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Abstract. Mobile monitoring is becoming increasingly popular for characterizing air pollution on fine spatial scales. In 

identifying local source contributions to measured pollutant concentrations, the detection and quantification of background are 

key steps in many mobile monitoring studies, but the methodology to do so requires further development to improve 10 

replicability. Here we discuss a new method for quantifying and removing background in mobile monitoring studies, State 

Informed Background Removal (SIBaR). The method employs Hidden Markov Models (HMMs), a popular modelling 

technique that detects regime changes in time series. We discuss the development of SIBaR and assess its performance on an 

external dataset. We find 83% agreement between the predictions made by SIBaR and the predetermined allocation of 

background and non-background data points. We then assess its application to a data set collected in Houston, by mapping the 15 

fraction of points designated as background and comparing source contributions to those derived using other published 

background detection and removal techniques. Presented results suggest that SIBaR modelled source contributions contain 

source influences left undetected by other techniques, but that it is prone to unrealistic source contribution estimates when it 

extrapolates. Results suggest that SIBaR could serve as a framework for improved background quantification and removal in 

future mobile monitoring studies while ensuring that cases of extrapolation are appropriately addressed. 20 

1 Introduction 

Understanding air pollution exposure is important, as it has been linked to various adverse health conditions (Caplin et al., 

2019; Zhang et al., 2018). Mobile monitoring, a technique in which continuous air pollution measurements are collected using 

instrumentation on a mobile platform, is becoming increasingly important for characterizing exposure because air pollution 

varies on spatial scales finer than the typical distance between stationary monitors (Apte et al., 2017; Chambliss et al., 2020; 25 

Messier et al., 2018).  

 

A key component of mobile monitoring analysis is identifying ambient background levels, defined here as measured air 

pollution concentrations independent of local source influences (Brantley et al., 2014). Background quantification is vital from 

both policy and exposure perspectives, as it is important to assess the contribution of local sources to pollution concentrations 30 
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accurately. Table 1 summarizes the wide variety of methods used to estimate background in studies incorporating mobile 

monitoring published within the past 5 years. The wide variance in the approaches used is problematic, as estimates of source 

contributions to measurements have been shown to be sensitive to the technique used (Brantley et al., 2014). To improve the 

replicability and power of mobile monitoring studies, a more consistent technique for background estimation is needed. 

 35 

Designing a method to determine the background in mobile monitoring studies presents several challenges. Measurements in 

remote locations are often regarded as the most reliable representation of background concentrations; however, remote 

locations may be inaccessible for some mobile monitoring studies and are themselves subject to occasional source influences. 

These drawbacks make time series methods for determining background more desirable. However, many time series-based 

methods often rely on setting static time windows, which are usually determined by the expected duration of influence from 40 

source plumes within the mobile monitoring study (Bukowiecki et al., 2002). The underlying physical representation of these 

time series methods remains unclear for more extensive mobile monitoring campaigns, as the setting of static time windows 

does not often capture the entire variation in time scales that source impacts can have on mobile measurements.  

 

Here we show the results of a newly developed method called State-Informed Background Removal (SIBaR) used to estimate 45 

background for several traffic related air pollutants, namely nitrogen oxides (NOx) and carbon dioxide (CO2). The method 

incorporates Hidden Markov Models (HMMs), a time series regime modelling technique used in a wide variety of contexts in 

signals processing, finance, and the social sciences and which has been used to model background in stationary monitors 

(Gómez-Losada et al., 2016, 2018, 2019; Visser and Speekenbrink, 2010). HMMs assume that observations within a time 

series are drawn from probability distributions governed by a hidden sequence of states. We propose decoding this hidden 50 

sequence of states as a way to determine whether measurements were taken during time periods representative of background 

versus time periods subject to local influences. We illustrate that a more physically meaningful representation of background 

is captured in this modelling context for mobile monitoring time series and show its application to a wide variety of traffic 

related air pollutant measurements. As a proof of concept, we run the method on a published external dataset already marked 

as background and non-background and assess its performance. As a first application and to provide further proof of concept, 55 

we map points binned as background by SIBaR to show their spatial distributions. As a proof of importance, we highlight 

differences in mapped source contributions derived from SIBaR background and background derived from other time series-

based techniques. Results indicate that our consistent method for background identification and removal has noticeable impact 

on mapped mobile source contributions. 

  60 
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Study Method Used to Determine Background Concentration 

Apte et al., 2017 Applied 10-s moving average filter, then selected the smaller of the given data value or the 

2-min 5th percentile to derive baseline concentrations. 

Brantley et al., 2019 Fitted quantile regression with cubic natural spline basis expansion of time with degrees of 

freedom equal to the number of hours in the time series. 

Hankey and Marshall, 2015 

 

Used pollutant-specific underwrite functions to estimate instantaneous background 

concentrations and subtracted these concentrations from the original time series, averaged 

reference monitor measurements, then added averaged measurements to underwrite 

adjusted time series. 

Hankey et al., 2019 Used hourly averaged measurements in centrally located site for additive correction factor; 

used daily median fixed-site measurement for temporal correction factor. 

Hudda et al., 2014 Applied rolling 30-s 5th percentile of the original time series. 

Larson et al., 2017 Applied 10-min rolling minimum. 

Li et al., 2019 Applied 1-min moving median filter, then calculated 1-hr rolling 5th percentile of smoothed 

data; additionally, used wavelet decomposition to isolate concentration changes across 8 

hours at stationary monitors, then subtracted lowest decoupled concentration from mobile 

monitoring time series across 15-min time windows. 

Patton et al., 2014 Used mobile measurements in designated urban background neighborhoods removed from 

highway. 

Robinson et al., 2018 Linearly interpolated averaged data collected at designated background locations. 

Shairsingh et al., 2018 Applied rolling 60-s mean, then applied spline of minimums technique (Brantley et al.,  

2014) across different time windows dependent on a desired background scale. 

Tessum et al., 2018 Used daily 5th percentile for all pollutants other than fine particle number concentration; 

used rolling 30-min 5th percentile for fine particle number concentration. 

Van den Bossche et al., 2015 Used averaged measurements from stationary monitor located in an urban green to apply 

additive correction factors to measurements greater than background then averaged site 

measurement and multiplicative correction factors to measurements lower than 

background. 

Table 1. Summary of Previous Methodologies for Estimating Background Levels of Air Pollution in Mobile Monitoring Campaigns. 
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2 Methods 

2.1 Mobile Campaign 

Measurements were taken during the Houston Mobile Monitoring Google Street View (GSV) campaign and are described in 65 

detail elsewhere (Miller et al., 2020). Measurements were conducted over a 9 month period spanning July 2017 to March 2018. 

Sampling primarily took place between 7:00 and 16:00 local standard time (Miller et al., 2020) in a variety of census tracts 

across metropolitan Houston. Census tracts are included in the current analysis if they were sampled a minimum of 15 times 

during this 9-month period (Apte et al., 2017; Li et al., 2019). Details and names used to describe each census tract are given 

in Table S1. The time of day and day of week for each census tract visit were predetermined to minimize temporal biases in 70 

sampling to the greatest extent possible. Instruments (Table S2) were loaded into 2 gasoline-powered GSV cars that sampled 

every drivable road in 22 different census tracts in the greater Houston area. Details and names used to describe each of the 

census tracts considered are given in Table S1. Individual observations are aggregated to 50-meter points in neighborhoods 

and 90-meter points on highways using a road network created from U.S. Census TigerLine roads (TIGER/Line Shapefile, 

2018). More details on the road network creation and data quality control are provided elsewhere (Miller et al., 2020). Data 75 

quality and control measurements were implemented to ensure sound statistics were performed. Measurements were removed 

if they were taken during calibration periods, during periods of suspected instrument failure, and if they were outside of an 

instrument’s reported operating range. Measurements were synchronized to GPS time stamps and adjusted for inlet residence 

time differences based on results from match strike tests. Measured pollutants include black carbon (BC), carbon dioxide 

(CO2), nitric oxide (NO), and nitrogen dioxide (NO2) (NOx = NO + NO2),.  80 

Bias, precision, and the minimum detection limit (MDL) for each instrument are provided in Table S2. Details concerning the 

calculation of each parameter for each instrument are given elsewhere (Miller et al., 2020). In brief, the bias for the T200 NO 

Analyzer and T500U NO2 Analyzer were calculated from gas calibration checks performed every 2 weeks at the start of the 

study period and every month towards the end of the study period, because the checks routinely showed bias < ±10%. The bias 

for the Li-COR was determined from a gas phase calibration before the start of the study to match the manufacturer reported 85 

value. Precision values for the T200 and T500U were calculated as the standard deviation of zeroing periods taken throughout 

the entire campaign. Minimum detection limits for the T200 and T500U were determined as the mean of the time series zero 

+ 3σ. The minimum detection limit and precision of the Li-COR were not considered due to taking measurements at a 

consistently elevated global background and the latter manufacturer’s reported value having a miniscule effect on the overall 

uncertainty of the measurement. For the purposes of this work, we perform no MDL substitution, as MDL substitution would 90 

censor the underlying modelled background probability distribution. 
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2.2 Hidden Markov Model Categorization – The Background Partitioning Step 

Time series observations are segregated by day and for each GSV car, and HMMs are fit to each day’s worth of data. Before 

fitting the HMM to each day’s time series realizations, we log transform them. HMMs attempt to maximize the log-likelihood, 95 

𝐿஼ , determined by the sum of the forward variables 𝛼்(𝑖): 

 

𝐿௖ = ∑ 𝛼்(𝑖)ே
௜                 (1) 

 

in which 𝑖 designates state 𝑖 (total states 𝑁) at the last realization of the time series 𝑇. The forward variables are derived 100 

recursively as: 

 

𝛼ଵ(𝑖) = 𝜋௜𝑝(𝑦ଵ|𝜃௜ , 𝑧)           (2) 

 

𝛼௧ାଵ(𝑗) = ∑ ൫𝛼௧(𝑖)𝑎௜௝൯𝑝(𝑦௧|𝜃௝ , 𝑧)ே
௜           (3) 105 

 

in which 𝜋௜ represents the initial probability for state 𝑖, 𝑎௜௝  represents the state transition probability from state 𝑖 to state 𝑗, and 

𝑝(𝑦௧|𝜃௜,𝑧) represents the conditional probability of observation 𝑦௧  conditioned on the parameters 𝜃௜ governed by state 𝑖 and 

any additional covariates 𝑧. For the purposes of our work, we assume that the probability distributions governing 𝑦௧  are log 

normal and parametrize the mean of the response distribution as:  110 

 

𝜇௧ = 𝛽଴
෢ +  𝛽ଵ

෢𝑡                                       (4) 

 

where 𝜇௧ is the time-dependent mean of the response, 𝛽መ଴ and 𝛽መଵ are estimated parameters, and 𝑡 is time.  

 115 

The log-likelihood of equation (1) is maximized using the expectation maximization algorithm (Dempster et al., 1977; Visser 

and Speekenbrink, 2010). Initial starting values of the transition probabilities are bootstrapped 150 times to produce 150 

candidate models because convergence to a maximum likelihood can be affected by the starting values. The model with the 

greatest log-likelihood is then selected for decoding via the Viterbi algorithm (Forney, 1973).  The Viterbi algorithm seeks to 

maximize the joint probability of both observations and state sequence (𝑞ଵ, … , 𝑞்) given the parameters. We define a variable 120 

𝛿 recursively as  

 

𝛿௧ାଵ(𝑗) = ൣ𝑚𝑎𝑥 𝛿௧ (𝑖)𝑎௜௝൧𝑝(𝑦௧ାଵ|𝜃௝ , 𝑧)         (5) 

 

with the initialization 125 
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𝛿ଵ(𝑖) = 𝜋௜𝑝(𝑦ଵ|𝜃௜ , 𝑧)           (6) 

 

To retrieve the state sequence, we create a matrix 𝜓 such that 

 130 

𝜓ଵ(𝑖) = 0          1 ≤ 𝑖 ≤ 𝑁           (7) 

 

𝜓௧(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥൫𝛿௧ିଵ(𝑖)𝑎௜௝൯          1 ≤ 𝑗 ≤ 𝑁, 2 ≤ 𝑡 ≤ 𝑇       (8) 

 

We retrieve the state sequence by backtracking: 135 

 

𝑞் = 𝑎𝑟𝑔𝑚𝑎𝑥[𝛿்(𝑖)]          1 ≤ 𝑖 ≤ 𝑁         (9) 

 

𝑞௧ = 𝜓௧ାଵ(𝑞௧ାଵ)           𝑡 = 𝑇 − 1, 𝑇 − 2, … 1        (10) 

 140 

This state sequence is then used to designate observations as background or source. State assigned points with the lower median 

are designated background. An example of a decoded sequence is given in Figure 1 for NOx (after retransformation). 

 

HMM fits can be highly sensitive to time series outliers (Svensén and Bishop, 2005; Chatzis and Varvarigou, 2007; Chatzis et 

al., 2009). Additionally, while computationally cheap, the linearity assumption embedded in the time covariate could fail to 145 

capture more complex variations in background and produce flawed state categorizations. To capture misclassification 

instances, we recast the step as an unsupervised learning problem, design an empirical routine to evaluate the quality of created 

clusters, and incorporate it into SIBaR. The routine, coined the fitted line classifier, fits a line between averaged transition 

measurements and their corresponding transition times. The method then calculates the percentage of points above the line 

that are classified as background and the percentage of points below the line that are classified as source. If either percentage 150 

is greater than or equal to 50%, a predetermined percentage threshold, the method deems the series incorrectly classified. If a 

series is incorrectly classified, SIBaR breaks the series into two and performs the background partitioning step on each half 

chunk separately. 16 example time series, labelled as classified correctly or incorrectly, are depicted in Figures S1 and S2. 

After fitting HMMs to each separate chunk, SIBaR then uses the fitted line classifier on each chunk, repeating the process if 

any chunk’s partitioning is labeled misclassified. The process continues recursively until all created partitions are deemed 155 

correctly classified. SIBaR then combines the state designations from all created chunks into one and returns those state 

designations as the corrected designations for the time series.  
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In running SIBaR on the campaign NOx measurements, we note that the empirical classifier designates 96% of the original 

time series to be correctly classified for a 50% threshold. We run a sensitivity analysis on the percentage threshold and show 160 

the results in Figure S3.  The figure illustrates that changing the percentage threshold causes changes in the percentage of 

correctly classified time series to range between 80-100%, dipping below 50% only for the most stringent requirement (5%). 

These results give us confidence in the partitioning step.  

2.3 Natural Spline Fit 

After HMMs have been fit to all time series data, natural splines are fit to the background points by day. As in the work 165 

published by Brantley et al. ("Brantley", Brantley et al., 2019), we select a natural spline basis with the degrees of freedom 

equal to the number of hours in the time series. However, we fit to the mean of our partitioned background time series, whereas 

in Brantley the focus is on a 10th quantile regression. An example of this spline fit is given in Figure 1.  

 

Because SIBaR’s partitioning step periodically generates background assigned points that differ from one another for the same 170 

time series, we perform a test to evaluate its robustness. We run SIBaR 25 times and evaluate the pairwise root-mean-square 

error (RMSE) between each set of generated background predictions for NOx as defined below.  

 

𝑅𝑀𝑆𝐸 = ට∑ (௡೟ೌି௡೟್)మ೅
೟

்
            (11) 

 175 

In which 𝑛௧௔ is the background realization at time 𝑡 of signal 𝑎, 𝑛௧௕ is the background realization at time 𝑡 of signal 𝑏, and 𝑇 

is the total number of realizations in the time series. 

 

The pairwise RMSE values for the first 12 runs are given in Table S3. We calculate an average RMSE of 0.05 ± 0.02 ppb 

between each background signal and conclude that the fitting step is robust to small changes in background assigned points in 180 

the partitioning step. 
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2.4 Evaluating the Partitioning Step: Validation on an External Dataset  

To test the validity of the partitioning step, we perform external validation using a mobile monitoring dataset published in 

Brantley et al. (2014). In that study, a van collecting mobile measurements of carbon monoxide (CO) systematically looped a 

route in which it drove through a predefined background location, on transects to a highway, and on the highway itself 185 

(Brantley et al., 2014). The measurements taken in the prescribed background location were marked as background, and all 

other measurements were marked as non-background. We run the partitioning step on these data to determine how well SIBaR 

captures the measurements taken in the background location of the study. 

Figure 1. Example time series of SIBaR background signal (blue) being fit to background designated points (black) created in 
the SIBaR partitioning step. Points are colored red if designated as source in the partitioning step, black if designated 
background. Data presented in this time series were collected on 3/30/2018 starting at 10 AM. 
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2.5 Generating Mapped Fractional Background Contribution and Source Contribution Maps 

We explore the spatial extent of our HMM decoded categorizations from the partitioning step by creating mapped fractional 190 

background contribution maps. After aggregating time series observations (either CO2 or NOx, depending on the pollutant 

analysed) to road segment points created within our road segment network, we sum the number of observations designated as 

the background state and divide by the total number of observations assigned to that road segment point. We map the results 

and present them in section 3.2. 

 195 

In section 3.3, we derive source contributions (source signal = original signal – background signal) using our background 

method and map them. To put these source contributions in context with previously published work, we repeat the same process 

using background derived from a moving 2 minute 5th percentile baseline (“Apte,” Apte et al., 2017) and the Brantley technique 

described previously in section 2.2 (“Brantley,” Brantley et al., 2019). To derive our source contributions, we make predictions 

for the background for each time series realization collected using the derived background spline and then subtract those 200 

predictions from the original time series observations. We also derive source contributions using the Apte and Brantley 

techniques. We create the maps using the same methodology as Miller et al. (2020), described briefly here. Using our created 

road segment network, we take the mean of measurements collected as the GSV car drives past a road segment point in our 

network, coined the drive pass mean. We take the median of these drive pass means and map the result. Because we consider 

drive pass means taken within 4 hours of one another to provide no new information about the air quality at that road segment, 205 

we take the median of drive pass means occurring within that 4 hour time window to generate a 4 hour median of drive pass 

means. Then, we take the median of all 4 hour medians of drive pass means at that road segment to derive its map reduced 

median. We perform this procedure for the source contributions derived using our method and the source contributions derived 

using the other published methods. 

3 Results – Proof of Concept 210 

3.1 Validating the Partitioning Step on an External Dataset  

A comparison between SIBaR’s partitioning and the partitioning originally published by Brantley et al. (2014) is given in 

Figure 2. Initially, the HMM fitting step is performed and the resulting state sequence decoded. We run our classifier on the 

initially decoded time series and find it to be misclassified, which is apparent from panel (a) of Figure S4 that shows the 
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unsmoothed CO data before correction. The algorithm breaks the series into 2 chunks and refits the HMM to each part 215 

separately, resulting in the state designations in panel (a) of Figure 2. We then compute the percentage of matching 

background/non-background designations. The SIBaR partitioning step is able to match 83% of the originally published 

background/non-background designations. The mismatches could be attributed to the transition between the background/non-

background portions of the route in the original study, which is observed in Figure 2 in the periods where background points 

show larger values than source points near periods of the transition (for example., the last blue spike at approximately 8:45AM).  220 

Mismatches also could be a result of the effects of traffic on measurements in the background designated portion of the route. 

Finally, the mismatches could be attributed to the inability of the SIBaR linearity assumption to capture finer scale temporal 

variations within the background (see equations (2)-(4)). 

 

In running this test, we note that the method is sensitive to a smoothing time window if one is used. Figure S4 illustrates SIBaR 225 

uncorrected decoded states for 3 different smoothing time windows on the same CO dataset and shows that the method 

Figure 2. Comparison between SIBaR-predicted background and source states and originally published designations from 
Brantley et al. (2014) for log transformed CO. Background designated points are in blue, source designated points in red. (a) 
SIBaR decoded states for the mobile CO measurements. (b) Designations originally published by the authors of the study.    
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produces different state categorizations depending on the window used, even making correction unnecessary in the 30 s 

instance. We hypothesize that smoothing reduces the skewness of the data such that it better fits 2 switched lognormal Gaussian 

distributions.  

 230 

3.2 Mapped Fractional Background State Contributions 

For the Houston mobile campaign, maps detailing the fractional contribution of the background state to the overall mapped 

points are created for CO2 and NOx. Individual observations assigned to a road segment point have their decoded category 

designations assigned to the same point. The number of observations assigned the background category are then divided by 

the total number of observations assigned to the point to determine the fractional background state contribution. Figure 3 shows 235 

these census tract maps for NOx. Figure S5 shows the maps for CO2.  It is important to note that these maps represent the 

fraction of the measurements that are categorized as background or source for the given pollutant at a given location. 

 

We note the following about the broad spatial patterns in mapped background state fraction presented in Figure 3. First, 

background state designated points dominate residential areas for both pollutants. This is encouraging, as it is expected that 240 

few point sources of these 2 pollutants would be found in residential neighborhoods except for those near industrial activity 

(Miller et al., 2020). Second, source state designated points dominate highways and busy arterials, which is expected given the 

large amounts of traffic on these roads. Finally, we note the appearance of source-dominated hotspots in front of point sources 

identified in our previous work (Miller et al., 2020) and denote their locations in Figure 3. This is encouraging given that we 

found these road segments to be elevated for NO and/or NO2 compared to their surrounding neighbourhood domain. 245 

 

We take the background state fractions depicted in Figure 3 and bin them by distance to highway. The results are presented in 

Figure 4. We do the same for CO2 and present the results in Figures S5-S6. The exponential behaviour exhibited in Figure 4 

mirrors published exponential decays in roadside source pollutant concentrations (Apte et al., 2017; Karner et al., 2010), while 

the sizeable interquartile ranges within each bin highlight the complexity and variability of source roadside gradients, which 250 

depend on emission rates, meteorology, geography, and other factors (Baldwin et al., 2015; Patton et al., 2014).  

 

 

 

 255 
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Figure 3. Fraction of points aggregated to road segment network designated as background in SIBaR decoded states for NOx. 
Maps were generated following the methods outlined in Section 2.5. Points are mapped on a scale of 0 to 1; 1 implies all points 
aggregated to that road segment were designated as background, 0 implies all points were designated as non-background. Details 
of the census tracts are provided in Table S1. Gold stars indicate locations of elevated NO and/or NO2 medians next to known 
industrial facilities published in Miller et al. (Miller et al., 2020). Basemap generated by Matlab geobasemap ‘streets’ and is 
hosted by ESRI (Sources: Esri, DeLorme, HERE, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong), 
Esri (Thailand), MapmyIndia, Tomtom). 
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260 

3.3 Comparison of Source Contribution Maps Using Different Background Removal Techniques 

To put SIBaR predicted source contributions in context, we compare the source contribution maps generated using SIBaR to 

the ones generated by the Apte and Brantley techniques. We zoom in on the Ship Channel domain for ease of comparison in 

Figure 5. We refer the reader to Figures S7-S15 to see maps for all other areas in the mobile monitoring campaign for both 

NOx and CO2. The average NOx background predicted by the Apte, Brantley, and SIBaR techniques are 15.25 ppb, 11.58 ppb, 265 

and 13.02 ppb respectively. 

 

Figure 5 shows that the source contributions derived using the Apte technique are lower on highways compared to the source 

contributions derived using SIBaR and the Brantley techniques. Additionally, both Brantley and SIBaR techniques find higher 

source contributions on road segments with elevated NO and NO2 concentrations found in Miller et al. (2020) compared to the 270 

Apte technique. We hypothesize this occurs due to the smaller time window utilized in the Apte technique. The GSV vehicles 

would often sit in traffic on highways for extended periods of time, making a 2 minute time window unsuitable for describing 

source durations during those time periods. While the 2 minute assumption would be better suited for situations in which the 

car was exposed to source durations within that time interval (which occurred in the Apte study), it would not be for source 

durations of a larger time interval, highlighting the challenges in assuming a static time window for extensive mobile 275 

monitoring campaigns with varying source durations.  

Figure 4. Boxplots of mapped background NOx fractions, presented in Figure 3, binned by distance from highway. The red line 
represents the median, the top and bottom edges represent the 75th and 25th percentiles, respectively, and the whiskers extend to 
the most extreme data points not considered outliers. 
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We plot road segment median source contributions derived by Apte and Brantley algorithms against the road segment median 

concentrations derived by SIBaR and present the results for NOx in Figure 6. Additionally, we plot lines of best fit derived 

using ordinary least squares (OLS) regression.  Panel (a) in Figure 6 illustrates that SIBaR derives higher source contributions 280 

medians than the Apte technique which is largely driven by differences in highway road segment medians. The slope 

determined using OLS regression suggests that, on average, SIBaR median source contributions are ~41% higher than Apte 

median source contributions. Panel (b) of Figure 6 comparing Brantley and SIBaR road segment medians indicates much 

closer agreement between the two techniques, with SIBaR estimating source contribution medians at an average offset of 2 

ppb lower than Brantley source contribution medians.  Data for CO2 source contribution medians are shown in Figures S16 285 

and S17. 

Figure 5. Comparison of source contributions derived using different techniques in the Ship Channel Domain. Source 
contributions were aggregated according to the methods described in Section 2.4. (a) Source contributions derived using the 
Apte technique. (b) Source contributions derived using the Brantley technique. (c) Source contributions derived using the SIBaR 
technique. Basemap generated by Matlab geobasemap ‘streets’ and is hosted by ESRI (Sources: Esri, DeLorme, HERE, USGS, 
Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, Tomtom) 
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Figure 6. Scatterplots of road segment median source contributions predicted by two different techniques against their 
corresponding SIBaR median source contributions for NOx. The line of best fit is derived using  OLS regression and is depicted 
in red. The 1:1 line is depicted in black. Points are colored by their distance to the closest highway. (a) SIBaR source contribution 
medians plotted against Apte source contribution medians. (b) SIBaR source contribution medians plotted against Brantley 
source contribution medians. The plots in red rectangles designate a blown-up portion near the origin. 
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While the road segment median source contributions between the Brantley and SIBaR techniques exhibit strong agreement, 

we note that source contributions evaluated on a more granular level exhibit some disagreement. Figure 7 displays the inter 

quartile ranges (IQR) for source contributions assigned to each road segment plotted against each other for the SIBaR and 290 

Brantley techniques, again colored by distance to the closest highway. We display additional 1:1 plots of the IQR for different 

techniques and pollutants (NOx and CO2) in the supplement (Figures S18-S20). There are noticeable deviations from the 1:1 

line in IQR between SIBaR and the Brantley technique for both NOx and CO2, suggesting that the two techniques do disagree 

with one another on individual source contribution drive pass means. Figure S21 displays a histogram of differences in drive 

pass means between the 2 techniques. While SIBaR predicts lower source contributions compared to the Brantley technique 295 

on average, there are noticeable discrepancies captured in the tails of the distribution.  

To provide further context for these results, we present 2 examples of daily time series of each background technique’s 

predictions in Figure 8. It is apparent that the Apte technique overfits to the data in both cases. The top panel shows an example 

of SIBaR’s predictions offering an advantage over Brantley’s: since SIBaR is fit to a subset of the data, it avoids overfitting in 

the early morning hours of the time series that the Brantley time series incorporates. Panel (a) illustrates why the cases in the 300 

Figure 7. 1:1 scatterplot of the inter quartile range (IQR) of predicted NOx source contributions at individual road segments for 
the SIBaR and Brantley techniques. The line of best fit is derived using OLS regression and is depicted in red. The 1:1 line is 
depicted in black. The inset, outlined by the red rectangle, shows the IQR at lower values of the Brantley source contribution 
IQR. Deviations from the 1:1 line suggest that SIBaR captures source influences the Brantley method fails to detect, despite 
predicting lower source contributions on average and the excellent agreement in median source contribution. 
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right tail of the histogram in S21 exist. In contrast, the bottom panel showcases the potential faults in using SIBaR predictions: 

since there are no background designated points at the beginning of this time series example, the spline fit wildly extrapolates, 

resulting in unrealistic predictions that are captured in the left tail of the histogram in Figure S21. Both panels illustrate why 

the medians of Brantley and SIBaR agree so well with one another, yet display IQRs that deviate from their 1:1 line. Both 

signals exhibit strong agreement with one another, but can capture different source influences periodically because of the 305 

assumptions inherent in each technique. It is also evident that the appropriate background fit would need to be investigated on 

a case-by-case basis, as one should avoid using the SIBaR technique in instances where extrapolation could occur. 
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 310 

Figure 8. Time series plots which depict the original mobile campaign measurements, colored by their SIBaR decoded states 
(background and source), along with the background signals generated by the SIBaR, Brantley, and Apte techniques. (a) NOx 
time series of mobile measurements taken on 10/3/2017 which displays the Apte and Brantley signals overfitting to data decoded 
as source by the SIBaR partitioning step. (b) NOx time series of mobile measurements taken on 11/30/2017 which shows wildly 
extrapolated SIBaR predictions at the beginning of the time series due to the lack of background decoded states.  
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5 Concluding Remarks 

We illustrate that SIBaR provides a defensible mechanism to quantify and remove background from air pollution monitoring 

data time series. The method’s partitioning step is able to match 83% of a study’s previously published background/non-

background designations. Mapped distributions of the partitioning step’s decoded states show high levels of background state 

assignment in residential areas, with notable exceptions in hotspots published in a previous study. Finally, we show the impact 315 

using SIBaR can have on deriving source contributions in comparing it to the background signals predicted by other techniques. 

Most notably, SIBaR does not rely on a static time window assumption to determine source impacts, and instead relies on 

fitting to a subset of the data generated with a time series regime change modelling technique. Setting a static time window 

can have significant impact on the derived source contributions, as exhibited by the discrepancies between the Apte and SIBaR 

methods shown in Section 3.3. While the SIBaR and Brantley techniques produce similar source contribution medians to one 320 

another in the context of this campaign’s measurements, both capture different source influences based on the assumptions 

inherent in each respective technique.  

 

Despite SIBaR’s rigor and advancements relative to previously published methods, our approach needs careful consideration 

and improvement. The method is sensitive to how data in the time series are distributed, and transforming the measurements 325 

can provide different results. For example, Figure 9 exhibits a side-by-side comparison of SIBaR state predictions for 

transformed (a) and non-transformed (b) NOx data. The transformation in this instance results in portions of the measurements 

in the early morning period being classified as background, whereas none are designated as background in the non-transformed 

case. While we think data are more appropriately described in the lognormal regime (Seinfeld and Pandis, 2016), careful 

consideration of transformation is necessary. Additionally, as discussed in Section 3.1 and exhibited in Figure S4, applying a 330 

smoothing time window can also affect the state categorizations.  
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While the linearity assumption in the time covariate is computationally cheap and easy to implement, it is limited. It is 

unrealistic to expect background air pollution to exhibit linear behavior, especially as time series duration extends (Luke et al., 

2010). While the linearity assumption seems to be acceptable for time series of several hours of data, problems with that 335 

assumption arose in this work and will most likely arise on time series of data by day or when time series are impacted by 

abrupt meteorological changes. Future work should incorporate assumptions of non-linear behavior into analysis. Several 

studies have been published showing the applicability HMMs to covariates expressed as splines (Langrock et al., 2015, 2018). 

However, trade-offs between computational time and precision would need to be considered. In its current version, SIBaR 

takes ~6.5 hours to model background for millions of data points (performing the portioning step, evaluating and/or correcting 340 

the fit, and fitting the spline for all time series). The Brantley technique, in contrast, takes several minutes. 

 

Despite these shortcomings, SIBaR holds promise as a framework to quantify and remove background from air pollution 

monitoring time series. In its current state, it is inferior to the Brantley technique in regards to computation time. However, 

these problems with SIBaR are computational ones rather than problems with its underlying theory. The SIBaR partitioning 345 

step captures transient behavior between background and non-background quite well, as the diagnostic results of Section 3.1 

and the maps in Section 3.2 indicate. In addition to addressing other issues highlighted here, future work should focus on 

methods to reduce its computational time to make its use more straightforward.  

Figure 9.  Comparison of SIBaR state designations for (a) log-transformed versus (b) non-transformed NOx data on 10/30/2017 
(Local Time, US Central) in the Houston mobile monitoring campaign. Transformation can affect state assignments, which in 
this case results in 38% of observations having a different categorization upon transformation.   
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Code and Data Availability. Both the code and data are available on request. Additionally, time series comparisons for all 312 

time series taken in the campaign, as well as a demo of the SIBaR partitioning step, are available here: 350 

https://doi.org/10.5281/zenodo.5022590 (Actkinson, 2021).  Data are also free to download on the Environmental Defense 

Fund’s Air Quality Data commons (https://aqdatacommons.org/, Environmental Defense Fund, 2021). 
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