forests, Atmospheric Chemistry and Physics, 7, 973-980, 2007.
- Yassaa, N., Williams, J.: Enantiomeric monoterpene emissions from natural and damaged
- Scots pine in a boreal coniferous forest measured using solid-phase microextraction and gas
- chromatography/mass spectrometry, J. Chromatogr. A, 1141, 138-144, 2007.
- Yassaa, N., Custer, T., Song, W., Pech, F. Kesselmeier, J., and Williams, J.: Quantitative and
- enantioselective analysis of monoterpenes from plant chambers and in ambient air using
- 344 SPME, Atmos. Meas. Tech. Discuss., 3, 3345–3381, 2010.
- Zannoni, N., Leppla, D., Lembo Silveira de Assis, P.I., Hoffmann, T., Sá, M., Araújo, A., and
- Williams, J.: Surprising chiral composition changes over the Amazon rainforest with height,
- time and season, Communications Earth & Environment, 1, 4, 2020);
- https://doi.org/10.1038/s43247-020-0007-9.
- Zhang, H., Yee, L.D., Lee, B.H., Curtis, M.P., Worton, D.R., Isaacman-VanWertz, G.,
- Offenberg, J.H., Lewandowski, M., Kleindienst, T.E., Beaver, M.R., Holder, A.L.,
- Lonneman, W.A., Docherty, K.S., Jaoui, M., Pye, H.O.T., Hu, W., Day, D.A., Campuzano-

Jost, P., Jimenez, J.L., Guo, H., Weber, R.J., de Gouw, J., Koss, A.R., Edgerton, E.S., Brune,
W., Mohr, C., Lopez-Hilfiker, F.D., Lutz, A., Kreisberg, N.M., Spielman, S.R., Hering, S.V.,
Wilson, K.R., Thornton, J.A., Goldstein, A.H.: Monoterpenes are the largest source of
summertime organic aerosol in the southeastern United States. Proceedings of the National
Academy of Science (PNAS), 15, doi/10.1073/pnas.1717513115, 2018.

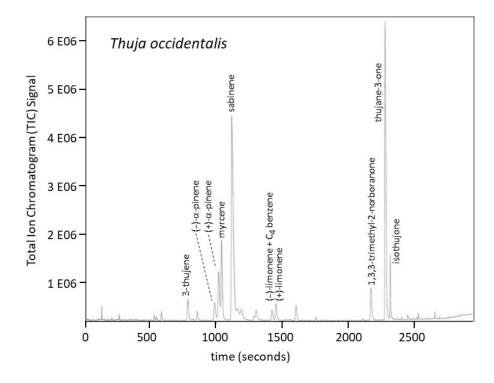


Figure 1. Total ion chromatogram (TIC) by GC/MS (gas chromatography/mass spectrometry) using a Supelco Beta DEXTM 120 chiral capillary column (0.25 μ m film thickness, 0.25 mm i.d., and 30 m long; Supelco Inc., Bellefonte, PA) for a *T. occidentalis* sample. The peak marked for (-)-limone contains a contribution from an unidentified C₄-benzene. The two α -pinene enantiomers and the two limonene enantiomers were quantitated using the ion m/z = 93.

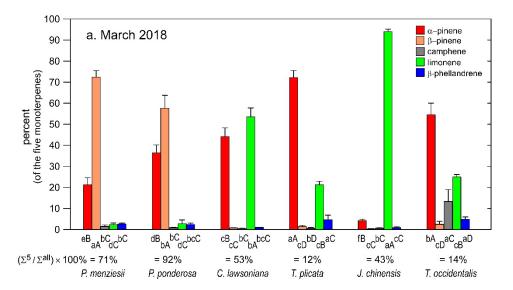


Figure 2.a. Bar graph showing percentages among five monoterpenes in March 2018 for six nursery-purchased conifer species. Within a given species, the largest value is designated "A"; thereafter, a different capital letter indicates a significant difference between the monoterpenes. For a given monoterpene, the largest value is designated "a"; thereafter, a different lower case letter indicates a significant difference between the species. The percentage values that the five monoterpenes represent as a sum relative to the sum of all detected monoterpenes $(=(\Sigma^5/\Sigma^{all})\times 100\%)$ are given. The error bars are $\pm 1s$. The data values are given in Table 2.a.

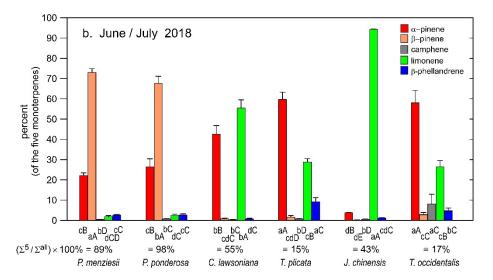


Figure 2.b. Bar graph showing the percentages among five monoterpenes in June/July 2018 for six nursery-purchased conifer species. Within a given species, the largest value is designated "A"; thereafter, a different capital letter indicates a significant difference between the monoterpenes. For a given monoterpene, the largest value is designated "a"; thereafter, a different lower case letter indicates a significant difference between the species. The percentage values that the five monoterpenes represent as a sum relative to the sum of all detected monoterpenes $(=(\Sigma^5/\Sigma^{all})\times100\%)$ are given. The error bars are $\pm 1s$. The data values are given in Table 2.b.

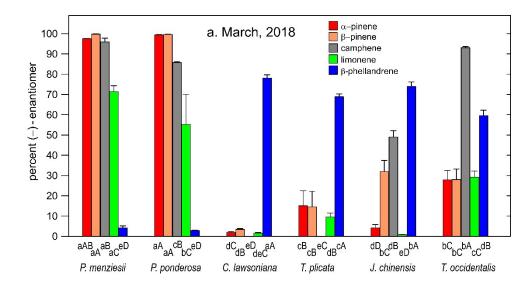


Figure 3.a. Bar graph showing the percentage values for the (-)-enantiomer for five monoterpenes in March 2018 for six nursery-purchased conifer species. Within a given species, the largest value is designated "A"; thereafter, a different capital letter indicates a significant difference between the monoterpenes. For a given monoterpene, the largest value is designated "a"; thereafter, a different lower case letter indicates a significant difference between the species. The error bars are ±1s. The data values are given in Table 3.a.

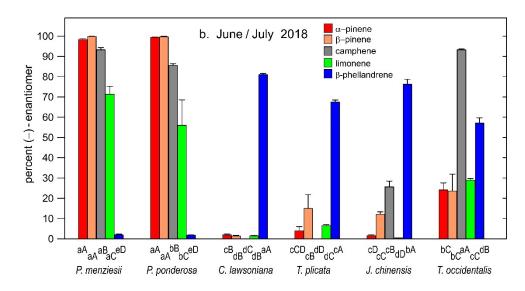


Figure 3.b. Percent of the (-)-enantiomer for five monoterpenes in June/July 2018 for six nursery-purchased conifer species. Within a given species, the largest value is designated "A"; thereafter, a different capital letter indicates a significant difference between the monoterpenes. For a given monoterpene, the largest value is designated "a"; thereafter, a different lower case letter indicates a significant difference between the species. The error bars are ± 1 s. The data values are given in Table 3.b.

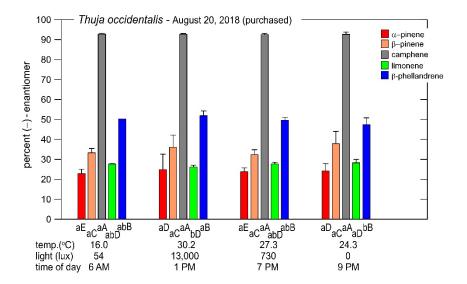


Figure 4. Percent of the (-)-enantiomer for five monoterpenes in nursery-purchased samples of *Thuja occidentalis* on August 20, 2018. For a given time, the largest value is designated "A"; thereafter, a different capital letter indicates a significant difference between the monoterpenes. For a given monoterpene, the largest value is designated "a"; thereafter, a different lower case letter indicates a significant difference between the times. The error bars are ± 1 s. The data values are given in Table 4.

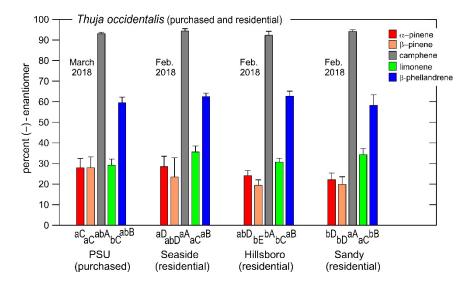


Figure 5. Percent of the (-)-enantiomer for five monoterpenes in nursery-purchased (March 2018) and residential (February 2018) samples of *Thuja occidentalis*. For a given sample location, the largest value is designated "A"; thereafter, a different capital letter indicates a significant difference between the monoterpenes. For a given monoterpene, the largest value is designated "a"; thereafter, a different lower case letter indicates a significant difference between the locations. The error bars are ± 1 s. The data values are given in Table 5. The data for the "PSU (purchased)" plants also appear in Figure 3.a.

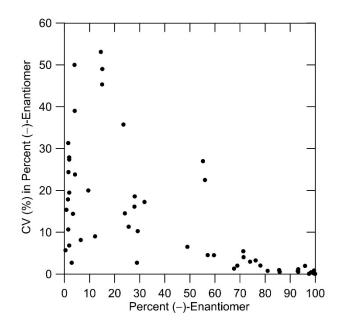


Figure 6. Coefficient of variation (CV, %) values for the percent (-)-enantiomer vs. percent of the (-)-enantiomer (based on data in Tables 3.a and 3.b). CV < 20% for 75% of the data points.

Table 1. Summary of methods used to sample then analyze plant-derived chiral biogenic volatile organic compounds.

A. Solvent Extraction then Injection					
<u>Citation - Plant/System(s)</u>	Summary				
Persson et al., 1993 Picea abies	Method. Extraction of plant material with hexane, silica gel clean-up, then two-dimensional heart-cut GC-FID (GC phases: DB-WAX then permethylated β -cyclodextrin). Analytes: α -pinene, camphene, β -pinene, sabinene, limonene, β -phellandrene.				
Persson et al. (1996) Picea abies	Method: Extraction of plant material with hexane, silica gel clean-up, then two-dimensional heart-cut GC-FID (GC phases: DB-WAX then permethylated β -cyclodextrin) for most chiral separations. For 3-carene, a dipentylbutyryl- γ -cyclodextrin phase was used; the constituents of the monoterpenes were identified by mass spectroscopy (MS). Analytes: α -pinene, camphene, β -pinene, sabinene, limonene, β -phellandrene, and others (23 total enantiomers).				
Sjödin <i>et al.</i> (1996) <i>Pinus sylvestris</i>	Method: Same as in Persson et al. (1996). Analytes: α -pinene, camphene, β -pinene, sabinene, limonene, β -phellandrene, myrcene, 3-carene.				
Wibe et al. (1998) Picea abies, Pinus sylvestris, Juniperus communis	Method: Following Wibe and Mustaparta (1996), headspace volatiles were sampled with flow through an adsorbent (Porapak Q). Analytes were recovered with hexane. Two-dimensional heart-cut GC/FID followed using the GC phases DB-WAX and permethylated β -cyclodextrin. Analytes: α -pinene, camphene, β -pinene, sabinene, 3-carene, limonene, β -phellandrene.				
Ložienė and Labokas (2012) Juniperus communis L	Method: Steam distillation collection of essential oils, then dilution in a solvent mix (diethyl ether/pentane), then GC/FID (GC phase: HP-Chiral-20B). Analyte: α -pinene.				
Southwell et al. (2017) Melaleuca alternifolia and M. linariifolia	Method: Steam distillation collection of essential oils, then dilution with ethanol, then GC/FID (GC phase: cyclodextrin). Analytes: Terpinen-4-ol, limonene, α -terpineol.				
Inoue et al. (2018) Lindera umbellata var. membranacea	Method: Hexane extraction of plant material, then GC/MS analysis (GC phase: CycloSil-B). Analytes: α -pinene, camphene, β -pinene, sabinene, limonene, β -phellandrene, and others (29 total, including enantiomeric variations).				

B. Diffusion Sampling by Exposure of SPME Fiber to Air Containing Plant Emissions then Thermal Desorption

<u>Citation - Plant/System(s)</u>	<u>Summary</u>
Ruiz del Castillo <i>et al.</i>	Method: SPME with 100 μm polydimethylsiloxane (PDMS) phase, then
(2004)	GC/MS (GC phase: permethylated β-cyclodextrin or 2,3-di-acetoxy-6-O-

Mentha piperita tert-butyl dimethylsilyl y-cyclodextrin).

Analytes: α -pinene, camphene, β -pinene, sabinene, limonene, β -

phellandrene, and others (19 total, including enantiomeric variations).

Yassaa and Williams (2007)

Method: SPME with PDMS/DVB phase, then GC/MS (GC phase:

P. sylvestris chemotype A

permethylated β -cyclodextrin).

and B (boreal coniferous

Analytes: α -pinene, camphene, β -pinene, sabinene, limonene, β -

forest)

phellandrene, and others (17 total, including enantiomeric variations).

Yassaa et al. (2010) Quercus ilex

Method: SPME with PDMS/DVB phase, then GC/MS (GC phase: β -

cyclodextrin).

Analytes: α -pinene, camphene, β -pinene, sabinene, limonene, myrcene, 3-

carene, 1,8-cineol, cis- β -ocimene.

C. Active Flow Sampling of Air Containing Plant Emissions Through an ATD Sorbent Cartridge Tube then Thermal Desorption

Citation - Plant/System(s) <u>Summary</u>

Williams et al. (2007) Method: ATD with Carbograph I/Carbograph II adsorbent, then GC/MS (GC

tropical and boreal forests phase: β -cyclodextrin).

Analytes: α -pinene, camphene, β -pinene, limonene, myrcene, 3-carene.

Song et al. (2011)

Method: ATD with Tenax TA/Carbograph I, then GC/MS (GC phase: β -

cyclodextrin).

Pinus pinea L. (forest canopy)

Analytes: α -pinene, β -pinene, limonene, camphor, and others (12 total

including enantiomeric variations).

Song *et al.* (2014)

Method: ATD with Carbograph I/II or Tenax/carbograph, then GC/MS (GC

Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.

phase: β -cyclodextrin).

Analytes: α -pinene, β -pinene, limonene, camphor, isoprene, and others (13

total including enantiomers).

Staudt et al. (2019)

Method: ATD with Tenax TA/Carbograph 1 adsorbent, then GC/MS (GC

Maritime pine (forest

phase: dimethyl TBS β -cyclodextrin).

canopy)

Analytes: α -pinene, β -pinene.

Zannoni et al. (2020) Amazon rain forest Method: ATD with Carbographs 1 and 5, then GC/MS (GC phase: dimethyl

TBS β -cyclodextrin).

Analyte: α -pinene.

D. This Work - Passive Diffusion Sampling of Air Containing Plant Emissions Into Open End of ATD Sorbent Tube the Thermal Desorption

Citation - Plant/System(s) Summary

This Work Pseudotsuga menziesii, Method: ATD with Tenas TA/Carbographs 1 adsorbent, then GC/MS (GC

Pinus ponderosa, Chamae-

phase: θ -cyclodextrin).

cyparis lawsoniana, Thuja plilcata, Juniperus chinensis, Thuja occidentalis

Analytes: α -pinene, camphene, β -pinene, limonene, β -phellandrene.

Table 2. Mass fraction values (including both enantiomers) for each of five chiral monoterpenes over those five monoterpenes, and average values of $(\Sigma^5/\Sigma^{\rm all})\times 100\%$ (= mass fractions for the mass sum for those five terpenes over all detected monoterpenes). The nursery-purchased plants were located at PSU and sampled in March 2018 and again in June/July 2018. Number of plant sample replicates N=4 for all species, except N=3 for P. ponderosa. For each plant sample replicate, a separate sample of plant material was analyzed once.

Table 2.a. March 2018 (see Figure 2.a).

percent of the monoterpene over the five monoterpenes (total = 100%)

<u>species</u>	<u>α-pinene</u>	<u>β-pinene</u>	<u>camphene</u>	<u>limonene</u>	<i>β</i> -phellandrene	$(\Sigma^{5}/\Sigma^{all}) \times 100\%$
P. menziesii	21.2 ± 3.3	$\textbf{72.4} \pm \textbf{3.1}$	$\textbf{1.4} \pm \textbf{0.8}$	2.3 ± 0.8	2.7 ± 0.4	71.2
P. ponderosa	36.4 ± 3.8	57.6 ± 6.1	$\boldsymbol{0.80 \pm 0.22}$	$\textbf{2.8} \pm \textbf{1.7}$	2.4 ± 0.7	92.3
C. lawsoniana	44.1 ± 4.1	$\boldsymbol{0.78 \pm 0.1}$	$\textbf{0.50} \pm \textbf{0.10}$	53.5 ± 4.2	$\textbf{1.0} \pm \textbf{0.1}$	53.2
T. plicata	$\textbf{72.2} \pm \textbf{3.3}$	1.4 ± 0.5	$\boldsymbol{0.59 \pm 0.37}$	$\textbf{21.2} \pm \textbf{1.7}$	4.6 ± 2.2	11.5
J. chinesis	4.2 ± 0.7	$\textbf{0.30} \pm \textbf{0.15}$	$\boldsymbol{0.59 \pm 0.17}$	$\textbf{93.9} \pm \textbf{1.2}$	$\textbf{1.0} \pm \textbf{0.3}$	43.0
T. occidentalis	54.5 ± 5.6	2.5 ± 1.4	$\textbf{13.3} \pm \textbf{5.7}$	25.0 ± 1.2	$\textbf{4.8} \pm \textbf{1.2}$	14.4

Table 2.b. June/July 2018 (see Figure 2.b).

percent of the monoterpene over the five monoterpenes (total = 100%)

<u>species</u>	$\underline{\alpha}$ -pinene	<u>β</u> -pinene	<u>camphene</u>	<u>limonene</u>	\underline{eta} -phellandrene	$(\Sigma^{5}/\Sigma^{all}) \times 100\%$
P. menziesii	22.1 ±1.3	$\textbf{73.0} \pm \textbf{1.9}$	$\textbf{0.38} \pm \textbf{0.15}$	$\boldsymbol{1.9 \pm 0.5}$	2.6 ± 0.3	88.7
P. ponderosa	26.5 ± 3.9	67.7 ± 3.5	$\textbf{0.71} \pm \textbf{0.11}$	2.5 ± 0.6	2.7 ± 0.6	98.2
C. lawsoniana	42.6 ± 4.2	$\textbf{0.83} \pm \textbf{0.31}$	$\boldsymbol{0.33 \pm 0.09}$	55.4 ± 4.0	$\textbf{0.82} \pm \textbf{0.27}$	55.2
T. plicata	59.7 ± 3.6	1.6 ± 0.8	0.72 ± 0.15	28.8 ± 1.7	$\textbf{9.2} \pm \textbf{2.1}$	15.1
J. chinesis	3.8 ± 0.15	0.13 ± 0.15	$\textbf{0.54} \pm \textbf{0.10}$	94.3 ± 0.09	$\textbf{1.2} \pm \textbf{0.2}$	43.3
T. occidentalis	$\textbf{58.0} \pm \textbf{6.1}$	2.8 ± 1.1	8.1 ± 4.8	26.4 ± 3.1	$\textbf{4.7} \pm \textbf{1.4}$	16.5

Table 3. Percent (-)-enantiomer values \pm 1 standard deviation (s) for five chiral monoterpenes in six conifer species in nursery-purchased plants located at PSU and sampled in March 2018 and again in June/July 2018. (The data were obtained from the same set of analyses carried out to generate the data in Table 2.)

a. March 2018 (see also Figure 3.a).							
<u>species</u>	$\underline{\alpha}$ -pinene	\underline{eta} -pinene	<u>camphene</u>	<u>limonene</u>	<u>β-phellandrene</u>		
P. menziesii	97.5 ± 0.085	99.7 ± 0.14	$\textbf{95.9} \pm \textbf{1.9}$	$\textbf{71.4} \pm \textbf{2.9}$	$\textbf{4.2} \pm \textbf{1.0}$		
P. ponderosa	99.3 ± 0.23	99.6 ± 0.14	85.8 ± 0.46	$\textbf{55.2} \pm \textbf{14.9}$	2.9 ± 0.079		
C. lawsoniana	$\boldsymbol{1.9 \pm 0.53}$	$\textbf{3.4} \pm \textbf{0.49}$	0.0 ± 0.0	1.6 ± 0.39	$\textbf{78.1} \pm \textbf{1.6}$		
T. plicata	15.1 ± 7.4	14.5 ± 7.7	0.0 ± 0.0	9.5 ± 1.9	68.9 ± 1.4		
J. chinesis	4.1 ± 1.6	31.9 ± 5.5	49.0 ± 3.2	$\textbf{0.78} \pm \textbf{0.12}$	74.0 ± 2.2		
T. occidentalis	27.9 ± 4.5	28.0 ± 5.2	$\textbf{93.0} \pm \textbf{0.71}$	29.2 ± 3.0	59.6 ± 2.7		
b. June/July 2018	3 (see also Figure 3	.b).					
<u>species</u>	α -pinene	<u>β-pinene</u>	<u>camphene</u>	<u>limonene</u>	<u>β-phellandrene</u>		
P. menziesii	98.3 ± 0.43	99.9 ± 0.084	$\textbf{93.2} \pm \textbf{1.1}$	$\textbf{71.3} \pm \textbf{3.9}$	1.9 ± 0.37		
P. ponderosa	99.5 ± 0.87	99.7 ± 0.17	85.6 ± 0.84	$\textbf{56.0} \pm \textbf{12.6}$	$\textbf{1.9} \pm \textbf{0.13}$		
C. lawsoniana	$\boldsymbol{1.9 \pm 0.52}$	1.4 ± 0.25	0.0 ± 0.0	$\textbf{1.5} \pm \textbf{0.16}$	$\textbf{81.0} \pm \textbf{0.64}$		
T. plicata	4.0 ± 2.0	$\textbf{15.0} \pm \textbf{6.8}$	0.0 ± 0.0	6.5 ± 0.5	67.6 ± 0.90		
J. chinesis	1.5 ± 0.47	12.2 ± 1.1	25.6 ± 2.9	0.42 ± 0.024	76.2 ± 2.5		
T. occidentalis	24.1 ± 3.5	23.5 ± 8.4	93.2 ± 0.52	28.9 ± 0.79	$\textbf{57.1} \pm \textbf{2.6}$		

Table 4. Percent (-)-enantiomer values \pm 1 standard deviation (s) for five chiral monoterpenes in *Thuja* occidentalis in four nursery-purchased plants located at PSU and sampled once each (N = 4) in March 2018 and once each in June/July 2018 (see also Figure 4.)

<u>time</u>	<u>α-pinene</u>	<u>β</u> -pinene	<u>camphene</u>	<u>limonene</u>	<u>β-phellandrene</u>
6 AM	22.8 ± 2.3	$\textbf{33.3} \pm \textbf{2.2}$	92.8 ± 0.43	27.6 ± 0.15	$\textbf{50.2} \pm \textbf{0.065}$
1 PM	24.8 ± 7.7	36.1 ± 6.1	92.7 ± 0.35	26.2 ± 0.93	$\textbf{51.9} \pm \textbf{2.4}$
7 PM	23.9 ± 1.8	$\textbf{32.4} \pm \textbf{2.4}$	92.5 ± 0.58	27.7 ± 0.88	49.6 ± 1.3
9 PM	24.2 ± 3.7	37.9 ± 6.1	92.6 ± 1.2	$\textbf{28.3} \pm \textbf{1.7}$	47.5 ± 3.3

Table 5. Percent (-)-enantiomer values \pm 1 standard deviation (s) for five chiral monoterpenes in *Thuja occidentalis* in four nursery-purchased plants located at PSU and sampled once each (N = 4) in March 2018, and in residentially-planted samples found in a field trip to three suburban areas in Oregon (Seaside, N = 7 plants sampled once each; Hillsboro, N = 6 plants sampled once each; and Sandy, N = 7 plants sample once each). (Data are plotted in Figure 5.)

location	α -pinene	<u>β-pinene</u>	<u>camphene</u>	<u>limonene</u>	<u><i>β</i>-phellandrene</u>
PSU (purchased)	27.9 ± 4.5	28.0 ± 5.2	93.0 ± 0.7	29.2 ± 3.0	59.6 ± 2.7
Seaside (residential)	28.4 ± 5.1	23.5 ± 9.3	$\textbf{94.4} \pm \textbf{1.1}$	35.6 ± 2.9	62.5 ± 1.7
Hillsboro (residential)	24.1 ± 2.5	19.5 ± 2.6	92.2 ± 2.0	30.7 ± 1.9	62.7 ± 2.5
Sandy (residential)	22.1 ± 3.3	19.8 ± 3.8	94.1 ± 0.78	34.2 ± 3.0	$\textbf{58.3} \pm \textbf{5.1}$

Table 6. Hypothetical enantiomer peak area data with associated percent (-)-enantiomer values and associated statistical values.

	(-)-enantiomer	(+)-enantiomer	percent (-)-
	peak area	peak area	<u>enantiomer</u>
monoterpene 1			
replicate 1	95,000	1,300	98.7%
replicate 2	99,000	1,000	99.0%
replicate 3	103,000	700	99.3%
			99.0% ±0.28%
			CV = 0.28%
monoterpene 2			
replicate 1	1,300	95,000	1.35%
replicate 2	1,000	99,000	1.00%
replicate 3	700	103,000	0.68%
·			1.01% ±0.28%
			CV = 27.3%