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Author Statement

I thank the referee for their time to review this manuscript and their constructive critiques. Below
are itemized responses to the referees’ comments. In response to the comments, Section 2.3 of the
manuscript was significantly expanded. The complete revised section is mentioned in several
responses. To avoid repetition, the revised section is reproduced at the end of the document.

Response to Reviewer #1

Overview
This manuscript presents a software package to invert aerosol size distributions from measure-
ments, in particular from scanning mobility particle sizers (SMPSs), using the Tikhonov regulariza-
tion approach.

This manuscript sits at the intersection of producing open-source, scientific code and presenting
new scientific ideas. The reviewer admits this is an awkward position, as existing dissemination
methods are not amendable to publishing well-maintained software, which is a critical component
to modern, reproducible analysis. That being said, the scientific contributions of the underlying
code are not hugely significant. Inversion of aerosol distributions using Tikhonov regularization
is well-established. In fact, the author already notes one other instance of open-source software
designed - at least in part - for this task (Hansen). (Other codes undoubtedly exist, though, admit-
tedly most of these codes are closed source or not immediately available to the user, with very few
exceptions, as the author notes.) Otherwise, this code does little to innovate on existing methods
and is somewhat behind in terms of state-of-the-art, such as not presenting any form of uncertainty
quantification - see Kandlikar and Ramachandran (1999); Voutilainen et al., (2001); and Voutilainen,
Kolehmainen, Stratmann, & Kaipio (2001). The use of a GSVD to speed computation is insightful
but is still based on existing literature. The code does also extend existing analysis tools to the Julia
programming language, but it is this reviewer’s opinion that this contributes little in terms of a
novel scientific contribution.

Of note, the author could focus on the less-investigated HTDMA problem and the specific chal-
lenges that arise for that application (e.g., present the underlying integral equation for that sce-
nario), which the authors note in the conclusion is one of the more novel aspects of this manuscript.

Altogether, this reviewer thinks the manuscript could be reoriented more towards novel scientific
components, including more of a focus on HTDMA. As such, the author SHOULD be given the
chance to respond to comments and refine the manuscript. MAJOR REVISIONS are recommended.

1I do not disagree with the referee about the scientific novelty of the regularization code. The 1 Response

manuscript makes no claim in this regard. It also is not the purpose of the paper. I agree
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that the most novel part of the work is the new HTDMA inversion. I have changed the
title to “Revisiting Matrix-Based Inversion of SMPS and HTDMA Data” to reflect that.
Uncertainty quantification described in the papers brought up by the referee is now included
in the discussion.

That said, I will defend the work largely “as is” as a significant contribution in Atmospheric
Measurement Techniques. Here is why. At issue is neither the mathematical novelty of
Tikhonov regularization nor it’s application to size distribution data. As mentioned by the
referee, and in the draft manuscript, this has been demonstrated in the literature long before.
The issue is about accessibility and extensibility of these techniques to the measurement com-
munity that is not trained in inverse problem solving. This is still true for size distribution
inversion. Quoting from an anonymous referee of the preceding 2018 manuscript:

In computational work, graduate students and senior scientists tend to “reinvent the
wheel.” This wastes time and introduces errors. (In contrast, we happily use purchased
instruments to make measurements sometimes with “black box” codes that contain
errors that are exceedingly difficult to discover.)

To perform size distribution inversion one can either use inflexible closed-source code, some-
how be lucky enough to be handed down code from established laboratories and use them
to ones own advantage, or write ones own. As stated by the referee quoted (it echos my
opinion), the latter option is unrealistic for researchers that do not seek a career in inverse
techniques, but simply want to make good measurements or develop instruments. This
work reports on critical improvements to the open DifferentialMobilityAnalyzers.jl pack-
age that addresses this problem. It significantly improves inversion speed and extending
the capabilities to higher order inversions. Those improvements are based on implementing
high-performance algorithms. Reporting these improvements in the literature is valuable in
its own right.

As discussed by Gysel et al. [2009], HTDMA inversions are complex to develop and not yet
applied universally to data. The novelty and purpose of this work is to describe a method-
ology to tame the complexity developing inversion schemes and to provide a means to apply
inversion to data for practitioners. Taming complexity is proposed to be achieved by three
new ideas. First, the code systematically classifies regularization input assumptions and
creates a simple interface for practitioners for trying out methods. I am not aware that
such an interface is available anywhere else. Second, the work introduces a means to cre-
ate design matrices from arbitrary forward models, although the details were only described
in the supplementary material. Third, this work further extends the formalisms first in-
troduced in the Petters 2018 paper, to show how it can be applied to HTDMA inversion.
Breaking the problem into three independent parts should help prototyping and adapting
future inversion approaches. The HTDMA inversion reported here is scientifically novel
by addressing the limitations of oscillatory solutions reported in Cubison et al. [2005] and
including multi-charge correction in the matrix. The conceptional and practical framework
on how to approach the forward problem is novel.

Specific Comments
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2 The focus on the programming aspects also often distracts from the underlying 2 Referee

science. For example, presenting the underlying mathematics in a programming
language- and program-specific representation without the more standard mathe-
matical forms (e.g., the underlying integral equations) makes the manuscript harder
to follow. It seems that in an attempt to tread a line between a scientific manuscript
and code documentation, the manuscript does not accomplish either task partic-
ularly well. In this respect, the manuscript may be better structured by clearly
presenting the underlying scientific principles in a more standard mathematical no-
tation, moving coding references out of the body of the manuscript. The alternative
- presenting the manuscript as a form of documentation for a program - is better
structured with specific coding examples in the text. However, this latter route is
less amendable to a research article in AMT. In this case, another platform (a techni-
cal note in a journal or an article in a computational journal) may be more suitable.
As a hybrid, the SI could be formally formed into documentation for the code that
refers to the scientific principles in the base article without cluttering the body with
code snippets and representations. Regardless, clarifications should be made before
further review.

3I thank the referee for this comment, even though I disagree with it. Before responding in 3 Response

detail, I would like to list the revisions to section 2.3 made in response to the comment.

1. Included explicit references to the standard integral equations.

2. Clarified the purpose of the notation as a formal representation of the problem
(they are not code snippets or code documentation; there is a separate detailed
code documentation that is a supplement to this work).

3. Cleaned up the notation to limit it to standard computational concepts, i.e.
eliminated parts that could be interpreted as programming language specific
constructs.

4. Significantly expanded the text to aid parsing of the expressions.

Rationale: The expressions for the forward model presented in the manuscript are uncon-
ventional and were perceived by the referee as “code snippets”. This is incorrect. What they
really represent is a domain specific language comprising a set of simple building blocks that
can be used to algebraically express the response functions intuitively through a form of
pseudo code. The expressions evaluate to a deterministic answer and represent just a differ-
ent form of mathematics. The main advantage of this approach is that the expressions
simultaneously encode the theory governing the transfer through the DMA and the
algorithm to compute the solution. The resulting expressions are concise. They are easily
identified within actual source code. This makes the code easily modifiable by non-experts to
change existing terms or add new convolution terms without the need to develop algorithms.

I want to elaborate on the computational viewpoint I have taken. The expressions evaluate
in the same way than mathematical functions. The applied concepts are borrowed from the
functional programming community and makes use of broadly understood concepts such as
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lambda functions, generic functions, pure functions, higher order functions, function com-
position, and domain specific algebras. The expressions are a valid format to represent the
mathematics. I have expanded the text to more carefully define each of the building blocks. I
also recognize that these concepts are less widely used in the atmospheric community than
the standard mathematical form. The expressions themselves can at first glance be more
difficult to parse than the seemingly simple and familiar integral equations. Nevertheless,
referee Mark Stolzenburg was able to follow the work (and call out two hidden assumptions)
from the admittedly not-so-well written initial draft section. The assumptions had a very
small effect on the final result, but of course it is important to address them when striving
for correctness (which is done in the revised manuscript). This proves my point(s) above. It
is trivial to recite the integral equations from one of the many preceding papers. Yet these
equations do not fully communicate the model. The assumptions I made that were identified
by Mark Stolzenburg would likely have never been detected in review, because the mathe-
matical form is completely detached from the algorithmic solution. However, I understand
the value of these equations and I now refer the reader to those works.

A disadvantage of the computational approach over the traditional mathematical approach
is that algorithmic descriptions lack standardization of notation. This can blur the line be-
tween the pseudo code notation and language specific syntax. The reviewer brought to light
that I had used some julia language specific constructs which I had introduced in the 2018
work. This is not ideal, because the expressions are really general and programming lan-
guage independent. I therefore eliminated language specific constructs and only use generic
functions that fall into the domain of general computing concepts. This results in more
general expressions that are interpretable in most modern programming languages/syntax
frameworks.

I firmly believe that the advantages of the computational approach outweigh their drawbacks.
This work is in part an experiment on how to conceptionally model DMA transfer in the
computational domain. It may in the end remain an obscure approach, and one that is not
the preferred one by the referee or the majority of the field, but this is not a justification to
hide it in a supplement or a computational journal. The work addresses atmospheric mea-
surement techniques using computational concepts, not computational concepts themselves.
Publication of this work is only adding to the list of available approaches; it does not force
anyone adopt either the notation or approach.

4Please see revised section 2.3 at the end of this document. 4 Revision

5 In the abstract, the authors note that the inversion speed is improved by ~200
5 Referee

times down to 2-5 ms. Is the implication to work towards online inversion of the
measurements? If not, there is a fair degree of flexibility in terms of inversion speed,
such that speed may not be the only or the best metric gauging improvement. Can
the authors comment? If the hope is for online inversion, can the authors comment
on the interface with the instrument, which would be a substantial component of
the overall process.
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6Improving performance in terms of speed is desirable as long as the inversion step presents 6 Response

some form of bottle neck for a particular application. Two example applications for inver-
sion discussed in this manuscript involve either inversion of large data sets using different
assumptions or inversion in real time during data acquisition. The quoted times are ap-
proaching the speed where the inversion bottle-neck disappears, although that will depend
on the specific circumstance. As mentioned in the manuscript data acquisition and inver-
sion on inexpensive reduced-instruction-set architecture is now possible. The interface to
instrumentation depends on the user. We use julia as language to write all data acquisition
software. The inversion is then just a function call to the software package(s) given as a sup-
plement in this manuscript. The author shares the data acquisition software for scanning
mobility particle sizers via GitHub (https://github.com/mdpetters/smpsDAQ) that is widely
used in our laboratory. However, it is currently not well-documented. We mostly run the
software on x86 and we are currently experimenting with running it on ARM v8 systems.
Translating the approach to Python or other languages should be fairly easy.

7Since there is no peer-reviewed publication of the SMPS software, and since 7 Revision

the response to the referee comment is publicly available, we do not discuss this
further in the manuscript.

8Related to the above, this code is 200 times faster compared to what? A previous 8 Referee

version of this code? It is worth noting that Tikhonov regularization for these dis-
tributions is a relatively straightforward problem, solving a simple linear system.
As such, the speed improvements are likely linked to the external libraries that
solve the linear system, something which the authors do imply later in the work.
However, this does limit the novelty of using those methods for a different problem

9Yes, 200 times faster compared to a previous non-optimized regularized inverse. The speed 9 Response

improvement is due to the application of factorization techniques and implementing the nu-
merical algorithms described in Section 2.1.2 instead of relying on the naive matrix inverse
used in Petters (2018). The implemented algorithms are general. Virtually all languages,
including julia, outsource basic linear algebra computations (e.g. the QR factorization) to
highly performant external libraries (LAPACK, OpenBLAS, MKL) and the inversion speeds
of these libraries are fairly similar. The reason that RegularizationTools.jl is distributed as
a separate package is that it can be applied to any inversion problem, not just the DMA
examples highlighted here. Examples for the generality of the approach are given in Section
2.1.4.

10Line 93: What is the dimension/size of the different quantities defined here? 10 Referee

Based on the subsequent discussion, it seems that A is assumed to be square (same
reconstruction and measurement discretization). The A matrix is not required to
be square, but this reviewer thinks it does make the GSVD simpler to compute (a
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non-square matrix may require special treatment) and should be stated clearly.

11The matrix A does not need to be square. All algorithms are implemented to allow for 11 Response

non-square problems. An example for a non-square problem is given in the documenta-
tion to RegularizationTools.jl, which is a formal supplement to this paper as stated in the
“Code and data availability.” section. The relevant example for a non-square problem
here: https://mdpetters.github.io/RegularizationTools.jl/stable/manual/#Creating-a-Design-
Matrix under “Example 2”. It is now stated that the A matrix need not to be square. The
description for matrix A2 has been updated to describe the discretization, where it also men-
tions that the matrix does not need to be square. It was given as square due to the specific
discretization scheme used to generate the figures in the draft.

12..., A is the design matrix (which may or may not be square), x is the true 12 Revision

quantity of interest, and ffl is the random error.

13..., the matrix A2 is understood to be computed for a specific input aerosol 13 Revision

size distribution, and ε is a vector that denotes the random error that may be
superimposed as a result of measurement uncertainties. The size of A2 is j× n.

14Line 108: Consider explicitly noting that automating the L-curve method, while 14 Referee

feasible, is often more challenging than other automated methods and can be af-
fected by noise and type of solver (which the authors admittedly imply later when
they state that the L-curve algorithm used previously occasionally failed).

15Done. 15 Response

16The optimal λ occurs at the corner of the L-curve, which can be found algorith- 16 Revision

mically. However, automating the L-curve method can be more challenging than
other automated methods, as further discussed below.

17Line 112: Clarify "standard form". What is the standard form? How would one 17 Referee

compute this standard form? Under what conditions does one not use the standard
form?

18Equation (3) is in standard form if L = I. (Stated a few lines above). The text around line 18 Response

112 has been slightly reworded to make this clear.

19If L 6= I, Eq. (3) is transformed to standard form using the generalized singular 19 Revision

value decomposition of A and L as derived by Eldén (1982) and summarized by
Hansen (1998).

20Line 208: Is Petters (2018) the best reference for this? The underlying equations 20 Referee
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for the discrete transfer function of the SMPS have been stated more formally many
times before this work. If there is something specific in Petters (2018) about which
the authors can be more explicit? There are also multiple ways to discretize the
problem, which could be a route to a more specific representation from Petters.
Further, why not present this in a more standard form, such as the transfer function
given by Stolzenburg (2018), rather than a programming language-specific repre-
sentation?

21Through Section 2.3: Similar to above, why not present all of the physics in terms 21 Referee

of its underlying integration equations rather than language-specific concatenation
and mapping operators or convolution "*" operators? For the discrete version, why
not state these in terms of matrices instead? Interestingly, there are multiple ways
to discretize the problem (e.g., finite element bases), which is also not detailed here.
The HTDMA problem is based on a double convolution with three components to
the underlying integral equation/kernel: 1) the transfer function of the first DMA,
2) a kernel describing the humidification process, and 3) the transfer function of the
second DMA. This feature is not clear from the current reading.

22Combined response to 20 and 21. Section 2.3 has been significantly revised based on com- 22 Response

ments by Mark Stolzenburg and comments above. The method used for matrix generation is
discussed in Section 2.2. The method is equivalent to the quadrature method, as discussed in
the supplemental documentation (https://mdpetters.github.io/RegularizationTools.jl/stable/manual/#Creating-
a-Design-Matrix).

23See revised section 2.3 at the end of this document. 23 Revision

24Line 268+: The current manuscript structure makes it challenging to ascertain 24 Referee

the role of the 30 (or other) bins for the growth factor in the overall procedure.
This reviewer would expect that the growth factor would contribute to another
matrix that bridges the mobility distribution output by the first DMA to the mobility
distribution input to the second DMA. In this respect, since the other components of
the problem have a constant number of bins (at least this reviewer gathered as such),
would it not make more sense to have a matrix with the same dimension/number
of bins as the larger problem? Further, depending on whether one is inferring
these quantities or not, this matrix could be combined with one or more of the
DMA transfer function kernels and thus be pre-computed, with little effect on the
overall computational effort. If one is inferring the growth factor, the structure of
the problem deviates somewhat from the more general aerosol inversion problem,
a fact that should be clarified. Namely, there will be at least two integrations (over
the mobility distributions for each DMA) with an intermediary quantity that is
being inferred. Then, there is also the question of the uncertainties in the input size
distribution, which is measured independently, also inferred, or assumed. Overall,
these definitions could be clarified.
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25The discretization/structure of the HTDMA inversion problem is now explained in more 25 Response

detail. Uncertainty in the size distribution will propagate into A2. This uncertainty is now
mentioned in the manuscript.

26For purposes of the forward model, the mobility grid for DMA 1 is discretized 26 Revision

at a resolution of i bins. Transmission through DMA is computed for a specified
zs (the dry mobility), g0 (the growth factor), and an input size distribution, which
results in a vector i concentrations along this grid. If the input size distribution
does not match the mobility grid the grids are merged through interpolation. The
mobility grid for DMA 2 is discretized at a resolution of j bins. The transmitted
and grown distribution from DMA 1 (i bins along the mobility axis of DMA 1)
is interpolated onto the mobility grid of DMA 2. The outer integral in Eq. (17)
is discretized into n bins that models Pg. If the output mobility of grid of DMA
2 does not match, the grids are merged through interpolation. The choice of i, j,
n, the ranges of mobility grids for DMA 1, DMA 2, and the range of Pg is only
constrained by computing resources and a physically reasonable representation
of the problem domain. Reasonable choices are i = 120, j = n = 30. The forward
model is used to cast Eq. (17) into matrix form such that the humidified mobility
distribution function is given by

m
δ2
t = A2Pg + ε (18)

where the subscript 2 specifies transmission through DMA 2, the matrix A2 is
understood to be computed for a specific input aerosol size distribution, and ε is
a vector that denotes the random error that may be superimposed as a result of
measurement uncertainties. The size of A2 is j× n. Uncertainties in the size dis-
tribution propagate into A2. The main influence of the error will be the relative
fractions of +1, +2, and +3 charged particles. Assuming a random error of ±20%
in concentration, the overall effect on the mδ2

t is expected to small.

27Line 276: The use of Poisson noise could be used to appropriately weight the 27 Referee

data. Why was this not considered (i.e., use weighted least-squares instead of naïve
least-squares)? One limitation is that measurements that span multiple orders of
magnitude will result in numerical instabilities, such that a baseline amount of
background noise may be required. Can the authors comment?

28I have not tried weighted least-squares. It’s plausible that it helps. However, Poisson noise 28 Response

may not be the only source of error in the measurement. (For examples, false counts from
leaks in the line, fluctuations of RH in sample flow, flow rate fluctuations, electronic noise,
etc. may all contribute to the error). It’s not clear how to estimate the total error from data.
Since L2-regularization works well for the problem there is no need to explore this approach.
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29Line 280: How often would this a priori information be known? In the experi- 29 Referee

mental section to follow, there is a short phrase about this being computed using
the inverse of the S matrix. Would it be worth noting this here? Also, what is S?
This information does not seem to be immediately available. 30For the HTDMA

30 Response
problem (line 280), the “a-priori estimate x0 is taken to be the normalized apparent growth
factor distribution, where the normalization ensures that the sum over all bins is unity.”
This information is derived from the measured data, so it is always available. This is now
mentioned in the text. The S matrix is used to compute the a-priori guess for size distribu-
tion inversion (line 355). It is explained there how it is derived at the location where it is
first introduced: “..., where S is obtained by summing the rows of A and placing the results
on the diagonal of S (Talukdar and Swihart, 2003).”

31The a-priori estimate x0 is taken to be the normalized apparent growth factor 31 Revision

distribution derived from the measured response function, where the normaliza-
tion ensures that the sum over all bins is unity

32Line 280: Continuing from above, do the choices for x_0 make sense given the 32 Referee

chosen Tikhonov matrix? For example, a first-differences Tikhonov matrix encodes
information about the expected slope of the solution. Using (x - x_0) implies regu-
larization of the slope of the residual with respect to an a priori estimate. Can the
author comment?

33With the exception of the of L0D1e−3B[0,1] method, which is creates a Tikhonov matrix 33 Response

that is less sensitive to sharp edges, all of the methods worked similarly well when tested
against simulated test data. For example the inversion using L2x0B[0,1] and L2B[0,1] pro-
duces reconstructions of similar quality (see supplementary information). So empirically,
inclusion of this particular a-priori x0 does not make a difference when smoothing with
derivative operators L1 and L2. I also experimented with L2x0B[0,∞] for size distribution in-
version (now discussed in the paper) and found that it works, though without the smoothing
benefits. This is because for large regularization parameters, the solution converges toward
the initial guess, regardless of the choice of L. Letting a-priori information through the filter
may thus negate the benefit of smoothing.

34Second order inversion using L2B[0,∞] produces a smooth, denoised solution 34 Revision

due to application of the derivative operator in the regularization filter matrix.
The solution converges even though no a-priori estimate is used, i.e., x0 = 0.
Inclusion of an a-priori in the form of L2x0B[0,∞] is possible. However, noise in
the a-priori propagates into the solution, thus negating the intended benefit of
the second order Tikhonov matrix.
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35With respect to, "Higher resolution grids generally lead to poor performance even 35 Referee

for method L0D1e−3B[0,1]." This is *slightly* surprising. Given the way Tikhonov
prior operates, one may expect the extra grid points to be filled using the prior (a
little like interpolating between lower resolution points, but not quite the same).
Could this be an indication of limitations in the error metric used (there are most
points at which the error is being calculated such that one is not comparing the same
quantity)? Alternatively, the regularization parameter would change depending on
the reconstruction grid. Was the regularization parameter re-optimized each time?

36The regularization parameter is optimized for each inversion. The effect is not due to the 36 Response

definition of the error metric. The effect of higher-resolution grids leading to poor perfor-
mance is limited to the case with a single bin/sharp edges and using the two-step data-based
regularization. The figure below shows and example of this for 120 bins and 30 bins and the
same input distribution.
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The two-step regularization technique first performs a reconstruction based on L0 and the
uses this to build a revised Tikhonov matrix. More bins generally lead to the same spread in
the first reconstruction. Narrowing the solution down further is not possible based on that
input. The text now clarifies that this only applies to the discrete resolution cases.

37Higher resolution grids generally lead to poor performance for discrete popu- 37 Revision

lations even for method L0D1e−3B[0,1].

38Paragraph around Line 315: Is the unweighted residual really the best metric? 38 Referee

How about measurement noise (one may have more confidence in some measure-
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ments than others)? Should this be accommodated in terms of calculating this
residual?

39Please see a detailed response to referee Mark Stolzenburg for detailed discussion about 39 Response

why the RMSE was selected as residual (the last comment in my response to his comments).
Weighing the RMSE by the measurement error is possible, but not desirable. Specifically,
that would mean that bins with low or zero counts would effectively be excluded from
the error estimation. However, there are cases where the model produces false oscillatory
solutions (predicted counts) when measured (or expected counts) are zero. Filtering these in
the error metric would bias the results.

40Line 355: Small values in the A matrix do not matter as much as where they 40 Referee

are located. Small diagonals or nearly all-zero rows/columns are the real issues.
Consider clarifying. There is the issue of numerical noise (scattered small values)
in the kernel, which does little but slow down the inversion. Was this dealt with?

41Thank you for pointing this out. The language is revised (see below). No attempt was 41 Response

made to filter numerical noise in the kernel.

42Inclusion of these terms results in a more ill-posed inverse problem due to 42 Revision

increasing overlap between the kernels [Kandlikar and Ramachandran, 1999].

43Figure 5: The real-world noise in Fig. 5 does not seem to match noise in other 43 Referee

number concentrations reported in the theoretical components of the work. Can the
authors comment on this difference and/or update the earlier scenarios to be more
representative?

44This is an excellent observation. There are a couple of differences between the earlier 44 Response

scenarios and this real-world example. The example is for size distribution measurement,
while the previous scenarios are for growth factor measurements. However, I verified that it
is true that random error in Fig. 5 is larger than what one predict from Poisson counting
statistics alone. As mentioned earlier, there are other factors that may increase random noise
in the data. In this particular case, the additional noise is related to the internal electronics
of the specific CPC model.
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The Figure shows a voltage scan from a DMA (TSI long column, 9:1 flow ratio, 120 s
voltage scan) acquired with the same CPC model (TSI 3771/3772) as in the paper. Each
bin corresponds to 1 second data. The two data streams are the digitized pulse output
acquired using an external pulse counter card and the output from the serial port. (For the
distributions in the paper, only serial port data were available). The serial port output is
much noisier than the pulse count and the issue is present for all units of that particular
model series. The pulse counts are more consistent with Poisson statistics. It is not entirely
clear to me why the CPC serial output is so poor for this model. It seems to be related to the
on-board processing of raw counts, which appears to be too slow. We identified this issue
in 2016 and now always acquire both serial port and pulse data when available. Since this
issue is related to a specific model and data acquisition mode there is no need to update the
hypothetical HTDMA scenarios. Obviously noisier data is more difficult to invert. The
observation that the noise exceeds the Poisson noise in the example is now is now mentioned
in the text.

45The ragged structure is typically explained by random noise due to Poisson 45 Revision

counting statistics. However, in this example the noise level is larger than Poisson
statistics alone, which is thought to be due to the processing of raw data internal
to the specific CPC model that was used to collect the data.

46For the temporally-evolving measurements, recent work by Ozon et al. 46 Referee
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(https://acp.copernicus.org/preprints/acp-2021-99/) presents an improvement to
this existing technique and is closer to state-of-the-art. Can the authors comment
and cite appropriately?

47Thank you for the comment. The possibility is now mentioned. It is not clear though how 47 Response

this would work in ambient settings where conditions can change rapidly and unpredictably
due to emissions or wind-direction changes. The possibility is mentioned in the revised
manuscript.

48In situation where the temporal evolution of the size distribution is predictable, 48 Revision

e.g. environmental chamber measurements, Kalman smoothing might be used to
predict the in-between states [Ozon et al., 2021b,a].

49Line 460: Code would never involve writing out the Fredholm integral equations, 49 Referee

making this statement a bit confusing. Further, scientific manuscripts supporting
such code probably should state the underlying Fredholm integral equations. As
before, program-specific language makes the scientific components of the article
harder to follow.

50Please see my response to the earlier comment about the motivation for this approach. 50 Response
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Revised Section 2.3

Design Matrices For Differential Mobility Analyzers
Differential mobility analyzers consist of two electrodes held at a constant- or time-varying elec-

tric potential. Cylindrical [Knutson and Whitby, 1975] and radial [Zhang et al., 1995, Russell et al.,
1996] electrode geometries are the most common. Charged particles in a flow between the elec-
trodes are deflected to an exit slit and measured by a suitable detector, usually a condensation
particle counter. The fraction of particles carrying k charges is described by a statistical distribution
that is created by the charge conditioner used upstream of the DMA. The functions governing the
transfer through bipolar charge conditioners, single DMAs, and tandem DMAs are well understood
[Knutson and Whitby, 1975, Rader and McMurry, 1986, Reineking and Porstendörfer, 1986, Wang
and Flagan, 1990, Stolzenburg and McMurry, 2008, Jiang et al., 2014].

The traditional mathematical formulation of transfer through the DMA is summarized in Stolzen-
burg and McMurry [2008] and references therein. Briefly, the integrated response downstream of
the DMA operated at voltage V1 is given by a single integral that includes a summation over all
selected charges. The size distribution is measured by varying voltage V1, which produces the
raw response function defined as integrated response downstream of the DMA as a function of
upstream voltage. The size distribution is found by inversion. The basic mathematical problem
associated with inverting the response function to find the size distribution is summarized by
Kandlikar and Ramachandran [1999]. The integral is discretized by quadrature to find the design
matrix that maps the size distribution to the response function. L2 regularization is one of several
methods to reconstruct the size distribution from the response function [Voutilainen et al., 2001,
Kandlikar and Ramachandran, 1999].

The integrated response downstream of a tandem DMA that is operated at voltages V1 and V2

is given by a double integral and the summation of all selected charges. The integrals are over the
upstream size distribution and the aerosol conditioner function, which here is the growth factor
frequency distribution. Scanning over a range of voltages V2 results in the raw TDMA response
function. The objective is to find find a design matrix that maps the growth factor frequency
distribution to the raw TDMA response function.

Petters [2018] introduced a computational approach to model transfer through the DMA. The
main idea of the approach is to provide a domain specific language comprising a set of simple
building blocks that can be used to algebraically express the response functions intuitively through
a form of pseudo code. The main advantage of this approach is that the expressions simultaneously
encode the theory governing the transfer through the DMA and the algorithmic solution to compute
the response function. The resulting expressions are concise. They are easily identified within
actual source code. This makes the code easily modifiable by non-experts to change existing terms
or add new convolution terms without the need to develop algorithms.

A disadvantage of the computational approach over the traditional mathematical approach is
that computation lacks standardization of notation. This can blur the line between general pseudo
code and language specific syntax. Some of the applied computing concepts may be less widely
known when compared to standard mathematical approaches. Nevertheless, the author believes
that the advantages of the computational approach outweigh the drawbacks. Therefore, this work
builds upon the expressions reported in Petters [2018]. Updates and clarifications to the earlier
work are noted where appropriate.
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The computational language includes a standardized representation of aerosol size distributions,
operators to construct expressions, and functions to evaluate the expressions. Size distributions en-
coded as a SizeDistribution composite data type. Composite data types combine multiple arrays into
a single symbol for ease of use, facilitating faster experimental design and analysis. SizeDistribu-
tion consists of vectors of bin edges, bin midpoints, number concentration, log-normalized spectral
density, and logarithmic bin widths. SizeDistributions are denoted in blackboard bold font (e.g., n,
r, etc.). SizeDistributions are the building block of composable algebraic expressions through oper-
ators that evaluate to transformed SizeDistributions. For examples, n1 + n2 is the superposition of
two size distributions and f ∗ n is the uniform scaling of the concentration fields by factor f , A ∗ n
is matrix multiplication of A and concentration fields of the size distribution, and f · n is the uni-
form scaling of the diameter field of the size distribution by factor f , and T · n is the elementwise
scaling of the diameter field by factor T. (Note that the Petters (2018) used T. ·n is the elementwise
scaling. The extra dot has which has been dropped to stay consistent with the current software
implementation).

Functions are used to reduce expressions. Generic functions include, ∑( f , m) evaluates the
function f (x) for x = [1, . . . , m] and sums the result. If f (X) evaluates to a vector, the sum is the
sum of the vectors. The function map( f , x) applies f (x) to each element of vector x and returns a
vector of results in the same order. The function reduce( f , x) applies the bivariate function f (x, y) to
each element of x and accumulates the result. The function mapreduce( f , g, x) combines map and
reduce. It applies function f to each element in x, and then reduces the result using the bivariate
function function g(x, y). The function vcat(x, y) concatenates arrays x and y along one dimension.
Anonymous functions are used as arguments to reducing functions. Anonymous functions are
denoted as x → expression, where x is the argument consumed in the evaluation of the expression.
These functions are generic and represent widely used computing concepts. They are implemented
in most modern programming languages.

DMA geometry, dimensions, and configuration are abstracted into composite types Λ (config-
uration comprising flow rates, power supply polarity, and thermodynamic state) and δ (DMA
domain defined by a mobility/size grid). Each DMA is fully described by a pair Λ,δ. Subscripts
and superscripts are used to distinguish between different configurations in chained DMA setups,
e.g. δ1 and δ2 denoting the first and second DMA, respectively. Application of size distribution
expressions to transfer functions constructs a concise model of the transmitted DMA mobility dis-
tribution, denoted as the DMA response function. Implementation of the language is distributed
through a freely-available and independently documented package DifferentialMobilityAnalyzers.jl,
written in the Julia language. Expressions in the text are provided in general mathematical form
for readability.

Petters [2018] gives a simple expressions that model transfer through the DMA. The function
TΛ,δ

size (k, zs) evaluates to a vector representing the fraction of particles carrying k charges that exit
DMAΛ,δ as a function of mobility

TΛ,δ
size (k, zs) = Ω(Z, zs/k, k). ∗ Tc(k, Dp,1). ∗ Tl(Z, k) (10)

where zs is the centroid mobility selected by the DMA (determined by the voltage and DMA
geometry), Z is a vector of mobilities, Ω is the diffusing DMA transfer function [Stolzenburg
and McMurry, 2008], Tc is the charge frequency distribution [Wiedensohler, 1988], and Tl is the
diameter-dependent transmission loss [Reineking and Porstendörfer, 1986]. The functions Ω and
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Tl have been updated from Petters (2018). The version in Petters (2018) computed the shape of the
transfer function and losses for the mobility diameter corresponding to singly charged particles
and then apply the same shape of the transfer function and diffusional loss to the multiply charged
particles. Binding the charge state explicitly to Ω and Tl results in proper accounting of diffusional
losses and broadening of the transfer function for multiply charged particles in TΛ,δ

size (k, zs).
Petters [2018] also gives an expression that evaluates to the convolution matrix for passage

through a single DMA.

A = mapreduce{zs → Σ[k→ TΛ,δ
size (k, zs), m]T , vcat, Z} (11)

where, m is the upper number of multiply charged particles, T is the transpose operator, and Z is
a vector of centroid mobilities scanned by the DMA. Eq. (11) evaluates to the same as Eq. (8) in
Petters (2018), but the notation is revised to be more general by removing the julia specific splatting
construct and replacing it with widely used generic functions.

To help with parsing the expression, TΛ,δ
size (k, zs) evaluates to a vector of transmission for k charges

and set point centroid mobility zs as a function of the entire mobility grid (e.g. 120 bins discretized
between mobility z1 and z2). The function Σ[k → TΛ,δ

size (k, zs), m] superimposes the vectors for
all charges. Mapping zs → Σ[k → TΛ,δ

size (k, zs), m] over the mobility grid Z produces an array of
vectors, each corresponding to the transmission for a single size bin. Transposing the vectors and
reducing the collection through concatenation produces the design matrix that links the mobility
size distribution to the response function, i.e.

r = An+ ε (12)

where r is the response distribution, n is the true mobility size distribution, and ε is a vector
denoting the random error that may be superimposed as a result of measurement uncertainties.
Note that by design n and r are SizeDistribution objects, which represented the distribution as a
histogram in both spectral density units (dN/dlnD) and concentration per bin units. The latter is
the raw response function defined as integrated response downstream of the DMA as a function of
upstream voltage (or corresponding zs or corresponding apparent +1 mobility diameter).

The mobility distribution exiting DMA 2 in the humidified tandem DMA is evaluated using the
expressions

M
δ1
k = Πk ·

{
g0 ·

[
TΛ,δ

size (k, zs) ∗ n
]}

(13)

In Eq. (13), M
δ1
k evaluates to the apparent +1 mobility distribution particles that exit the DMAΛ,δ

at the nominal setpoint-diameter defined by mobility zs (or z-star) in DMA 1 and particle charge
k. Subscripts are used to differentiate DMA 1 and 2 which possibly have different geometries,
flow rates, and grids, e.g. Λ1, Λ2 and δ1, δ2. ΠΛ,δ

k is the projection of particles having physical
diameter D and carrying k charges onto the apparent +1 mobility grid. It is a function that converts
each diameter/charge pair to mobility and interprets the result as apparent +1 mobility diameter.
g0 = Dwet/Ddry is the true diameter growth factor, Ddry is the selected diameter by DMA 1, Dwet is
the diameter after the humidifier, TΛ,δ

size (k, zs) is as in Eq. (10), and n is the mobility size distribution
upstream of DMA 1.

To help parse Eq. (13), the product TΛ,δ
size (k, zs) ∗ n evaluates to the transmitted mobility distribu-

tions of particles carrying k charges at the set-point mobility zs in DMA 1. The size distribution is
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grown by the growth factor g0. The resulting size distribution is shifted to the apparent +1 mobility
diameter using ΠΛ,δ

k . Equation (13) differs from that in Petters [2018] where it was assumed that
particles of all charges grow by the same amount. This is incorrect. Particles carrying more than a
single charge alias at a smaller particle size [Gysel et al., 2009, Shen et al., 2021]. The effect is due
to the size dependence of the slip-flow correction factor and captured through the function ΠΛ,δ

k .
Equation (13) assumes that g0 applies to all particle sizes.

The total humidified mobility distribution mδ2
t exiting DMA 2 is given by

m
δ2
t =

m

∑
k=1

(
Ok ∗M

δ1
k

)
(14)

where, m is upper number of charges on the multiply charged particles, Z is a vector of centroid
mobilities scanned by DMA 2, and

Ok = mapreduce{zs → [ΩΛ2,δ2(Z, zs, k). ∗ TΛ2,δ2
l (Z, k)]T , vcat, Z} (15)

is the convolution matrix for transport through DMA 2 and particles carrying k charges. Equations
(14) and (15) modified from those in Petters (2018) in the following manner. The convolution matrix
Ok is computed individually for each charge. The version in Petters (2018) computed the matrix
corresponding to singly charged particles and then apply the same matrix to multiply charged
particles. Since Ok is now charge resolved, it is moved into the summation in Eq. (14). Computation
of Ok through Eq. (15) has been revised to be more general by removing a julia language specific
construct. O1 computed by Eq. (15) produces the same matrix as in Petters (2018).

If the aerosol is externally mixed, the humidified distribution function is given by

m
δ2
t =

∫ ∞

0
Pg

[
m

∑
k=1

(
Ok ∗M

δ1
k

)]
dg0 (16)

where Pg is the growth factor probability density function and the diameters in M
δ1
k are normalized

by Ddry. mδ2
t in Eq. (16) is the forward model through the tandem DMA. Using the notation in

section 2.2,

F(x, c) =
∫ ∞

0
Pg

[
m

∑
k=1

(
Ok ∗M

δ1
k

)]
dg0 (17)

where x is the true Pg and the vector c of constraining parameters comprises the DMA setup
Λ1, Λ2, δ1, δ2 and upstream size distribution n. Computer code that creates a forward model for
tandem DMAs has been added to the DifferentialMobiltyAnalyzers.jl package and is annotated in the
documentation of the package. For purposes of the forward model, the mobility grid for DMA 1

is discretized at a resolution of i bins. Transmission through DMA is computed for a specified zs

(the dry mobility), g0 (the growth factor), and an input size distribution, which results in a vector
i concentrations along this grid. If the input size distribution does not match the mobility grid the
grids are merged through interpolation. The mobility grid for DMA 2 is discretized at a resolution
of j bins. The transmitted and grown distribution from DMA 1 (i bins along the mobility axis
of DMA 1) is interpolated onto the mobility grid of DMA 2. The outer integral in Eq. (17) is
discretized into n bins that models Pg. If the output mobility of grid of DMA 2 does not match,
the grids are merged through interpolation. The choice of i, j, n, the ranges of mobility grids for
DMA 1, DMA 2, and the range of Pg is only constrained by computing resources and a physically
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reasonable representation of the problem domain. Reasonable choices are i = 120, j = n = 30.
The forward model is used to cast Eq. (17) into matrix form such that the humidified mobility
distribution function is given by

m
δ2
t = A2Pg + ε (18)

where the subscript 2 specifies transmission through DMA 2, the matrix A2 is understood to be
computed for a specific input aerosol size distribution, and ε is a vector that denotes the random
error that may be superimposed as a result of measurement uncertainties. The size of A2 is j× n.
Uncertainties in the size distribution propagate into A2. The main influence of the error will be
the relative fraction of +1, +2, and +3 charged particles. Assuming a random error of ±20% in
concentration, the overall effect on the mδ2

t is expected to small.
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