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Abstract. Mobile monitoring is becoming increasingly popular for characterizing air pollution on fine spatial scales. In 

identifying local source contributions to measured pollutant concentrations, the detection and quantification of background are 

key steps in many mobile monitoring studies, but the methodology to do so requires further development to improve 10 

replicability. Here we discuss a new method for quantifying and removing background in mobile monitoring studies, State 

Informed Background Removal (SIBaR). The method employs Hidden Markov Models (HMMs), a popular modelling 

technique that detects regime changes in time series. We discuss the development of SIBaR and assess its performance on an 

external dataset. We find 86% agreement between the predictions made by SIBaR and the predetermined allocation of 

background and non-background data points. We compare five-minute averages of SIBaR-derived background NOx 15 

measurements to five-minute averages of NOx measurements taken by a stationary monitor sitting 70 m above ground level 

near downtown Houston, finding greater disagreement between SIBaR and the stationary monitor than the disagreement 

between other background detection techniques and the same stationary monitor. We then assess its application to a data set 

collected in Houston, TX, by mapping the fraction of points designated as background and comparing source contributions to 

those derived using other published background detection and removal techniques. Results suggest that SIBaR could serve as 20 

a framework for improved background quantification and removal in future mobile monitoring studies. 

1 Introduction 

Understanding air pollution exposure is important, as it has been linked to various adverse health conditions (Caplin et al., 

2019; Zhang et al., 2018). Mobile monitoring, a technique in which continuous air pollution measurements are collected using 

instrumentation on a mobile platform, is becoming increasingly important for characterizing exposure because air pollution 25 

varies on spatial scales finer than the typical distance between stationary monitors (Apte et al., 2017; Chambliss et al., 2020; 

Messier et al., 2018).  

 

A key component of mobile monitoring analysis is identifying the background, defined here as measured air pollution 

independent of local source influences (Brantley et al., 2014). Background quantification is vital from both policy and exposure 30 
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perspectives, as it is important to assess the contribution of local sources to pollution concentrations accurately. Table 1 

summarizes the wide variety of methods used to estimate background in studies incorporating mobile monitoring published 

within the past five years. The wide variance in the approaches used is problematic, as estimates of source contributions to 

measurements have been shown to be sensitive to the technique used (Brantley et al., 2014). To improve the replicability and 

power of mobile monitoring studies, a more consistent technique for background estimation is needed. 35 

 

Designing a method to determine background in mobile monitoring studies presents several challenges. Measurements in 

remote locations are often regarded as the most reliable representation of background; however, remote locations may be 

inaccessible for some mobile monitoring studies and are themselves subject to occasional source influences. These drawbacks 

make time series methods for determining background more desirable. However, time series-based methods often rely on 40 

setting static time windows, which are usually determined by the expected duration of influence from source plumes within 

the mobile monitoring study (Bukowiecki et al., 2002). The underlying physical representation of time series methods remains 

unclear for more extensive mobile monitoring campaigns, as the setting of static time windows does not often capture the 

entire variation in time scales that source impacts can have on mobile measurements.  

 45 

Here we show the results of a newly developed method called State-Informed Background Removal (SIBaR) used to estimate 

background for several traffic related air pollutants. The method incorporates Hidden Markov Models (HMMs), a time series 

regime modelling technique used in a wide variety of contexts in signals processing, finance, and the social sciences and which 

has been used to model background in stationary monitors (Gómez-Losada et al., 2016, 2018, 2019; Visser and Speekenbrink, 

2010). HMMs assume that observations within a time series are drawn from probability distributions governed by a hidden 50 

sequence of states. We propose decoding this hidden sequence of states as a way to determine whether measurements were 

taken in locations representative of background versus locations subject to local influences. We illustrate that a more physically 

meaningful representation of background is captured in this modelling context for mobile monitoring time series and show its 

application to a wide variety of traffic related air pollutant measurements. As a proof of concept, we run the method on a 

published external dataset already marked as background and non-background and assess its performance, and we compare a 55 

SIBaR-derived nitrogen oxide (NOx) background signal with stationary rooftop monitor NOx measurements. As a first 

application, we map points binned as background by SIBaR to show their spatial distributions. As a proof of importance, we 

highlight differences in mapped source contributions derived from SIBaR background and background derived from other 

time series-based techniques. Results indicate that our consistent method for background identification and removal has 

significant impact on mapped mobile source contributions. 60 
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Study Method Used to Determine Background Concentration 

Apte et al., 2017 Applied 10-s moving average filter, then selected the smaller of the given data value or the 

2-min 5th percentile to derive baseline concentrations. 

Brantley et al., 2019 Fitted quantile regression with cubic natural spline basis expansion of time with degrees of 

freedom equal to the number of hours in the time series. 

Hankey and Marshall, 2015 

 

Used pollutant-specific underwrite functions to estimate instantaneous background 

concentrations and subtracted these concentrations from the original time series, averaged 

reference monitor measurements, then added averaged measurements to underwrite 

adjusted time series. 

Hankey et al., 2019 Used hourly averaged measurements in centrally located site for additive correction factor; 

used daily median fixed-site measurement for temporal correction factor. 

Hudda et al., 2014 Applied rolling 30-s 5th percentile of the original time series. 

Larson et al., 2017 Applied 10-min rolling minimum. 

Li et al., 2019 Applied 1-min moving median filter, then calculated 1-hr rolling 5th percentile of smoothed 

data; additionally, used wavelet decomposition to isolate concentration changes across 8 

hours at stationary monitors, then subtracted lowest decoupled concentration from mobile 

monitoring time series across 15-min time windows. 

Patton et al., 2014 Used mobile measurements in designated urban background neighborhoods removed from 

highway. 

Robinson et al., 2018 Linearly interpolated averaged data collected at designated background locations. 

Shairsingh et al., 2018 Applied rolling 60-s mean, then applied spline of minimums technique (Brantley et al.,  

2014) across different time windows dependent on a desired background scale. 

Tessum et al., 2018 Used daily 5th percentile for all pollutants other than fine particle number concentration; 

used rolling 30-min 5th percentile for fine particle number concentration. 

Van den Bossche et al., 2015 Used averaged measurements from stationary monitor located in an urban green to apply 

additive correction factors to measurements greater than background then averaged site 

measurement and multiplicative correction factors to measurements lower than 

background. 

Table 1. Summary of Previous Methodologies for Estimating Background Levels of Air Pollution in Mobile Monitoring Campaigns. 
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2 Methods 

2.1 Mobile Campaign 65 

Measurements were taken during the Houston Mobile Monitoring Google Street View (GSV) campaign and are described in 

detail elsewhere (Miller et al., 2020). In brief, for a nine-month campaign, instruments were loaded into two gasoline-powered 

GSV cars that sampled every drivable road in twenty-two different census tracts in the greater Houston area.  The time of day 

and day of week for each census tract visit were determined to minimize temporal biases to the greatest extent possible. Census 

tracts are included in the current analysis if they were sampled a minimum of fifteen times during this nine-month period (Apte 70 

et al., 2017; Li et al., 2019).  Details and names used to describe each of the census tracts considered are given in Table S1 in 

the Supplement.  Individual observations are aggregated to 50-meter points in neighborhood and 90-meter points on highway 

using a road network created from U.S. Census TigerLine roads (TIGER/Line Shapefile, 2018). More details on the road 

network creation and data quality control are provided elsewhere (Miller et al., 2020).  The pollutants measured were black 

carbon (BC), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2) (NOx = NO + NO2), ozone (O3), fine particulate 75 

matter (PM2.5), and ultrafine particle (UFP) number concentration. In this analysis, PM2.5 (predominantly secondary), O3 

(purely secondary), and UFP (somewhat secondary) are not considered. Instruments used are described in Table S2. 

2.2 Hidden Markov Model Categorization – The Background Partitioning Step 

Because HMM fits are sensitive to outliers in the time series that often can be attributed to the noise of the instrument, we 

smooth each pollutant time series with a moving average time window of thirty seconds, then log transform the resulting 80 

smoothed time series.  Time series observations are segregated by day and for each car separately, and HMMs are fit to each 

day’s worth of data. The HMMs attempt to maximize the log-likelihood, 𝐿𝐶 , determined by the sum of the forward variables 

𝛼𝑇(𝑖): 

 

𝐿𝑐 = ∑ 𝛼𝑇(𝑖)𝑁
𝑖                 (1) 85 

 

in which 𝑖 designates state 𝑖 (total states 𝑁) at the last realization of the time series 𝑇. The forward variables are derived 

recursively as: 

 

𝛼1(𝑖) = 𝜋𝑖𝑝(𝑦1|𝜃𝑖 , 𝑧)           (2) 90 

 

𝛼𝑡+1(𝑗) = ∑ (𝛼𝑡(𝑖)𝑎𝑖𝑗)𝑝(𝑦𝑡|𝜃𝑗 , 𝑧)𝑁
𝑖           (3) 

 

in which 𝜋𝑖 represents the initial probability for state 𝑖, 𝑎𝑖𝑗  represents the state transition probability from state 𝑖 to state 𝑗, and 

𝑝(𝑦𝑡|𝜃𝑖,𝑧) represents the conditional probability of observation 𝑦𝑡  conditioned on the parameters 𝜃𝑖 governed by state 𝑖 and 95 
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any additional covariates 𝑧. For the purposes of our work, we parametrize time linearly and include it as an additional covariate 

to capture temporal variations in background. We also assume that the probability distributions governing 𝑦𝑡  are log normal. 

 

The log-likelihood of equation (1) is maximized using the expectation maximization algorithm (Dempster et al., 1977; Visser 

and Speekenbrink, 2010). Initial starting values of the transition probabilities are bootstrapped 150 times to produce 150 100 

candidate models because convergence to a maximum likelihood can be affected by the starting values. The model with the 

greatest log-likelihood is then selected for decoding via the Viterbi algorithm (Forney, 1973).  The Viterbi algorithm seeks to 

maximize the joint probability of both observations and state sequence (𝑞1, … , 𝑞𝑇) given the parameters. We define a variable 

𝛿 recursively as  

 105 

𝛿𝑡+1(𝑗) = [𝑚𝑎𝑥 𝛿𝑡 (𝑖)𝑎𝑖𝑗]𝑝(𝑦𝑡+1|𝜃𝑗 , 𝑧)         (4) 

 

with the initialization 

 

𝛿1(𝑖) = 𝜋𝑖𝑝(𝑦1|𝜃𝑖 , 𝑧)           (5) 110 

 

To retrieve the state sequence, we create a matrix 𝜓 such that 

 

𝜓1(𝑖) = 0          1 ≤ 𝑖 ≤ 𝑁           (6) 

 115 

𝜓𝑡(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛿𝑡−1(𝑖)𝑎𝑖𝑗)          1 ≤ 𝑗 ≤ 𝑁, 2 ≤ 𝑡 ≤ 𝑇       (7) 

 

We retrieve the state sequence by backtracking: 

 

𝑞𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥[𝛿𝑇(𝑖)]          1 ≤ 𝑖 ≤ 𝑁         (8) 120 

 

𝑞𝑡 = 𝜓𝑡+1(𝑞𝑡+1)           𝑡 = 𝑇 − 1, 𝑇 − 2, … 1        (9) 

 

This state sequence is then used to designate points as background or source. State assigned points with the lower median are 

designated background. An example of a decoded sequence is given in Figure 1 for NOx (after retransformation). 125 
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2.3 2D Thin Plate Spline Fit 

After HMMs have been fit to all time series data, all background designated points throughout the mobile monitoring campaign 

are compiled and fit to a two-dimensional (2D) thin plate spline as a function of time and day expressed as a tensor product. 

The 2D splines are fit using the R package mgcv with k = 5 (Wood, 2003). We select a 2D spline fit to all background points 130 

overall instead of fitting splines day by day to prevent extrapolation in instances where the first measurements taken are 

categorized as source. Relative maximum likelihood is used to determine the smoothing parameters of the spline.  The result 

is a day-to-day spline that represents the background across the sampling campaign for each pollutant. A depiction of the 

background spline for log transformed NOx is given in Figure 2. 

 135 

Figure 1. Example of decoded state sequence for log transformed NOx which has been retransformed. Source designated points 

are red, and background designated points are black.  
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Because SIBaR’s partitioning step periodically generates background assigned points that differ from one another for the same 

time series, we perform a test to evaluate its robustness. We run SIBaR 25 times and evaluate the pairwise root-mean-square 

error (RMSE, defined in (10)) between each set of generated background predictions. The pairwise RMSE values for the first 

twelve runs are given in Table S3. We calculate an average RMSE of 0.01 between each background signal and conclude that 

the fitting step is robust to small changes in background assigned points in the partitioning step. 140 

2.4 Validating the Partitioning Step on an External Dataset and Stationary Monitor Comparison 

To determine the validity of the partitioning step, we test it on a dataset published in Brantley et al. (2014). In that study, a van 

taking mobile measurements of CO systematically looped a route in which it drove through a predefined background location, 

on transects to a highway, and on the highway itself (Brantley et al., 2014). The measurements taken in the prescribed 

background location were marked as background, and all other measurements were marked as non-background. We run the 145 

Figure 2. (left) Depiction of 2D background spline for log transformed NOx. Hour of the day is depicted on the axis going across 

the page, day of the year depicted on this axis going into the page. (right) The same data shown as a contour plot.  The same 

color scale is used in both panels. 
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partitioning step on these data to determine how well SIBaR captures the measurements taken in the background location of 

the study. 

 

We also compare the background derived by SIBaR to five-minute averages of a stationary monitor located in Houston. The 

monitor is stationed on top of Moody Tower on the University of Houston campus located between downtown Houston and 150 

the Houston Ship Channel. The site is seventy meters above ground level and has been used as an indicator of city-wide 

emission patterns in previous studies (Lefer et al., 2010; Luke et al., 2010). In this work, because of its elevation we assume it 

to be the stationary monitor most indicative of trends in Houston background NOx. To put these comparisons in context with 

previously published work, we repeat the same process using background derived from a moving two-minute fifth-percentile 

baseline (“Apte,” Apte et al., 2017) and from a tenth quantile regression onto a cubic spline basis expansion with the degrees 155 

of freedom equal to the number of hours in the time series (“Brantley,” Brantley et al., 2019). 

2.5 Generating Mapped Fractional Background Contribution and Source Contribution Maps 

We explore the spatial extent of our HMM decoded categorizations from the partitioning step by creating mapped fractional 

background contribution maps. After aggregating time series observations to road segment points created within our road 

segment network, we sum the number of observations designated as the background state and divide by the total number of 160 

observations assigned to that road segment point. We map the results and present them in Section 4.1. 

 

In section 4.2, we derive source contributions (source signal = original signal – background signal) using our background 

method and map them. To derive our source contributions, we make predictions for the background for each time series 

observation collected using the derived background spline and then subtract those predictions from the original time series 165 

observations. We also derive source contributions using the Apte and Brantley techniques. We create the maps using the same 

methodology as Miller et al. (2020), described briefly here. Using our created road segment network, we take the mean of 

measurements the car makes as it drives past a road segment point in our network, coined the drive pass mean. We take the 

median of these drive pass means and map the result. To prevent the temporal conditions of drive pass means occurring within 

four hours of one another from biasing the overall median of the sample, we take the median of drive pass means occurring 170 

within that four hour time window to generate a four-hour drive pass median and then take the median of all four-hour drive 

pass medians to derive the map reduced median. We perform this procedure for the source contributions derived using our 

method and the source contributions derived using the other published methods. 
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3 Results – Proof of Concept 

3.1 Background Partitioning on an External Dataset  175 

A comparison between SIBaR’s partitioning and the partitioning originally published by Brantley et al. (2014) is given in 

Figure 3. Following the steps in SIBaR, the data are first smoothed with a thirty-second time window to dampen the influence 

of outliers. The HMM fitting step is performed, and the resulting state sequence decoded. The percentage of matching 

background/non-background designations is computed. The SIBaR partitioning step is able to match 86% of the originally 

published background/non-background designations. The mismatches could be attributed to the transition between the 180 

background/non-background portions of the route in the original study, which is observed in Figure 3 in the periods where 

background points show larger values than source points near periods of the transition (for example., the last blue spike at 

approximately 8:45AM).  Mismatches also could be a result of the effects of traffic on measurements in the background 

designated portion of the route and the inability of the SIBaR linearity assumption to capture all fine scale temporal variations 

within the background (see equations (2)-(3)). 185 
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In running this test, we note that the method is sensitive to the smoothing time window used. Figure S1 in the supplement 

illustrates SIBaR predictions for three different smoothing time windows on the same CO data set and shows that the method 

produces different state categorizations depending on the window used. We hypothesize that, in this instance, smoothing 

reduces the skewness of the data such that it better fits two switched lognormal Gaussian distributions. Different time windows 190 

should be investigated in using this method. In this instance, we use the thirty-second time window because background 

designated points are lower than their source designated counterparts.  

3.2 Application to Stationary Urban Background NOx Measurements 

Five-minute forward averages of SIBaR background predictions for NOx from GSV measurements (irrespective of location) 

are taken and compared to five-minute averages of the Moody Tower NOx  measurements on the same day. Only five-minute 195 

averages with complete data throughout the time interval are utilized. We filter measurements such that they fall between 10 

AM and 4 PM local time to remove any potential influences of rush hour traffic on the stationary monitor. We compute the 

Figure 3. Comparison between SIBaR-predicted background and source states and the originally published designation from 

Brantley et al. (2014). 
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root mean square error (RMSE) and mean absolute error (MAE) between SIBaR’s five-minute background averages and the 

monitor’s five minute averages, defined below: 

 200 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖−𝑛𝑖)2𝑇

𝑖

𝑇
            (10) 

 

𝑀𝐴𝐸 =
∑ |�̂�𝑖−𝑛𝑖|𝑇

𝒊

𝑇
            (11) 

 

in which �̂�𝑖 is the SIBaR-estimated five-minute average, 𝑛𝑖 is the monitor five-minute average, 𝑖 is an index which describes 205 

a matching five-minute time stamp, and 𝑇 is the total number of time stamps. We repeat the process for both the Apte and 

Brantley techniques and tabulate the values of RMSE and MAE to assess SIBaR performance relative to what has been 

published in the literature. The average NOx measurement reported by the stationary monitor during the time period is 10.34 

ppb.  RMSE and MAE values for all three techniques are given in Table 2. 

 210 

  

 

 

 

 215 

 

 

The Brantley technique consistently out performs the other two techniques in having lower RMSE and MAE values. In the 

sixty days of data that we examined, we find that the Brantley technique has the lowest RMSE values fifty out of sixty days 

tested, with SIBaR having the lowest RMSE value six out of the sixty days and the Apte technique having the remaining four.  220 

Technique RMSE MAE 

Apte 10.98 ppb 5.98 ppb 

Brantley 7.48 ppb 4.08 ppb 

SIBaR 11.61 ppb 7.77 ppb 

Table 2. Metrics that describe differences mapped source contributions between the three techniques for NOx.  
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To illustrate differences in flexibility between the three background techniques, an example daily time series of each 

background technique’s predictions is plotted in Figure 4. The Brantley technique’s background signal is more flexible than 

SIBaR’s. SIBaR’s flexibility is computationally limited due to the sheer number of points fit, necessitated by the fact that 

background assigned points on different days are needed to prevent extrapolation on days in which the first points in the time 

series are source designated. Greater flexibility could allow background estimates to better capture temporal variations in 225 

temporal background compared to less flexible techniques. However, the reverse could also be true: by being too flexible, the 

Brantley background technique could be capturing local pollution influences which coincide with local pollution influences in 

the stationary monitor. While the monitor’s measurements have been used as an indication of urban wide emission patterns, it 

does sit within a mile of a highway and rail line, potentially subjecting it to localized source influences. More work is needed 

to determine which of these outcomes is more likely to be the case.  230 

Figure 4. Example time series of background juxtaposed with the original mobile monitoring time series observations. 
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4 Results – Preliminary Applications 

4.1 Mapped Fractional Background State Contributions 

For the Houston mobile campaign, maps detailing the fractional contribution of the background state to the overall mapped 

points are created for CO2 and NOx. Individual observations assigned to a road segment point have their category designations 

assigned to the same point. The number of observations assigned the background category are then divided by the total number 235 

of observations assigned to the point to determine the fractional background state contribution. Figure 5 shows these census 

tract maps for NOx. Figure S2 in the supplement shows the maps for CO2.  It is important to note that these maps represent the 

fraction of the measurements that are categorized as background or source for the given pollutant at a given location. 

 

We note the following about the broad spatial patterns in mapped background state fraction presented in Figure 5. First, 240 

background state designated points dominate residential areas for both pollutants. This is encouraging, as it is expected that 

few point sources of these two pollutants would be found in residential neighborhoods except for those near industrial activity 

(Miller et al., 2020). Second, source state designated points dominate highways and busy arterials, which is expected given the 

large amounts of traffic on these roads. Finally, we note the appearance of source-dominated hotspots in front of point sources 

identified in our previous work (Miller et al., 2020). This is encouraging given that we found these road segments to be elevated 245 

compared to their surrounding neighbourhood domain. 

 

We take the background state fractions depicted in Figure 5 and bin them by distance to highway. The results are presented in 

Figure 6. We do the same for CO2 and present the results in Figure S3 in the supplement. The exponential behaviour exhibited 

in Figure 6 mirrors published exponential decays in roadside source pollutant concentrations (Apte et al., 2017; Karner et al., 250 

2010), while the sizeable interquartile ranges within each bin highlight the complexity and variability of source roadside 

gradients, which depend on emission rates, meteorology, geography, and other factors (Baldwin et al., 2015; Patton et al., 

2014).  
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 260 

 

 

Figure 5. Fraction of points aggregated to road segment network designated as background in SIBaR decoded states for NOx. 

Maps were generated following the methods outlined in Section 2.4. Points are mapped on a scale of 0 to 1; 1 implies all points 

aggregated to that road segment were designated as background, 0 implies all points were designated as non-background. Details 

of the census tracts are provided in Table S1.  Basemap generated by Matlab geobasemap ‘streets’ and is hosted by ESRI 
(Sources: Esri, DeLorme, HERE, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), 

MapmyIndia, Tomtom). 
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4.2 Comparison of Source Contribution Maps Using Different Background Removal Techniques 

As an illustration of the importance of carefully considering techniques for background quantification and removal and to put 

SIBaR calculations in context, we compare the source contribution maps generated using SIBaR to the Apte and Brantley 265 

techniques. We zoom in on the Ship Channel quadrant for ease of comparison in Figure 7. We refer the reader to Figures S4-

S12 in the Supplement to see maps for all other areas in the mobile monitoring campaign for both pollutants. The average NOx 

background predicted by the Apte, Brantley, and SIBaR techniques are 15.25 ppb, 11.58 ppb, and 11.14 ppb respectively. 

 

 270 

Figure 6. Boxplots of mapped background NOx fractions binned by distance from highway. The red line represents the median, 

the top and bottom edges represent the 75th and 25th percentiles, respectively, and the whiskers extend to the most extreme data 

points not considered outliers. 
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Figure 7 shows that the source contributions derived using the Apte technique are lower on highway compared to the source 

contributions derived using SIBaR and the Brantley techniques. The Brantley and SIBaR techniques both find higher source 

contributions on road segments with elevated NO and NO2 concentrations found in Miller et al. (2020) compared to the Apte 

technique. We hypothesize this occurs due to the smaller time window utilized in the Apte technique. The GSV vehicles would 

often sit in traffic on highways for extended periods of time, making a two-minute time window unsuitable for describing 275 

source durations during those time periods. While the two-minute assumption would be better suited for situations in which 

the car was exposed to source durations within that time interval (which is often the case in the Apte study), it would not be 

for source durations of a larger time interval, highlighting the challenges in assuming a static time window for extensive mobile 

monitoring campaigns with varying source durations.  

 280 

We plot road segment median source contributions derived by Apte and Brantley algorithms against the road segment median 

concentrations derived by SIBaR and present the results for NOx in Figure 8. Additionally, we plot lines of best fit derived 

using ordinary least squares (OLS).  The bottom panel plot in Figure 8 illustrates that SIBaR derives higher source contributions 

medians than the Apte technique, largely driven by differences in highway road segment medians. The line of best fit slope 

determined using OLS suggests that, on average, SIBaR median source contributions are ~45% higher than Apte median source 285 

contributions. The top panel scatter plot between Brantley and SIBaR road segment medians indicates much closer agreement 

Figure 7. Comparison of source contributions derived using different techniques in the Ship Channel Quadrant. Source 

contributions were aggregated according to the methods described in Section 2.4. Basemap generated by Matlab geobasemap 

‘streets’ and is hosted by ESRI (Sources: Esri, DeLorme, HERE, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China 

(Hong Kong), Esri (Thailand), MapmyIndia, Tomtom) 
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between the two techniques, with SIBaR estimating source contribution medians 2% higher than Brantley source contribution 

medians.  Data for CO2 are shown in Figures S13 and S14. 

Figure 8. Scatterplots of road segment median source contributions predicted by two different techniques (designated by “Apte” 

and “Brantley”) against their corresponding SIBaR median source contributions for NOx. 
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In addition to plotting the source contribution median, we also plot the source contribution inter quartile range for each road 

segment against each other for the different techniques and present them in Figures S15-S18. There are subtle differences in 290 

interquartile range between SIBaR and the Brantley technique for both NOx and CO2, suggesting that different source 

influences are captured on different days. However, these differences could also be attributed to differences in flexibility 

between SIBaR and Brantley such that SIBaR consistently predicts lower and more negative source contributions compared 

to the Brantley technique. 

5 Concluding Remarks 295 

We illustrate that SIBaR provides a defensible mechanism to quantify and remove background from air pollution monitoring 

data time series. Most notably, SIBaR does not rely on a static time window assumption to determine source impacts. This 

time window can have significant impact on the derived source contributions, as exhibited by the discrepancies between the 

Apte method and SIBaR shown in Section 4.2.  

Despite SIBaR’s rigor and advancements relative to previously published methods, our approach needs improvement. The 300 

analysis is sensitive to noise present within the time series, and smoothing and applying a log transformation does not 

necessarily eliminate problems associated with this noise. For example, Figure 9 exhibits a side-by-side comparison of SIBaR 

state predictions for non-transformed BC data and transformed BC data. Due to the noise in the time series, SIBaR is unable 

to generate a clean partition between background designated points and non-background ones. This sensitivity rests on the 

Figure 9.  Comparison of SIBaR state designations for log-transformed versus non transformed BC data for a day in the Houston 

mobile monitoring campaign. 
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data’s ability to be separated into two lognormal distributions. Taking the log of BC data in this case seems to exacerbate 305 

problems with skewness in the data distributions. 

 

Problems arise not only with instrument noise and applicability of lognormal distributions to describe data but also with the 

assumption of a linear time dependence. It is unrealistic to expect background air pollution to exhibit linear behavior, especially 

as time series duration extends (Luke et al., 2010). While the linearity assumption seems to be acceptable for time series of 310 

several hours of data, problems will most likely arise on time series of data by day or when time series are impacted by abrupt 

meteorological changes. Future work should incorporate assumptions of non-linear behavior into analysis. Several studies 

have been published showing the applicability HMMs to covariates expressed as splines (Langrock et al., 2015, 2018). 

However, trade-offs between computational time and precision would need to be considered. In its current iteration, SIBaR 

takes 2.5 hours to model background for millions of data points. The Brantley technique, in contrast, takes several minutes. 315 

 

Despite these shortcomings, SIBaR holds promise as a framework to quantify and remove background from air pollution 

monitoring time series. In its current state, it appears inferior to the Brantley technique based solely on computation time. 

However, problems with SIBaR seem more tied in with computational constraints than with its underlying theory. The SIBaR 

partitioning step captures transient behavior between background and non-background quite well, as the diagnostic results of 320 

Section 3.1 and the maps in Section 4.1 indicate. In addition to addressing other issues highlighted here, future work should 

focus on methods to reduce its computational time to make its use more justifiable.  

 

Code and Data Availability. Both the code and data are available on request. 

 325 

Author Contributions. BA developed, wrote, and tested the method in R with critical input and scientific guidance from RG 

and KE. RG supervised the project and provided feedback on significance of method’s results. BA wrote the manuscript. All 

authors contributed to the editing and review of this manuscript. 

 

Competing interests. The authors declare that there is no conflict of interest. 330 

 

Acknowledgements. The authors gratefully acknowledge the support of NIEHS (grant #R01ES028819-01).  We thank Halley 

Brantley for the provision of data and comments concerning results in Section 3.1 of the manuscript. We also appreciate 

support from the Environmental Defense Fund for the collection and provision of mobile data.  

https://doi.org/10.5194/amt-2021-5
Preprint. Discussion started: 28 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 

20 

 

References 335 

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, 

R. C. H. and Hamburg, S. P.: High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data, 

Environ. Sci. Technol., 51(12), 6999–7008, doi:10.1021/acs.est.7b00891, 2017. 

Baldwin, N., Gilani, O., Raja, S., Batterman, S., Ganguly, R., Hopke, P., Berrocal, V., Robins, T. and Hoogterp, S.: Factors 

affecting pollutant concentrations in the near-road environment, Atmos. Environ., 115, 223–235, 340 

doi:10.1016/j.atmosenv.2015.05.024, 2015. 

Brantley, H. L., Hagler, G. S. W., Kimbrough, E. S., Williams, R. W., Mukerjee, S. and Neas, L. M.: Mobile air monitoring 

data-processing strategies and effects on spatial air pollution trends, Atmospheric Meas. Tech., 7(7), 2169–2183, 

doi:https://doi.org/10.5194/amt-7-2169-2014, 2014. 

Brantley, H. L., Hagler, G. S. W., Herndon, S. C., Massoli, P., Bergin, M. H. and Russell, A. G.: Characterization of Spatial  345 

Air Pollution Patterns Near a Large Railyard Area in Atlanta, Georgia, Int. J. Environ. Res. Public. Health, 16(4), 535, 

doi:10.3390/ijerph16040535, 2019. 

Bukowiecki, N., Dommen, J., Prévôt, A. S. H., Richter, R., Weingartner, E. and Baltensperger, U.: A mobile pollutant 

measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution, 

Atmos. Environ., 36(36), 5569–5579, doi:10.1016/S1352-2310(02)00694-5, 2002. 350 

Caplin, A., Ghandehari, M., Lim, C., Glimcher, P. and Thurston, G.: Advancing environmental exposure assessment science 

to benefit society, Nat. Commun., 10(1), 1–11, doi:10.1038/s41467-019-09155-4, 2019. 

Chambliss, S. E., Preble, C. V., Caubel, J. J., Cados, T., Messier, K. P., Alvarez, R. A., LaFranchi, B., Lunden, M., Marshall, 

J. D., Szpiro, A. A., Kirchstetter, T. W. and Apte, J. S.: Comparison of Mobile and Fixed-Site Black Carbon Measurements 

for High-Resolution Urban Pollution Mapping, Environ. Sci. Technol., 54(13), 7848–7857, doi:10.1021/acs.est.0c01409, 355 

2020. 

Dempster, A. P., Laird, N. M. and Rubin, D. B.: Maximum Likelihood from Incomplete Data Via the EM Algorithm, J. R. 

Stat. Soc. Ser. B Methodol., 39(1), 1–22, doi:10.1111/j.2517-6161.1977.tb01600.x, 1977. 

Forney, G. D.: The viterbi algorithm, Proc. IEEE, 61(3), 268–278, doi:10.1109/PROC.1973.9030, 1973. 

Gómez-Losada, Á., Pires, J. C. M. and Pino-Mejías, R.: Characterization of background air pollution exposure in urban 360 

environments using a metric based on Hidden Markov Models, Atmos. Environ., 127, 255–261, 

doi:10.1016/j.atmosenv.2015.12.046, 2016. 

Gómez-Losada, Á., Pires, J. C. M. and Pino-Mejías, R.: Modelling background air pollution exposure in urban environments: 

Implications for epidemiological research, Environ. Model. Softw., 106, 13–21, doi:10.1016/j.envsoft.2018.02.011, 2018. 

Gómez-Losada, Á., Santos, F. M., Gibert, K. and Pires, J. C. M.: A data science approach for spatiotemporal modelling of low 365 

and resident air pollution in Madrid (Spain): Implications for epidemiological studies, Comput. Environ. Urban Syst., 75, 1–

11, doi:10.1016/j.compenvurbsys.2018.12.005, 2019. 

Hankey, S. and Marshall, J. D.: Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black 

Carbon, PM2.5, Particle Size) Using Mobile Monitoring, Environ. Sci. Technol., 49(15), 9194–9202, 

doi:10.1021/acs.est.5b01209, 2015. 370 

https://doi.org/10.5194/amt-2021-5
Preprint. Discussion started: 28 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 

21 

 

Hankey, S., Sforza, P. and Pierson, M.: Using Mobile Monitoring to Develop Hourly Empirical Models of Particulate Air 

Pollution in a Rural Appalachian Community, Environ. Sci. Technol., 53(8), 4305–4315, doi:10.1021/acs.est.8b05249, 2019. 

Hudda, N., Gould, T., Hartin, K., Larson, T. V. and Fruin, S. A.: Emissions from an International Airport Increase Particle 

Number Concentrations 4-fold at 10 km Downwind, Environ. Sci. Technol., 48(12), 6628–6635, doi:10.1021/es5001566, 

2014. 375 

Karner, A. A., Eisinger, D. S. and Niemeier, D. A.: Near-Roadway Air Quality: Synthesizing the Findings from Real-World 

Data, Environ. Sci. Technol., 44(14), 5334–5344, doi:10.1021/es100008x, 2010. 

Langrock, R., Kneib, T., Sohn, A. and DeRuiter, S. L.: Nonparametric inference in hidden Markov models using P-splines, 

Biometrics, 71(2), 520–528, doi:10.1111/biom.12282, 2015. 

Langrock, R., Adam, T., Leos‐Barajas, V., Mews, S., Miller, D. L. and Papastamatiou, Y. P.: Spline-based nonparametric 380 

inference in general state-switching models, Stat. Neerlandica, 72(3), 179–200, doi:10.1111/stan.12133, 2018. 

Larson, T., Gould, T., Riley, E. A., Austin, E., Fintzi, J., Sheppard, L., Yost, M. and Simpson, C.: Ambient air quality 

measurements from a continuously moving mobile platform: Estimation of area-wide, fuel-based, mobile source emission 

factors using absolute principal component scores, Atmos. Environ., 152, 201–211, doi:10.1016/j.atmosenv.2016.12.037, 

2017. 385 

Lefer, B., Rappenglück, B., Flynn, J. and Haman, C.: Photochemical and meteorological relationships during the Texas-II 

Radical and Aerosol Measurement Project (TRAMP), Atmos. Environ., 44(33), 4005–4013, 

doi:10.1016/j.atmosenv.2010.03.011, 2010. 

Li, H. Z., Gu, P., Ye, Q., Zimmerman, N., Robinson, E. S., Subramanian, R., Apte, J. S., Robinson, A. L. and Presto, A. A.: 

Spatially dense air pollutant sampling: Implications of spatial variability on the representativeness of stationary air pollutant 390 

monitors, Atmospheric Environ. X, 2, 100012, doi:10.1016/j.aeaoa.2019.100012, 2019. 

Luke, W. T., Kelley, P., Lefer, B. L., Flynn, J., Rappenglück, B., Leuchner, M., Dibb, J. E., Ziemba, L. D., Anderson, C. H. 

and Buhr, M.: Measurements of primary trace gases and NOY composition in Houston, Texas, Atmos. Environ., 44(33), 4068–

4080, doi:10.1016/j.atmosenv.2009.08.014, 2010. 

Messier, K. P., Chambliss, S. E., Gani, S., Alvarez, R., Brauer, M., Choi, J. J., Hamburg, S. P., Kerckhoffs, J., LaFranchi, B., 395 

Lunden, M. M., Marshall, J. D., Portier, C. J., Roy, A., Szpiro, A. A., Vermeulen, R. C. H. and Apte, J. S.: Mapping Air 

Pollution with Google Street View Cars: Efficient Approaches with Mobile Monitoring and Land Use Regression, Environ. 

Sci. Technol., 52(21), 12563–12572, doi:10.1021/acs.est.8b03395, 2018. 

Miller, D. J., Actkinson, B., Padilla, L., Griffin, R. J., Moore, K., Lewis, P. G. T., Gardner-Frolick, R., Craft, E., Portier, C. J., 

Hamburg, S. P. and Alvarez, R. A.: Characterizing Elevated Urban Air Pollutant Spatial Patterns with Mobile Monitoring in 400 

Houston, Texas, Environ. Sci. Technol., 54(4), 2133–2142, doi:10.1021/acs.est.9b05523, 2020. 

Patton, A. P., Perkins, J., Zamore, W., Levy, J. I., Brugge, D. and Durant, J. L.: Spatial and temporal differences in traffic-

related air pollution in three urban neighborhoods near an interstate highway, Atmos. Environ., 99, 309–321, 

doi:10.1016/j.atmosenv.2014.09.072, 2014. 

Robinson, E. S., Gu, P., Ye, Q., Li, H. Z., Shah, R. U., Apte, J. S., Robinson, A. L. and Presto, A. A.: Restaurant Impacts on 405 

Outdoor Air Quality: Elevated Organic Aerosol Mass from Restaurant Cooking with Neighborhood-Scale Plume Extents, 

Environ. Sci. Technol., 52(16), 9285–9294, doi:10.1021/acs.est.8b02654, 2018. 

https://doi.org/10.5194/amt-2021-5
Preprint. Discussion started: 28 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 

22 

 

Shairsingh, K. K., Jeong, C.-H., Wang, J. M. and Evans, G. J.: Characterizing the spatial variability of local and background 

concentration signals for air pollution at the neighbourhood scale, Atmos. Environ., 183, 57–68, 

doi:10.1016/j.atmosenv.2018.04.010, 2018. 410 

Tessum, M. W., Larson, T., Gould, T. R., Simpson, C. D., Yost, M. G. and Vedal, S.: Mobile and Fixed-Site Measurements 

To Identify Spatial Distributions of Traffic-Related Pollution Sources in Los Angeles, Environ. Sci. Technol., 

doi:10.1021/acs.est.7b04889, 2018. 

TIGER/Line Shapefile, 2018, county, Harris County, TX, All Roads County-based Shapefile - Data.gov, [online] Available 

from: https://catalog.data.gov/dataset/tiger-line-shapefile-2018-county-harris-county-tx-all-roads-county-based-shapefile 415 

(Accessed 19 October 2020). 

Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J. and De Baets, B.: Mobile monitoring for mapping 

spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset, Atmos. 

Environ., 105, 148–161, doi:10.1016/j.atmosenv.2015.01.017, 2015. 

Visser, I. and Speekenbrink, M.: depmixS4: An R Package for Hidden Markov Models, J. Stat. Softw., 36(1), 1–21, 420 

doi:10.18637/jss.v036.i07, 2010. 

Wood, S. N.: Thin plate regression splines, J. R. Stat. Soc. Ser. B Stat. Methodol., 65(1), 95–114, doi:10.1111/1467-

9868.00374, 2003. 

Zhang, X., Chen, X. and Zhang, X.: The impact of exposure to air pollution on cognitive performance, Proc. Natl. Acad. Sci., 

115(37), 9193–9197, doi:10.1073/pnas.1809474115, 2018. 425 

 

 

 

 

https://doi.org/10.5194/amt-2021-5
Preprint. Discussion started: 28 January 2021
c© Author(s) 2021. CC BY 4.0 License.


