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Abstract. The ability of the hyperspectral satellite based passive infrared (IR) instrument IASI to resolve Elevated Moist Layers

(EMLs) within the free troposphere is investigated. EMLs are strong moisture anomalies with significant impact on the radiative

heating rate profile and typically coupled to freezing level detrainment from convective cells in the tropics. A previous case

study by Stevens et al. (2017) indicated inherent deficiencies of passive satellite based remote sensing instruments to resolve

an EML. In this work, we first put the findings of Stevens et al. (2017) into the context of other retrieval case studies of EML-5

like structures, showing that such structures can in principle be retrieved, but retrievability depends on the retrieval method

and the exact retrieval setup. To approach a first more systematic analysis of EML retrievability, we introduce our own basic

Optimal Estimation (OEM) retrieval, which for the purpose of this study is based on forward modelled (synthetic) clear-sky

observations. By applying the OEM retrieval to the same EML case as Stevens et al. (2017) we find that a lack of independent

temperature information can significantly deteriorate the humidity retrieval due to a strong temperature inversion at the EML10

top. However, we show that by employing a wider spectral range of the hyperspectral IR observation, this issue can be avoided

and EMLs can generally be resolved. We introduce a new framework for the identification and characterisation of moisture

anomalies, a subset of which are EMLs, to specifically quantify the retrieval’s ability of capturing moisture anomalies. The new

framework is applied to 1288 synthetic retrievals of tropical ocean short-range forecast model atmospheres, allowing for a direct

statistical comparison of moisture anomalies between the retrieval and the reference dataset. With our basic OEM retrieval, we15

find that retrieved moisture anomalies are on average 17 % weaker and 15 % thicker than their true counterparts. We attribute

this to the retrieval smoothing error and the fact that rather weak and narrow moisture anomalies are most frequently missed

by the retrieval. Smoothing is found to also constrain the magnitude of local heating rate extremes associated with moisture

anomalies, particularly for the strongest anomalies that are found in the lower to mid troposphere. In total, about 80 % of

moisture anomalies in the reference dataset are found by the retrieval. Below 5 km altitude, this fraction is only on the order of20

52 %. We conclude that the retrieval of lower to mid tropospheric moisture anomalies, in particular of EMLs, is possible when

the anomaly is sufficiently strong and its thickness is at least on the order of about 1.5 km. This study sets the methodological

basis to more comprehensively investigate EMLs based on real hyperspectral IR observations and their operational products in

the future.
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1 Introduction25

The vertical structure of tropospheric water vapor is an important driver for dynamical processes due to its effect on the

radiative heating profile. In particular, Muller and Bony (2015) found that the spatial variability of the radiative heating profile

gives rise to spatial self-aggregation of convection, which is thought to be a key factor for uncertainties in climate projections

(Bony et al., 2015; Mauritsen and Stevens, 2015). A contributing phenomenon to the spatial variability in radiative heating

profiles are moisture inversions in the tropical lower to mid free troposphere, so called Elevated Moist Layers (EMLs). To30

our best knowledge, EMLs were first identified by Haraguchi (1968) over the tropical eastern Pacific and independently by

Ananthakrishnan and Kesavamurthy (1972) over India. A first systematic connection of these EMLs to the freezing level

was brought to attention by Johnson et al. (1996), who formally distinguished between the commonly referred to trade wind

inversion between 2 and 3 km (Cao et al., 2007) and another stable layer aloft that manifests during summer months just below

the freezing level. Both, the trade wind inversion and the stable layer at the freezing level are capable of trapping moisture35

beneath and forming strong vertical humidity gradients. The stable layer around the freezing level has recently been brought

to attention again within the framework for assessing the tropical lower tropospheric moisture budget introduced by Stevens

et al. (2017).

While the general role of EMLs within their meso-scale environment has not yet been assessed conclusively, there are con-

ceptual ideas about the emergence of EMLs and their impact on meso-scale atmospheric dynamics. Johnson et al. (1996) and40

Stevens et al. (2017) both hypothesise that EMLs preferably emerge in the vicinity of moist convective cells that penetrate

the freezing level, where enhanced stability leads to detrainment of the saturated air. Stevens et al. (2017) further highlight

the stabilising effect of glaciation above the freezing level within the initial convective cell on the environment, which further

impedes nearby convection from penetrating the freezing level, leading to increased cloudiness and moisture. Studies investi-

gating vertical modes of cloudiness in the tropics further support the idea of preferred convective detrainment near the freezing45

level (Zuidema, 1998; Johnson et al., 1999; Posselt et al., 2008). Following the findings of Muller and Bony (2015), EMLs

may also contribute to the maintenance and aggregation of convection via the strong vertical gradient they induce in the radia-

tive heating profile. The strong cooling at the EML top induces subsidence and horizontal mass convergence, while near the

surface a mass divergence is induced. The mass divergence near the surface in the vicinity of convection may act to maintain

the convection.50

Stevens et al. (2017) conducted an observational case study of an EML present during the NARVAL-2 (Next Generation

Remote Sensing for Validation Studies) measurement campaign. One method they deployed was a satellite retrieval analysis

based on passive microwave and hyperspectral infrared (IR) observations, both of which showed poor performance in capturing

the EML structure, suggesting that EMLs present a somewhat fundamental blind spot for passive satellite observations.

We start out by providing additional scientific context to the findings of Stevens et al. (2017) by briefly reviewing the results55

of other hyperspectral IR retrieval studies that investigated EML-like cases in Sect. 1.1. In Sect. 2, we introduce our own basic

Optimal Estimation (OEM) retrieval setup that we extensively use later on to investigate a physical cause for missing the EML

structure and to attempt a first quantitative and comprehensive analysis of moist layer retrievability. This study is based on
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forward modelled (synthetic) observations to reduce the complexity of error sources (e.g. by collocation uncertainty, clouds,

forward modelling errors) and to rather assess inherent limitations in resolving vertical moisture structures with hyperspectral60

IR observations. Section 3 introduces a framework for identifying and characterising moisture anomalies, which we use to

specifically quantify the retrieval’s ability to the capture the moisture anomalies’ vertical position, their thickness and their

strength. In Sect. 4 we first apply our OEM retrieval to the EML scenario discussed by Stevens et al. (2017) to assess whether

the strong temperature inversion at the EML top, when not properly resolved, is capable of masking the EML in the humidity

retrieval. We want to note that we do not aim to reproduce the results of Stevens et al. (2017), but discuss a possible physical65

reason for their found EML blindspot. Then the retrieval is applied to forward simulated (synthetic) IASI observations based

on an ensemble of 1288 clear-sky atmospheric profiles over the tropical ocean, which are part of the ECMWF diverse profile

database introduced by Eresmaa and McNally (2014). Based on that, the absolute retrieval error and the smoothing error are

quantified statistically in Sect. 5. Based on the framework introduced in Sect. 3 for identifying and characterising moisture

anomalies, the retrieval’s ability to capture the moisture structures of the test dataset and their footprint on the heating rate70

profile is assessed in Sect. 6. The results are summarized and final conclusions are drawn in Sect. 7.

1.1 Previous moist layer retrievals

Since mid-tropospheric moist layers are no uncommon phenomenon in the tropics (Johnson et al., 1996), they have shown

up in hyperspectral IR retrieval case studies in the past. Although none of these studies were explicitly dedicated towards a

comprehensive and quantitative analysis of retrieving EMLs, they still give a qualitative impression of the possibilities and75

limitations in resolving these features based on various retrieval methods and give some context to the results of Stevens et al.

(2017).

A particularly performant and versatile retrieval approach was introduced by Smith et al. (2012) that is based on Empirical

Orthogonal Function (EOF) regression and combines a clear-sky and cloud trained retrieval to allow for retrievals above clouds

and below thin or broken clouds. The method is commonly referred to as Dual Regression (DR) retrieval. In a case study80

of retrieving temperature and humidity profiles in the eye of hurricane Isabel in 2003, Smith et al. (2012) demonstrate the

retrieval’s ability to capture the general tropospheric moisture structure in the presence of shallow cumulus clouds that go

along with a vertically extended EML between 850 to 550 hPa. However, no highly resolved reference soundings are available

for this case study. Weisz et al. (2013) further elaborate on the DR retrieval methodology, with particular focus on cloud top

height retrieval and they present some additional case studies for clear-sky and cloudy scenes. The NCEP (National Center for85

Environmental Prediction) GDAS (Global Data Assimilation System) analysis product is used as a reference for the retrieved

profiles and particularly large deviations are found for the clear-sky case, where a less pronounced moist layer is not resolved

by the retrieval in the mid troposphere.

Latest advances in the DR retrieval with regard to vertical resolution are presented by Smith and Weisz (2018), who try to

account for the effect that the regression tends to alias the retrieval towards the mean state of the test data base, supressing90

vertical variability. They do so by applying their DR retrieval to forward simulated spectra of NCEP GDAS analysis, the

resulting profiles of which are used to dealias the observational retrieved profiles. Smith and Weisz (2018) show in a case study
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that the DR retrieval by itself is not able to resolve a significant mid tropospheric moist layer, but the dealiasing method allows

to resolve it’s general structure. For this study a well collocated radiosonde serves as reference.

Another EML retrieval case study is conducted by Zhou et al. (2009), who use a slightly different retrieval scheme than the95

previously introduced DR method. While Zhou et al. (2009) also apply an EOF regression retrieval with clear-sky and cloudy

specific regression coefficients in a first step, they additionally apply a physical OEM retrieval in a second step. The retrieval

is applied to IASI observations from the Joint Airborne IASI Validation Experiment (JAIVEx), where dedicated collocations

between in-situ soundings and IASI onboard MetOp-A were achieved. A particularly well collocated dropsonde profile shows

a strongly pronounced EML between 3 to 6 km altitude, which the IASI retrieval is able to capture well, given the expected100

smoothing error due to limited vertical resolution. It may well be that the additional physical retrieval step is what makes the

difference in being able to retrieve an EML, when compared to the previously discussed results of the DR retrieval. This is

supported by results of Calbet et al. (2006) who investigated the ability of different retrieval algorithms implemented in the

EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) IASI L2 processor to resolve vertical

moisture and temperature structures based on AIRS (Atmospheric Infrared Sounder) data. In particular, Calbet et al. (2006)105

use a collocated clear-sky radiosonde that shows a mid tropospheric moist layer. While the EOF regression retrieval shows no

hint of the moist layer, the iterative physical retrieval scheme is able to resolve the structure quite well.

As a final reference, Chazette et al. (2014) investigated EUMETSAT’s IASI L2 product performance based on collocated

ground based Raman lidar observations from two field experiments. The comparison is done for clear-sky conditions and from

ground up to about 6 km altitude. Some significant vertical moisture variability, including moist layers, is captured by the lidar110

in the mid troposphere in several cases, but appears to not at all be resolved by the IASI retrieval. In their conclusions, Chazette

et al. (2014) report that the IASI L2 processor would be complemented by microwave sounder data from the MetOp instrument

suite in a future version, in particular to improve vertical resolution. We can confirm that this has been implemented to the

current IASI L2 processor (EUMETSAT, 2017), but we are not aware of a dedicated followup study on retrievability of the

vertical moisture structure.115

From this discussion of mid tropospheric moist layer retrieval case studies we conclude that such atmospheric features do

not generally appear to pose a blindspot for hyperspectral IR observations. While purely EOF regression based methods seem

to systematically struggle to resolve non-trivial moisture structures, OEM based methods show clear capabilities of resolving

them. Hence, the absence of the strongly pronounced EML investigated by Stevens et al. (2017) in their OEM retrievals

rather motivates a re-investigation of the exact retrieval setup that was applied rather than be interpreted as a consequence of120

inherent limitations in passive remote sensing observations. By applying the basic OEM retrieval scheme introduced in the next

section to synthetic IASI observations of the dropsonde profiles discussed by Stevens et al. (2017) we want analyse whether

temperature induced errors act as a plausible physical cause for the absence of the EML in the retrieval in Sect. 4.
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2 The retrieval

Extracting atmospheric state variables such as the temperature or concentrations of atmospheric constituents from passive125

satellite observations generally poses an under-constrained inverse problem. Sophisticated methods are required to regularise

the problem, some of which were already mentioned in the previous section. The OEM approach showed the most promising

results for resolving non-trivial moisture structures in the studies discussed in Sect. 1.1, but was also used for the missed

EML case of Stevens et al. (2017). This motivates the introduction of our own OEM retrieval setup to more systematically

assess possibilities and limitations in resolving EMLs. Note that we do not aim our retrieval to be particularly performant or130

as versatile as operational retrieval schemes (EUMETSAT, 2017; Smith and Barnet, 2020; Berndt et al., 2020). Instead, we

use the retrieval as a tool to assess basic moist layer retrievability on a low level of complexity. The formalism used in this

work strongly follows the comprehensive framework introduced by Rodgers (2000). Within the next subsections the technical

implementation of the retrieval setup used in this study is introduced.

2.1 Spectral setup135

The retrieval setup of this study aims at resolving the vertical structure of water vapor in the troposphere, with particular

focus on EML scenarios. The rotational-vibrational water vapor absorption band centered around 6.25 µm (1594.78 cm−1)

(see Fig. 1) offers rich vertically distributed information. We use all IASI channels in the range between 1190 to 1400 cm−1,

following the work of Schneider and Hase (2011), who demonstrated the suitability of this spectral range for retrieving profiles

of water vapor and its secondary isotopologues.140

The spectral signal of water vapor depends not only on the atmospheric water vapor itself but also on the temperature, surface

emissivity and temperature, methane and nitrous oxide. Schneider and Hase (2011) and Borger et al. (2018) concurrently found

that temperature induced errors can yield up to 15 % relative error for the lower to mid tropospheric H2O retrieval, which is

significant compared to other sources of error, such as interfering species. Therefore, unresolved temperature features may

falsely be interpreted as water vapor signals. We assume that this is particularly relevant for EML scenarios because the145

strong vertical humidity gradients typically go along with temperature inversions. To reduce this error, we add independent

temperature information to the retrieval from the spectral range between 645 to 800 cm−1, which is part of the CO2 absorption

band centred around 15 µm (666.67 cm−1). The shading in Fig. 1 indicates the H2O degrees of freedom calculated as the

trace of the averaging kernel matrix when only each respective channel is used (Rodgers, 2000). It is apparent that water

vapor absorption is significant throughout most of the thermal IR spectrum, yielding DOF values close to unity . Blue shading150

indicates where water vapor independent information can be extracted from the spectrum, which is desirable to maximize

temperature information content. Note that channels are highly redundant, so DOFs of individual channels do not add up. The

total DOF for water vapor in the used channel set is approximately 12.9, for temperature 23.5 and for surface temperature

0.99. Interestingly, Fig. 1 visually shows that the shortwave CO2 band is associated with less water vapor interference in its

flank between around 2200 to 2300 cm−1 than the longwave CO2 band. However, due to known daytime dependent non-LTE155
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associated biases and a worse signal to noise ratio in the shortwave channels of IASI (Razavi et al., 2009; Matricardi et al.,

2018; Clerbaux et al., 2009), we only use the longwave CO2 channels.

Figure 1. Forward simulated spectrum in the spectral range of the IASI instrument. Colors denote the water vapor information content of

individual channels calculated as the trace of the averaging kernel matrix when only each respective channel is used. Hence, the colored

shading does not account for redundancy of information between channels, but simply conveys where water vapor absorption is significant.

To assure that the radiative background of the surface is represented well in the retrieval, 5 window channels are added

to the spectral setup that have been identified by Boukachaba et al. (2015) as suited window channels. The channels are

located at wavenumbers 901.5 cm−1, 942.5 cm−1, 943.25 cm−1, 962.5 cm−1 and 1115.75 cm−1. The complete spectral setup160

encompasses 1464 channels.

As a final note on the channel selection, the aim with our retrieval is not to make it computationally efficient, but to use it

as a tool to explore the limitations in resolving vertical moisture features with IASI. Hence, we do not employ any channel

selection method, although we are aware of the rich literature in this context (Fourrié and Thépaut, 2003; Fourrié and Rabier,

2004; Collard, 2007; Martinet et al., 2013; Chang et al., 2020, among others).165

2.2 Retrieval quantities

The quantities targeted for retrieval in this study are the profiles of water vapor volume mixing ratio (VMRH2O), tempera-

ture (T ) and the surface temperature (Ts). They are represented by the retrieval state vector x:

x =


log(VMRH2O)

T

Ts

 (1)

The water vapor profile is retrieved in natural logarithmic units, which is favourable for two reasons. Firstly, VMRH2O is a170

quantity that ranges over several orders of magnitude from a few percent near the surface to O(10−6) in the upper troposphere
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and above, which is numerically inconvenient for the optimisation algorithm. Secondly, the transformation to logarithmic units

avoids the possibility of physically implausible negative VMR values.

The major interfering trace gas species in the chosen spectral region that are not part of the retrieval state vector x are CH4

and N2O. Based on the error budget analysis conducted by Schneider and Hase (2011) it is not expected that these species are175

significant sources of error compared to errors in the temperature profile. Hence, for simplicity, we include CH4 and N2O in

the absorption setup, but use fixed profiles and do not retrieve them.

2.3 Optimal estimation algorithm

Besides the state vector depicted in Eq. 1, our OEM setup includes profiles of other atmospheric absorption species, namely N2,

N2O, CH4, O2, CO2 and O3 as fixed forward model parameters. To account for nonlinearity, an iterative Levenberg-Marquardt180

(LM) solver (Levenberg, 1944; Marquardt, 1963) is used, which as input, besides the (synthetic) spectrum needs a priori and

measurement covariance matrices, an a priori state vector and Jacobians, calculated for each iteration step by a forward model.

We follow the notation introduced by Rodgers (2000), who provides an elaborate description of the procedure.

2.4 The forward model and representation of IASI

The radiative transfer model used in this study is version 2.5.0 of the Atmospheric Radiative Transfer Simulator (ARTS). A185

comprehensive and compact description of ARTS is provided by Eriksson et al. (2011) and Buehler et al. (2018) and more

documentation can be found on the ARTS website (https://www.radiativetransfer.org). Here, only the features that are directly

relevant for the conducted retrieval calculations are presented.

ARTS calculates the emitted radiation and its transmission through a given atmospheric state on a line-by-line basis. Spectral

line data were taken from the HITRAN (High Resolution Transmission) molecular spectroscopic database (Gordon et al., 2017)190

and continuum absorption of water vapor, oxygen, nitrogen and CO2 are represented by the MT_CKD model for continuum

absorption (Mlawer et al., 2012).

The radiative transfer simulations are conducted as monochromatic pencil beams on a frequency grid with a resolution

of 0.25 cm−1, which coincides with the spectral sampling interval of IASI. The obtained spectra are then convolved with

a Gaussian weighting function with a Full Width at Half Maximum (FWHM) of 0.5 cm−1 to mimic the spectral response195

function of IASI. These technical specifications are taken from Coppens et al. (2019). Gaussian noise with a standard deviation

of 0.1 K is added to the forward simulated spectra to represent the radiometric noise of IASI within the spectral range used in

this study (Clerbaux et al., 2009). The sensor is assumed to be in 850 km altitude and to have a nadir viewing direction. The

atmospheric cases simulated are limited to clear-sky and are above ocean surfaces, where the surface emissivity in the spectral

region covered by IASI is assumed to be 1.200

The ARTS internal OEM module, which is part of ARTS as of version 2.4.0, is used to conduct the actual retrieval calcula-

tions.
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2.5 A priori assumptions

The a priori assumptions about the atmospheric state are defined as the knowledge about the state prior to the measurement.

Although the true state is always known within the frame of this model study, the a priori knowledge is chosen based on205

information that would also be available in the situation of a real measurement. The a priori knowledge is represented by an a

priori state vector xa and a covariance matrix Sa. For the definition of the a priori state the tropical mean atmospheric state from

the profile database of Anderson et al. (1986) is used as a basis, which from now on will be referred to as tropical FASCOD

(Fast Radiative Signature Code) atmosphere.

Where not stated otherwise, the a priori surface temperature is assumed to be the true surface temperature with an added210

Gaussian noise of 1.5 K. The Gaussian noise aims to simulate the accuracy of a real a priori surface temperature estimate,

which can for example be obtained from AVHRR (Advanced Very High Resolution Radiometer), which together with IASI is

part of the MetOp satellite’s payload. Here, 1.5 K is a conservative assumption for tropical ocean surfaces since uncertainties in

AVHRR sea surface temperature data records are typically an order of magnitude lower, e.g. estimated at 0.18 K in the dataset

of Merchant et al. (2019).215

The a priori temperature profile is assumed to be moist adiabatic up to around 100 hPa. The a priori surface temperature

is used as a starting point for the moist adiabat. A moist adiabatic tropospheric temperature profile is a reasonable assump-

tion because the temperature lapse rate is mostly set to be moist adiabatic within the tropics by deep convection and by the

homogenisation of the temperature field by gravity waves due to the lack of a Coriolis force (Sobel and Bretherton, 2000).

Around 100 hPa and above, the moist adiabat is relaxed to the tropical FASCOD atmosphere with a hyperbolic tangent weight-220

ing function to represent the tropopause and the atmosphere above. The a priori VMRH2O profile is defined by combining a

fixed relative humidity profile (RH) and the a priori temperature profile by using the relation:

VMRH2O =
RHes(T )

p
(2)

The fixed tropical FASCOD RH profile is used and the equilibrium pressure of water vapor es(T ) is calculated based on the

a priori temperature profile. p is the atmospheric pressure in a given altitude. es(T ) is calculated as the equilibrium pressure225

over water for temperatures above the triple point and over ice for temperatures more than 23 K below the triple point. For

intermediate temperatures the equilibrium pressure is computed as a combination of the values over water and ice according to

the IFS documentation (ECMWF, 2018).

The a priori assumption about the variability of the retrieval quantities is encoded by Sa, which consists of blocks for each

retrieval quantity. For the surface temperature, a variance of 100 K2 is assumed. The diagonal elements of the temperature230

profile block of Sa (Fig. 2b) are calculated based on tropical ocean profiles from the database provided by Eresmaa and

McNally (2014), which is based on the ECMWF IFS forecast model with a focus on a broad sampling of temperature profiles.

The nondiagonal elements are calculated based on a correlation length that linearly increases from 2.5 km at the surface to

10 km at and above the tropopause.
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For the water vapor covariances (Fig. 2c), the approach of Schneider and Hase (2011) is adapted, where the diagonal elements235

of the log-scale water vapor covariances are set to 1 in the troposphere and linearly reduce to 0.25 within the stratosphere. An

adjustment made here is that below 2 km, which is a crude estimate for the boundary layer height above ocean surfaces, the

diagonal value linearly decreases to 0.1 at the surface. This better represents the generally fixed moisture structure near the

tropical ocean surface. The nondiagonal elements are calculated based on the same correlation length approach as for the

temperature covariances.240

An additional constraint about the atmospheric variability is introduced by filling in values for the cross-covariances between

the three retrieval quantities. The diagonals of the cross covariance blocks are calculated as the product of the diagonals of the

two respective covariance blocks, multiplied with a scale factor that exponentially decreases from 1 at the surface to 1/e in a

given altitude. This altitude is chosen to be 100 m for the cross covariance between surface temperature and temperature to

represent the dependence of the atmospheric temperature on the surface temperature. Between temperature and water vapor245

the altitude is chosen to be 1000 m to represent the dependence of water vapor on temperature within the boundary layer,

where the water vapor content is mainly constrained by the saturation pressure, which is mainly a function of temperature. The

nondiagonal elements of the cross-covariances are calculated with the same correlation length approach as for temperature and

water vapor. Figure 2(a) shows the resulting cross-covariance matrix, which only has significant values within the boundary

layer.250

3 Definition and characterisation of moisture anomalies

This section introduces a quantitative framework to identify and characterise EMLs. This framework aims to provide an in-

tuitive description of moisture anomaly features through a number of scalar moisture anomaly characterisation metrics and

allows for a more targeted evaluation of retrieval results in Sect. 4 and 6.

At the core of this moisture anomaly identification method is the definition of a reference humidity profile, against which255

the anomalies occur. There are several ways a reference profile can be constructed and the suitability of a definition depends

on the aim of the analysis. For example, a simple climatological mean profile may be a suited reference if one is interested

in the mean anomaly (e.g. the bias) of a test dataset of humidity profiles. However, for the purpose of this study it is not of

interest whether a humidity profile is generally rather moist or dry, but instead only anomalous vertical variability of humidity

is of interest. This is because the vertical moisture variability is what manifests as a footprint on the heating rate profile (Q)260

and thereby affect the vertical stability or even yield vertical motion (Albright et al., 2020).

To capture moisture anomalies closely related to the vertical moisture variability, the reference profile is constructed by

least-square fitting a quadratic function to the log(VMRH2O) profile of the troposphere up to 100 hPa. A quadratic function

is preferable over a linear function because in many cases the VMRH2O profile shows large scale non-exponential variability
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Figure 2. Covariance matrices of log(VMRH2O) (c), temperature (b) and the cross-covariance matrix between water vapor and tempera-

ture (a) used for the retrieval in this study. Each of these matrices constitutes a block within the full covariance block matrix Sa. Note that it

is sufficient to show only one cross-covariance matrix block, since Sa is block symmetric.

which should not interfere with the more small-scale anomalies we want to characterise. The following function is used as the265

reference water vapor profile:

log(VMRH2O,ref) = az2 + bz+ c (3)

The humidity at the surface is represented by VMRH2O,ref(z = 0) = exp(c) and is fixed to the surface value of the actual

humidity profile. The altitude z is used as a height coordinate for fitting because compared to pressure it has the benefit that

z = 0 at the surface. The coefficients a and b are determined by least-square fitting to the logarithm of the humidity profile270

between the surface and 100 hPa because the assumed relation becomes less valid closer to the tropopause. After calculating

the reference profile, moisture anomalies can be identified and characterised.

To visualise the moisture anomaly identification and characterisation procedure, we show an atmospheric scenario in Fig. 3

that includes an EML as an example. The EML associated structures include a distinct moisture inversion (increase of VMRH2O

10



with height) with maximum humidity at around 650 hPa. Temperature inversions at the EML top and at the distinct drop of275

moisture at around 900 hPa are also present (not shown).

Figure 3(b) shows the close relation between the vertical humidity structure and the net heating rate Q (longwave + short-

wave), which is calculated with the radiative transfer model RRTMG (Rapid Radiative Transfer Model for GCMs, Mlawer

et al., 1997) through its implementation in the radiative convective equilibrium model konrad (Kluft and Dacie, 2020). Q is

calculated for all conducted retrievals throughout this study to assess whether the vertical humidity structure is captured in a280

way in which also Q is represented well.

The blue and orange shading associated with moist and dry anomalies depicted in Fig. 3 visualises that by definition layers of

positive and negative moisture anomalies alternate in the vertical. Each such layer can be viewed as a moisture anomaly object,

which we characterise by means of the scalar metrics introduced in Table 1. These metrics include the vertical bounds of the

moisture anomaly in terms of altitude ( zbot and ztop), the difference of which denotes the anomaly’s thickness (∆zanom). The285

anomaly height (zanom) is defined as the mean over the anomaly’s height interval, weighted by the anomalous humidity within

the altitude bounds. Finally, the anomaly strength (sanom) is defined as the mean anomalous VMRH2O within the anomaly’s

vertical bounds. We only consider positive (moist) anomalies that are fully captured in the pressure range between 100 and

900 hPa, e.g. the positive anomalies at the very top and bottom of Fig. 3 are neglected (grey shading) to avoid tropopause and

boundary layer related anomalies.290
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Figure 3. Humidity profile (a) of an atmospheric case with a strong EML and the associated net heating rate (longwave + shortwave) profile

(b). The reference humidity profile used to identify humidity anomalies is depicted as the dashed line in (a). Layers of moist anomalies are

highlighted by blue shading, dry anomalies by orange shading. Anomalies that intersect with the grey shaded regions are excluded to restrict

anomalies to the free troposphere. The green lines and brackets conceptually display the definition of moisture anomaly characteristics from

Table 1 for the strong positive anomaly at around 650 hPa.
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Table 1. Characterisation metrics of moisture anomalies, their definitions and short descriptions. VMRH2O,ref denotes the reference water

vapor profile.

Metric Definition Description

Bounds zbot, ztop Lower and upper altitude bounds of the anomaly.

Thickness ∆zanom = ztop - zbot Altitude interval of the anomaly.

Strength sanom = 1
ztop−zbot

ztop∫
zbot

(VMRH2O −VMRH2O,ref)dz Mean anomalous VMRH2O within the anomaly.

Height zanom =
∫ ztop
zbot

z(VMRH2O−VMRH2O, ref )dz∫ ztop
zbot

(VMRH2O−VMRH2O, ref )dz
Weighted mean altitude of the anomaly.

4 Case study of a moist layer retrieval

In this section the retrieval introduced in Sect. 2 is applied to synthetic IASI observations of the dropsondes that sampled the

EML discussed by Stevens et al. (2017). This case study is of particular interest because the found EML blindspot of Stevens

et al. (2017) contradicts the results of other OEM based studies discussed in Sect. 1.1. Here we first want to specifically assess

the importance of temperature information for properly resolving the moisture structure in an EML scenario. While in general295

it is well known that the humidity retrieval depends on the quality of the assumed or retrieved temperature profile, we argue

that for EMLs this effect is of particular relevance. In a next step, the averaging kernels for the EML scenario and a mean

tropical ocean atmosphere are compared to estimate the retrieval’s vertical resolution and its dependence on the atmospheric

state.

4.1 Importance of temperature information to retrieve a moist layer300

We assess the possiblity whether a lack of independent temperature information can cause the EML to not be resolved by

running our retrieval in slighlty altered setups. Each row of panels in Figure 4 represents a variation of the retrieval. The setup

introduced in Sect. 2 is used for the first row and serves as a basis for the other two setups. We refer to this setup as retrieval

setup 1. Retrieval setup 2 (Fig. 4, second row) only deviates from retrieval setup 1 by using the more narrow spectral region

that was used by Lacour et al. (2012) and Stevens et al. (2017), which is limited to 1193 to 1223 and 1251 to 1253 cm−1.305

Retrieval setup 3 (Fig. 4, third row) only deviates from retrieval setup 2 by omission of the temperature retrieval and instead

setting the a priori temperature to the true reference state. The profiles that the synthetic observations are based on are denoted

as "true" and the same for all retrieval setups. Based on these profiles, forward simulated synthetic IASI observations are

calculated, synthetic Gaussian noise is added (see Sect. 2.5) and the retrieval is performed. As a technical note, we extrapolate
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the dropsonde profiles (launched at about 350 hPa) into the upper troposphere and above by fitting a tropical mean atmospheric310

state (Anderson et al., 1986). We fit these profiles onto a 137 level vertical pressure grid of the ECMWF IFS model atmospheres

that also come with an associated altitude grid (Eresmaa and McNally, 2014).

As a note on comparability of our results to Stevens et al. (2017), we want to be cautious. There are several differences in

the exact way the retrieval is setup, e.g. in the assumed a priori states and covariances, the iteration scheme (Gauss-Newton vs.

LM) and also the radiative transfer model (Atmosphit vs. ARTS). Besides, our study is conducted in a synthetic framework,315

since we aim to assess the retrieval of EMLs more fundamentally than the discussed case studies did up to now. With this in

mind, we tried to seek out a retrieval feature of the study of Stevens et al. (2017) that is capable of masking the EML in our

setup. This feature is the used spectral region that is closely tied to the temperature information content as we want to show in

the following.
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Figure 4. Columns show profiles of temperature (T ), temperature differences of a priori and retrieved state to the true state, VMRH2O,

relative humidity (RH) and net heating rates (Q) for the dropsonde profiles that sampled the EML discussed by Stevens et al. (2017) (labeled

as "true" here). Displayed are the true states that are used as a basis for the forward modelled synthetic IASI observation, the a priori states of

the retrieval and the retrieved states. The VMRH2O reference profiles defined in Sect. 3 are also depicted. Rows show retrieval results based

on different retrieval setups that are introduced in the text.

Looking at the retrieval results of Fig. 4, the EML structure is found to be resolved well with retrieval setup 1 while re-320

trieval setup 2 misses the EML almost completely, comparable to the results of Stevens et al. (2017). We hypothesize that the

missing EML with retrieval setup 2 is caused by the fact that with the limited spectral setup, there is no sufficient independent
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Table 2. Moisture anomaly characteristics of the EML shown in Fig. 4. This table is analogous to Table 1, where the exact definitions of the

different metrics are explained. The EML characteristics displayed here are calculated for the true state and the retrieval results of retrieval

setup 1 and 3, corresponding to upper and lower rows of Fig. 4, respectively. Retrieval setup 2 does not feature a moisture anomaly object as

defined in Sect. 3.

Metric Variable name True state Retrieval setup 1 Retrieval setup 3

Bounds zbot, ztop 2.5 km, 4.8 km 3.0 km, 5.1 km 2.3 km, 6.0 km

Thickness ∆zanom 2.3 km 2.1 km 3.7 km

Strength sanom 2.8 · 10−3 2.2 · 10−3 1.1 · 10−3

Height zanom 3.6 km 3.8 km 3.8 km

temperature information available for the retrieval to separate the moisture from the temperature signal, causing large retrieval

errors in both quantities. While other previous retrieval studies deliberately try to account for this issue by deploying either a

simultaneous retrieval approach (Smith et al., 2012; Weisz et al., 2013; Irion et al., 2018) or a sequential retrieval approach325

(Smith and Barnet, 2019, 2020; Susskind et al., 2014), we want to highlight the importance of doing so, specifically in an EML

scenario.

We find that the large water vapor and temperature errors obtained with retrieval setup 2 around the EML altitude compensate

radiatively. While the underestimated humidity at the EML altitude yields an increased spectral radiance in the used water vapor

band due to a lower emission height associated with a higher emission temperature, the underestimated temperature yields a330

decreased spectral radiance. Since this compensation leads to comparatively low y-costs in the OEM scheme, it explains why

retrieval setup 2 finds an optimal solution that is associated with relatively large retrieval errors in both temperature and water

vapor.

We introduce retrieval setup 3 to exclude the possibility that resolving the EML with retrieval setup 2 is simply limited by

vertical resolution of the moisture retrieval, e.g. limited humidity information content. The retrieval results of retrieval setup335

3 show that with a perfect prior temperature profile also the limited spectral range is sufficient to resolve the general EML

structure, albeit with reduced EML amplitude. Hence, the EML blindspot of retrieval setup 2 and possibly of Stevens et al.

(2017) is a consequence of the ambiguity that lies in the limited spectral range with respect to temperature and water vapor.

To exemplify the concept of the moisture anomaly identification and characterisation method introduced in Sect. 3 we apply

the procedure to this case study and present the derived EML characteristics for each of the different retrieval setups in Table 2.340

To identify the EML centered around 650 hPa in the true and retrieved profiles in Figure 4 we introduce the respective reference

profiles against which positive VMRH2O anomalies can be identified. While retrieval setup 1 and 3 yield a moisture anomaly
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that can be characterised by our method and compared to the characteristics of the true EML, retrieval setup 2 does not show a

positive moisture anomaly around 650 hPa.

Table 2 shows that the EML in the true state is centered around 3.6 km altitude and has a vertical extent of 2.3 km. Retrieval345

setup 1 captures these characteristics reasonably well while retrieval setup 3 shows a strongly overestimated EML thickness of

about 3.7 km, reflecting stronger smoothing caused by the limited spectral range used in this setup. Both retrieval setups show

a slightly increased EML height when compared to the true state of about 200 m for reasons we can only speculate on. We

could see this being a systematic effect caused a less pronounced effect of smoothing at the EML bottom due to higher optical

density than aloft. Since the atmosphere is optically more dense near the surface, smoothing may smear the EML over a larger350

altitude interval at the top than at the bottom, positively biasing the EML altitude in the retrieval.

While the EML strength sanom may appear as the least trivial moisture anomaly characteristic, being without units due to

its definition based on VMRH2O, it becomes more intuitive when values are put into relation to each other. The true EML

strength of 2.8 · 10−3, which reflects the mean anomalous VMRH2O within the EML, is about about 30 % greater than the

EML strength derived from retrieval setup 1 and about 2.5 times greater than the EML strength derived from retrieval setup 3.355

This reflects the notion that while retrieval setup 1 is able to resolve the EML well, retrieval setup 3 yields a strongly smoothed

EML that is significantly less pronounced than its true counterpart.

We conclude that while the EML investigated by Stevens et al. (2017) does not appear to pose a general blind spot for

hyperspectral IR satellite observations, we are able to find a retrieval configuration that reproduces a similar result as theirs.

The deciding property of that configuration is the lack of independent temperature information, which in an EML scenario can360

yield radiatively compensating errors in temperature and water vapor. With retrieval setup 1 on the other hand, we present a

retrieval setup that is able to capture both temperature and humidity profiles well, including the EML, which is in line with

other OEM based moist layer case studies (Zhou et al., 2009; Calbet et al., 2006).

4.2 Retrieval resolution

With OEM, a more quantitative estimation of vertical retrieval resolution can easily be deduced by aid of the averaging kernel365

matrix A (Rodgers, 2000). The rows of A describe the response of the retrieved state to a perturbation in the true state, taking

into account the specifications of the observing system. The averaging kernels presented here are based on the spectral setup

and a priori assumptions introduced in Sect. 2.

Several previous studies showed IASI averaging kernels for mean atmospheric states (Lerner, 2002; Schneider and Hase,

2011; Smith and Weisz, 2018). Here we want to highlight the dependence of vertical resolution on the atmospheric state by370

contrasting the averaging kernels of a tropical mean atmosphere to the reference EML case discussed in the previous subsection.

Smith and Barnet (2020) also considered the dependence of A on the atmospheric state, which they find can be quite severe.

In contrast to their more general study, we want to focus on comparing the variability of A with respect to a well characterised

mean and EML state. While we focus on discussing the water vapor averaging kernels in this section, similar conclusions can

be made about the temperature averaging kernels which are appended in Appendix A.375
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Figures 5(a) and (c) depict the rows of the H2O averaging kernel matrix as colored lines for two different atmospheric setups.

The more blue lines correspond to kernels closer to the surface, while the more yellow lines correspond to kernels higher up

in the atmosphere. Figures 5(a) and (b) are based on an average tropical ocean atmosphere, namely the tropical FASCOD

atmosphere introduced in Sect. 2.5. Figures 5(c) and (d) only differ in their base atmospheric state by the introduced EML,

as described in Sect. 3. The vertical width of a kernel is a measure of the retrieval’s vertical resolution in a specific height,380

which is shown in terms of Full Width at Half Maximum (FWHM) of the respective kernels in Fig. 5(b) and (d). A measure for

the retrieval’s ability to detect and respond to a water vapor disturbance in the true state in a given height is the measurement

response, which is defined as the sum over all kernel rows and depicted as the black line in Fig. 5(a) and (c). Values close to

unity indicate that the retrieval is sensitive to disturbances in the true profile (Rodgers, 2000).

The averaging kernels of the mean tropical ocean atmosphere in Fig. 5(a) expectably show a very smooth behaviour with385

height and the deduced vertical resolution is similar to that of Smith and Weisz (2018), e.g. it is on the order of 1.5 km

throughout the free troposphere between around 200 to 800 hPa. In the upper troposphere (p. 200 hPa) a significant decrease

in vertical resolution is found. In the boundary layer, the vertical resolution does not appear to diminish, but to improve, which

is in agreement with Smith and Weisz (2018). However, we find this to be misleading because the shape of the averaging

kernels associated with these altitudes is distorted due to the strong signal of the surface, not allowing for a robust calculation390

of the FWHM. Rather than the FWHM, the measurement response is a more informative measure of the retrieval’s sensitivity

to disturbances in the boundary layer. For the tropical ocean atmosphere, the measurement response is close to unity throughout

most of the free troposphere and shows a sharp decrease within the boundary layer, indicating limited sensitivity to water vapor

disturbances in the true state only in the boundary layer.

The EML has a significant impact on all averaging kernels in the lower and mid troposphere as shown in Fig. 5(c) and (d).395

Around the humidity maximum at the EML top the averaging kernels show distinct peaks, which are caused by the strong

radiative signal associated with the EML. The EML signal is so strong that it also affects the more sensitive channels that

usually sample higher altitudes and therefore decreases the vertical resolution from about 1.5 km to 2.5 km between the EML

top and about 200 hPa compared to the tropical mean atmosphere. As the moisture decreases beneath the EML humidity

maximum, a clear reduction in vertical resolution down to about 2.5 km at around 800 hPa is found, indicating a more limited400

ability to resolve additional moisture features beneath the EML. This state dependence of the averaging kernel reflects the

nonlinear nature of the retrieval problem and the limited expressiveness of the vertical resolution deduced with this method.

Retrievability of a moisture feature not only depends on its vertical extent, but on the atmospheric state it is embedded in. This

motivates the statistical analysis presented in the next section of analysing the retrieval’s performance with regard to its ability

of capturing moisture anomalies as introduced in Sect. 3.405

5 Retrieval performance

After the exemplified investigation of an EML case in the previous section, the retrieval performance is now assessed based on

a larger test dataset. The major aim with this section is to first assess the validity of our simple retrieval setup, before using the
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Figure 5. (a) and (c) show rows of the water vapor averaging kernel matrix (Arows(VMRH2O)) as colored lines and their sum as a black line,

which denotes the measurement response. The rather blue lines correspond to kernels closer to the surface, the more yellow lines correspond

to kernels in higher altitudes. (b) and (d) show the FWHM of the averaging kernel rows, which is a measure for the vertical resolution of the

observing system. (a) and (b) are based on a mean tropical ocean atmosphere, specifically the tropical FASCOD atmosphere. The atmospheric

setup used for (c) and (d) differs only by the introduction of EML features, as described in Sect. 3.

synthetic retrieval dataset in the next section to showcase some of the possibilities with our new method for identifying and

characterising moisture anomalies introduced in Sect. 3. In the following, we first introduce the test dataset and investigate the410

vertical distribution of the retrieval error in temperature and water vapor. Afterwards, the smoothing error, which is an intrinsic

source of error for a given observing system and a set of a priori assumptions, is calculated and discussed in the context of the

overall retrieval error.
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5.1 Reference dataset and retrieval error

The retrieval is applied to tropical ocean atmospheres (between 30° S to 30° N) that are part of the ECMWF IFS diverse profile415

database made available by Eresmaa and McNally (2014). The database consists of 25,000 short-range forecasts, which are

divided into five even subsets that focus on representing diversity in a particular atmospheric quantity, such as temperature,

specific humidity or precipitation. For the purpose of this work, only the tropical ocean atmospheres of the subset that focuses

on a diverse sampling of specific humidity is considered. This yields a total number of 1599 atmospheric setups, for 1288 of

which the retrieval converges to a solution. The following analysis is based on these converged cases.420

A statistical overview of the variability of temperature and humidity profiles covered by the tropical ocean dataset is pro-

vided in Fig. 6(a), (b) and (c). The temperature profiles show very limited variability, as is typical for tropical ocean regions.

However, despite this very smooth appearance of the vertical temperature structure, the individual profiles do include signif-

icant temperature inversions, for example the very prominent inversion in about 2 km height in the trade wind region (not

shown). The humidity profiles show weak variability within the boundary layer, where the ocean acts as a humidity source and425

humidity is mostly set by the saturation vapor pressure controlled by temperature. The median RH is about 82 % at the surface

and reaches its maximum in about 500 m height in the transition to the shallow cloud layer. In the free troposphere, the typical

"C" shape structure of the RH profile is followed (Romps, 2014). An interesting feature in the 75th and 90th percentiles of

the RH profiles is the presence of positive RH anomalies in the layer between around 500 and 700 hPa, indicating moisture

anomalies that may be tied to the freezing level.430

Figures 6(d), (e) and (f) show an overview of the retrieval’s deviations from the reference dataset, from now on referred to

as the retrieval error. In the context of these figures, the term bias refers to a difference of the median values of the retrieved

and the true datasets. The temperature profile shows a positive bias close to the surface, which we attribute to the limited

signal from these heights in the satellite observation. The negative bias near the surface in RH is associated with this positive

temperature bias and with the slightly negative VMRH2O bias near the surface. Between around 900 to 700 hPa the VMRH2O435

and RH biases are positive, while the temperature bias is slightly negative. This positive moisture bias in the lower troposphere

is associated with an increased variability of the error, particularly towards strong positive errors that indicate an overestimation

of moisture in the lower troposphere by the retrieval. This may be caused by the typical hydrolapse that is coupled to the trade

inversion in the trade wind regions, which can in its sharpness not be captured by the retrieval.

In the mid troposphere between about 700 to 300 hPa, which is where typical EMLs are expected, no significant temperature440

or humidity biases are found. A positive skewness in the VMRH2O error distribution towards strong positive errors is found,

indicating that positive errors in retrieved VMRH2O are rare, but large compared to the negative errors that occur. As an

explanation for this error pattern, we propose the idea that positive (moist) moisture anomalies tend to be captured with a slight

underestimation in their strength, while occasionally strong negative (dry) moisture anomalies beneath are associated with a

strong overestimation of moisture by the retrieval due to a lack of signal beneath a positive moisture anomaly (as shown in445

Fig. 5). This could explain less frequent but strong positive retrieval errors and more frequent, but relatively weak negative

errors that have a net bias close to zero.
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In the upper troposphere errors in temperature and humidity are generally larger. We believe that this has two causes. Firstly,

the a priori moist adiabatic temperature assumption becomes worse closer to the tropopause. Secondly, Fig. 5 shows that there

is only a weak radiative signal from the upper troposhere as indicated by strongly smoothed averaging kernels and a decreased450

vertical resolution. While this may be improved by adjusting the a priori assumptions for the upper troposphere and including

even stronger absorption features of water vapor, the upper troposphere is no major concern of this study.
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Figure 6. (a), (b) and (c) give a statistical overview of temperature, VMRH2O and RH over 1288 tropical ocean model atmospheres from the

dataset of Eresmaa and McNally (2014), upon which the retrieval is performed. Color scheming is based on Figure 5 of Eresmaa and McNally

(2014), where bright orange indicates 10th and 90th percentiles, dark orange indicates 25th and 75th percentiles. The median is depicted by a

solid black line. (e), (f), (g) show the respective statistics on the deviations of the retrieved to the true profiles. Note the exception of relative

differences for VMRH2O, which is more suited for the dynamical range of this quantity.
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5.2 Smoothing error

Part of the retrieval error shown in Fig. 6 can be attributed to the so called Smoothing Error (SE, Rodgers 2000). Given a

specific observing system and a priori assumptions about the quantity to be observed, the SE is a source of error that can not455

be avoided without changing the observing system or a priori assumptions themselves. In the frame of the averaging kernel

matrix, the SE expresses the error in the retrieval that is associated with the non-delta-function shape of the averaging kernel

rows (see Fig. 5) and the thereby limited ability to resolve vertical features. Here, it is calculated as

SE = (x−xa)(A− In) (4)

where In denotes the identity matrix of order n and n is the number of vertical levels of the profile retrieval.460

Figure 7 shows the SE statistics associated with the retrieved temperature and humidity profiles of the tropical ocean dataset.

The median of the SE with respect to the temperature profile (SE(T )) is close to zero throughout most of the free troposphere,

similar to the retrieval bias shown in Fig. 6(d). The positive retrieval bias in temperature found near the surface is with smaller

magnitude also found in SE(T ), indicating that this pattern is caused by a systematically unresolved vertical feature. The vari-

ability of the temperature retrieval error found in Fig. 6(d) in the lower and mid troposphere cannot be attributed to smoothing,465

since the variability in SE(T ) is very small. In conclusion, this indicates that temperature error sources are unlikely to be

caused by uncaptured vertical temperature variability, but rather vertically constant errors, which do not show up in SE(T ).

In the upper troposphere, SE(T ) increases towards the tropopause where smoothing becomes the major contribution to the

retrieval temperature error.

For the water vapor profile in the lower and mid troposphere, smoothing is a greater source of error than for the temperature470

profile (Fig. 7b). While the median of the water vapor smoothing error (SE(log(VMRH2O))) is low throughout the lower and

mid troposphere, its variability (e.g. the shown percentile ranges) is on similar scale as the variability of the retrieval error

shown in Fig. 6(e). This indicates that a major contribution of error in the water vapor retrieval is to capture vertical variability.

The distribution of SE(log(VMRH2O)) in the mid troposphere also reflects the positive skewness that was found in the overall

error in Fig. 6(e). This is consistent with the previously described idea that this skewness is linked to the retrieval’s ability475

of capturing vertical moisture anomalies. In the upper troposphere, the median SE(log(VMRH2O)) increases to a similar

magnitude as the retrieval error, while its variability even exceeds that of the retrieval error, indicating that other sources of

error are compensating.

The SE(RH) statistics show the combined effect of the smoothing errors in temperature and humidity (Fig. 7c). It is apparent

that also in terms of RH the smoothing error has a strong contribution to the retrieval error in the lower and mid troposphere,480

similar to the VMRH2O error. In the upper troposphere the median SE(RH) is on the same order as the retrieval error, while

its variability appears to be even stronger, following the behaviour found for SE(log(VMRH2O)).
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Figure 7. Smoothing Error (SE) as calculated by Eq. 4 of retrieved temperature (a), logarithmic VMRH2O (b) and RH (c) profiles over 1288

tropical ocean atmospheres. Lines and shadings are defined as in Figure 6.

6 Retrieval of moisture anomalies

In this section the retrieval results for the previously introduced tropical ocean test dataset (Sect. 5) are assessed with specific

focus on the characteristics of moisture anomalies as introduced in Sect. 3. First, the moisture anomaly characteristics of the485

tropical ocean dataset and of the retrieved dataset are compared to look for systematic limitations of the retrieval to resolve

specific kinds of moisture anomalies. Then, the impact of moisture anomalies on the heating rate profile is assessed and the

retrieval’s ability to capture this impact is investigated.

6.1 Moisture anomaly characteristics

Figure 8 shows probability density distributions of the moisture anomaly characteristics (defined in Sect. 3) for the tropical490

ocean dataset (green) and the associated retrieved dataset (orange). The dashed lines indicate the mean values of the respective

distributions. The distributions of moisture anomaly height (zanom) displayed in Fig. 8(a) show that most moisture anomalies

occur in the mid to upper troposphere, which is somewhat surprising since EMLs are typically thought to be coupled to the

freezing level in around 5 km height (Johnson et al., 1996; Stevens et al., 2017). However, note firstly that strong EMLs and

very slight moisture anomalies are treated evenly here. Secondly, the distributions reflect the statistics of the underlying dataset,495

which is based on the ECMWF IFS atmospheric model. This dataset appears as a suitable starting point to assess the retrieval’s

ability to capture moisture anomalies, however, the analysis of the dataset’s moisture anomaly statistics themselves are not the

focus of this study.
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Figure 8(a) shows a bias between true and retrieved zanom of about 0.9 km, indicating that the found the zanom biases in the

case study of Sect. 4 do indeed appear to be systematic and even greater in amplitude. Besides the earlier proposed cause of500

a varying effect of smoothing with height, we believe this bias is also caused by a systematic underestimation of the fraction

of moisture anomalies below 5 km altitude by the retrieval, while the fraction of anomalies above 10 km is overestimated.

Only a fraction of about 52 % of the total number of moisture anomalies below 5 km in the reference dataset is captured by

the retrieval. We attribute this deficiency to the fact that moisture anomalies are typically more narrow in the lower to mid

troposphere than further aloft, as shown in Fig. 9.505

Figure 9(a), (b) and (c) show the number of moisture anomalies of the reference dataset in the lower, mid and upper tro-

posphere, respectively, as a function of anomaly width (∆zanom) and separated into subsets of anomalies that either could

or could not be retrieved. An anomaly of the reference dataset is considered retrieved, if there is a retrieved positive moisture

anomaly with an anomaly height within the vertical bounds of the anomaly of the reference dataset. While it is apparent that the

more narrow moisture anomalies are most frequently missed in all three altitude regions, this means a particular shortcoming510

for the retrieval between 0 to 5 km because cases with ∆zanom & 2 km are especially rare. A technical cause for this is the fact

that we exclude all anomalies that reach as close to the surface as 900 hPa (see Sect. 3). However, the lower to mid troposphere

also is subject of more small-scale variability due to its link to the boundary layer and low level convection, making it more

prone for small scale moisture anomalies than the free troposphere aloft.

The distribution of the moisture anomaly strength (sanom) depicted in Fig. 8(b) has a similar dynamical range as VMRH2O515

since the anomalous VMRH2O scales with its absolute value. The distribution of sanom of the retrieved dataset is overall

shifted towards lower values yielding a negative bias of about −8.2 · 10−5 (17 %) against the reference dataset, which can

mostly be attributed to the smoothing error of the retrieval. The smoothing error generally acts by a weakening and thickening

of anomalies, which also partly explains the significant positive bias of about 0.4 km (15 %) in moisture anomaly thickness

(∆zanom) depicted in Fig. 8(c). Another contributing effect towards the found biases in sanom and ∆zanom is the fact that520

particularly weak and narrow moisture anomalies are more often completely missed by the retrieval as shown by Fig. 9.

6.2 Implications of moisture anomalies for the heating rate profile

Moisture anomalies affect the heating rate profile by absorbing and emitting IR radiation. Because of the exponential decrease

of water vapor with height, emission at the anomaly top is particularly efficient and can yield a strong local radiative cooling

rate (see Fig. 3). We consider this cooling effect to be the moisture anomaly’s most prominent footprint on the heating rate525

profile. In the following, we quantify this cooling effect by considering the minimum heating rate within the vertical bounds of

a moisture anomaly, min(Qanom). Since min(Qanom) is a scalar metric, it can intuitively be viewed as a function of moisture

anomaly characteristics.

Figure 10(a) and (b) show the joint frequency distributions of the moisture anomaly strength (sanom) and min(Qanom)

for the tropical ocean dataset and the retrieval dataset, respectively. Both datasets show a clear correlation between the two530

quantities, namely that stronger anomalies are associated with a stronger peak in radiative cooling. While moisture anomalies

with sanom . 10−4 show similar minimum cooling rates down to about -2.5 K day−1 in both the reference and the retrieval
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Figure 8. Probability density functions (PDFs) of moisture anomaly characterstics of the tropical ocean reference dataset (denoted as "true")

and the retrieved dataset.
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Figure 9. Frequency distributions of moisture anomaly thickness of the tropical ocean reference dataset, split up into cases where a moisture

anomaly could be retrieved and could not be retrieved. (a), (b), (c) reflect three altitude regions, namely the lower (0-5 km), mid (5-10 km)

and upper (10-15 km) troposphere.

dataset, larger differences between the two datasets are apparent for stronger anomalies. The reference dataset (Fig. 10, a)

shows min(Qanom) values between about -1 to -5 K day−1 for moisture anomalies with sanom & 10−4, while the retrieval

dataset barely shows any min(Qanom) values smaller than -3 K day−1.535
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We hypothesise that the increased variability in min(Qanom) for sanom & 10−4 in the reference dataset can be attributed to

the variability in the exact vertical shapes of the moisture anomalies. Anomalies with a strong negative moisture gradient at

their top yield a stronger minimum in radiative cooling, while more smooth anomalies are associated with a less pronounced

radiative cooling peak. This effect introduces more variability in min(Qanom) the stronger the anomalies are. It also explains

why retrieved moisture anomalies do not show as extreme min(Qanom) values as the reference dataset, since the vertical shape540

of retrieved anomalies is always bound by the smoothing error.

In the real world, much more extreme vertical moisture gradients associated with moisture anomalies can be observed than

in the model based reference dataset used here. Albright et al. (2020) discuss an EML scenario over the Northern Atlantic

Trades with a significant moisture drop that is associated with a minimum cooling rate of about 20 K day−1. The results of

Fig. 10 indicate that while the retrieval is able to broadly distinguish between differently strong moisture anomalies and their545

associated heating rates, it is unable to properly represent such extreme cooling rate minima due to smoothing.

Figures 10(c) and (d) show the joint frequency distributions of the moisture anomaly strength and height (zanom). A clear

relation between sanom and zanom is found in both datasets, namely that anomalies are weaker the higher up they are in the

troposphere. We explain this by the dependence of sanom on the absolute humidity, which decreases exponentially with height.

Combining this with the relation found between anomaly strength and minimum heating rate, it is clear that the radiatively550

most significant moisture anomalies occur in the lower to mid troposphere. As pointed out in Sect. 6.1 when discussing Fig.

9, the retrieval has particular deficiencies in resolving the rather narrow lower to mid tropospheric moisture anomalies. It is

now apparent that this deficiency is particularly relevant, since it affects the strongest and radiatively most significant moisture

anomalies. However, the EML testcase investigated in Sect. 4.1 shows that when the anomaly is relatively strong and the

atmosphere aloft has a simple structure, also lower to mid tropospheric moisture anomalies can be retrieved well. It may be555

worth investigating different cases of EMLs that are embedded in a more complex tropospheric humidity structure in the future.
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Figure 10. (a) and (b) show the joint frequency distributions of anomaly strength and minimum heating rate within the anomaly layers of the

reference dataset and the retrieved dataset, respectively. (c) and (d) show the joint frequency distributions of the anomaly strength and the

anomaly height for the two respective datasets.

7 Summary and conclusions

The question implicitly raised by the findings of Stevens et al. (2017), whether or not passive satellite retrievals are capable

of resolving EMLs, is investigated based on a synthetic retrieval framework where the IASI instrument is represented by the

forward model ARTS. An EML testcase based on dropsonde profiles from the NARVAL-2 measurement campaign (Konow560

et al., 2019) and a set of 1288 tropical ocean model atmospheres are used as input for the forward model and as a reference to

evaluate the retrieval results against. The scenes are limited to clear sky.

To characterise an EML quantitatively (e.g. by strength, thickness and height), the concept of a moisture anomaly against

a loosely fitted but clearly defined reference humidity profile is introduced. Following the ideas of Johnson et al. (1996) and

Stevens et al. (2017) about a coupling of EMLs to the freezing level, EMLs would in this framework constitute a subset of rather565

strong, vertically confined, lower to mid tropospheric positive moisture anomalies. However, for the scope of this work no clear

specification of what distinguishes an EML from other moisture anomalies is attempted, which would require a more dedicated
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selection and analysis of the test dataset. Instead, the aim of this study is a first systematic evaluation EML retrievability based

on hyperspectral IR observations.

Based on the EML case of Stevens et al. (2017), we show that with sufficient independent temperature and water vapor570

information, a combined retrieval of the moisture and temperature profiles and the surface temperature is capable of resolving

the vertical EML structure. This result is in line with previous OEM based case studies of similar moisture structures (Calbet

et al., 2006; Zhou et al., 2009). We show that limited independent temperature information can cause the EML to not be

resolved by the retrieval due to compensating water vapor and temperature errors. We suggest this as a possible reason for the

EML blindspot found by Stevens et al. (2017).575

The EML signal for the IASI instrument is further characterised by the averaging kernel and the deduced vertical resolution,

which is on the order of 1.5 km for an average tropical ocean atmosphere, which is in agreement with previous studies (Lerner,

2002; Smith and Weisz, 2018). However, in the presence of an EML, the strong signal from the EML top weakens the signal

from below and introduces a strong gradient in vertical resolution from 0.5 km at the EML top to 3 km at the EML bottom. This

state dependence of vertical resolution motivates a statistical approach to evaluate the retrieval’s ability of resolving moisture580

anomalies in various atmospheric states.

When applying the retrieval to the tropical ocean test dataset, it is found that a large fraction of the absolute retrieval error

in humidity can be attributed to smoothing. In particular in the transition region between the boundary layer and the free

troposphere, the smoothing error introduces a bias to the retrieved humidity and temperature profiles, which is most likely

connected to the sharp humidity drop associated with the stratified barrier between the moist boundary layer and the dry free585

troposphere in the trade wind region. In the free troposphere, say above 800 hPa, the retrieval shows no significant moisture

bias, but a positively skewed error variability, indicating that moist anomalies are typically associated with smaller errors than

dry anomalies. This is coherent with the idea that dry anomalies that occur beneath moist anomalies are prone to larger errors

due to the reduced sensitivity of the satellite measurement below a moist anomaly.

The study is completed by a specific evaluation of the moisture anomaly retrievability based on the new characterisation590

method introduced in Sect. 3. It is found that the retrieved moisture anomalies are on average 17 % weaker and 15 % thicker

than the anomalies of the reference dataset, which we attribute to smoothing and the fact that rather weak and narrow anomalies

are missed by the retrieval more often. While overall about 80 % of the total number of moisture anomalies in the reference

dataset are found by the retrieval, a systematic underrepresentation of anomalies below 5 km is found, where the retrieval only

identifies about 52 % of the anomalies present in the reference dataset. Since it is shown that moisture anomalies in the lower595

to mid troposphere are typically the strongest and radiatively most significant, this issue may be quite significant.

The analysis of capturing the moisture anomalies’ footprint on the heating rate profiles shows that the retrieval is able to

capture the general relation between anomaly strength and minimum cooling rate. However, the retrieval shows a particular

shortcoming in capturing the most extreme cooling rates associated with strong lower to mid tropospheric anomalies. We

attribute this shortcoming to the retrieval’s limited ability of resolving strong vertical moisture gradients that are necessary for600

the most extreme local cooling rates. Vertical moisture gradients in the real world can be a lot stronger than the ones available
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from the model test dataset (Albright et al., 2020), which means that retrieval errors with respect to peaks in the cooling rates

can be large for rather extreme but realistic cases.

In summary, the retrieval result of the EML case study shows that hyperspectral IR satellite instruments are in principle

capable of resolving a sufficiently strong EML in an otherwise simply structured atmospheric profile. The statistical evaluation605

of retrieved moisture anomaly characteristics shows that the retrieval is able to represent moisture anomlies of various thickness,

height and strength. Significant shortcomings are found in the lower to mid troposphere where about half of the moisture

anomalies are missed by the retrieval and with regard to capturing particularly strong vertical gradients, causing limitations

to resolve extreme cooling rates. It would be interesting to apply a similar analysis to operational retrieval products, such as

the IASI L2 product (EUMETSAT, 2017), the NUCAPS product (NOAA Unique Combined Atmospheric Processing System,610

Berndt et al. 2020) or the CLIMCAPS product (Community Long-term Infrared Microwave Combined Atmospheric Product

System, Smith and Barnet 2020). The benefit of our new method for analysing moisture anomalies is that it allows for a direct

statistical evaluation of the different product’s capabilities to resolve EMLs and vertical humidity structures in general by being

easy to apply to large datasets. As a next step we plan to apply our retrieval and evaluation techniques introduced in this work

to real hyperspectral IR observations, with focus on EML-like cases that we identify based on dropsonde observations from the615

NARVAL and EUREC4A (Stevens et al., 2021) measurement campaigns. This may also serve as a good first testbed of data to

assess operational products’ capabilities to resolve the vertical moisture structures of interest.

Code availability. The code for the radiative transfer model ARTS, which also includes the module that was used to conduct the OEM

retrieval can be found at https://radiativetransfer.org.

Data availability. The atmospheric profiles over tropical oceans that were used as a basis for the forward modelled IASI spectra and the620

spectra themselves are publicly available on Zenodo (Prange et al., 2021). The atmospheric profiles are a subset of the ECMWF IFS diverse

profile database published by Eresmaa and McNally (2014).

Appendix A: Temperature averaging kernels

Since we highlight the importance of sufficient independent temperature information to resolve the water vapor structure, Fig.

A1 shows the temperature averaging kernels and deduced vertical resolution based on the retrieval setup introduced in Sect. 2.625
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Figure A1. Same as Fig. 5, but for temperature.
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