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Author Statement

I thank Dr. Stolzenburg for his time to review this manuscript and his constructive critiques.
Below are itemized responses to the referees’ comments. In response to the comments, Section 2.3
of the manuscript was significantly expanded. The complete revised section is mentioned in
several responses. To avoid repetition, the revised section is reproduced at the end of the
document.

Response to Reviewer #2 (Mark Stolzenburg)

Overview
1 Disclaimer: Other than just some broad principles, this reviewer is not familiar 1 Referee

with regularization techniques or the Julia syntax and is therefore ill-equipped to
properly review the technical nature of that aspect of this work. Attention is gen-
erally focused on other aspects of this paper. Also, the lack of full comprehensive
documentation of all the notation used in the equations presented here has fre-
quently hampered a thorough understanding of these equations. However, it is still
possible to discern the general meaning of most equations. Equation (10) is a good
example of this. The definition of the map() function and the interpretation of the
right arrow (→) are not given in the text here. At least the map() function is defined
in the Petters (2018) reference. It appears the arrow notation is part of notation for
a series or sequence.

2 I apologize for the missing definitions in the draft. These are now included in the revised 2 Response

version.

3 This manuscript addresses the important issue of automating the processing of 3 Referee

tandem DMA data. The idea of inverting data with regularization is sound. How-
ever, there are problems with the forward model of calculating system response
from a known input distribution. If these issues can be properly addressed, the
resulting software package should prove of great utility.

4 I thank Dr. Stolzenburg for his detailed and helpful review comments below. The issue 4 Response

raised regarding the forward model is addressed via a revision of the text and equations. The
comments highlighted two assumptions that had no impact on the result, but were important
to revise to be as correct as possible.

Major Comments
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5 There appears to be a problem with proper accounting of diffusional losses and 5 Referee

broadening of the transfer function, Ω, for DMA2. Eq. (10) in the form of A charac-
terizes the transfer through DMA1 while the equation for O (line 230) characterizes
transfer through DMA2. As noted in Petters [2018], these two expressions are anal-
ogous except for the inclusion of Tc in the former and the limitation of the summa-
tion to k = 1 in the latter. In the DMA, a particle is sized according to its apparent
mobility diameter whereas diffusional losses as well as broadening of the transfer
function are dependent on the true mobility diameter via particle diffusivity. Given
one of these diameters, the particle charge is required to calculate the other and
ultimately TΛ,δ

size . Thus, it is important to sum over all charge states individually to
calculate the diffusing transfer through a DMA. As this is not done for the second
DMA, the given expression cannot be properly accounting for transfer of multiply
charged particles.

6Thank you for the raising this issue. In fact, the issue affects both the matrix A and the 6 Response

matrix O. The version in Petters (2018) and the draft manuscript compute the shape of
the transfer function and losses for the mobility diameter corresponding to singly charged
particles and then apply the same shape of the transfer function and diffusional loss to the
multiply charged particles. The error that is introduced by this assumption/simplification is
generally small since the fraction of multiply charged particles is small for sizes when dif-
fusional broadening becomes important, and because the change in the shape of the transfer
function/diffusional loss rate between the sizes is small. Nevertheless, there is no need to
make this simplification. The formalism is now updated to properly account for the transfer
of multiply charged particles.

7Section 2.3 of the manuscript has been revised to include this effect. Since this 7 Revision

section includes changes in response to multiple other comments, please see the
changed section at the end of this document for details.

8 The interpretation of Eq. (11) and its components would be greatly facilitated by 8 Referee

an explicit indication of the independent parameters of distribution for the input
size distribution n

cn. Also, the precise form of ncn (e.g. dN/dDp, dN/dlnDp, or
dN/dlogDp) is important. The most obvious set of independent particle parameters
would be (true) mobility diameter, D1, and charge, k. However, it appears that ncn

is distributed according to apparent mobility diameter, Dk, and k in order to have
the balance of the equation work out. The apparent mobility diameter is then pre-
multiplied by the effective, or apparent, growth factor, g fk(zs, g f0), and then by
the ratio of true to apparent mobility diameters, D1/Dk. However, this ratio is
being evaluated at the DMA1 centroid mobility, zs, but applied to the Z grid after
growth. Since this ratio is a function of size, this does not work out. Also, this
means that the input distribution to the operator characterizing DMA2 transfer is
in terms of true mobility diameter, in contrast to the ncn input to DMA1 and A.
All of this switching back and forth between true and apparent mobility diameter
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seems overly complicated.

9The precise form n
cn is now clarified in the text just above the equation in question. It 9 Response

is a histogram in dN/dlnD units. The “cn” has been dropped based on a later comment.
The distribution n is along the actual mobility diameter. The referee is correct that the way
it was formulated in the draft was confusing due to multiple switches between true and
apparent mobility diameter. The referee is also correct that the ratio was being evaluated at
the DMA1 centroid mobility, zs, but applied to the Z grid after growth. The assumption was
that particles within a charge grouping all behave the same. I changed the equation and the
code to make it more intuitive and more correct, i.e. when projecting the physically grown
diameter back to mobility space, the correction is applied for each point in the Z grid. The
impact on the calculation due to the change is almost imperceptibly. Text has been added to
help parsing the equation.

10 10 Revision

r = An+ ε (12)

where r is the response distribution, n is the true mobility size distribution, and
ε is a vector denoting the random error that may be superimposed as a result
of measurement uncertainties. Note that by design n and r are SizeDistribu-
tion objects, which represented the distribution as a histogram simultaneously
as spectral density units (dN/dlnD) and concentration per bin units. The latter
is the raw response function defined as integrated response downstream of the
DMA as a function of upstream voltage (or corresponding zs or corresponding
apparent +1 mobility diameter).

The mobility distribution exiting DMA 2 in the humidified tandem DMA is
evaluated using the expressions

M
δ1
k = ΠΛ,δ

k ·
{

g0 ·
[

TΛ,δ
size (k, zs) ∗ n

]}
(13)

In Eq. (13), M
δ1
k evaluates to the apparent +1 mobility distribution particles that

exit the DMAΛ,δ at the nominal setpoint-diameter defined by mobility zs (or z-
star) in DMA 1 and particle charge k. Subscripts are used to differentiate DMA 1
and 2 which possibly have different geometries, flow rates, and grids, e.g. Λ1, Λ2

and δ1, δ2. ΠΛ,δ
k is the projection of particles having physical diameter D and car-

rying k charges onto the apparent +1 mobility grid. It is a function that converts
each diameter/charge pair to mobility and interprets the result as apparent +1
mobility diameter. g0 = Dwet/Ddry is the true diameter growth factor, Ddry is the
selected diameter by DMA 1, Dwet is the diameter after the humidifier, TΛ,δ

size (k, zs)

is as in Eq. (10), and n is the mobility size distribution upstream of DMA 1.
To help parse Eq. (13), the product TΛ,δ

size (k, zs) ∗ n evaluates to the transmitted
mobility distributions of particles carrying k charges at the set-point mobility zs

in DMA 1. The size distribution is grown by the growth factor g0. The result-
ing size distribution is shifted to the apparent +1 mobility diameter using ΠΛ,δ

k .
Equation (13) differs from that in Petters [2018] where it was assumed that parti-
cles of all charges grow by the same amount. This is incorrect. Particles carrying
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more than a single charge alias at a smaller particle size [Gysel et al., 2009, Shen
et al., 2021]. The effect is due to the size dependence of the slip-flow correction
factor and captured through the function ΠΛ,δ

k . Equation (13) assumes that g0

applies to all particle sizes.

Minor Comments and Corrections
11 line 158: Insert a space between “as” and “x”. 11 Referee

12Done. 12 Response

13 line 186: The description of a DMA here is a bit too brief, saying nothing about 13 Referee

the flow. Try “Charged particles in a flow between the electrodes are deflected to
an exit slit...”

14Thank you for the suggestion. Done. 14 Response

15 lines 188-189: “The functions ... and tandem DMAs is are well understood ...” 15 Referee

16Done. 16 Response

17line 200: “T � n”should be “T. � n” according to Petters (2018). Presumably T is a 17 Referee

vector, but this differs from the notation conventions given in lines 87-88.

18Yes, “T � n”should be “T. � n” according to Petters (2018). (T is a vector). The original 18 Response

version was developed on julia v0.6 and it allowed me to create the “T. � n” construct which
was desirable to create a consistent treatment of vectors. Once julia updated to 1.x series, it
was not longer possible to use this notation and I dropped the extra dot. This difference is
now noted in the text.

19See updated section 2.3 19 Revision

20 Eq. (10): Here, TΛ,δ
size alone characterizes transfer through the DMA. Evidently the 20 Referee

balance of this expression puts this into the required form for later matrix manipu-
lation. Some additional explanation of how this matrix is created from TΛ,δ

size would
be useful here. And though perhaps only parentheses may be used in program-
ming, the readability of this equation would be greatly improved by alternating “(
)” with “[ ]” and “{ }”.

21The equation(s) have been updated for readability by alternating “( )” with “[ ]” and “{ 21 Response
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}”. The equation has also been rewritten for clarity by removing julia language specific
constructs and giving much more details about the functions used in the text. As pointed
out in Petters (2018) “It may not be immediately obvious why the expression ... evaluates to
the convolution matrix (or that it evaluates to a matrix at all). A step-by-step explanation
is in Notebook S2.” The reference to the supplement of the preceding work is still valid.
Nevertheless, some additional explanation has also been added to the text.

22 Please see entire updated section 2.3 for further context and definitions. The 22 Revision

specific changes referring to this comment are

Petters [2018] also gives an expression that evaluates to the convolution matrix
for passage through a single DMA.

A = mapreduce{zs → Σ[k→ TΛ,δ
size (k, zs), m]T , vcat, Z} (11)

where, m is the upper number of multiply charged particles, T is the transpose
operator, and Z is a vector of centroid mobilities scanned by the DMA. Eq. (11)
evaluates to the same as Eq. (8) in Petters (2018), but the notation is revised
to be more general by removing the julia language specific splatting construct
and replacing it with the widely used higher-order function mapreduce defined
earlier.

To help with parsing the expression, TΛ,δ
size (k, zs) evaluates to a vector of transmis-

sion for k charges and set point centroid mobility zs as a function of the entire
mobility grid (e.g. 120 bins discretized between mobility z1 and z2). The func-
tion Σ[k → TΛ,δ

size (k, zs), m] superimposes the vectors for all charges. Mapping
zs → Σ[k → TΛ,δ

size (k, zs), m] over the mobility grid Z produces an array of vectors,
each corresponding to the transmission for a single size bin. Transposing the
vectors and reducing the collection through concatenation produces the design
matrix that links the mobility size distribution to the response function, i.e.

r = An+ ε (12)

where r is the response distribution, n is the true mobility size distribution, and
ε is a vector denoting the random error that may be superimposed as a result of
measurement uncertainties. Note that by design n and r are SizeDistribution ob-
jects, which represented the distribution as a histogram in both spectral density
units (dN/dlnD) and concentration per bin units.

23 lines 213, 230: Though zs is defined in lines 223-224, what is zs
k in the indicated 23 Referee

lines? Since zs is used in Eq. (10), it might be more conveniently defined in line
211 (rather than line 224) along with Z as “... Z is a vector of centroid mobilities, zs,
scanned by the DMA...”

24The term zs
k has been rewritten as zs/k for clarity 24 Response
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25 lines 216-217: “The size distribution after passage through the DMA is given by 25 Referee

r = An+ ε, where r is the response function... .” The size distribution exiting the
DMA and the response of the detector are not the same thing. The former is usually
given as dN/dlogDp while the latter, as in the case of a CPC, is given by NCPC, a
simple number concentration. Also, there is the matter of the detector efficiency as
well as the transport efficiency between the DMA and the detector, unless the latter
has been subsumed into the DMA transport efficiency. As A is to later serve as
the operator corresponding to transfer through DMA1 in a tandem DMA setup, A
must represent a size distribution, not a response function.

26It is both. Please see revisions to preceding comment which spells this out. Currently the 26 Response

detector efficiency is not treated separately, but it can be easily added by adding terms to
TΛ,δ

size (k, zs).

27 Eq. (11) and following: The double character notation for growth factor as “gf” 27 Referee

is atypical as far as normal mathematical notation is concerned. It is too easily
interpreted as g times f, rather than as a single parameter. And in this draft of
the manuscript there is actually extra space between the two letters, increasing
the likelihood of the wrong interpretation. However, it is seen that this space is
eliminated in Petters (2018) so presumably it can and will be eliminated in the final
typeset form. If not for this preexisting work and a strong preference to remain
consistent with that, it would be better to change this to a single character form
such as simply “g”. Also, the reason for the choice of the cn superscript on ncn for
the input distribution is quite obscure. Does that stand for something?

28The origin for the “cn” superscript was carryover from the previous publication where it 28 Response

was desirable to distinguish the distribution that is measured with a CN counter as detector
from a distribution that is measured with a CCN as detector. This way the true activated
fraction could be conveniently modeled as nccn ./ ncn. The “cn” is not needed here and has
been dropped; gf has been changed to g for clarity as suggested.

29line 230: Given the length and complexity of the expression for the operator O, it 29 Referee

would be better placed on a line by itself and numbered.

30Done 30 Response

31See updated section 2.3 31 Revision

32 Discretization: As noted (lines 461-462), the forward model for the TDMA rep- 32 Referee
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resents a triple integral. The parameters of integration may be denoted as Di and
Do, the mobility diameters before and after growth, and g f0, the size-independent
growth factor. Though the discretization of these parameters is automated in the
software, some discussion of the constraints on this discretization should be in-
cluded here. For instance, is there a restriction between the number of particle
diameter bins and the number of measurement bins? Eq. (15) and the statement
(line 248) “The size of A2 is n2, ...” would imply that the number of g f bins must
be equal to the number of measurement bins. Is this a necessary condition and, if
so, why?

33Thank you for raising this. The under-the-hood binning procedure is now explained. The 33 Response

text reflected a choice I made when I wrote the code such that the measurement grid(s) can,
but don’t have to be interpolated onto any desired grid representation through interpolation
(see below). It is worth pointing out here that the generic interface described in section 2.2 is
designed such that the user can query the forward model at arbitrary points, which creates
non-square matrices that link the grid of Pg and that of DMA 2 measurement representation.

34Using the notation in section 2.2, 34 Revision

F(x, c) =
∫ ∞

0
Pg

[
m

∑
k=1

(
Ok ∗M

δ1
k

)]
dg0 (17)

where x is the true Pg and the vector c of constraining parameters comprises the
DMA setup Λ1, Λ2, δ1, δ2 and upstream size distribution n. Computer code that
creates a forward model for tandem DMAs has been added to the DifferentialMo-
biltyAnalyzers.jl package and is annotated in the documentation of the package.
For purposes of the forward model, the mobility grid for DMA 1 is discretized at
a resolution of i bins. Transmission through DMA is computed for a specified zs

(the dry mobility), g0 (the growth factor), and an input size distribution, which
results in a vector i concentrations along this grid. If the input size distribution
does not match the mobility grid the grids are merged through interpolation. The
mobility grid for DMA 2 is discretized at a resolution of j bins. The transmitted
and grown distribution from DMA 1 (i bins along the mobility axis of DMA 1)
is interpolated onto the mobility grid of DMA 2. The outer integral in Eq. (17)
is discretized into n bins that models Pg. If the output mobility of grid of DMA
2 does not match, the grids are merged through interpolation. The choice of i, j,
n, the ranges of mobility grids for DMA 1, DMA 2, and the range of Pg is only
constrained by computing resources and a physically reasonable representation
of the problem domain. Reasonable choices are i = 120, j = n = 30. The forward
model is used to cast Eq. (17) into matrix form such that the humidified mobility
distribution function is given by

m
δ2
t = A2Pg + ε (18)

where the subscript 2 specifies transmission through DMA 2, the matrix A2 is
understood to be computed for a specific input aerosol size distribution, and ε is
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a vector that denotes the random error that may be superimposed as a result of
measurement uncertainties. The size of A2 is j× n.

35Figs. 1-4: Frequency vs. Growth Factor: Growth factor g f and its frequency dis- 35 Referee

tribution Pg f are naturally continuous functions, though the former is (artificially)
discretized for the purposes of inversion. Just as the size distribution, ncn, is ex-
plicitly written as dN/dDp or dN/dlnDp with total integral N, the growth factor
frequency distribution is also a derivative, dF/dg for dF/dlng f , with total integral
F = 1. However, in the indicated plots, the frequency is plotted as for a parameter
with truly discrete values such that the sum of the heights, rather than the areas, of
the bars is equal to 1. That is, the height of each bar is given by (dF/dlng f ) � lng f
where lng f is the width of the bar. If the growth factor is discretized such that lngf
is constant, then what is plotted is simply a uniformly scaled version of the more
traditional dF/dlng f plot, though this would normally be versus lng f . As plotted,
the area under these curves is not equal to 1.

36Number Concentration vs. Apparent Growth Factor: In these plots, the Apparent 36 Referee

Growth Factor is evidently given by
g fapp = D1(zs

2)/D1(zs
1).

The “Concentration”parameter is apparently the first-order inverted number distri-
bution function given by
dNapp/dlnDp2 = (dNapp/dlnZp2)(dlnZp/dlnDp2) = (NCPC/β2)(dlnZp/dlnDp2)

where β2 = Qaerosol/Qsheath for DMA 2. This is also seen to be a scaled version of
the apparent growth factor frequency distribution as
dNapp/dlnDp2 = Nt,2 � (dFapp/dlng fapp)

where Nt,2 is the total concentration exiting DMA 2. If this is to be compared
to the Frequency vs. Growth Factor plot, this would need to be multiplied by
lng fapp = ∆lnD1(zs

2). For the two plots to be directly comparable, ∆lnD1(zs
2) would

have to be a constant.

37Combined response to 35 and 36. In the submitted draft, the concentration is the raw 37 Response

number concentration the detector would measure for that bin. Neither the concentration
nor the frequency histograms were normalized by the bin width. I changed the revised
version to show the probability density functions such that the area under the curve equals
to 1. I want to retain the number concentration vs. apparent growth factor plots since the
values represent the measurement. I clarify the representation in the text.

38Please see revised manuscript. 38 Revision

39line 315-316:“...the residual is high is if the true input is a broad growth factor 39 Referee

frequency distribution...”

40Fixed 40 Response
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41lines 332-333: “Errors from scans with low non-zero concentration at the edge of 41 Referee

the size distribution propagate back into the inversion at other dry sizes.”

42Fixed 42 Response

43line 345: “...a cylindrical DMA column (TSI 3080).”Model “3080”does not specify 43 Referee

the actual DMA column. Assuming it is the TSI long DMA, this should be specified
as either “TSI 3080L”for the whole system or “TSI 3081”for just the column.

44Thank you, we have just the column. Corrected. 44 Response

45lines 386-387: “...with the timestamp closest to the a scan...”Eliminate “a” 45 Referee

46Corrected. 46 Response

47line 419: “...a marine inflow event on March 27−28 2015.”Use a date format con- 47 Referee

sistent with the other dates, i.e. 27-28 March 2015. However, this date is beyond the
limits of the plot in Fig. 6.

48The date formats are now consistent. Also, the text should have been 27-28 February 48 Response

2015, which is on the plot.

49line 422: “...9 February 2015,...”. Shouldn’t this be 11 February 2015? 49 Referee

50Thank you. Corrected. 50 Response

51Lines 505-513: “The inverted dataset ...closure (Mahish et al., 2018).” This is a very 51 Referee

long run-on sentence. It needs to be broken up into several sentences.

52Done. 52 Response

53“Best fit”vs “good fit”: Though regularization produces what might be considered 53 Referee

a best fit solution to the inversion problem, this does not necessarily imply it is a
good fit. It would be best to calculate a fit parameter such as the chi square of
the normalized residuals over the degrees of freedom. For a good fit, this should
be near 1. That is, the residuals are on the order of what is predicted by Poisson
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statistics. Values an order of magnitude or more greater than that would suggest
some sort of problem either with the dataset or the model.

54It is correct that the best-fit is not necessarily a good fit. Worse, even a good fit may 54 Response

be a poor model. Unregularized regression can almost eliminate the residual, but produce
estimation parameters that are extremely poor, even if the regression looks good. For example:

The left panel shows a true input vector x. The middle panel on the left shows a response
vector b (red) computed as b = Ax + ε, where ε the some random error. The right panel
shows the estimate x̂ = A−1b, which is extremely poor. Computing the model response from
the estimate, Ax̂, shows the best fit solution. If we only have the observations, we can only
compute error metrics based on some residual between Ax̂ and b. The comment in question
in refers to some form of Figure 4
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where the left panel corresponds to Ax̂ (colors) and b (Input) in the example above, and
the right panel to the comparison between x (Truth) and x̂ (colors) in the example above.
The question raised by this referee (and referee #1) is what the best error metric might be
to determine the goodness of the fit and by extension and goodness of model reconstruction.

I selected the root mean square error (RMSE), RMSE =
√

∑ (Oi−Ei)2

n , where Oi are the
observed and Ei the expected values. The RMSE is zero for a perfect fit and greater than
zero for a less-than optimal fit.

Many goodness-of-fit statistical tests involve some form of the chi-square statistic. Com-

puting chi-square as χ2 = ∑ (Oi−Ei)
2

Ei
, where Oi are the observed and Ei the expected values

is not valid for many of the cases here, because the expected values can be zero. Any residual
in a bin with zero expected value would immediately raise χ2 to infinity. Excluding bins
with zero expected value would be incorrect, as it would not capture “bad” models that
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predict output for zero bins. The referee’s language “chi square of the normalized resid-
uals over the degrees of freedom” seems to refer to the adjusted goodness-of-fit index,
commonly abbreviated as AGFI [e.g. Sun, 2005], which for the same reason is not valid
here.

The main desired property of a goodness-of-fit index is that it might provide a clean
quantitative measure on when to reject a solution. The AGFI seemingly provides this infor-
mation, with values near 1 indicating a good fit. Although the AGFI is not applicable here,
the RMSE can be used in a similar manner. Values below a certain threshold indicate a good
(or good enough) fit. The only difference is that the lower threshold value is not immediately
clear.

The way RMSE is used here is in a relative comparison between L0D1e−3B[0,1], LSQ1,
and LSQ2. LSQ1, and LSQ2 are well-behaved and do not have oscillatory solutions. How-
ever, they will fail when true growth factor frequency distribution is broader than can be
explained by one or two compounds. Conversely L0D1e−3B[0,1] will have poor solution (os-
cillatory solution) when the true input distribution is narrow. Truncation of the negative
values is what amplifies the RMSE in this case. Thus RMSE is not quite used to declare that
the fit is good or that a model is valid. It is used to determine whether the input distribution
is narrow enough to warrant fit to a single component, two component, or multicomponent
model.

This still leaves the ultimate question unaddressed. How well can we trust the proposed
(regularized) solution? As I argue in the manuscript, the simulations address this point.

Since the true noise-free input growth factor frequency distribution is known, the fi-
delity of the inversion can be evaluated by computing the root mean square error be-
tween the noise-free solution and the regularized solution. The figure shows that both
inversion methods produce a root mean square error between 0.02 and 0.03. These
values are typical for the of reconstruction (see supporting information). Visual eval-
uation of the agreement between the reconstruction and the input suggest that either
method is suitable for inversion.

Whether this is acceptable remains ultimately up to the user. I am skeptical that a statistical
procedure such as AGFI (if it were applicable) would really help here. Tests should be
performed to validate the physical plausibility of the solution. For examples, the mode of the
apparent growth factor and the mode of the inverted growth factor should be similar. The
retrieved growth factors should be physically plausible. The distribution of RMSE can be
plotted for a large data set. Visual inspection of fits for large RMSE can be used to derive a
threshold above which fits are automatically rejected. The text now mentions these quality
assurance examples.

55Note, however, that the low residuals between the apparent growth factor dis- 55 Revision

tribution and the model do not automatically ensure that the algorithm a good or
adequate solution. Additional tests should be performed to validate the physical
plausibility of the solution. For example, the retrieved growth factors should be
physically plausible at the applied relative humidity. The mode of the apparent
growth factor distribution and the mode of the inverted growth factor distri-
bution should be similar. A histogram of the root mean square error between
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can be plotted for a large data set. Visual inspection of fits for large root mean
square error can be used to derive a threshold above which reconstructions are
automatically rejected. The integrated probability density function of the recon-
structions should be near unity. Deviations from unity may occur due to concen-
tration errors between the size distribution measurement and the growth factor
distribution measurement, unaccounted transmission losses, and errors from the
inversion. Reconstructions deviating significantly from unity should be flagged
and rejected.
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Revised Section 2.3

Design Matrices For Differential Mobility Analyzers
Differential mobility analyzers consist of two electrodes held at a constant- or time-varying elec-

tric potential. Cylindrical [Knutson and Whitby, 1975] and radial [Zhang et al., 1995, Russell et al.,
1996] electrode geometries are the most common. Charged particles in a flow between the elec-
trodes are deflected to an exit slit and measured by a suitable detector, usually a condensation
particle counter. The fraction of particles carrying k charges is described by a statistical distribution
that is created by the charge conditioner used upstream of the DMA. The functions governing the
transfer through bipolar charge conditioners, single DMAs, and tandem DMAs are well understood
[Knutson and Whitby, 1975, Rader and McMurry, 1986, Reineking and Porstendörfer, 1986, Wang
and Flagan, 1990, Stolzenburg and McMurry, 2008, Jiang et al., 2014].

The traditional mathematical formulation of transfer through the DMA is summarized in Stolzen-
burg and McMurry [2008] and references therein. Briefly, the integrated response downstream of
the DMA operated at voltage V1 is given by a single integral that includes a summation over all
selected charges. The size distribution is measured by varying voltage V1, which produces the
raw response function defined as integrated response downstream of the DMA as a function of
upstream voltage. The size distribution is found by inversion. The basic mathematical problem
associated with inverting the response function to find the size distribution is summarized by
Kandlikar and Ramachandran [1999]. The integral is discretized by quadrature to find the design
matrix that maps the size distribution to the response function. L2 regularization is one of several
methods to reconstruct the size distribution from the response function [Voutilainen et al., 2001,
Kandlikar and Ramachandran, 1999].

The integrated response downstream of a tandem DMA that is operated at voltages V1 and V2

is given by a double integral and the summation of all selected charges. The integrals are over the
upstream size distribution and the aerosol conditioner function, which here is the growth factor
frequency distribution. Scanning over a range of voltages V2 results in the raw TDMA response
function. The objective is to find find a design matrix that maps the growth factor frequency
distribution to the raw TDMA response function.

Petters [2018] introduced a computational approach to model transfer through the DMA. The
main idea of the approach is to provide a domain specific language comprising a set of simple
building blocks that can be used to algebraically express the response functions intuitively through
a form of pseudo code. The main advantage of this approach is that the expressions simultaneously
encode the theory governing the transfer through the DMA and the algorithmic solution to compute
the response function. The resulting expressions are concise. They are easily identified within
actual source code. This makes the code easily modifiable by non-experts to change existing terms
or add new convolution terms without the need to develop algorithms.

A disadvantage of the computational approach over the traditional mathematical approach is
that computation lacks standardization of notation. This can blur the line between general pseudo
code and language specific syntax. Some of the applied computing concepts may be less widely
known when compared to standard mathematical approaches. Nevertheless, the author believes
that the advantages of the computational approach outweigh the drawbacks. Therefore, this work
builds upon the expressions reported in Petters [2018]. Updates and clarifications to the earlier
work are noted where appropriate.
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The computational language includes a standardized representation of aerosol size distributions,
operators to construct expressions, and functions to evaluate the expressions. Size distributions en-
coded as a SizeDistribution composite data type. Composite data types combine multiple arrays into
a single symbol for ease of use, facilitating faster experimental design and analysis. SizeDistribu-
tion consists of vectors of bin edges, bin midpoints, number concentration, log-normalized spectral
density, and logarithmic bin widths. SizeDistributions are denoted in blackboard bold font (e.g., n,
r, etc.). SizeDistributions are the building block of composable algebraic expressions through oper-
ators that evaluate to transformed SizeDistributions. For examples, n1 + n2 is the superposition of
two size distributions and f ∗ n is the uniform scaling of the concentration fields by factor f , A ∗ n
is matrix multiplication of A and concentration fields of the size distribution, and f · n is the uni-
form scaling of the diameter field of the size distribution by factor f , and T · n is the elementwise
scaling of the diameter field by factor T. (Note that the Petters (2018) used T. ·n is the elementwise
scaling. The extra dot has which has been dropped to stay consistent with the current software
implementation).

Functions are used to reduce expressions. Generic functions include, ∑( f , m) evaluates the
function f (x) for x = [1, . . . , m] and sums the result. If f (X) evaluates to a vector, the sum is the
sum of the vectors. The function map( f , x) applies f (x) to each element of vector x and returns a
vector of results in the same order. The function reduce( f , x) applies the bivariate function f (x, y) to
each element of x and accumulates the result. The function mapreduce( f , g, x) combines map and
reduce. It applies function f to each element in x, and then reduces the result using the bivariate
function function g(x, y). The function vcat(x, y) concatenates arrays x and y along one dimension.
Anonymous functions are used as arguments to reducing functions. Anonymous functions are
denoted as x → expression, where x is the argument consumed in the evaluation of the expression.
These functions are generic and represent widely used computing concepts. They are implemented
in most modern programming languages.

DMA geometry, dimensions, and configuration are abstracted into composite types Λ (config-
uration comprising flow rates, power supply polarity, and thermodynamic state) and δ (DMA
domain defined by a mobility/size grid). Each DMA is fully described by a pair Λ,δ. Subscripts
and superscripts are used to distinguish between different configurations in chained DMA setups,
e.g. δ1 and δ2 denoting the first and second DMA, respectively. Application of size distribution
expressions to transfer functions constructs a concise model of the transmitted DMA mobility dis-
tribution, denoted as the DMA response function. Implementation of the language is distributed
through a freely-available and independently documented package DifferentialMobilityAnalyzers.jl,
written in the Julia language. Expressions in the text are provided in general mathematical form
for readability.

Petters [2018] gives a simple expressions that model transfer through the DMA. The function
TΛ,δ

size (k, zs) evaluates to a vector representing the fraction of particles carrying k charges that exit
DMAΛ,δ as a function of mobility

TΛ,δ
size (k, zs) = Ω(Z, zs/k, k). ∗ Tc(k, Dp,1). ∗ Tl(Z, k) (10)

where zs is the centroid mobility selected by the DMA (determined by the voltage and DMA
geometry), Z is a vector of mobilities, Ω is the diffusing DMA transfer function [Stolzenburg
and McMurry, 2008], Tc is the charge frequency distribution [Wiedensohler, 1988], and Tl is the
diameter-dependent transmission loss [Reineking and Porstendörfer, 1986]. The functions Ω and
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Tl have been updated from Petters (2018). The version in Petters (2018) computed the shape of the
transfer function and losses for the mobility diameter corresponding to singly charged particles
and then apply the same shape of the transfer function and diffusional loss to the multiply charged
particles. Binding the charge state explicitly to Ω and Tl results in proper accounting of diffusional
losses and broadening of the transfer function for multiply charged particles in TΛ,δ

size (k, zs).
Petters [2018] also gives an expression that evaluates to the convolution matrix for passage

through a single DMA.

A = mapreduce{zs → Σ[k→ TΛ,δ
size (k, zs), m]T , vcat, Z} (11)

where, m is the upper number of multiply charged particles, T is the transpose operator, and Z is
a vector of centroid mobilities scanned by the DMA. Eq. (11) evaluates to the same as Eq. (8) in
Petters (2018), but the notation is revised to be more general by removing the julia specific splatting
construct and replacing it with widely used generic functions.

To help with parsing the expression, TΛ,δ
size (k, zs) evaluates to a vector of transmission for k charges

and set point centroid mobility zs as a function of the entire mobility grid (e.g. 120 bins discretized
between mobility z1 and z2). The function Σ[k → TΛ,δ

size (k, zs), m] superimposes the vectors for
all charges. Mapping zs → Σ[k → TΛ,δ

size (k, zs), m] over the mobility grid Z produces an array of
vectors, each corresponding to the transmission for a single size bin. Transposing the vectors and
reducing the collection through concatenation produces the design matrix that links the mobility
size distribution to the response function, i.e.

r = An+ ε (12)

where r is the response distribution, n is the true mobility size distribution, and ε is a vector
denoting the random error that may be superimposed as a result of measurement uncertainties.
Note that by design n and r are SizeDistribution objects, which represented the distribution as a
histogram in both spectral density units (dN/dlnD) and concentration per bin units. The latter is
the raw response function defined as integrated response downstream of the DMA as a function of
upstream voltage (or corresponding zs or corresponding apparent +1 mobility diameter).

The mobility distribution exiting DMA 2 in the humidified tandem DMA is evaluated using the
expressions

M
δ1
k = Πk ·

{
g0 ·

[
TΛ,δ

size (k, zs) ∗ n
]}

(13)

In Eq. (13), M
δ1
k evaluates to the apparent +1 mobility distribution particles that exit the DMAΛ,δ

at the nominal setpoint-diameter defined by mobility zs (or z-star) in DMA 1 and particle charge
k. Subscripts are used to differentiate DMA 1 and 2 which possibly have different geometries,
flow rates, and grids, e.g. Λ1, Λ2 and δ1, δ2. ΠΛ,δ

k is the projection of particles having physical
diameter D and carrying k charges onto the apparent +1 mobility grid. It is a function that converts
each diameter/charge pair to mobility and interprets the result as apparent +1 mobility diameter.
g0 = Dwet/Ddry is the true diameter growth factor, Ddry is the selected diameter by DMA 1, Dwet is
the diameter after the humidifier, TΛ,δ

size (k, zs) is as in Eq. (10), and n is the mobility size distribution
upstream of DMA 1.

To help parse Eq. (13), the product TΛ,δ
size (k, zs) ∗ n evaluates to the transmitted mobility distribu-

tions of particles carrying k charges at the set-point mobility zs in DMA 1. The size distribution is
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grown by the growth factor g0. The resulting size distribution is shifted to the apparent +1 mobility
diameter using ΠΛ,δ

k . Equation (13) differs from that in Petters [2018] where it was assumed that
particles of all charges grow by the same amount. This is incorrect. Particles carrying more than a
single charge alias at a smaller particle size [Gysel et al., 2009, Shen et al., 2021]. The effect is due
to the size dependence of the slip-flow correction factor and captured through the function ΠΛ,δ

k .
Equation (13) assumes that g0 applies to all particle sizes.

The total humidified mobility distribution mδ2
t exiting DMA 2 is given by

m
δ2
t =

m

∑
k=1

(
Ok ∗M

δ1
k

)
(14)

where, m is upper number of charges on the multiply charged particles, Z is a vector of centroid
mobilities scanned by DMA 2, and

Ok = mapreduce{zs → [ΩΛ2,δ2(Z, zs, k). ∗ TΛ2,δ2
l (Z, k)]T , vcat, Z} (15)

is the convolution matrix for transport through DMA 2 and particles carrying k charges. Equations
(14) and (15) modified from those in Petters (2018) in the following manner. The convolution matrix
Ok is computed individually for each charge. The version in Petters (2018) computed the matrix
corresponding to singly charged particles and then apply the same matrix to multiply charged
particles. Since Ok is now charge resolved, it is moved into the summation in Eq. (14). Computation
of Ok through Eq. (15) has been revised to be more general by removing a julia language specific
construct. O1 computed by Eq. (15) produces the same matrix as in Petters (2018).

If the aerosol is externally mixed, the humidified distribution function is given by

m
δ2
t =

∫ ∞

0
Pg

[
m

∑
k=1

(
Ok ∗M

δ1
k

)]
dg0 (16)

where Pg is the growth factor probability density function and the diameters in M
δ1
k are normalized

by Ddry. mδ2
t in Eq. (16) is the forward model through the tandem DMA. Using the notation in

section 2.2,

F(x, c) =
∫ ∞

0
Pg

[
m

∑
k=1

(
Ok ∗M

δ1
k

)]
dg0 (17)

where x is the true Pg and the vector c of constraining parameters comprises the DMA setup
Λ1, Λ2, δ1, δ2 and upstream size distribution n. Computer code that creates a forward model for
tandem DMAs has been added to the DifferentialMobiltyAnalyzers.jl package and is annotated in the
documentation of the package. For purposes of the forward model, the mobility grid for DMA 1

is discretized at a resolution of i bins. Transmission through DMA is computed for a specified zs

(the dry mobility), g0 (the growth factor), and an input size distribution, which results in a vector
i concentrations along this grid. If the input size distribution does not match the mobility grid the
grids are merged through interpolation. The mobility grid for DMA 2 is discretized at a resolution
of j bins. The transmitted and grown distribution from DMA 1 (i bins along the mobility axis
of DMA 1) is interpolated onto the mobility grid of DMA 2. The outer integral in Eq. (17) is
discretized into n bins that models Pg. If the output mobility of grid of DMA 2 does not match,
the grids are merged through interpolation. The choice of i, j, n, the ranges of mobility grids for
DMA 1, DMA 2, and the range of Pg is only constrained by computing resources and a physically
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reasonable representation of the problem domain. Reasonable choices are i = 120, j = n = 30.
The forward model is used to cast Eq. (17) into matrix form such that the humidified mobility
distribution function is given by

m
δ2
t = A2Pg + ε (18)

where the subscript 2 specifies transmission through DMA 2, the matrix A2 is understood to be
computed for a specific input aerosol size distribution, and ε is a vector that denotes the random
error that may be superimposed as a result of measurement uncertainties. The size of A2 is j× n.
Uncertainties in the size distribution propagate into A2. The main influence of the error will be
the relative fraction of +1, +2, and +3 charged particles. Assuming a random error of ±20% in
concentration, the overall effect on the mδ2

t is expected to small.
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