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Abstract. The Differential Emissivity Imaging Disdrometer (DEID) is a new evaporation-based optical and thermal instrument

designed to measure the mass, size, density, and type of individual hydrometeors and their bulk properties. Hydrometeor

spatial dimensions are measured on a heated metal plate using an infrared camera by exploiting the much higher thermal

emissivity of water compared with metal. As a melted hydrometeor evaporates, its mass can be directly related to the loss of

heat from the hotplate assuming energy conservation across the hydrometeor. The heat-loss required to evaporate a hydrometeor5

is found to be independent of environmental conditions including ambient wind velocity, moisture level, and temperature. The

difference in heat loss for snow versus rain for a given mass offers a method for discriminating precipitation phase. The DEID

measures hydrometeors at sampling frequencies up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm,

respectively, determined by the size of the hotplate and the thermal camera specifications. Measurable snow water equivalent

(SWE) precipitation rates range from 0.001 to 200 mm h−1, as validated against a standard weighing bucket. Preliminary field-10

experiment measurements of snow and rain from the winters of 2019 and 2020 provided continuous automated measurements

of precipitation rate, snow density, and visibility. Measured hydrometeor size distributions agree well with canonical results

described in the literature.

1 Introduction

Accurate measurements of the mass, density, shape, size and precipitation rate of hydrometeors are critical for scientific,15

industrial, and commercial applications, as well as weather prediction. Falling hydrometeors play an essential role in daily

human activity, with impacts ranging from the hydrological cycle (Stendel and Arpe, 1997) to transportation (Campbell and

Langevin, 1995; Theofilatos and Yannis, 2014). Ground-based weighing gauges can provide measurements of precipitation

rate (Golubev, 1985a, b; Goodison et al., 1989; Yang et al., 1998; Brock and Richardson, 2001) but often require anti-freeze

additives with a glycol-based solution and oil skim overlays to prevent evaporation of water from the solution, or require manual20

emptying during a storm (Finklin, 1988). Optical gauges (Deshler, 1988; Loffler-Mang and Joss, 2000; Gultepe and Milbrandt,

2010) have the advantage of measuring the size of hydrometeors in free fall but tend to work better for rain than for snow

due to the wide variation of particle density (Pomeroy and Gray, 1995; Judson and Doesken, 2000), which introduces large

uncertainties in the measurement of snow water equivalent (SWE) and snow precipitation rate (Brandes et al., 2007; Lempio
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et al., 2007). Other instruments used for quantifying precipitation rate, fall speed, size distribution, and visibility include the25

hotplate precipitation gauge (Rasmussen et al., 2011), the Multi Angle Snowflake Camera (Garrett et al., 2012; Notaroš et al.,

2016; Fitch et al., 2021) 2DVD (Kruger and Krajewski, 2002; Randeu et al., 2013), and the PARSIVEL (Battaglia et al., 2010;

Friedrich et al., 2013; Loeb et al., 2021). However, none of these instruments measure the mass and density of individual

hydrometeors, which is essential for accurate prediction of fall speed as well as avalanche safety issues (Brun et al., 1989).

Accurate measurement of precipitation rate is more difficult for solid hydrometeors due to numerous factors, including losses30

from evaporation, wind, and wetting (Sevruk and Klemm, 1989; Yang et al., 2005; Rasmussen and Coauthors, 2012) and

significant changes in precipitation rate due to high wind speeds during storms (Yang et al., 1999). To overcome the effect of

wind on precipitation measurement, various wind shields have been used around gauges (Goodison et al., 1998; Yang, 2014).

Another critical parameter that affects precipitation rate measurement is the catch efficiency of snow, which depends on wind

speed, snowflake density, and type (Colli et al., 2015). Many instruments have a minimum threshold to measure precipitation35

rate and this creates difficulties particularly in the cold northern latitudes, where the snow fall intensities are relatively low.

Understanding the size distribution of hydrometeors is an important consideration related to the physics of precipitation.

Hydrometeor size has been measured using optical techniques (Knollenberg, 1970) and fall speed (Locatelli and Hobbs, 1974).

Barthazy et al. (2004) measured the size and fall speeds of hydrometeors greater than 1 mm in diameter using optics-based

instruments.40

While the instruments described above measure many key precipitation variables, there is not a single device capable of

measuring individual hydrometeor mass and density. Here, we present a new ground-based instrument, the Differential Emis-

sivity Imaging Disdrometer (DEID), for the measurement of mass, shape, density, and size of individual hydrometeors, as well

as integrated quantities such as precipitation rate and visibility. The DEID measures particle-by-particle physical properties of

hydrometeors with high accuracy and is insensitive to environmental conditions (i.e., wind speed, temperature, and humidity).45

The DEID is designed to accurately measure individual hydrometeors with diameters greater than 0.2 mm and masses greater

than 1µg, which includes approximately all sizes and types of falling hydrometeors. Hydrometeor size distributions can be

determined for rain by using the effective spherical diameters inferred from the mass measurement and density of water. A heat

flux parameterization is used to discriminate the type of precipitation (rain, snow, and mixture) and the ratio of actual area to

circumscribed area over the maximum size of a snowflake is used to discriminate the type of snow.50

This paper is organized as follows. In section 2, the theory behind the DEID’s measurement methodology is presented. The

experimental set-up and data processing are discussed in section 3. In section 4, the basic DEID measurements are validated

using laboratory experiments. Density, SWE, and size are discussed in section 5 and the size distribution of rain droplets and

snowflakes are described in section 6. A summary and several conclusions are given in section 7.
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2 Background theory: The DEID measurement methodology55

2.1 Hydrometeor mass measurement

The DEID consists of a temperature-controlled hotplate with a low-emissivity (ε) top surface and a thermal camera. Figure 1

includes a schematic of the basic DEID set-up and a photograph of the DEID deployed in a field experiment.The grayscale

thermal images of the hotplate without hydrometeors look dark due to its low emissivity and hence low brightness temperature.

When water droplets are applied to the hotplate, they appear bright due to their high ε and high temperature. This creates60

excellent contrast that enables the measurement of the hydrometeor’s size and area by counting pixels. The working principle

of the DEID is based on conservation of thermal energy for a control volume taken around a hydrometeor (see Fig. 2). When

a hydrometeor falls on the hotplate (≈ 100◦C), it evaporates and its mass is directly related to the loss of heat from the hot-

plate. We assume that heat loss from the hotplate is conductive and one dimensional. And the heat gain by the hydrometeor is

equivalent to heat loss from the hotplate sufficient for evaporation. The conductive heat flow from the hotplate to liquid or solid65

hydrometeors is a function of thermal conductivity of the plate (kAL), the thickness of the plate (dAL), the temperature differ-

ence between the bottom (Tb) and top of the plate (Tp), the plan area of the hydrometeor (cross sectional area perpendicular to

the heat flow) on the hotplate at a time t (A(t)) and evaporation time ∆t.

The energy balance across a hydrometeor that falls onto the hotplate may be written as

Heat gain by hydrometeor = Heat loss from hotplate. (1)70

Considering a control volume wrapped around a droplet as shown in Fig. 2, the droplet energy balance includes: energy storage,

evaporation, conduction, convection and radiation and may be written as

c∆T

∫
dm+Lv

∫
dm=

∆t∫
0

kAL

dAL
A(t)(Tb(t)−Tp(t))dt

−
∆t∫
0

hcA∆Tdt− εwσb
∆t∫
0

A(t)(T 4
w(t)−T 4

air)dt, (2)

where Tw is the temperature of the water droplet, ∆T is the temperature difference between the initial and final temperature

of the water droplet, c is the specific heat capacity of water, Lv is the latent heat of vaporization of water, dt (approximated as75

∆t) is the time required to evaporate the water droplet, Tair is surrounding air temperature , hc is the convective heat transfer

coefficient, εw is emissivity of water, σ the Stefan-Boltzmann constant, b is the radiation view factor of 0.66 (Feingold, 1966),

and m the hydrometeor mass. The mechanics of the heat gain and loss by a hydrometeor is shown in Fig. 2a and the heat flow

through plate and hydrometeor in Fig. 2b.

The cross-sectional area of the hydrometeor normal to the fall velocity direction (plan view) is measured with a thermal80

camera after it lands on the hotplate by taking advantage of the differential emissivity between the metal plate and the hydrom-

eteor. Hydrometeors have a near unity emissivity whereas the emissivity of aluminum is near zero, so hydrometeors appear as
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Figure 1. (a) Schematic of the DEID. The top surface of a roughened heated aluminum plate imaged by a thermal camera is dark due to its

low infrared emissivity. Hydrometeors with a high emissivity that reach a high temperature on the heated plate show as bright spots from

which the hydrometeor’s size and area by counting pixels. (b) Photograph of the DEID after deployed in field experiments.

Figure 2. Schematic of energy conservation of control volume across hydrometeor. (a) Distribution of heat gain and loss from the hydrome-

teor. (b) Schematic of heat flow between the series combination the hotplate and water droplet at quasi static condition.

bright spots superimposed on a black background. In the case of snow, the particle size in air and after melting on the hotplate

is quite similar, but can differ in the case of large rain droplets greater than 2 mm across. These considerations do not affect the

calculation of mass through Eq. 2.85
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Figure 3. (a) Schematic illustrating the process of a snowflake falling onto the hotplate, melting, and evaporating. (b) DEID algorithm

for measuring hydrometeor mass. (c) Output products deduced from the DEID measurements. c is specific heat capacity of water, ∆T is

temperature difference between initial and final water droplet temperature, Lf is latent heat of fusion (e.g. sublimation),Lv is latent heat of

vaporization and Leqv is total latent heat of vaporization and fusion.

The temperature of the hotplate (Tp) is maintained at a temperature below the Leidenfrost temperature (≈ 120◦C) so that heat

transfer to the hydrometeors is maximized (Bergman et al., 2011). A schematic of the algorithm used to calculate individual

hydrometeor properties from the heat transfer physics is shown in Fig. 3. The contribution of convective and radiative heat loss

during evaporation is very small compared to that from conductive heat loss. Assuming a typical value for the coefficient of

convection in air based on the wind speed (hc = 10 J m−2K−1s−1), convective heat loss is ≈ 1% and radiative heat loss is ≈90

1% of the total heat required to evaporate the given mass as described in the appendix.

Assuming convective and radiation losses are negligible, Eq. 2 can be re-written as

Heat gain by hydrometeor ≈ conductive loss from hotplate. (3)

c∆T

∫
dm+Lv

∫
dm≈

∆t∫
0

(kAL/dAL)A(t)(Tb(t)−Tp(t))dt. (4)95

2.2 Statistics of individual hydrometeors

The equivalent circular diameter of a particle on the plate, Deff , after impact and after melting is determined from the particle

area through A(t≈ 0) = (π/4)D2
eff , where t≈ 0 corresponds to the time when the thermal camera detects a bright spot on

the plate associated with a hydrometeor. Typically there is a few millisecond lag between the actual impact and detection, as
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verified by recording the processes at 240 Hz. Deff is nearly preserved after melting. This was verified by slowing down the100

melting process by reducing the hotplate temperature (40◦C) and recording the processes at high frequency (120 fps). The size

of approximately 2000 snowflakes were measured before and after melting. We found that the average change in Deff was

5%.

The maximum effective diameter Dmax is defined as the maximum dimension of the particle in the thermal camera two-

dimensional plane. We also describe the first direct measurements of a melted diameter, Dmel defined by the measured hy-105

drometeor mass and the density of water (i.e., (π/6)D3
mel =m/ρw). Here, particle complexity is defined as the ratio of the area

of the smallest ellipse completely containing the particle cross-section to the actual cross-sectional area of the hydrometeor

measured on the hotplate. That is, Complexity = ((π/4)DmaxDmin)/A(t≈ 0), whereDmin is the maximum dimension of the

particle normal to the Dmax. The complexity is always greater than or equal to unity, which corresponds to a circular shape.

All the defined parameters are illustrated in Figure 7.110

2.3 Measurement of SWE rate and accumulation

The instantaneous snow-water-equivalent (SWE) accumulation rate ( ˙SWE) and the time-integrated SWE accumulation can be

estimated on a frame-by-frame basis using the DEID. From the total mass of water deposited onto the hotplate in each frame,

the SWE rate for a given time interval may be written as

˙SWE = c1
∆m · fps
ρwAhp

, (5)115

where c1 is conversion factor from m s−1 to mm hr−1 (3.6 × 106 mm h−1 m−1 s), fps is the image sampling rate in frames

per second, ∆m (kg) is the total hydrometeor mass that falls on the hotplate in each recorded frame, ρw (kg m−3) is the bulk

density of water and Ahp (m2) is a rectangular sampling area on the hotplate that captures many hydrometeors. To obtain the

accumulated SWE, the rate is multiplied by the time interval between samples (1/fps) and then summed.

In addition to this frame-by-frame method, SWE and ˙SWE can be estimated using a particle-by-particle method. In this120

case, ∆m in Eq. 5 is the total hydrometeor mass that falls on the hotplate over a given time interval ∆t in Eq. 4, which is sum

of all individual hydrometeors that have completed the normal cycle of evaporation.

2.4 Measurement of individual snowflake density and snow precipitation rate

The density of individual snowflakes is given by ρs =m/V , where m (kg) and V (m−3) are the mass and volume of an

individual snowflake, respectively. The volume V can be estimated by assuming a spherical particle of equivalent circular125

diameter Deff such that V = (π/6)D3
eff . The density measurement of a snow layer after accumulation on the surface depends

on many parameters that effect settling such as the overlying snow mass, surface properties and local weather parameters.

However, an average density (ρs) prior to settling over a given period can be calculated from DEID data using the ratio of the

total mass to total volume in a given time interval, namely

ρs =

∑ N
i=1mi∑ N

i=1mi/ρs,i
, (6)130
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where, mi (kg) is the mass of ith snowflake, ρs,i (kg m−3) the density of the ith snowflake and N is the total number of

snowflakes on the plate during the given time frame. From the average density of the snowflakes in each frame, the snow

precipitation rate or precipitation intensity is:

PIsnow = c1
∆m · fps
ρsAhp

. (7)

Total snow accumulation is then the precipitation rate multiplied by the time interval between samples (1/fps) and then135

summed.

2.5 Measurement of visibility

Visibility can be estimated using the Koschmieder relation (Gultepe et al., 2009; Rasmussen et al., 1999). Specifically, the

visibility (in cm) is calculated

V is=
C

βext
(8)140

where C =−ln(0.05) = 2.996, βext is the path-averaged extinction coefficient of snow particles per unit volume (cm2 cm−3).

The extinction coefficient per unit volume is define as

βext =

∑ N
i=1Qext,i(Deff ,λ)Ai)

Va
, (9)

where N is total number of snowflakes that have fallen on the hotplate during time interval δt, Ai (cm2) is the area of the

ith snowflake and Va (cm3) is the total sample volume of air in period δt, computed as Va =AhpvT δt, where vT (cm s−1)145

is the average snowflake terminal fall speed as described below. Qext,i(Deff ,λ) relates the physical cross-sectional area of

snowflakes to the scattering cross-sectional area for visible wavelengths, which is ≈ 2 for particles with sizes greater than 4

µm (Gultepe et al., 2009). After substituting the equations for Qext,i(Deff ,λ) and V into Eq. 8, we obtain

V is=
CAhpvT δt∑ N

i=1 2A(i)
. (10)

2.6 Measurement of snowflake and droplet terminal fall speed150

The terminal fall speed of a snowflake is calculated using formula derived by Böhm (1998), namely

vT =
Re · η
2ρa

(
π

A
)1/2, (11)

where ρa and η are the density and dynamic viscosity of air, respectively. The Reynolds number is define as a

Re= 8.5[(1 + 0.1519X1/2)1/2− 1]2, (12)

where X is determined from atmospheric environment data and snow particle properties as155

X =
8mgρa
πη2

(
A

Ae
)1/4, (13)
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where,m (kg) is snow particle mass, g is gravitational acceleration,Ae (m2) is the effective area normal to the flow andA (m2)

is the circumscribed area around the snowflake that is estimated with a circle or ellipse using the major axis as a diameter.

Extensive studies have been performed to estimate the terminal fall speed of a raindrop as a function of diameter (Gunn and

Kinzer, 1949; Rogers and Yau, 1989)160

vP = k1

(
Drain

20

)10k2

k1 = 1.18× 106, k2 = 2 for Drain ≤ 0.08

k1 = 8× 103, k2 = 1 for 0.08≤Drain ≤ 1.2

k1 = 2.01× 103, k2 = 0.5 for Drain ≥ 1.2 (14)

where Drain is the diameter of a raindrop in cm and vP is the terminal fall speed in mm s−1.

3 Methods

Two laboratory experiments were designed to calibrate the DEID and two field experiments were performed. The first lab

experiment was used to calibrate the DEID and quantify its uncertainty in measuring hydrometeor mass. The second lab165

experiment was run in a wind tunnel to investigate the impact of environmental factors on the DEID performance. The first

field experiment was conducted at the mouth of Red Butte Canyon at a location on the University of Utah campus that facilitated

device debugging and enabled measurements to be more easily conducted throughout the winter. The second field study was a

brief experiment conducted at Alta Ski Area’s long-term monitoring site to provide an opportunity to validate the DEID against

a weighing gauge (an industry standard method). Section 3.1 describes the DEID and its basic experimental setup that was used170

for each of the four experiments.

3.1 Overview of the DEID setup and image processing

The DEID consists of a hotplate with a feedback controller, a low-emissivity roughened aluminum top plate that is affixed to

the top of the heater with thermal paste, and a thermal camera. The thermal camera used for all experiments is an uncooled

microbolometer Infratec Vario HD 700 thermal camera with 1280 × 960 pixel resolution and sampling rates ranging from 2 to175

30 Hz. The hotplate is a Systems and Technology International, Inc. HP-606-P that was used for all experiments. It is a custom

unit with a heated area of 0.1524 m × 0.1524 m and a thickness of 0.0508 m. The hotplate is powered by a 120 V, 5-Amp

supply and has a digital PID feedback control mechanism to control the plate temperature. The aluminum top plate is a 6061

alloy with a thermal conductivity, kAl = 205 W m−1K−1, which was roughened using 2000 grit sandpaper in a linear motion

across the plate yielding long straight grooves. A piece of Kapton® tape with high total hemispherical emissivity ε≈ 0.95 is180

affixed to the top plate to measure the surface temperature using the thermal camera. Note that the thermal camera measures

on the radiant surface or brightness temperature, which is only equal to the physical temperature of the substance for surfaces

with ε= 1.
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For each experiment, the focus of the thermal camera was set manually using a high- and low-ε calibration sheet. The

temporal and spatial variation of temperature across the hotplate is ± 0.1◦C and ± 1◦C respectively, which was measured185

using the thermal camera. The Infratec thermal camera writes out infrared binary (IRB) files that store the absolute temperature

of each pixel. IRB files are converted into a gray-scale images, hence, the maximum temperature of the entire experiment has

a 255 intensity value and the minimum temperature intensity is 0. The temperature to intensity conversion is linear. Analysis

of the thermal images was performed using MATLAB®’s image processing toolbox where the linear interface between the

hydrometeor and its background using a Sobel edge detection algorithm that computes the gradient of image intensity at each190

pixel within an image (Vincent and Folorunso, 2009). After applying the algorithm to each image, each pixel is assigned a

value of either 1 for a hydrometeor or 0 for the background. In this work, we adopt 55/255 = 0.21 as the binary threshold.

These processes were incorporated into a MATLAB script for tracking hydrometeor evaporation from the hotplate.

3.2 DEID laboratory-calibration experiments

To validate mass measurement, the DEID was placed in a 0.25 m per side open-topped cubic enclosure with an approximately195

zero wind speed of 0.02 m s−1, a constant temperature of 20◦C, and a constant relative humidity of 42%. Deionized water

droplets of 0.02 g or 20 µL were applied to the hotplate 10 times using a pipette and allowed to evaporate. The plate used in this

experiment had a thickness of dAl = 1 mm and was maintained at a nominal temperature of 100◦C. Two k-type thermocouples

were affixed to the top and bottom of the aluminum plate using thermal paste to determine Tb(t) and Tp(t).

In order to validate droplet mass measurements both a micropipetter and gravity scale were used. The micropipette has an200

accuracy of 1.00/1.20 (%/µL). The gravity scale is a SARTORIUS model ENTRIS64-1S with a readability of 0.1 mg and

repeatability (standard deviation) of 0.1 mg.

3.3 Environmental impacts on DEID mass measurement: wind-tunnel experiments

The DEID was placed in a custom built Engineering Laboratory Design Inc. wind tunnel. The tunnel consists of a settling

chamber followed by a 6:1 2-D contraction that exits into the test section. The test section measures 2.7 m and has a 0.9 m ×205

1.2 m cross section. The upper surface of the test section articulates to allow adjustment of the axial pressure gradient. The

maximum velocity in the test section is ≈ 12m s−1 and the free-stream turbulence intensity is less than 0.4%. The following

equipment was also used: a single straight-wire hot-wire anemometer system, an automated weather station, and a precision

intravenous (IV) drip system for applying water droplets of fixed volume onto the hotplate (Figure 4). To ensure the IV

produced a constant water-droplet volume discharge, the pressure head of the water bottle was maintained constant throughout210

the experiments. The metal plate was placed near the center of the wind tunnel test section and the thermal camera was deployed

at a corner to minimize wind disturbance. Prior to the experiments, the hot-wire probe was calibrated in the tunnel.

The experiments were conducted with known 40 µL deionized droplet masses of water and ice for eight different wind

speeds ranging from 0 to 10.3 m s−1, five different hotplate surface temperatures between 80 and 110◦C and five different

relative-humidities between 36 and 92 %, in each case keeping the other two variables fixed. The humidity levels inside the215

wind tunnel were controlled using two humidifiers and a small fan to maintain a homogeneous distribution of humidity. To
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monitor the uniformity of the spatial distribution of humidity, four humidity sensors at different vertical locations, 4, 11, 16,

and 20 cm from the base of the wind tunnel, were placed around the metal plate. Each experiment was performed after reaching

an approximately steady-state conditions for temperature, wind velocity and relative humidity.

Thermal camera
Velocity 

Humidity

pressure gauge

Laser
Water bag Hot plate

IV Nozzle

v

Figure 4. Photograph of the laboratory experimental set-up inside the wind tunnel used to validate the mass measurement of water droplets

for various environmental conditions.

3.4 Field-validation experiments220

Field experiments were conducted from 25 November 2019 through 16 April 2020 on the University of Utah campus at Red

Butte Canyon (40.7686, -111.8263) and at the Alta Ski Area Collins Snow Study Plot (40.5763,-111.6383). At Red Butte

Canyon, the DEID was mounted 1 m above the surface and at Alta Collins the DEID was mounted 1.25 m above the settled

snow surface. At the Alta-Collins site, the DEID was collocated alongside instrumentation deployed at the long-running Collins

Snow Study Plot (CLN), which is a well-protected snow-study site located at the upper terminus of Little Cottonwood Canyon,225

averaging 1300 cm of snowfall annually and 17.4 days with at least 25 cm of snow. The full record from CLN spans 41 years

(January 1980–April 2021), and the last 21 seasons include a complete record of automated hourly precipitation observations

(Alcott and Steenburgh, 2010). This site was chosen in part to avoid the additional measurement of windblown snow that would

typically be lifted from exposed terrain features. However, we did not do anything to specifically avoid measuring lifted snow

other than using this well-sheltered area along with keeping the plate surface elevated 1.25 m above the ground surface. Lifting230

the plate to this height significantly reduces wind-blown effects even in non-sheltered areas (e.g., Naaim-Bouvet et al. (2014)).

Blowing snow is likely to have a distinct signature by way of particle clustering and size. In the current state, no distinction has
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been made between the characteristics of free falling and lifted snow. If there is a flux of precipitation falling downward onto

the plate, it will be measured whatever its origin.

The recommended operating range of the hotplate for field experiments is from 104◦C to 106◦C for ambient temperatures235

ranging from -20 to 20◦C. At the Red Butte Canyon site, the hotplate was operated at 104◦C for the entire experimental period

between December 2019 and April 2020, with ambient temperatures ranging from -12 to 10◦C. At the Alta-Collins site, the

hotplate was operated at 106◦C for the entire experimental duration between October 2020 and April 2021, with ambient

temperatures that varied from -20 to 20◦C. The average energy flux from the DEID at 0◦C ambient temperature and with

wind speeds of 4.7 m s−1 is 5581 W m−2. No wind shield was placed around the DEID, such as those commonly used in240

precipitation gauge systems. The DEID was set to sample at 12 Hz at both study plots. An ETI Instrument Systems Noah-II

precipitation weighing gauge was deployed 4 m from the DEID at the Alta Collins site and a wind shield was deployed around

the ETI bucket to increase catchment efficiency. The ETI reported SWE measurements once every 1-hour. The resolution,

threshold and accuracy of the ETI bucket is 0.254 mm, 0.254 mm, and ± 0.254 mm respectively.

Thermal imagery during the field experiments was acquired at a rate between 2 and 30 Hz depending on the the precipitation245

rate, although the data described here were primarily recorded at 12 Hz. At the Alta Collins site, 45718 snowflake images

were considered for a 3-hour period for the analysis of histograms of mass, density, maximum diameter, equivalent diameter,

complexity and aspect ratio.The instantaneous SWE rate and SWE accumulation were estimated every recorded frame, which

was based on the total mass of snowflakes that had fallen on the hotplate in each frame. At the Red Butte Canyon site,

measurements were only during periods of continuous rain or snowfall. To produce snow and rain-droplet size distributions250

for each trial, 2000 snowflakes/raindrops were collected during continuous precipitation and the sample collection time varied

from about 5 to15 minutes.

4 Results

4.1 DEID laboratory-calibration experiments

Ten 0.02 g, 20-µL water droplets were applied to the DEID heated plate using a pipette and the mass of each was determined255

using Eq. 4. The average of the DEID-computed water-droplet masses was 0.020 ± 0.0019 g.

Since these experiments were conducted in an enclosure where wind speeds were negligible, the effect of convective cooling

on the mass calculation did not play a role.However, in the real natural environment (outside of the enclosure) winds can affect

Tp(t) (top side of the heated plate) but not Tb(t) (bottom side of the heated plate that is always enclosed), in which case some

estimate must be made of convective heat losses from the plate due to external winds (Rasmussen et al., 2011). This issue can260

be addressed by replacing Tb(t)−Tp(t) with Tp(t)−Tw(t) and replacing (kAL/dAL) with an (kw/dw) in Eq. 4 since the effect

of convection losses due to ambient winds affects both Tp(t) and Tw(t) equally as shown in Fig. 5b.
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Figure 5. (a) Time series of the plan area of a water droplet during evaporation and a side-view temperature contour plot of a water droplet

before and after impact on the DEID plate. (b) Time series of the temperature of plate and the top of the water droplet. The water droplet was

applied with a pipettor seen as the bright round region. A rectangular piece of Kapton tape (ε ≈ 0.95) and a k-type thermocouple were used

to calibrate the temperature of the plate and water droplet.

The justification for this approach is shown in Fig. 2. For quasi-steady conditions, conduction from the heated plate to a

water droplet may be written as

Tb(t)−Tp(t)

R1
=
Tp(t)−Tw(t)

R2
, (15)265

where R1 = (dAL/kALA) is the thermal resistance across the aluminum plate and R2 = (dw/kwA) is the thermal resistance

across water droplet, which must be determined through a calibration procedure in which known droplet masses are applied to

the surface of the plate. Substituting the thermal resistance from Eq. 15 into Eq. 4 yields

c∆T

∫
dm+L

∫
dm=

∆t∫
0

(k/d)effA(t)(Tp(t)−Tw(t))dt. (16)

Note, in Eq. 16, we have replaced kw/dw with a calibrated value (k/d)eff . To determine (k/d)eff , 0.02-g (20-µL) water270

droplets were individually applied ten times to the hotplate using a pipette. Eq. 16 was then rearranged to solve for (k/d)eff .

The results were averaged over the 10 samples yielding (k/d)eff = 7.006× 103 W m−2 K−1.

With the derived value of (k/d)eff , particle mass can be inferred from Eq. 16. This DEID-measured mass was compared

against two high-accuracy standard methods: micropipetted droplets and weighed droplets using a gravimetric scale. Water-

droplet volumes of 5, 10, 15, 20, 25, 30, 70, 80, 90, 100, 110, 120 µL were applied to the hotplate using a micropipette275

and weighed using a gravimetric digital scale. To ensure the complete discharge of the water droplet from the pipette during

application to the hotplate and gravity scale, the pipette was placed very close to the plate/scale to maintain the continuity
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Figure 6. Correlation between water droplet mass measured from a pipette and that obtained using the DEID with the corresponding linear fit

(coefficient of determination is 0.99). Mass of water droplet also measured using a weighing scale after apply water droplet on scale through

pipette in similar way.

of discharge and the procedure was consistent for all trials. The mass measured by the DEID, pipette and gravity scale were

averaged over three trials for each droplet water volume. Figure 6 shows that the correlation between DEID-measured droplet

mass and pipette-inferred droplet mass is 0.99 with a root mean square error of 0.002 g. Furthermore, the correlation coefficient280

between the gravity-scale droplet mass and the pipette-inferred droplet mass is 0.99 with a root mean square error of 0.0018 g.

To validate the mass accumulation of multiple water droplets, experiments simulating rain were conducted by applying

multiple droplets to the hotplate. Fifteen water droplets, each 0.04 g for a total 6 g measured with the gravity scale were

applied to the hotplate one by one and measured with the DEID. The accumulated error was 0.023 g.

The DEID methodology for measuring the mass of ice particles was also evaluated. The primary difference between water285

and ice at 0◦C is the added energy per kg required to overcome the latent heat of fusion Lf prior to evaporation. To test this

contribution, 0.04-g water droplets and 0.04-g ice particles made in a refrigerator in the laboratory, were applied to the hotplate

and the average energy loss for an ensemble of 10 samples was computed using the right-hand-side of Eq. 17. The average

energy required to evaporate the droplets was 101.4± 3.2 J and the average energy required to melt and evaporate the particles

was 113.24± 4.1 J implying a mean latent heat of fusion of 2.96 ×105 J kg−1, similar to the accepted value of 3.34 ×105 J290

kg−1. Accordingly, to calculate the mass of the solid hydrometeors Lv is replaced by Leqv , we solve the following form of the

energy balance equation for mass:

c∆T

∫
dm+Leqv

∫
dm=

∆t∫
0

(k/d)effA(t)(Tp(t)−Tw(t))dt (17)
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where Leqv = Lv +Lf .

4.2 Environmental impacts on DEID mass measurement: wind-tunnel experiments295

To determine how wind speed affects DEID mass measurement, all environmental parameters except velocity were maintained

approximately constant in the wind tunnel while the wind speed was varied from 0.5 m s−1 to 10.3 m s−1. Water droplet-

experiments were performed in the wind tunnel with wind speeds of 0, 0.6, 1.5, 3.5, 5.5, 7.2, 8.84, and 10.3 m s−1. For each

trial, 40-µL (0.04 g) water droplets were placed on the heated plate and three trials were performed for each wind speed.

Results are summarized in Table 1. The measured total energy loss from the plate for each trial was approximately constant300

and independent of ambient wind speed. averaging 100.77 ± 4.72 J for an average measured DEID mass of 0.044 ± 0.0019 g.

To investigate the effects of humidity variability, the wind tunnel was set at 37%, 50%, 70%, 80%, and 92% relative humidity

with a measured wind speed of approximately zero (0.02 ms−1). The temperature of the plate was set to 100◦C and again 40-

µL, or 0.04 g water droplets were applied to the heated plate. Three trials were performed for each level of humidity and

measurements were taken of the total energy loss for each trial. The results summarized in Table 2 indicate a negligible305

dependence. The average measured energy loss for all humidity levels was 99.96 ± 4.42 J for an average measured mass of

0.044 ± 0.0016 g.

The final test was to vary the DEID plate temperature between 80◦C and 110◦C, while maintaining a fixed wind speed of

0.02 m s−1 and relative humidity of 37%. The water-droplet experiments were performed with surface plate temperatures of:

80◦C, 90◦C, 100◦C, 105◦C and 110◦C. Results summarized in Table 3 show a measured average energy loss of 101.78 ± 4.8310

J and a measured average mass of 0.044 ± 0.0018 g.

The conclusion is that DEID measurements are highly insensitive to environmental conditions and device settings unlike

prior hotplate devices that require detailed ambient measurements and corrections to obtain precise measurements of precipi-

tation rate (Rasmussen et al., 2011; Thériault et al., 2021) .

Table 1. Mean and standard deviation of mass (m) and energy loss (E) per droplet from the hotplate measured using the DEID methodology

for eight different wind speeds (WS) for 0.04 g water droplets.

WS (m s−1) E (J) m (g)

0.02 101.4 ± 3.71 0.044 ± 0.0015

0.6 98.8 ± 2.81 0.043 ± 0.0011

1.5 95.8 ± 6.21 0.042 ± 0.0025

3.5 100.3 ± 5.18 0.044 ± 0.0021

5.5 107.9 ± 4.61 0.047 ± 0.0019

7.2 105.5 ± 3.96 0.046 ± 0.0016

8.84 102.1 ± 6.09 0.045 ± 0.002

10.3 95 ± 5.21 0.042 ± 0.002

100.77 ± 4.72 0.044 ± 0.0019
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Table 2. Average and standard deviation mass (m) and energy loss (E) per droplet from the hotplate measured using the DEID for numerous

relative humidity values (RH) for 0.04 g water droplets.

RH(%) E (J) m (g)

37 102.2 ± 3.86 0.045 ± 0.0012

50 100.6 ± 5.86 0.044 ± 0.0021

70 98.6 ± 4.21 0.043± 0.0015

80 103.8 ± 5.21 0.046 ± 0.0018

92 94.6 ± 2.96 0.042 ± 0.001

99.96 ± 4.42 0.044 ± 0.0016

Table 3. Average and standard deviation mass (m) and energy loss (E) per droplet from the hotplate measured using the DEID for different

hotplate temperatures for 0.04 g water droplets.

T (◦C) E (J) m (g)

80 99.6 ± 6.23 0.044 ± 0.0023

90 102.8 ± 5.2 0.045 ± 0.0019

100 98.8 ± 4.28 0.043 ± 0.0015

105 103.6± 3.21 0.045 ± 0.0011

110 104.1 ± 5.1 0.046 ± 0.0018

101.78 ± 4.8 0.044 ± 0.0018

5 Field validation315

Field experiments conducted at Red Butte Canyon and Alta-Collins Snow Study Plot provided DEID measurements of SWE

accumulation, snow accumulation and snow density measurements, and particle attributes that could be compared with inde-

pendent sensors. An example of the DEID thermal imagery data acquired at Alta Collins is presented in Fig. 7 which shows

how binary thermal imagery of snowflakes, can be converted into an effective circular diameterDeff and a maximum effective

diameter Dmax.320

Fig. 8 shows probability distributions for snowflake mass, density (ρs), effective circular diameter (Deff ), maximum effec-

tive diameter (Dmax), complexity, and the ratio of melted diameter (Dmel) to effective circular diameter (Deff ).

For systematic and random error analysis, 45718 snowflakes have been considered, which were collected during an ≈ 6-

h period during field experiments at Alta Collins on 15 April 2020. During this period, a wide range of precipitation rates

ranging from 0.001 to 16 mm hr−1, were observed. Direct measurements made by the DEID consist of: area, temperature,325

and the evaporation time of snowflakes. The percent error in the area, temperature, and evaporation time for all observations

is 1.0 %, 0.3 %, and 1.0% respectively. The percent error in the calibration constant (k/d)eff is 1.0%. The percent error in

derived quantities (using a standard propagation of uncertain analysis) such as equivalent diameter, particle complexity, mass,

density, visibility, SWE, and snow height are 0.5%, 2.0%, 3.3%, 4.8%, 3.3%, 5.3%, and 8.1%, respectively. The probability
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Figure 7. (Bottom panel) Black and white binary thermal images of snowflakes in various stages of melting and evaporation on the DEID

heated plate observed at Alta. (Top panel) A close-up image illustrating the definitions ofDeff ,Dmin andDmax. εw of snow and Aluminum

are noted.

of subsequent hydrometeors falling on top of one another before complete evaporation of the initial hydrometeor depends330

mostly on the following parameters: precipitation rate, hotplate temperature, evaporation time, snowflake type, and density. To

calculate the coincidence probability, the same data introduced above were considered with a given hotplate temperature of

104◦C. When compared to a typical evaporation cycle for a single frozen hydrometeor, overlapping is indicated by a significant

decrease in temperature and increase in area within a normal cycle of evaporation. By applying these conditions, the probability

of coincidence was calculated. A second method takes into account the size distribution, which provides a vertical structure of335

hydrometeors based on precipitation rate. An overlap is counted if the evaporation time of any hydrometeors is greater than

the average time between two consecutive hydrometeor in the vertical direction. Using these two methods, negligible overlaps

were observed for a precipitation rate of ≈1 mm hr−1, and a maximum of 4.9 % coincidence probability was observed during

the highest SWE rate 15.6 mm hr−1. Note that even during instances of overlap, in contrast with optical disdrometers, the

DEID does not ‘lose’ measurements of the primary hydrometeor quantity amount, in this case mass. The DEID provides a340

combined mass as discussed in Appendix A1. While total mass estimation is unaffected, individual particle calculations such
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as mass, size, and density are. For data where overlap is identified, these measurements are not considered in the probability

and size distributions, etc. presented herein.

The following are median values with lower and upper quartiles for the above parameters: mass = 0.46 [0.20 1.18] mg;Deff

= 1.73 [1.37 2.42] mm; Dmax = 1.89 [1.26 2.84] mm; ρs = 92 [61 120] kg m−3; complexity = 1.41 [1.25 1.68]; Dmel/Deff345

= 0.61 [0.49 0.73]. In general, representative parameters of snowflake mass, size, density, complexity, ratio of Dmel to Deff

acquired during the storm shown were highly variable; the mean mass was 1.80 ± 9.04 mg and mean density was 92 ± 42 kg

m−3. The most likely value of Deff , Dmax and ρs were 1.34 mm, 1.58 mm and 97 kg m−3, respectively, which is consistent

with past measurements at the same site (Garrett et al., 2012; Alcott and Steenburgh, 2010).The distribution of the ratio of

Dmel to Deff is slightly positively skewed with a skewness 0.10 and kurtosis 3.24). Also, the typical value of complexity was350

1.22, indicating the predominance of rounded/rimed snowflakes. Using a plate temperature 104 ◦C, a thermal camera sample

frequency of 12 Hz, and for 45718 snowflakes, the median hydrometeor evaporation time including lower and upper quartiles

was 2.41 [1.25, 5] sec. Hence, this range of time scales minimizes uncertainty in the measurement of all types of hydrometeors

at a given hotplate temperature and frame rate.

Figure 8. Distributions of snowflake characteristics measured using the DEID at the Alta-Collins Snow Study Plot from a sample of 45718

snowflakes. (a) Mass, (b) density, (c) maximum effective diameter Dmax, (d) effective circular diameter Deff , (e) complexity, and (f) ratio

of melted spherical diameter and effective circular diameter.
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As part of the validation exercises in this study, the DEID was deployed alongside a Multi-Angle Snowflake Camera (MASC)355

(Garrett et al., 2012) at the Red Butte Canyon site. The MASC is composed of three high-speed optical cameras that image

individual snowflakes as they fall through the field of view. The MASC can be used to obtain accurate estimates of snowflake

sizes. A one-hour period of measurements was used for comparing MASC and DEID measurements of hydrometeor maximum

dimension Dmax. The median values with lower and upper quartiles from the DEID and MASC are Dmax = 2.77 [1.84 4.38]

mm and Dmax = 2.90 [1.93 4.89] mm respectively. Hydrometeor maximum-dimension PDFs from both instruments are given360

in Fig. 9. The results indicate that the snowflake distributions measured by the two instruments are very similar. A more

extensive comparison between the MASC and DEID is addressed in Rees et al. (2021).

Figure 9. PDF of Dmax. 2268 snowflakes were observed using the DEID and 2093 snowflakes were observed using the MASC during a

one-hour period on 16 Jan 2020 at Red Butte Canyon.

5.1 Validation of SWE rate measurements

An approximately 1-hour long time series of raw (12 Hz) and 15-sec averaged SWE rate data taken at Alta Collins is shown

in Fig. 10. Here, periods with a SWE rate of less than 0.001 mm hr−1 or characterized by small hydrometeors with Deff <365

0.2 mm are assumed to correspond with no snowfall. Broad variability indicating fine-scale storm structure is observed. For

example, during the 15 April 2020 snowstorm shown, SWE rate rapidly changed from 0.1 to 40 mm hr−1 within 5-min. Such

detail cannot be identified using traditional snow-accumulation measurement techniques.

DEID SWE accumulation was compared with an industry standard ETI Noah-II precipitation weighing gauge. Both instru-

ments were deployed within 4 m of one another at the Alta-Collins site. The DEID sampling frequency was set at 12 Hz,370
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Figure 10. Time series of SWE rate measured at a sampling frequency of 12 Hz (black dots) and averaged over a 15 sec period (blude dots)

measured on 15 April, 2020 at the Alta-Collins site.

while data from the ETI were reported every hour. Data were collected from 0000 UTC 15 April to 1600 UTC 15 April 2020.

Accumulated SWE integrated over five minute intervals is plotted against the ETI data in Fig. 11. DEID SWE accumulation

observations match those from the ETI gauge to within ± 6% over the 16-hour measurement period. The DEID SWE accu-

mulation is slightly higher than the ETI because the minimum resolution of ETI is 0.254 mm whereas the minimum DEID

resolution is 0.001 mm. To determine a thermal camera frame rate that would capture the widest possible range of hydrometeor375

types, an experiment was performed during a snow event at Red Butte Canyon on 25 March 2020. The thermal camera was

operated at a frequency of 60 Hz with the plate temperature set to 104◦C. The total mass of hydrometeors was estimated using

two different algorithms one that estimates the total mass in each frame using the energy balance equations and second that

computes the mass of each particle following them across a series of frames. The total mass of hydrometeors that fell on the

hotplate within half an hour was calculated using sampling frequencies of 1, 2, 3, 6, 10, 12, 15, 20, 30, and 60 Hz. Using the380

frame-by-frame method the calculated total mass at 12 Hz frequency was found to be 99.8% of the total mass calculated at

60 Hz. Hence, the 12-Hz frame-by-frame method was used for SWE accumulation calculations. Using the particle-by-particle

method, the calculated total mass at a 12-Hz frame rate was found to be 94.79% of the total mass calculated at 60 Hz. While

sampling at 60 Hz could be done, it is less practical operationally. For a ≈1.2 Mpixel camera resolution, the processing time

for each frame is approximately 0.015 sec. The average size of the dataset for a one-hour period is 1.3 Gb and the associated385

processing time is ≈11 minutes. Selecting a frame rate of 12 Hz, in part, assures that the DEID can operate as a real-time
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instrument. Hence, the 12 Hz represents a cost benefit balance between accuracy of the measurement and time and storage

costs.

Figure 11 also suggests the DEID can faithfully measure snow density throughout a 16-hour storm. Low-density snow (48 kg

m−3) transitioned to higher-density snow (176 kg m−3) before ending with slightly lower density (92 kg m−3) accumulations.390

The ability of the DEID to capture this complex density layering is critical to applications such as avalanche forecasting.

Figure 11. Time series of SWE accumulation measured using the DEID and ETI gauge along with DEID-measured snow density. The data

were acquired at Alta Collins on 16 April 2020. Each DEID data point represents a 5-min average.

5.2 Snow characterization and density measurements

Figure 12 shows four different types of snowflakes inferred using the DEID at the Red Butte Canyon site and their estimated

mean densities. Images of snowflakes on the hotplate are generally well-separated from each other, allowing for calculation of

individual mass, size, and density. Figure 12a and b show snow particles consisting of aggregates with mean densities of 95395

± 6 kg m−3 and 82 ± 11 kg m−3, respectively. Figure 12c shows dense graupel with a mean density of 260 ± 21 kg m−3

and Fig. 12d shows snow particles with a wide range of sizes with a low mean density of 42 ± 26 kg m−3. Time series of

key bulk precipitation quantities measured at Alta Collins are shown in Fig. 13. The data include 1-min averaged visibility,

density, SWE rate, and PIsnow. Averaged over the one hour shown, the estimated density was 124± 54 kg m−3 and the lowest

visibility measured was 0.415 km, which was associated with a 5-minute period (21 to 26 minutes) of particularly heavy snow400
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Figure 12. Image of snow particles measured by the DEID at Red Butte. The mean density calculated from the mass and effective spherical

volume is (a) 95 kg m3. (b) 82 kg m3 (c) 260 kg m3 and (d) 42 kg m3.

fall. The heavy snow was followed by a period where the visibility increased to than 5.0 km when snowfall was light (from 41

to 45 minutes).

6 Scientific application: size distributions

One of the first studies to quantify rain-droplet size distributions was performed by Wiesner (1895) who measured individual

raindrop size after it had fallen onto a piece of plotting or filter paper. Here, we compare DEID measured size distributions with405

canonical results obtained previously by (Marshall and Palmer, 1948) for rain and (Gunn and Marshall, 1958) for snow that

are used extensively in the atmospheric sciences literature. A key feature of these results is an exponential tail that is less steep

with increasing precipitation rate and a constant intercept independent of rate at a diameter near zero for rain and greater than
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Figure 13. Time series of 1 min average of snow water equivalent (SWE), snow precipitation rate (PIsnow, mean snow density and visibility

obtained at Alta-Collins on 15 April 2020).

zero for snow. It has been shown that the functional form of the distribution can be arrived at by considering growth through

hydrometeor collisions that ‘transport’ particles in and out of successively larger size bins as balanced by an increasing terminal410

fall speed with size (Garrett, 2019).

Accurate ground based measurement of precipitation size distributions either relies on particle-by-particle measurement

using optical devices or is inferred from bulk measurements using for example a radar. In either case, accuracy of both the direct

measurements and any assumptions can be adversely affected by high winds and turbulence and, for snow, an unknown density

(Thériault et al., 2012). The DEID, however, being simply a horizontal flat plate, is not expected to suffer from collection415

inefficiencies, except for minimal interference with falling hydrometeors by the thermal camera.

6.1 Rain

A consideration for measurement of size however is that the area of raindrops is rapidly distorted upon impact (Parsakhoo et al.,

2012). With the DEID, greater deformation in size was observed for larger droplets. Therefore, we use an effective spherical

diameter inferred from the mass measurement and density of water. We focus on three rain events occurring on three different420

days during the field experiments conducted at Red Butte Canyon. For each day, a sample of ≈ 2000 rain droplets is taken for

size distribution analysis. To obtain concentrations (number of rain drops per unit air volume) an effective volume of air was

estimated from the product of the sampling area of the hotplate and an effective vertical distance in sample collection time.
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The effective vertical distance is estimated using the product of the mean fall speed and the sampling duration. The terminal

fall velocity of the raindrops was calculated using Eq. 14 and an average velocity taken over 2000 raindrop samples is used425

to calculate an effective vertical height. The size distribution of raindrops for three different precipitation rates is given in Fig.

14; the average N0 (y-axis intercept at Drain = 0) is 8.13×103 m−3 mm−1, which is well matched to those value obtained by

Marshall and Palmer (1948) for all rain rates.

Figure 14. Size distributions of raindrops for different fall rates measured in Red Butte Canyon. Approximately 2000 raindrops were con-

sidered in each case binned in increments of ≈ 0.2 mm. Distribution of raindrops (points) on a plot of log number vs diameter of raindrops

(Drain), fitted using N(Drain) = N0 e−ΛDrain (lines). R is SWE rate of rainfall ( ˙SWE) and D0 is median of diameter of raindrops. Fitted

results are compared with Marshall and Palmer (1948), abbreviated as MP.

6.2 Snow

As described above, snowflake sizes (Deff ) can be directly obtained from area measurements made by the DEID. Size dis-430

tributions for ensembles of ≈ 2000 snowflakes binned in 0.2 mm increments are presented in Fig. 15 as logN(Deff ) versus

Deff . The plots show that the data are well described by exponential fits of the form N(Deff ) =N0 e−ΛDeff for Deff > 1

mm. The mean snow density and precipitation rate was averaged over 2000 snowflakes.
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Figure 15. Size distributions of snow particles for different SWE rates ( ˙SWE). Approximately 2000 snowflakes were considered in each

case with bin sizes of 0.2 mm. The mean snow density is taken by averaging over ≈ 2000 snowflakes. Distribution of snowflakes (points) on

a plot of log number vs effective circular diameter (Deff ), fitted using N(Deff ) = N0 e−ΛDeff (lines). R is SWE rate of snowfall ( ˙SWE)

and D0 is median of Deff . Fitted results are compared with Gunn and Marshall (1958) abbreviated as GM.

7 Conclusions

We have described a novel ground-based thermal and optical instrument, the Differential Emissivity Imaging Disdrometer435

(DEID), the first device shown to be capable of accurately measuring the physical properties of individual hydrometeors,

including paticle mass, density, and size. This is the first particle-by-particle device capable of measuring mass, density and

size of hydrometeors, and of integrated measurements widely used in the meteorological and atmospheric sciences community,

that has been shown to perform with high accuracy.

The DEID concept is simple. It consists of a heated metal plate with a low infrared emissivity top surface viewed by a440

thermal camera. The heat loss from the plate required to melt and evaporate high emissivity solid and liquid hydrometeors

is estimated using a thermal camera. Finally, the heat loss is converted into a mass using via a control volume-based energy

budget computed for each hydrometeor. The camera’s sampling frequency and the resolution of the images determine the

measurement error. In this work we used a thermal camera with a resolution of 1280 × 960 pixel for which the minimum size

accepted by the DEID is 1 pixel, which is 0.2 mm. Furthermore, the DEID can measure precipitation rates with a sampling445

frequency of 12 Hz ranging from 0.001 to 200 mm hr−1. The accuracy of the measurements is partially an inverse function of

plate area due to errors associated with sampling statistics Rees and Garrett (2021).
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In laboratory measurements, the DEID was found to be highly insensitive to environmental conditions including wind speed,

temperature, and humidity, Notably, in contrast with previous precipitation-gauge instruments based on a hotplate concept

(Rasmussen et al., 2011), the DEID measurement principle does not depend on wind speed as the mass calculation depends on450

the temperature difference between the hydrometeor and hotplate surface.

The DEID performed well in preliminary field experiments conducted at two different sites. Measurements taken during a

snowstorm demonstrated the instruments’ ability to observe precipitation rates and snow densities at unprecedented sampling

frequencies while maintain fidelity to within 6% of the industry standard ETI weighing device. Size distributions obtained

during a rain and snow events are consistent with those published previously in the literature. While these early results need to455

be validated under a wider range of conditions, they show high potential to provide important new precipitation data streams

to meteorologists, hydrologists, and avalanche forecasters.

Appendix A: Heat loss calculations

A1 Calculation of convective heat loss

For calculation of convective and radiative heat loss during evaporation of a water droplet, 40 µL of water was applied to the460

hotplate using a micropipette. The total energy required to evaporate 40 µL or 0.04 g of water at 100◦C can be estimated using

the following equation

Qtotal =mLv +mc∆T. (A1)

Qtotal is total energy required to evaporate the droplet, which is 103.8 J using Lv = 2.26× 106 J kg−1, c = 4.182× 103 J kg−1

K−1 and ∆T = 80 K. The convective heat loss during evaporation of a water droplet is465

Qc =

∆t∫
0

hcA∆Tdt, (A2)

whereQc is the convective heat loss and hc is the convective heat-transfer coefficient. The heat-transfer coefficient is calculated

using (Kosky et al., 2013)

hc =
K

D
0.0158(Re)0.8, (A3)

where K is thermal conductivity of air, D is diameter of water droplet, which is approximately constant during evaporation,470

and Re is the Reynolds number that is calculated using following equation

Re=
V D

ν
. (A4)

Here, V is the air velocity and ν is kinematic viscosity of air. The calculated convective heat loss for a given area (5.83× 10−5

m2), velocity (3.5 m s−1) and diameter of the water droplet (0.0086 m) is 1.04 J.
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A2 Calculation of radiative heat loss475

The radiative heat loss is estimated using the following equation

QR = εwσb

∆t∫
0

A(t)(T 4
w(t)−T 4

air)dt, (A5)

where, εw (0.98) is emissivity of water, b (0.66) is the view factor between water surface air surrounding and Tair is ambient

air temperature that is 25◦C. Calculated radiative heat loss using A5 is 1.09 J.

Appendix B: Cleaning of the hotplate480

Dust storms can leave static residue on the hotplate after evaporation that is imaged by the thermal camera. This residue

produces a bright visual signature on the hotplate surface that is seen by the thermal camera. To regain an accurate measurement,

the dust residue needs to be removed (cleaned) from the hotplate surface. The following procedure is typically used to clean the

hotplate: (1) Manually cleaning by placing fresh snow onto the plate and then wiping with a dry clean cloth. (2) Self-cleaning

during snow events – the hotplate is briefly turned off remotely at the beginning of the storm and then turned back on after485

an accumulation (≈ 2 mm) of fresh snow on the plate. It is common for some (≈ 0.001% area of the hotplate) bright spots

(residue) to remain on the hotplate surface throughout the entirety of a storm. Typically, these bright spots can be removed

computationally when using either the frame-by-frame or particle-by-particle methods discussed in the main text. In the frame-

by-frame method, the total mass due to the residue was subtracted in each frame and the total area of residues was subtracted

from the hotplate area. In the particle-by-particle method, all hydrometeors must complete the cycle of evaporation where the490

area of hydrometeor must be zero at the beginning and end of the evaporation. But residues do not evaporate and change area

like hydrometeors; hence, residues were not counted and the hotplate area was reduced by subtracting the total area of residues.

Appendix C: Bouncing of snow from the hotplate and catchment efficiency of the DEID

Snow particles bouncing from the hotplate are a function of two-time scales, which are the contact time between the plate495

and snow particle and the melting time of the bottom layer of snow particle. There is a competition between contact time and

melting time and contact time decreases with the increasing density of the snow particle. However, melting time increases with

the increasing density of snow particles. For a given density of snow particle (74 kg m−3), contact time is O (10−1 sec), and

the melting time of a 100-µm thick layer of snow is O (10−3 sec). When the snow particle melts, the normal reaction force

from the surface to the snow particle is weekend. A roughened plate and surface tension between plate and water layer help to500

hold the snow particle after impact along the surface of the heated plate.
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