
Response to Reviewer Comments

August 3, 2021

Author Statement

The manuscript has been reviewed by an anonymous referee and Mark Stolzenburg. I responded

to these via AC1 and AC2 in July 1. As part of the response process, section 2.3 was significantly

revised and the revised version was appended to AC1 and AC2. Dr. Stolzenburg contacted me

via email and offered to send additional comments regarding Section 2.3 as written AC1 and AC2.

He did so on July 10, 2021. Since I had not uploaded a revised version of the manuscript prior to

receiving these comments, I responded to them online on August 3 via AC3.

A once more revised version of section 2.3 is included at the end of AC3. It supersedes the

version presented in AC1 and AC2. The revised version submitted to AMT takes into account the

comments in AC1, AC2, and AC3. A tracked changes version is submitted alongside the revised

manuscript.

The main changes to the manuscript are related to describing the tandem DMA model in Section

2.3, including clarifying the notation and underlying assumptions. The changes had no impact on

the conclusions reached in the paper.

I thank the anonymous reviewer for their input. I am especially grateful for the detailed input

by Mark Stolzenburg, whose comments were invaluable in clarifying the notation and the tan-

dem DMA forward model. Line-by-line responses in AC1, AC2, and AC3 are appended to this

document.



Response to Reviewer Comments

July 1, 2021

Author Statement

I thank the referee for their time to review this manuscript and their constructive critiques. Below

are itemized responses to the referees’ comments. In response to the comments, Section 2.3 of the

manuscript was significantly expanded. The complete revised section is mentioned in several

responses. To avoid repetition, the revised section is reproduced at the end of the document.

Response to Reviewer #1

Overview

This manuscript presents a software package to invert aerosol size distributions from measure-

ments, in particular from scanning mobility particle sizers (SMPSs), using the Tikhonov regulariza-

tion approach.

This manuscript sits at the intersection of producing open-source, scientific code and presenting

new scientific ideas. The reviewer admits this is an awkward position, as existing dissemination

methods are not amendable to publishing well-maintained software, which is a critical component

to modern, reproducible analysis. That being said, the scientific contributions of the underlying

code are not hugely significant. Inversion of aerosol distributions using Tikhonov regularization

is well-established. In fact, the author already notes one other instance of open-source software

designed - at least in part - for this task (Hansen). (Other codes undoubtedly exist, though, admit-

tedly most of these codes are closed source or not immediately available to the user, with very few

exceptions, as the author notes.) Otherwise, this code does little to innovate on existing methods

and is somewhat behind in terms of state-of-the-art, such as not presenting any form of uncertainty

quantification - see Kandlikar and Ramachandran (1999); Voutilainen et al., (2001); and Voutilainen,

Kolehmainen, Stratmann, & Kaipio (2001). The use of a GSVD to speed computation is insightful

but is still based on existing literature. The code does also extend existing analysis tools to the Julia

programming language, but it is this reviewer’s opinion that this contributes little in terms of a

novel scientific contribution.

Of note, the author could focus on the less-investigated HTDMA problem and the specific chal-

lenges that arise for that application (e.g., present the underlying integral equation for that sce-

nario), which the authors note in the conclusion is one of the more novel aspects of this manuscript.

Altogether, this reviewer thinks the manuscript could be reoriented more towards novel scientific

components, including more of a focus on HTDMA. As such, the author SHOULD be given the

chance to respond to comments and refine the manuscript. MAJOR REVISIONS are recommended.

1I do not disagree with the referee about the scientific novelty of the regularization code. The 1 Response

manuscript makes no claim in this regard. It also is not the purpose of the paper. I agree
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that the most novel part of the work is the new HTDMA inversion. I have changed the

title to “Revisiting Matrix-Based Inversion of SMPS and HTDMA Data” to reflect that.

Uncertainty quantification described in the papers brought up by the referee is now included

in the discussion.

That said, I will defend the work largely “as is” as a significant contribution in Atmospheric

Measurement Techniques. Here is why. At issue is neither the mathematical novelty of

Tikhonov regularization nor it’s application to size distribution data. As mentioned by the

referee, and in the draft manuscript, this has been demonstrated in the literature long before.

The issue is about accessibility and extensibility of these techniques to the measurement com-

munity that is not trained in inverse problem solving. This is still true for size distribution

inversion. Quoting from an anonymous referee of the preceding 2018 manuscript:

In computational work, graduate students and senior scientists tend to “reinvent the

wheel.” This wastes time and introduces errors. (In contrast, we happily use purchased

instruments to make measurements sometimes with “black box” codes that contain

errors that are exceedingly difficult to discover.)

To perform size distribution inversion one can either use inflexible closed-source code, some-

how be lucky enough to be handed down code from established laboratories and use them

to ones own advantage, or write ones own. As stated by the referee quoted (it echos my

opinion), the latter option is unrealistic for researchers that do not seek a career in inverse

techniques, but simply want to make good measurements or develop instruments. This

work reports on critical improvements to the open DifferentialMobilityAnalyzers.jl pack-

age that addresses this problem. It significantly improves inversion speed and extending

the capabilities to higher order inversions. Those improvements are based on implementing

high-performance algorithms. Reporting these improvements in the literature is valuable in

its own right.

As discussed by Gysel et al. [2009], HTDMA inversions are complex to develop and not yet

applied universally to data. The novelty and purpose of this work is to describe a method-

ology to tame the complexity developing inversion schemes and to provide a means to apply

inversion to data for practitioners. Taming complexity is proposed to be achieved by three

new ideas. First, the code systematically classifies regularization input assumptions and

creates a simple interface for practitioners for trying out methods. I am not aware that

such an interface is available anywhere else. Second, the work introduces a means to cre-

ate design matrices from arbitrary forward models, although the details were only described

in the supplementary material. Third, this work further extends the formalisms first in-

troduced in the Petters 2018 paper, to show how it can be applied to HTDMA inversion.

Breaking the problem into three independent parts should help prototyping and adapting

future inversion approaches. The HTDMA inversion reported here is scientifically novel

by addressing the limitations of oscillatory solutions reported in Cubison et al. [2005] and

including multi-charge correction in the matrix. The conceptional and practical framework

on how to approach the forward problem is novel.

Specific Comments
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2 The focus on the programming aspects also often distracts from the underlying 2 Referee

science. For example, presenting the underlying mathematics in a programming

language- and program-specific representation without the more standard mathe-

matical forms (e.g., the underlying integral equations) makes the manuscript harder

to follow. It seems that in an attempt to tread a line between a scientific manuscript

and code documentation, the manuscript does not accomplish either task partic-

ularly well. In this respect, the manuscript may be better structured by clearly

presenting the underlying scientific principles in a more standard mathematical no-

tation, moving coding references out of the body of the manuscript. The alternative

- presenting the manuscript as a form of documentation for a program - is better

structured with specific coding examples in the text. However, this latter route is

less amendable to a research article in AMT. In this case, another platform (a techni-

cal note in a journal or an article in a computational journal) may be more suitable.

As a hybrid, the SI could be formally formed into documentation for the code that

refers to the scientific principles in the base article without cluttering the body with

code snippets and representations. Regardless, clarifications should be made before

further review.

3I thank the referee for this comment, even though I disagree with it. Before responding in 3 Response

detail, I would like to list the revisions to section 2.3 made in response to the comment.

1. Included explicit references to the standard integral equations.

2. Clarified the purpose of the notation as a formal representation of the problem

(they are not code snippets or code documentation; there is a separate detailed

code documentation that is a supplement to this work).

3. Cleaned up the notation to limit it to standard computational concepts, i.e.

eliminated parts that could be interpreted as programming language specific

constructs.

4. Significantly expanded the text to aid parsing of the expressions.

Rationale: The expressions for the forward model presented in the manuscript are uncon-

ventional and were perceived by the referee as “code snippets”. This is incorrect. What they

really represent is a domain specific language comprising a set of simple building blocks that

can be used to algebraically express the response functions intuitively through a form of

pseudo code. The expressions evaluate to a deterministic answer and represent just a differ-

ent form of mathematics. The main advantage of this approach is that the expressions

simultaneously encode the theory governing the transfer through the DMA and the

algorithm to compute the solution. The resulting expressions are concise. They are easily

identified within actual source code. This makes the code easily modifiable by non-experts to

change existing terms or add new convolution terms without the need to develop algorithms.

I want to elaborate on the computational viewpoint I have taken. The expressions evaluate

in the same way than mathematical functions. The applied concepts are borrowed from the

functional programming community and makes use of broadly understood concepts such as
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lambda functions, generic functions, pure functions, higher order functions, function com-

position, and domain specific algebras. The expressions are a valid format to represent the

mathematics. I have expanded the text to more carefully define each of the building blocks. I

also recognize that these concepts are less widely used in the atmospheric community than

the standard mathematical form. The expressions themselves can at first glance be more

difficult to parse than the seemingly simple and familiar integral equations. Nevertheless,

referee Mark Stolzenburg was able to follow the work (and call out two hidden assumptions)

from the admittedly not-so-well written initial draft section. The assumptions had a very

small effect on the final result, but of course it is important to address them when striving

for correctness (which is done in the revised manuscript). This proves my point(s) above. It

is trivial to recite the integral equations from one of the many preceding papers. Yet these

equations do not fully communicate the model. The assumptions I made that were identified

by Mark Stolzenburg would likely have never been detected in review, because the mathe-

matical form is completely detached from the algorithmic solution. However, I understand

the value of these equations and I now refer the reader to those works.

A disadvantage of the computational approach over the traditional mathematical approach

is that algorithmic descriptions lack standardization of notation. This can blur the line be-

tween the pseudo code notation and language specific syntax. The reviewer brought to light

that I had used some julia language specific constructs which I had introduced in the 2018

work. This is not ideal, because the expressions are really general and programming lan-

guage independent. I therefore eliminated language specific constructs and only use generic

functions that fall into the domain of general computing concepts. This results in more

general expressions that are interpretable in most modern programming languages/syntax

frameworks.

I firmly believe that the advantages of the computational approach outweigh their drawbacks.

This work is in part an experiment on how to conceptionally model DMA transfer in the

computational domain. It may in the end remain an obscure approach, and one that is not

the preferred one by the referee or the majority of the field, but this is not a justification to

hide it in a supplement or a computational journal. The work addresses atmospheric mea-

surement techniques using computational concepts, not computational concepts themselves.

Publication of this work is only adding to the list of available approaches; it does not force

anyone adopt either the notation or approach.

4Please see revised section 2.3 at the end of this document. 4 Revision

5 In the abstract, the authors note that the inversion speed is improved by ~200 5 Referee

times down to 2-5 ms. Is the implication to work towards online inversion of the

measurements? If not, there is a fair degree of flexibility in terms of inversion speed,

such that speed may not be the only or the best metric gauging improvement. Can

the authors comment? If the hope is for online inversion, can the authors comment

on the interface with the instrument, which would be a substantial component of

the overall process.
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6Improving performance in terms of speed is desirable as long as the inversion step presents 6 Response

some form of bottle neck for a particular application. Two example applications for inver-

sion discussed in this manuscript involve either inversion of large data sets using different

assumptions or inversion in real time during data acquisition. The quoted times are ap-

proaching the speed where the inversion bottle-neck disappears, although that will depend

on the specific circumstance. As mentioned in the manuscript data acquisition and inver-

sion on inexpensive reduced-instruction-set architecture is now possible. The interface to

instrumentation depends on the user. We use julia as language to write all data acquisition

software. The inversion is then just a function call to the software package(s) given as a sup-

plement in this manuscript. The author shares the data acquisition software for scanning

mobility particle sizers via GitHub (https://github.com/mdpetters/smpsDAQ) that is widely

used in our laboratory. However, it is currently not well-documented. We mostly run the

software on x86 and we are currently experimenting with running it on ARM v8 systems.

Translating the approach to Python or other languages should be fairly easy.

7Since there is no peer-reviewed publication of the SMPS software, and since 7 Revision

the response to the referee comment is publicly available, we do not discuss this

further in the manuscript.

8Related to the above, this code is 200 times faster compared to what? A previous 8 Referee

version of this code? It is worth noting that Tikhonov regularization for these dis-

tributions is a relatively straightforward problem, solving a simple linear system.

As such, the speed improvements are likely linked to the external libraries that

solve the linear system, something which the authors do imply later in the work.

However, this does limit the novelty of using those methods for a different problem

9Yes, 200 times faster compared to a previous non-optimized regularized inverse. The speed 9 Response

improvement is due to the application of factorization techniques and implementing the nu-

merical algorithms described in Section 2.1.2 instead of relying on the naive matrix inverse

used in Petters (2018). The implemented algorithms are general. Virtually all languages,

including julia, outsource basic linear algebra computations (e.g. the QR factorization) to

highly performant external libraries (LAPACK, OpenBLAS, MKL) and the inversion speeds

of these libraries are fairly similar. The reason that RegularizationTools.jl is distributed as

a separate package is that it can be applied to any inversion problem, not just the DMA

examples highlighted here. Examples for the generality of the approach are given in Section

2.1.4.

10Line 93: What is the dimension/size of the different quantities defined here? 10 Referee

Based on the subsequent discussion, it seems that A is assumed to be square (same

reconstruction and measurement discretization). The A matrix is not required to

be square, but this reviewer thinks it does make the GSVD simpler to compute (a
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non-square matrix may require special treatment) and should be stated clearly.

11The matrix A does not need to be square. All algorithms are implemented to allow for 11 Response

non-square problems. An example for a non-square problem is given in the documenta-

tion to RegularizationTools.jl, which is a formal supplement to this paper as stated in the

“Code and data availability.” section. The relevant example for a non-square problem

here: https://mdpetters.github.io/RegularizationTools.jl/stable/manual/#Creating-a-Design-

Matrix under “Example 2”. It is now stated that the A matrix need not to be square. The

description for matrix A2 has been updated to describe the discretization, where it also men-

tions that the matrix does not need to be square. It was given as square due to the specific

discretization scheme used to generate the figures in the draft.

12..., A is the design matrix (which may or may not be square), x is the true 12 Revision

quantity of interest, and ffl is the random error.

13..., the matrix A2 is understood to be computed for a specific input aerosol 13 Revision

size distribution, and ǫ is a vector that denotes the random error that may be

superimposed as a result of measurement uncertainties. The size of A2 is j × n.

14Line 108: Consider explicitly noting that automating the L-curve method, while 14 Referee

feasible, is often more challenging than other automated methods and can be af-

fected by noise and type of solver (which the authors admittedly imply later when

they state that the L-curve algorithm used previously occasionally failed).

15Done. 15 Response

16The optimal λ occurs at the corner of the L-curve, which can be found algorith- 16 Revision

mically. However, automating the L-curve method can be more challenging than

other automated methods, as further discussed below.

17Line 112: Clarify "standard form". What is the standard form? How would one 17 Referee

compute this standard form? Under what conditions does one not use the standard

form?

18Equation (3) is in standard form if L = I. (Stated a few lines above). The text around line 18 Response

112 has been slightly reworded to make this clear.

19If L 6= I, Eq. (3) is transformed to standard form using the generalized singular 19 Revision

value decomposition of A and L as derived by Eldén (1982) and summarized by

Hansen (1998).

20Line 208: Is Petters (2018) the best reference for this? The underlying equations 20 Referee
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for the discrete transfer function of the SMPS have been stated more formally many

times before this work. If there is something specific in Petters (2018) about which

the authors can be more explicit? There are also multiple ways to discretize the

problem, which could be a route to a more specific representation from Petters.

Further, why not present this in a more standard form, such as the transfer function

given by Stolzenburg (2018), rather than a programming language-specific repre-

sentation?

21Through Section 2.3: Similar to above, why not present all of the physics in terms 21 Referee

of its underlying integration equations rather than language-specific concatenation

and mapping operators or convolution "*" operators? For the discrete version, why

not state these in terms of matrices instead? Interestingly, there are multiple ways

to discretize the problem (e.g., finite element bases), which is also not detailed here.

The HTDMA problem is based on a double convolution with three components to

the underlying integral equation/kernel: 1) the transfer function of the first DMA,

2) a kernel describing the humidification process, and 3) the transfer function of the

second DMA. This feature is not clear from the current reading.

22Combined response to 20 and 21. Section 2.3 has been significantly revised based on com- 22 Response

ments by Mark Stolzenburg and comments above. The method used for matrix generation is

discussed in Section 2.2. The method is equivalent to the quadrature method, as discussed in

the supplemental documentation (https://mdpetters.github.io/RegularizationTools.jl/stable/manual/#Creating-

a-Design-Matrix).

23See revised section 2.3 at the end of this document. 23 Revision

24Line 268+: The current manuscript structure makes it challenging to ascertain 24 Referee

the role of the 30 (or other) bins for the growth factor in the overall procedure.

This reviewer would expect that the growth factor would contribute to another

matrix that bridges the mobility distribution output by the first DMA to the mobility

distribution input to the second DMA. In this respect, since the other components of

the problem have a constant number of bins (at least this reviewer gathered as such),

would it not make more sense to have a matrix with the same dimension/number

of bins as the larger problem? Further, depending on whether one is inferring

these quantities or not, this matrix could be combined with one or more of the

DMA transfer function kernels and thus be pre-computed, with little effect on the

overall computational effort. If one is inferring the growth factor, the structure of

the problem deviates somewhat from the more general aerosol inversion problem,

a fact that should be clarified. Namely, there will be at least two integrations (over

the mobility distributions for each DMA) with an intermediary quantity that is

being inferred. Then, there is also the question of the uncertainties in the input size

distribution, which is measured independently, also inferred, or assumed. Overall,

these definitions could be clarified.
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25The discretization/structure of the HTDMA inversion problem is now explained in more 25 Response

detail. Uncertainty in the size distribution will propagate into A2. This uncertainty is now

mentioned in the manuscript.

26For purposes of the forward model, the mobility grid for DMA 1 is discretized 26 Revision

at a resolution of i bins. Transmission through DMA is computed for a specified

zs (the dry mobility), g0 (the growth factor), and an input size distribution, which

results in a vector i concentrations along this grid. If the input size distribution

does not match the mobility grid the grids are merged through interpolation. The

mobility grid for DMA 2 is discretized at a resolution of j bins. The transmitted

and grown distribution from DMA 1 (i bins along the mobility axis of DMA 1)

is interpolated onto the mobility grid of DMA 2. The outer integral in Eq. (17)

is discretized into n bins that models Pg. If the output mobility of grid of DMA

2 does not match, the grids are merged through interpolation. The choice of i, j,

n, the ranges of mobility grids for DMA 1, DMA 2, and the range of Pg is only

constrained by computing resources and a physically reasonable representation

of the problem domain. Reasonable choices are i = 120, j = n = 30. The forward

model is used to cast Eq. (17) into matrix form such that the humidified mobility

distribution function is given by

♠
δ2
t = A2Pg + ǫ (18)

where the subscript 2 specifies transmission through DMA 2, the matrix A2 is

understood to be computed for a specific input aerosol size distribution, and ǫ is

a vector that denotes the random error that may be superimposed as a result of

measurement uncertainties. The size of A2 is j × n. Uncertainties in the size dis-

tribution propagate into A2. The main influence of the error will be the relative

fractions of +1, +2, and +3 charged particles. Assuming a random error of ±20%

in concentration, the overall effect on the ♠
δ2
t is expected to small.

27Line 276: The use of Poisson noise could be used to appropriately weight the 27 Referee

data. Why was this not considered (i.e., use weighted least-squares instead of naïve

least-squares)? One limitation is that measurements that span multiple orders of

magnitude will result in numerical instabilities, such that a baseline amount of

background noise may be required. Can the authors comment?

28I have not tried weighted least-squares. It’s plausible that it helps. However, Poisson noise 28 Response

may not be the only source of error in the measurement. (For examples, false counts from

leaks in the line, fluctuations of RH in sample flow, flow rate fluctuations, electronic noise,

etc. may all contribute to the error). It’s not clear how to estimate the total error from data.

Since L2-regularization works well for the problem there is no need to explore this approach.
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29Line 280: How often would this a priori information be known? In the experi- 29 Referee

mental section to follow, there is a short phrase about this being computed using

the inverse of the S matrix. Would it be worth noting this here? Also, what is S?

This information does not seem to be immediately available. 30For the HTDMA
30 Response

problem (line 280), the “a-priori estimate x0 is taken to be the normalized apparent growth

factor distribution, where the normalization ensures that the sum over all bins is unity.”

This information is derived from the measured data, so it is always available. This is now

mentioned in the text. The S matrix is used to compute the a-priori guess for size distribu-

tion inversion (line 355). It is explained there how it is derived at the location where it is

first introduced: “..., where S is obtained by summing the rows of A and placing the results

on the diagonal of S (Talukdar and Swihart, 2003).”

31The a-priori estimate x0 is taken to be the normalized apparent growth factor 31 Revision

distribution derived from the measured response function, where the normaliza-

tion ensures that the sum over all bins is unity

32Line 280: Continuing from above, do the choices for x_0 make sense given the 32 Referee

chosen Tikhonov matrix? For example, a first-differences Tikhonov matrix encodes

information about the expected slope of the solution. Using (x - x_0) implies regu-

larization of the slope of the residual with respect to an a priori estimate. Can the

author comment?

33With the exception of the of L0D1e−3B[0,1] method, which is creates a Tikhonov matrix 33 Response

that is less sensitive to sharp edges, all of the methods worked similarly well when tested

against simulated test data. For example the inversion using L2x0B[0,1] and L2B[0,1] pro-

duces reconstructions of similar quality (see supplementary information). So empirically,

inclusion of this particular a-priori x0 does not make a difference when smoothing with

derivative operators L1 and L2. I also experimented with L2x0B[0,∞] for size distribution in-

version (now discussed in the paper) and found that it works, though without the smoothing

benefits. This is because for large regularization parameters, the solution converges toward

the initial guess, regardless of the choice of L. Letting a-priori information through the filter

may thus negate the benefit of smoothing.

34Second order inversion using L2B[0,∞] produces a smooth, denoised solution 34 Revision

due to application of the derivative operator in the regularization filter matrix.

The solution converges even though no a-priori estimate is used, i.e., x0 = 0.

Inclusion of an a-priori in the form of L2x0B[0,∞] is possible. However, noise in

the a-priori propagates into the solution, thus negating the intended benefit of

the second order Tikhonov matrix.



response to reviewer comments 10

35With respect to, "Higher resolution grids generally lead to poor performance even 35 Referee

for method L0D1e−3B[0,1]." This is *slightly* surprising. Given the way Tikhonov

prior operates, one may expect the extra grid points to be filled using the prior (a

little like interpolating between lower resolution points, but not quite the same).

Could this be an indication of limitations in the error metric used (there are most

points at which the error is being calculated such that one is not comparing the same

quantity)? Alternatively, the regularization parameter would change depending on

the reconstruction grid. Was the regularization parameter re-optimized each time?

36The regularization parameter is optimized for each inversion. The effect is not due to the 36 Response

definition of the error metric. The effect of higher-resolution grids leading to poor perfor-

mance is limited to the case with a single bin/sharp edges and using the two-step data-based

regularization. The figure below shows and example of this for 120 bins and 30 bins and the

same input distribution.
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The two-step regularization technique first performs a reconstruction based on L0 and the

uses this to build a revised Tikhonov matrix. More bins generally lead to the same spread in

the first reconstruction. Narrowing the solution down further is not possible based on that

input. The text now clarifies that this only applies to the discrete resolution cases.

37Higher resolution grids generally lead to poor performance for discrete popu- 37 Revision

lations even for method L0D1e−3B[0,1].

38Paragraph around Line 315: Is the unweighted residual really the best metric? 38 Referee

How about measurement noise (one may have more confidence in some measure-
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ments than others)? Should this be accommodated in terms of calculating this

residual?

39Please see a detailed response to referee Mark Stolzenburg for detailed discussion about 39 Response

why the RMSE was selected as residual (the last comment in my response to his comments).

Weighing the RMSE by the measurement error is possible, but not desirable. Specifically,

that would mean that bins with low or zero counts would effectively be excluded from

the error estimation. However, there are cases where the model produces false oscillatory

solutions (predicted counts) when measured (or expected counts) are zero. Filtering these in

the error metric would bias the results.

40Line 355: Small values in the A matrix do not matter as much as where they 40 Referee

are located. Small diagonals or nearly all-zero rows/columns are the real issues.

Consider clarifying. There is the issue of numerical noise (scattered small values)

in the kernel, which does little but slow down the inversion. Was this dealt with?

41Thank you for pointing this out. The language is revised (see below). No attempt was 41 Response

made to filter numerical noise in the kernel.

42Inclusion of these terms results in a more ill-posed inverse problem due to 42 Revision

increasing overlap between the kernels [Kandlikar and Ramachandran, 1999].

43Figure 5: The real-world noise in Fig. 5 does not seem to match noise in other 43 Referee

number concentrations reported in the theoretical components of the work. Can the

authors comment on this difference and/or update the earlier scenarios to be more

representative?

44This is an excellent observation. There are a couple of differences between the earlier 44 Response

scenarios and this real-world example. The example is for size distribution measurement,

while the previous scenarios are for growth factor measurements. However, I verified that it

is true that random error in Fig. 5 is larger than what one predict from Poisson counting

statistics alone. As mentioned earlier, there are other factors that may increase random noise

in the data. In this particular case, the additional noise is related to the internal electronics

of the specific CPC model.
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The Figure shows a voltage scan from a DMA (TSI long column, 9:1 flow ratio, 120 s

voltage scan) acquired with the same CPC model (TSI 3771/3772) as in the paper. Each

bin corresponds to 1 second data. The two data streams are the digitized pulse output

acquired using an external pulse counter card and the output from the serial port. (For the

distributions in the paper, only serial port data were available). The serial port output is

much noisier than the pulse count and the issue is present for all units of that particular

model series. The pulse counts are more consistent with Poisson statistics. It is not entirely

clear to me why the CPC serial output is so poor for this model. It seems to be related to the

on-board processing of raw counts, which appears to be too slow. We identified this issue

in 2016 and now always acquire both serial port and pulse data when available. Since this

issue is related to a specific model and data acquisition mode there is no need to update the

hypothetical HTDMA scenarios. Obviously noisier data is more difficult to invert. The

observation that the noise exceeds the Poisson noise in the example is now is now mentioned

in the text.

45The ragged structure is typically explained by random noise due to Poisson 45 Revision

counting statistics. However, in this example the noise level is larger than Poisson

statistics alone, which is thought to be due to the processing of raw data internal

to the specific CPC model that was used to collect the data.

46For the temporally-evolving measurements, recent work by Ozon et al. 46 Referee
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(https://acp.copernicus.org/preprints/acp-2021-99/) presents an improvement to

this existing technique and is closer to state-of-the-art. Can the authors comment

and cite appropriately?

47Thank you for the comment. The possibility is now mentioned. It is not clear though how 47 Response

this would work in ambient settings where conditions can change rapidly and unpredictably

due to emissions or wind-direction changes. The possibility is mentioned in the revised

manuscript.

48In situation where the temporal evolution of the size distribution is predictable, 48 Revision

e.g. environmental chamber measurements, Kalman smoothing might be used to

predict the in-between states [Ozon et al., 2021b,a].

49Line 460: Code would never involve writing out the Fredholm integral equations, 49 Referee

making this statement a bit confusing. Further, scientific manuscripts supporting

such code probably should state the underlying Fredholm integral equations. As

before, program-specific language makes the scientific components of the article

harder to follow.

50Please see my response to the earlier comment about the motivation for this approach. 50 Response
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Revised Section 2.3

Design Matrices For Differential Mobility Analyzers

Differential mobility analyzers consist of two electrodes held at a constant- or time-varying elec-

tric potential. Cylindrical [Knutson and Whitby, 1975] and radial [Zhang et al., 1995, Russell et al.,

1996] electrode geometries are the most common. Charged particles in a flow between the elec-

trodes are deflected to an exit slit and measured by a suitable detector, usually a condensation

particle counter. The fraction of particles carrying k charges is described by a statistical distribution

that is created by the charge conditioner used upstream of the DMA. The functions governing the

transfer through bipolar charge conditioners, single DMAs, and tandem DMAs are well understood

[Knutson and Whitby, 1975, Rader and McMurry, 1986, Reineking and Porstendörfer, 1986, Wang

and Flagan, 1990, Stolzenburg and McMurry, 2008, Jiang et al., 2014].

The traditional mathematical formulation of transfer through the DMA is summarized in Stolzen-

burg and McMurry [2008] and references therein. Briefly, the integrated response downstream of

the DMA operated at voltage V1 is given by a single integral that includes a summation over all

selected charges. The size distribution is measured by varying voltage V1, which produces the

raw response function defined as integrated response downstream of the DMA as a function of

upstream voltage. The size distribution is found by inversion. The basic mathematical problem

associated with inverting the response function to find the size distribution is summarized by

Kandlikar and Ramachandran [1999]. The integral is discretized by quadrature to find the design

matrix that maps the size distribution to the response function. L2 regularization is one of several

methods to reconstruct the size distribution from the response function [Voutilainen et al., 2001,

Kandlikar and Ramachandran, 1999].

The integrated response downstream of a tandem DMA that is operated at voltages V1 and V2

is given by a double integral and the summation of all selected charges. The integrals are over the

upstream size distribution and the aerosol conditioner function, which here is the growth factor

frequency distribution. Scanning over a range of voltages V2 results in the raw TDMA response

function. The objective is to find find a design matrix that maps the growth factor frequency

distribution to the raw TDMA response function.

Petters [2018] introduced a computational approach to model transfer through the DMA. The

main idea of the approach is to provide a domain specific language comprising a set of simple

building blocks that can be used to algebraically express the response functions intuitively through

a form of pseudo code. The main advantage of this approach is that the expressions simultaneously

encode the theory governing the transfer through the DMA and the algorithmic solution to compute

the response function. The resulting expressions are concise. They are easily identified within

actual source code. This makes the code easily modifiable by non-experts to change existing terms

or add new convolution terms without the need to develop algorithms.

A disadvantage of the computational approach over the traditional mathematical approach is

that computation lacks standardization of notation. This can blur the line between general pseudo

code and language specific syntax. Some of the applied computing concepts may be less widely

known when compared to standard mathematical approaches. Nevertheless, the author believes

that the advantages of the computational approach outweigh the drawbacks. Therefore, this work

builds upon the expressions reported in Petters [2018]. Updates and clarifications to the earlier

work are noted where appropriate.
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The computational language includes a standardized representation of aerosol size distributions,

operators to construct expressions, and functions to evaluate the expressions. Size distributions en-

coded as a SizeDistribution composite data type. Composite data types combine multiple arrays into

a single symbol for ease of use, facilitating faster experimental design and analysis. SizeDistribu-

tion consists of vectors of bin edges, bin midpoints, number concentration, log-normalized spectral

density, and logarithmic bin widths. SizeDistributions are denoted in blackboard bold font (e.g., ♥,

r, etc.). SizeDistributions are the building block of composable algebraic expressions through oper-

ators that evaluate to transformed SizeDistributions. For examples, ♥1 + ♥2 is the superposition of

two size distributions and f ∗ ♥ is the uniform scaling of the concentration fields by factor f , A ∗ ♥

is matrix multiplication of A and concentration fields of the size distribution, and f · ♥ is the uni-

form scaling of the diameter field of the size distribution by factor f , and T · ♥ is the elementwise

scaling of the diameter field by factor T. (Note that the Petters (2018) used T. ·♥ is the elementwise

scaling. The extra dot has which has been dropped to stay consistent with the current software

implementation).

Functions are used to reduce expressions. Generic functions include, ∑( f , m) evaluates the

function f (x) for x = [1, . . . , m] and sums the result. If f (X) evaluates to a vector, the sum is the

sum of the vectors. The function map( f , x) applies f (x) to each element of vector x and returns a

vector of results in the same order. The function reduce( f , x) applies the bivariate function f (x, y) to

each element of x and accumulates the result. The function mapreduce( f , g, x) combines map and

reduce. It applies function f to each element in x, and then reduces the result using the bivariate

function function g(x, y). The function vcat(x, y) concatenates arrays x and y along one dimension.

Anonymous functions are used as arguments to reducing functions. Anonymous functions are

denoted as x → expression, where x is the argument consumed in the evaluation of the expression.

These functions are generic and represent widely used computing concepts. They are implemented

in most modern programming languages.

DMA geometry, dimensions, and configuration are abstracted into composite types Λ (config-

uration comprising flow rates, power supply polarity, and thermodynamic state) and δ (DMA

domain defined by a mobility/size grid). Each DMA is fully described by a pair Λ,δ. Subscripts

and superscripts are used to distinguish between different configurations in chained DMA setups,

e.g. δ1 and δ2 denoting the first and second DMA, respectively. Application of size distribution

expressions to transfer functions constructs a concise model of the transmitted DMA mobility dis-

tribution, denoted as the DMA response function. Implementation of the language is distributed

through a freely-available and independently documented package DifferentialMobilityAnalyzers.jl,

written in the Julia language. Expressions in the text are provided in general mathematical form

for readability.

Petters [2018] gives a simple expressions that model transfer through the DMA. The function

TΛ,δ
size (k, zs) evaluates to a vector representing the fraction of particles carrying k charges that exit

DMAΛ,δ as a function of mobility

TΛ,δ
size (k, zs) = Ω(Z, zs/k, k). ∗ Tc(k, Dp,1). ∗ Tl(Z, k) (10)

where zs is the centroid mobility selected by the DMA (determined by the voltage and DMA

geometry), Z is a vector of mobilities, Ω is the diffusing DMA transfer function [Stolzenburg

and McMurry, 2008], Tc is the charge frequency distribution [Wiedensohler, 1988], and Tl is the

diameter-dependent transmission loss [Reineking and Porstendörfer, 1986]. The functions Ω and
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Tl have been updated from Petters (2018). The version in Petters (2018) computed the shape of the

transfer function and losses for the mobility diameter corresponding to singly charged particles

and then apply the same shape of the transfer function and diffusional loss to the multiply charged

particles. Binding the charge state explicitly to Ω and Tl results in proper accounting of diffusional

losses and broadening of the transfer function for multiply charged particles in TΛ,δ
size (k, zs).

Petters [2018] also gives an expression that evaluates to the convolution matrix for passage

through a single DMA.

A = mapreduce{zs → Σ[k → TΛ,δ
size (k, zs), m]T , vcat, Z} (11)

where, m is the upper number of multiply charged particles, T is the transpose operator, and Z is

a vector of centroid mobilities scanned by the DMA. Eq. (11) evaluates to the same as Eq. (8) in

Petters (2018), but the notation is revised to be more general by removing the julia specific splatting

construct and replacing it with widely used generic functions.

To help with parsing the expression, TΛ,δ
size (k, zs) evaluates to a vector of transmission for k charges

and set point centroid mobility zs as a function of the entire mobility grid (e.g. 120 bins discretized

between mobility z1 and z2). The function Σ[k → TΛ,δ
size (k, zs), m] superimposes the vectors for

all charges. Mapping zs → Σ[k → TΛ,δ
size (k, zs), m] over the mobility grid Z produces an array of

vectors, each corresponding to the transmission for a single size bin. Transposing the vectors and

reducing the collection through concatenation produces the design matrix that links the mobility

size distribution to the response function, i.e.

r = A♥+ ǫ (12)

where r is the response distribution, ♥ is the true mobility size distribution, and ǫ is a vector

denoting the random error that may be superimposed as a result of measurement uncertainties.

Note that by design ♥ and r are SizeDistribution objects, which represented the distribution as a

histogram in both spectral density units (dN/dlnD) and concentration per bin units. The latter is

the raw response function defined as integrated response downstream of the DMA as a function of

upstream voltage (or corresponding zs or corresponding apparent +1 mobility diameter).

The mobility distribution exiting DMA 2 in the humidified tandem DMA is evaluated using the

expressions

M
δ1
k = Πk ·

{

g0 ·
[

TΛ,δ
size (k, zs) ∗ ♥

]}

(13)

In Eq. (13), M
δ1
k evaluates to the apparent +1 mobility distribution particles that exit the DMAΛ,δ

at the nominal setpoint-diameter defined by mobility zs (or z-star) in DMA 1 and particle charge

k. Subscripts are used to differentiate DMA 1 and 2 which possibly have different geometries,

flow rates, and grids, e.g. Λ1, Λ2 and δ1, δ2. Π
Λ,δ
k is the projection of particles having physical

diameter D and carrying k charges onto the apparent +1 mobility grid. It is a function that converts

each diameter/charge pair to mobility and interprets the result as apparent +1 mobility diameter.

g0 = Dwet/Ddry is the true diameter growth factor, Ddry is the selected diameter by DMA 1, Dwet is

the diameter after the humidifier, TΛ,δ
size (k, zs) is as in Eq. (10), and ♥ is the mobility size distribution

upstream of DMA 1.

To help parse Eq. (13), the product TΛ,δ
size (k, zs) ∗ ♥ evaluates to the transmitted mobility distribu-

tions of particles carrying k charges at the set-point mobility zs in DMA 1. The size distribution is
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grown by the growth factor g0. The resulting size distribution is shifted to the apparent +1 mobility

diameter using Π
Λ,δ
k . Equation (13) differs from that in Petters [2018] where it was assumed that

particles of all charges grow by the same amount. This is incorrect. Particles carrying more than a

single charge alias at a smaller particle size [Gysel et al., 2009, Shen et al., 2021]. The effect is due

to the size dependence of the slip-flow correction factor and captured through the function Π
Λ,δ
k .

Equation (13) assumes that g0 applies to all particle sizes.

The total humidified mobility distribution ♠δ2
t exiting DMA 2 is given by

♠
δ2
t =

m

∑
k=1

(

Ok ∗ M
δ1
k

)

(14)

where, m is upper number of charges on the multiply charged particles, Z is a vector of centroid

mobilities scanned by DMA 2, and

Ok = mapreduce{zs → [ΩΛ2,δ2(Z, zs, k). ∗ TΛ2,δ2
l (Z, k)]T , vcat, Z} (15)

is the convolution matrix for transport through DMA 2 and particles carrying k charges. Equations

(14) and (15) modified from those in Petters (2018) in the following manner. The convolution matrix

Ok is computed individually for each charge. The version in Petters (2018) computed the matrix

corresponding to singly charged particles and then apply the same matrix to multiply charged

particles. Since Ok is now charge resolved, it is moved into the summation in Eq. (14). Computation

of Ok through Eq. (15) has been revised to be more general by removing a julia language specific

construct. O1 computed by Eq. (15) produces the same matrix as in Petters (2018).

If the aerosol is externally mixed, the humidified distribution function is given by

♠
δ2
t =

∫ ∞

0
Pg

[

m

∑
k=1

(

Ok ∗ M
δ1
k

)

]

dg0 (16)

where Pg is the growth factor probability density function and the diameters in M
δ1
k are normalized

by Ddry. ♠δ2
t in Eq. (16) is the forward model through the tandem DMA. Using the notation in

section 2.2,

F(x, c) =
∫ ∞

0
Pg

[

m

∑
k=1

(

Ok ∗ M
δ1
k

)

]

dg0 (17)

where x is the true Pg and the vector c of constraining parameters comprises the DMA setup

Λ1, Λ2, δ1, δ2 and upstream size distribution ♥. Computer code that creates a forward model for

tandem DMAs has been added to the DifferentialMobiltyAnalyzers.jl package and is annotated in the

documentation of the package. For purposes of the forward model, the mobility grid for DMA 1

is discretized at a resolution of i bins. Transmission through DMA is computed for a specified zs

(the dry mobility), g0 (the growth factor), and an input size distribution, which results in a vector

i concentrations along this grid. If the input size distribution does not match the mobility grid the

grids are merged through interpolation. The mobility grid for DMA 2 is discretized at a resolution

of j bins. The transmitted and grown distribution from DMA 1 (i bins along the mobility axis

of DMA 1) is interpolated onto the mobility grid of DMA 2. The outer integral in Eq. (17) is

discretized into n bins that models Pg. If the output mobility of grid of DMA 2 does not match,

the grids are merged through interpolation. The choice of i, j, n, the ranges of mobility grids for

DMA 1, DMA 2, and the range of Pg is only constrained by computing resources and a physically
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reasonable representation of the problem domain. Reasonable choices are i = 120, j = n = 30.

The forward model is used to cast Eq. (17) into matrix form such that the humidified mobility

distribution function is given by

♠
δ2
t = A2Pg + ǫ (18)

where the subscript 2 specifies transmission through DMA 2, the matrix A2 is understood to be

computed for a specific input aerosol size distribution, and ǫ is a vector that denotes the random

error that may be superimposed as a result of measurement uncertainties. The size of A2 is j × n.

Uncertainties in the size distribution propagate into A2. The main influence of the error will be

the relative fraction of +1, +2, and +3 charged particles. Assuming a random error of ±20% in

concentration, the overall effect on the ♠δ2
t is expected to small.
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Author Statement

I thank Dr. Stolzenburg for his time to review this manuscript and his constructive critiques.

Below are itemized responses to the referees’ comments. In response to the comments, Section 2.3

of the manuscript was significantly expanded. The complete revised section is mentioned in

several responses. To avoid repetition, the revised section is reproduced at the end of the

document.

Response to Reviewer #2 (Mark Stolzenburg)

Overview

1 Disclaimer: Other than just some broad principles, this reviewer is not familiar 1 Referee

with regularization techniques or the Julia syntax and is therefore ill-equipped to

properly review the technical nature of that aspect of this work. Attention is gen-

erally focused on other aspects of this paper. Also, the lack of full comprehensive

documentation of all the notation used in the equations presented here has fre-

quently hampered a thorough understanding of these equations. However, it is still

possible to discern the general meaning of most equations. Equation (10) is a good

example of this. The definition of the map() function and the interpretation of the

right arrow (→) are not given in the text here. At least the map() function is defined

in the Petters (2018) reference. It appears the arrow notation is part of notation for

a series or sequence.

2 I apologize for the missing definitions in the draft. These are now included in the revised 2 Response

version.

3 This manuscript addresses the important issue of automating the processing of 3 Referee

tandem DMA data. The idea of inverting data with regularization is sound. How-

ever, there are problems with the forward model of calculating system response

from a known input distribution. If these issues can be properly addressed, the

resulting software package should prove of great utility.

4 I thank Dr. Stolzenburg for his detailed and helpful review comments below. The issue 4 Response

raised regarding the forward model is addressed via a revision of the text and equations. The

comments highlighted two assumptions that had no impact on the result, but were important

to revise to be as correct as possible.

Major Comments
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5 There appears to be a problem with proper accounting of diffusional losses and 5 Referee

broadening of the transfer function, Ω, for DMA2. Eq. (10) in the form of A charac-

terizes the transfer through DMA1 while the equation for O (line 230) characterizes

transfer through DMA2. As noted in Petters [2018], these two expressions are anal-

ogous except for the inclusion of Tc in the former and the limitation of the summa-

tion to k = 1 in the latter. In the DMA, a particle is sized according to its apparent

mobility diameter whereas diffusional losses as well as broadening of the transfer

function are dependent on the true mobility diameter via particle diffusivity. Given

one of these diameters, the particle charge is required to calculate the other and

ultimately TΛ,δ
size . Thus, it is important to sum over all charge states individually to

calculate the diffusing transfer through a DMA. As this is not done for the second

DMA, the given expression cannot be properly accounting for transfer of multiply

charged particles.

6Thank you for the raising this issue. In fact, the issue affects both the matrix A and the 6 Response

matrix O. The version in Petters (2018) and the draft manuscript compute the shape of

the transfer function and losses for the mobility diameter corresponding to singly charged

particles and then apply the same shape of the transfer function and diffusional loss to the

multiply charged particles. The error that is introduced by this assumption/simplification is

generally small since the fraction of multiply charged particles is small for sizes when dif-

fusional broadening becomes important, and because the change in the shape of the transfer

function/diffusional loss rate between the sizes is small. Nevertheless, there is no need to

make this simplification. The formalism is now updated to properly account for the transfer

of multiply charged particles.

7Section 2.3 of the manuscript has been revised to include this effect. Since this 7 Revision

section includes changes in response to multiple other comments, please see the

changed section at the end of this document for details.

8 The interpretation of Eq. (11) and its components would be greatly facilitated by 8 Referee

an explicit indication of the independent parameters of distribution for the input

size distribution ♥
cn. Also, the precise form of ♥cn (e.g. dN/dDp, dN/dlnDp, or

dN/dlogDp) is important. The most obvious set of independent particle parameters

would be (true) mobility diameter, D1, and charge, k. However, it appears that ♥cn

is distributed according to apparent mobility diameter, Dk, and k in order to have

the balance of the equation work out. The apparent mobility diameter is then pre-

multiplied by the effective, or apparent, growth factor, g fk(z
s, g f0), and then by

the ratio of true to apparent mobility diameters, D1/Dk. However, this ratio is

being evaluated at the DMA1 centroid mobility, zs, but applied to the Z grid after

growth. Since this ratio is a function of size, this does not work out. Also, this

means that the input distribution to the operator characterizing DMA2 transfer is

in terms of true mobility diameter, in contrast to the ♥cn input to DMA1 and A.

All of this switching back and forth between true and apparent mobility diameter
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seems overly complicated.

9The precise form ♥
cn is now clarified in the text just above the equation in question. It 9 Response

is a histogram in dN/dlnD units. The “cn” has been dropped based on a later comment.

The distribution ♥ is along the actual mobility diameter. The referee is correct that the way

it was formulated in the draft was confusing due to multiple switches between true and

apparent mobility diameter. The referee is also correct that the ratio was being evaluated at

the DMA1 centroid mobility, zs, but applied to the Z grid after growth. The assumption was

that particles within a charge grouping all behave the same. I changed the equation and the

code to make it more intuitive and more correct, i.e. when projecting the physically grown

diameter back to mobility space, the correction is applied for each point in the Z grid. The

impact on the calculation due to the change is almost imperceptibly. Text has been added to

help parsing the equation.

10 10 Revision

r = A♥+ ǫ (12)

where r is the response distribution, ♥ is the true mobility size distribution, and

ǫ is a vector denoting the random error that may be superimposed as a result

of measurement uncertainties. Note that by design ♥ and r are SizeDistribu-

tion objects, which represented the distribution as a histogram simultaneously

as spectral density units (dN/dlnD) and concentration per bin units. The latter

is the raw response function defined as integrated response downstream of the

DMA as a function of upstream voltage (or corresponding zs or corresponding

apparent +1 mobility diameter).

The mobility distribution exiting DMA 2 in the humidified tandem DMA is

evaluated using the expressions

M
δ1
k = Π

Λ,δ
k ·

{

g0 ·
[

TΛ,δ
size (k, zs) ∗ ♥

]}

(13)

In Eq. (13), M
δ1
k evaluates to the apparent +1 mobility distribution particles that

exit the DMAΛ,δ at the nominal setpoint-diameter defined by mobility zs (or z-

star) in DMA 1 and particle charge k. Subscripts are used to differentiate DMA 1

and 2 which possibly have different geometries, flow rates, and grids, e.g. Λ1, Λ2

and δ1, δ2. Π
Λ,δ
k is the projection of particles having physical diameter D and car-

rying k charges onto the apparent +1 mobility grid. It is a function that converts

each diameter/charge pair to mobility and interprets the result as apparent +1

mobility diameter. g0 = Dwet/Ddry is the true diameter growth factor, Ddry is the

selected diameter by DMA 1, Dwet is the diameter after the humidifier, TΛ,δ
size (k, zs)

is as in Eq. (10), and ♥ is the mobility size distribution upstream of DMA 1.

To help parse Eq. (13), the product TΛ,δ
size (k, zs) ∗ ♥ evaluates to the transmitted

mobility distributions of particles carrying k charges at the set-point mobility zs

in DMA 1. The size distribution is grown by the growth factor g0. The result-

ing size distribution is shifted to the apparent +1 mobility diameter using Π
Λ,δ
k .

Equation (13) differs from that in Petters [2018] where it was assumed that parti-

cles of all charges grow by the same amount. This is incorrect. Particles carrying
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more than a single charge alias at a smaller particle size [Gysel et al., 2009, Shen

et al., 2021]. The effect is due to the size dependence of the slip-flow correction

factor and captured through the function Π
Λ,δ
k . Equation (13) assumes that g0

applies to all particle sizes.

Minor Comments and Corrections
11 line 158: Insert a space between “as” and “x”. 11 Referee

12Done. 12 Response

13 line 186: The description of a DMA here is a bit too brief, saying nothing about 13 Referee

the flow. Try “Charged particles in a flow between the electrodes are deflected to

an exit slit...”

14Thank you for the suggestion. Done. 14 Response

15 lines 188-189: “The functions ... and tandem DMAs is are well understood ...” 15 Referee

16Done. 16 Response

17line 200: “T � n”should be “T. � n” according to Petters (2018). Presumably T is a 17 Referee

vector, but this differs from the notation conventions given in lines 87-88.

18Yes, “T � n”should be “T. � n” according to Petters (2018). (T is a vector). The original 18 Response

version was developed on julia v0.6 and it allowed me to create the “T. � n” construct which

was desirable to create a consistent treatment of vectors. Once julia updated to 1.x series, it

was not longer possible to use this notation and I dropped the extra dot. This difference is

now noted in the text.

19See updated section 2.3 19 Revision

20 Eq. (10): Here, TΛ,δ
size alone characterizes transfer through the DMA. Evidently the 20 Referee

balance of this expression puts this into the required form for later matrix manipu-

lation. Some additional explanation of how this matrix is created from TΛ,δ
size would

be useful here. And though perhaps only parentheses may be used in program-

ming, the readability of this equation would be greatly improved by alternating “(

)” with “[ ]” and “{ }”.

21The equation(s) have been updated for readability by alternating “( )” with “[ ]” and “{ 21 Response
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}”. The equation has also been rewritten for clarity by removing julia language specific

constructs and giving much more details about the functions used in the text. As pointed

out in Petters (2018) “It may not be immediately obvious why the expression ... evaluates to

the convolution matrix (or that it evaluates to a matrix at all). A step-by-step explanation

is in Notebook S2.” The reference to the supplement of the preceding work is still valid.

Nevertheless, some additional explanation has also been added to the text.

22 Please see entire updated section 2.3 for further context and definitions. The 22 Revision

specific changes referring to this comment are

Petters [2018] also gives an expression that evaluates to the convolution matrix

for passage through a single DMA.

A = mapreduce{zs → Σ[k → TΛ,δ
size (k, zs), m]T , vcat, Z} (11)

where, m is the upper number of multiply charged particles, T is the transpose

operator, and Z is a vector of centroid mobilities scanned by the DMA. Eq. (11)

evaluates to the same as Eq. (8) in Petters (2018), but the notation is revised

to be more general by removing the julia language specific splatting construct

and replacing it with the widely used higher-order function mapreduce defined

earlier.

To help with parsing the expression, TΛ,δ
size (k, zs) evaluates to a vector of transmis-

sion for k charges and set point centroid mobility zs as a function of the entire

mobility grid (e.g. 120 bins discretized between mobility z1 and z2). The func-

tion Σ[k → TΛ,δ
size (k, zs), m] superimposes the vectors for all charges. Mapping

zs → Σ[k → TΛ,δ
size (k, zs), m] over the mobility grid Z produces an array of vectors,

each corresponding to the transmission for a single size bin. Transposing the

vectors and reducing the collection through concatenation produces the design

matrix that links the mobility size distribution to the response function, i.e.

r = A♥+ ǫ (12)

where r is the response distribution, ♥ is the true mobility size distribution, and

ǫ is a vector denoting the random error that may be superimposed as a result of

measurement uncertainties. Note that by design ♥ and r are SizeDistribution ob-

jects, which represented the distribution as a histogram in both spectral density

units (dN/dlnD) and concentration per bin units.

23 lines 213, 230: Though zs is defined in lines 223-224, what is zs
k in the indicated 23 Referee

lines? Since zs is used in Eq. (10), it might be more conveniently defined in line

211 (rather than line 224) along with Z as “... Z is a vector of centroid mobilities, zs,

scanned by the DMA...”

24The term zs
k has been rewritten as zs/k for clarity 24 Response
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25 lines 216-217: “The size distribution after passage through the DMA is given by 25 Referee

r = A♥+ ǫ, where r is the response function... .” The size distribution exiting the

DMA and the response of the detector are not the same thing. The former is usually

given as dN/dlogDp while the latter, as in the case of a CPC, is given by NCPC, a

simple number concentration. Also, there is the matter of the detector efficiency as

well as the transport efficiency between the DMA and the detector, unless the latter

has been subsumed into the DMA transport efficiency. As A is to later serve as

the operator corresponding to transfer through DMA1 in a tandem DMA setup, A

must represent a size distribution, not a response function.

26It is both. Please see revisions to preceding comment which spells this out. Currently the 26 Response

detector efficiency is not treated separately, but it can be easily added by adding terms to

TΛ,δ
size (k, zs).

27 Eq. (11) and following: The double character notation for growth factor as “gf” 27 Referee

is atypical as far as normal mathematical notation is concerned. It is too easily

interpreted as g times f, rather than as a single parameter. And in this draft of

the manuscript there is actually extra space between the two letters, increasing

the likelihood of the wrong interpretation. However, it is seen that this space is

eliminated in Petters (2018) so presumably it can and will be eliminated in the final

typeset form. If not for this preexisting work and a strong preference to remain

consistent with that, it would be better to change this to a single character form

such as simply “g”. Also, the reason for the choice of the cn superscript on ♥
cn for

the input distribution is quite obscure. Does that stand for something?

28The origin for the “cn” superscript was carryover from the previous publication where it 28 Response

was desirable to distinguish the distribution that is measured with a CN counter as detector

from a distribution that is measured with a CCN as detector. This way the true activated

fraction could be conveniently modeled as ♥ccn ./ ♥
cn. The “cn” is not needed here and has

been dropped; gf has been changed to g for clarity as suggested.

29line 230: Given the length and complexity of the expression for the operator O, it 29 Referee

would be better placed on a line by itself and numbered.

30Done 30 Response

31See updated section 2.3 31 Revision

32 Discretization: As noted (lines 461-462), the forward model for the TDMA rep- 32 Referee
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resents a triple integral. The parameters of integration may be denoted as Di and

Do, the mobility diameters before and after growth, and g f0, the size-independent

growth factor. Though the discretization of these parameters is automated in the

software, some discussion of the constraints on this discretization should be in-

cluded here. For instance, is there a restriction between the number of particle

diameter bins and the number of measurement bins? Eq. (15) and the statement

(line 248) “The size of A2 is n2, ...” would imply that the number of g f bins must

be equal to the number of measurement bins. Is this a necessary condition and, if

so, why?

33Thank you for raising this. The under-the-hood binning procedure is now explained. The 33 Response

text reflected a choice I made when I wrote the code such that the measurement grid(s) can,

but don’t have to be interpolated onto any desired grid representation through interpolation

(see below). It is worth pointing out here that the generic interface described in section 2.2 is

designed such that the user can query the forward model at arbitrary points, which creates

non-square matrices that link the grid of Pg and that of DMA 2 measurement representation.

34Using the notation in section 2.2, 34 Revision

F(x, c) =
∫ ∞

0
Pg

[

m

∑
k=1

(

Ok ∗ M
δ1
k

)

]

dg0 (17)

where x is the true Pg and the vector c of constraining parameters comprises the

DMA setup Λ1, Λ2, δ1, δ2 and upstream size distribution ♥. Computer code that

creates a forward model for tandem DMAs has been added to the DifferentialMo-

biltyAnalyzers.jl package and is annotated in the documentation of the package.

For purposes of the forward model, the mobility grid for DMA 1 is discretized at

a resolution of i bins. Transmission through DMA is computed for a specified zs

(the dry mobility), g0 (the growth factor), and an input size distribution, which

results in a vector i concentrations along this grid. If the input size distribution

does not match the mobility grid the grids are merged through interpolation. The

mobility grid for DMA 2 is discretized at a resolution of j bins. The transmitted

and grown distribution from DMA 1 (i bins along the mobility axis of DMA 1)

is interpolated onto the mobility grid of DMA 2. The outer integral in Eq. (17)

is discretized into n bins that models Pg. If the output mobility of grid of DMA

2 does not match, the grids are merged through interpolation. The choice of i, j,

n, the ranges of mobility grids for DMA 1, DMA 2, and the range of Pg is only

constrained by computing resources and a physically reasonable representation

of the problem domain. Reasonable choices are i = 120, j = n = 30. The forward

model is used to cast Eq. (17) into matrix form such that the humidified mobility

distribution function is given by

♠
δ2
t = A2Pg + ǫ (18)

where the subscript 2 specifies transmission through DMA 2, the matrix A2 is

understood to be computed for a specific input aerosol size distribution, and ǫ is
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a vector that denotes the random error that may be superimposed as a result of

measurement uncertainties. The size of A2 is j × n.

35Figs. 1-4: Frequency vs. Growth Factor: Growth factor g f and its frequency dis- 35 Referee

tribution Pg f are naturally continuous functions, though the former is (artificially)

discretized for the purposes of inversion. Just as the size distribution, ♥cn, is ex-

plicitly written as dN/dDp or dN/dlnDp with total integral N, the growth factor

frequency distribution is also a derivative, dF/dg for dF/dlng f , with total integral

F = 1. However, in the indicated plots, the frequency is plotted as for a parameter

with truly discrete values such that the sum of the heights, rather than the areas, of

the bars is equal to 1. That is, the height of each bar is given by (dF/dlng f ) � lng f

where lng f is the width of the bar. If the growth factor is discretized such that lngf

is constant, then what is plotted is simply a uniformly scaled version of the more

traditional dF/dlng f plot, though this would normally be versus lng f . As plotted,

the area under these curves is not equal to 1.

36Number Concentration vs. Apparent Growth Factor: In these plots, the Apparent 36 Referee

Growth Factor is evidently given by

g fapp = D1(z
s
2)/D1(z

s
1).

The “Concentration”parameter is apparently the first-order inverted number distri-

bution function given by

dNapp/dlnDp2 = (dNapp/dlnZp2)(dlnZp/dlnDp2) = (NCPC/β2)(dlnZp/dlnDp2)

where β2 = Qaerosol/Qsheath for DMA 2. This is also seen to be a scaled version of

the apparent growth factor frequency distribution as

dNapp/dlnDp2 = Nt,2 � (dFapp/dlng fapp)

where Nt,2 is the total concentration exiting DMA 2. If this is to be compared

to the Frequency vs. Growth Factor plot, this would need to be multiplied by

lng fapp = ∆lnD1(z
s
2). For the two plots to be directly comparable, ∆lnD1(z

s
2) would

have to be a constant.

37Combined response to 35 and 36. In the submitted draft, the concentration is the raw 37 Response

number concentration the detector would measure for that bin. Neither the concentration

nor the frequency histograms were normalized by the bin width. I changed the revised

version to show the probability density functions such that the area under the curve equals

to 1. I want to retain the number concentration vs. apparent growth factor plots since the

values represent the measurement. I clarify the representation in the text.

38Please see revised manuscript. 38 Revision

39line 315-316:“...the residual is high is if the true input is a broad growth factor 39 Referee

frequency distribution...”

40Fixed 40 Response



response to reviewer comments 9

41lines 332-333: “Errors from scans with low non-zero concentration at the edge of 41 Referee

the size distribution propagate back into the inversion at other dry sizes.”

42Fixed 42 Response

43line 345: “...a cylindrical DMA column (TSI 3080).”Model “3080”does not specify 43 Referee

the actual DMA column. Assuming it is the TSI long DMA, this should be specified

as either “TSI 3080L”for the whole system or “TSI 3081”for just the column.

44Thank you, we have just the column. Corrected. 44 Response

45lines 386-387: “...with the timestamp closest to the a scan...”Eliminate “a” 45 Referee

46Corrected. 46 Response

47line 419: “...a marine inflow event on March 27−28 2015.”Use a date format con- 47 Referee

sistent with the other dates, i.e. 27-28 March 2015. However, this date is beyond the

limits of the plot in Fig. 6.

48The date formats are now consistent. Also, the text should have been 27-28 February 48 Response

2015, which is on the plot.

49line 422: “...9 February 2015,...”. Shouldn’t this be 11 February 2015? 49 Referee

50Thank you. Corrected. 50 Response

51Lines 505-513: “The inverted dataset ...closure (Mahish et al., 2018).” This is a very 51 Referee

long run-on sentence. It needs to be broken up into several sentences.

52Done. 52 Response

53“Best fit”vs “good fit”: Though regularization produces what might be considered 53 Referee

a best fit solution to the inversion problem, this does not necessarily imply it is a

good fit. It would be best to calculate a fit parameter such as the chi square of

the normalized residuals over the degrees of freedom. For a good fit, this should

be near 1. That is, the residuals are on the order of what is predicted by Poisson
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statistics. Values an order of magnitude or more greater than that would suggest

some sort of problem either with the dataset or the model.

54It is correct that the best-fit is not necessarily a good fit. Worse, even a good fit may 54 Response

be a poor model. Unregularized regression can almost eliminate the residual, but produce

estimation parameters that are extremely poor, even if the regression looks good. For example:

The left panel shows a true input vector x. The middle panel on the left shows a response

vector b (red) computed as b = Ax + ǫ, where ǫ the some random error. The right panel

shows the estimate x̂ = A−1b, which is extremely poor. Computing the model response from

the estimate, Ax̂, shows the best fit solution. If we only have the observations, we can only

compute error metrics based on some residual between Ax̂ and b. The comment in question

in refers to some form of Figure 4
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where the left panel corresponds to Ax̂ (colors) and b (Input) in the example above, and

the right panel to the comparison between x (Truth) and x̂ (colors) in the example above.

The question raised by this referee (and referee #1) is what the best error metric might be

to determine the goodness of the fit and by extension and goodness of model reconstruction.

I selected the root mean square error (RMSE), RMSE =
√

∑
(Oi−Ei)2

n , where Oi are the

observed and Ei the expected values. The RMSE is zero for a perfect fit and greater than

zero for a less-than optimal fit.

Many goodness-of-fit statistical tests involve some form of the chi-square statistic. Com-

puting chi-square as χ2 = ∑
(Oi−Ei)

2

Ei
, where Oi are the observed and Ei the expected values

is not valid for many of the cases here, because the expected values can be zero. Any residual

in a bin with zero expected value would immediately raise χ2 to infinity. Excluding bins

with zero expected value would be incorrect, as it would not capture “bad” models that



response to reviewer comments 11

predict output for zero bins. The referee’s language “chi square of the normalized resid-

uals over the degrees of freedom” seems to refer to the adjusted goodness-of-fit index,

commonly abbreviated as AGFI [e.g. Sun, 2005], which for the same reason is not valid

here.

The main desired property of a goodness-of-fit index is that it might provide a clean

quantitative measure on when to reject a solution. The AGFI seemingly provides this infor-

mation, with values near 1 indicating a good fit. Although the AGFI is not applicable here,

the RMSE can be used in a similar manner. Values below a certain threshold indicate a good

(or good enough) fit. The only difference is that the lower threshold value is not immediately

clear.

The way RMSE is used here is in a relative comparison between L0D1e−3B[0,1], LSQ1,

and LSQ2. LSQ1, and LSQ2 are well-behaved and do not have oscillatory solutions. How-

ever, they will fail when true growth factor frequency distribution is broader than can be

explained by one or two compounds. Conversely L0D1e−3B[0,1] will have poor solution (os-

cillatory solution) when the true input distribution is narrow. Truncation of the negative

values is what amplifies the RMSE in this case. Thus RMSE is not quite used to declare that

the fit is good or that a model is valid. It is used to determine whether the input distribution

is narrow enough to warrant fit to a single component, two component, or multicomponent

model.

This still leaves the ultimate question unaddressed. How well can we trust the proposed

(regularized) solution? As I argue in the manuscript, the simulations address this point.

Since the true noise-free input growth factor frequency distribution is known, the fi-

delity of the inversion can be evaluated by computing the root mean square error be-

tween the noise-free solution and the regularized solution. The figure shows that both

inversion methods produce a root mean square error between 0.02 and 0.03. These

values are typical for the of reconstruction (see supporting information). Visual eval-

uation of the agreement between the reconstruction and the input suggest that either

method is suitable for inversion.

Whether this is acceptable remains ultimately up to the user. I am skeptical that a statistical

procedure such as AGFI (if it were applicable) would really help here. Tests should be

performed to validate the physical plausibility of the solution. For examples, the mode of the

apparent growth factor and the mode of the inverted growth factor should be similar. The

retrieved growth factors should be physically plausible. The distribution of RMSE can be

plotted for a large data set. Visual inspection of fits for large RMSE can be used to derive a

threshold above which fits are automatically rejected. The text now mentions these quality

assurance examples.

55Note, however, that the low residuals between the apparent growth factor dis- 55 Revision

tribution and the model do not automatically ensure that the algorithm a good or

adequate solution. Additional tests should be performed to validate the physical

plausibility of the solution. For example, the retrieved growth factors should be

physically plausible at the applied relative humidity. The mode of the apparent

growth factor distribution and the mode of the inverted growth factor distri-

bution should be similar. A histogram of the root mean square error between
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can be plotted for a large data set. Visual inspection of fits for large root mean

square error can be used to derive a threshold above which reconstructions are

automatically rejected. The integrated probability density function of the recon-

structions should be near unity. Deviations from unity may occur due to concen-

tration errors between the size distribution measurement and the growth factor

distribution measurement, unaccounted transmission losses, and errors from the

inversion. Reconstructions deviating significantly from unity should be flagged

and rejected.
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Revised Section 2.3

Design Matrices For Differential Mobility Analyzers

Differential mobility analyzers consist of two electrodes held at a constant- or time-varying elec-

tric potential. Cylindrical [Knutson and Whitby, 1975] and radial [Zhang et al., 1995, Russell et al.,

1996] electrode geometries are the most common. Charged particles in a flow between the elec-

trodes are deflected to an exit slit and measured by a suitable detector, usually a condensation

particle counter. The fraction of particles carrying k charges is described by a statistical distribution

that is created by the charge conditioner used upstream of the DMA. The functions governing the

transfer through bipolar charge conditioners, single DMAs, and tandem DMAs are well understood

[Knutson and Whitby, 1975, Rader and McMurry, 1986, Reineking and Porstendörfer, 1986, Wang

and Flagan, 1990, Stolzenburg and McMurry, 2008, Jiang et al., 2014].

The traditional mathematical formulation of transfer through the DMA is summarized in Stolzen-

burg and McMurry [2008] and references therein. Briefly, the integrated response downstream of

the DMA operated at voltage V1 is given by a single integral that includes a summation over all

selected charges. The size distribution is measured by varying voltage V1, which produces the

raw response function defined as integrated response downstream of the DMA as a function of

upstream voltage. The size distribution is found by inversion. The basic mathematical problem

associated with inverting the response function to find the size distribution is summarized by

Kandlikar and Ramachandran [1999]. The integral is discretized by quadrature to find the design

matrix that maps the size distribution to the response function. L2 regularization is one of several

methods to reconstruct the size distribution from the response function [Voutilainen et al., 2001,

Kandlikar and Ramachandran, 1999].

The integrated response downstream of a tandem DMA that is operated at voltages V1 and V2

is given by a double integral and the summation of all selected charges. The integrals are over the

upstream size distribution and the aerosol conditioner function, which here is the growth factor

frequency distribution. Scanning over a range of voltages V2 results in the raw TDMA response

function. The objective is to find find a design matrix that maps the growth factor frequency

distribution to the raw TDMA response function.

Petters [2018] introduced a computational approach to model transfer through the DMA. The

main idea of the approach is to provide a domain specific language comprising a set of simple

building blocks that can be used to algebraically express the response functions intuitively through

a form of pseudo code. The main advantage of this approach is that the expressions simultaneously

encode the theory governing the transfer through the DMA and the algorithmic solution to compute

the response function. The resulting expressions are concise. They are easily identified within

actual source code. This makes the code easily modifiable by non-experts to change existing terms

or add new convolution terms without the need to develop algorithms.

A disadvantage of the computational approach over the traditional mathematical approach is

that computation lacks standardization of notation. This can blur the line between general pseudo

code and language specific syntax. Some of the applied computing concepts may be less widely

known when compared to standard mathematical approaches. Nevertheless, the author believes

that the advantages of the computational approach outweigh the drawbacks. Therefore, this work

builds upon the expressions reported in Petters [2018]. Updates and clarifications to the earlier

work are noted where appropriate.
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The computational language includes a standardized representation of aerosol size distributions,

operators to construct expressions, and functions to evaluate the expressions. Size distributions en-

coded as a SizeDistribution composite data type. Composite data types combine multiple arrays into

a single symbol for ease of use, facilitating faster experimental design and analysis. SizeDistribu-

tion consists of vectors of bin edges, bin midpoints, number concentration, log-normalized spectral

density, and logarithmic bin widths. SizeDistributions are denoted in blackboard bold font (e.g., ♥,

r, etc.). SizeDistributions are the building block of composable algebraic expressions through oper-

ators that evaluate to transformed SizeDistributions. For examples, ♥1 + ♥2 is the superposition of

two size distributions and f ∗ ♥ is the uniform scaling of the concentration fields by factor f , A ∗ ♥

is matrix multiplication of A and concentration fields of the size distribution, and f · ♥ is the uni-

form scaling of the diameter field of the size distribution by factor f , and T · ♥ is the elementwise

scaling of the diameter field by factor T. (Note that the Petters (2018) used T. ·♥ is the elementwise

scaling. The extra dot has which has been dropped to stay consistent with the current software

implementation).

Functions are used to reduce expressions. Generic functions include, ∑( f , m) evaluates the

function f (x) for x = [1, . . . , m] and sums the result. If f (X) evaluates to a vector, the sum is the

sum of the vectors. The function map( f , x) applies f (x) to each element of vector x and returns a

vector of results in the same order. The function reduce( f , x) applies the bivariate function f (x, y) to

each element of x and accumulates the result. The function mapreduce( f , g, x) combines map and

reduce. It applies function f to each element in x, and then reduces the result using the bivariate

function function g(x, y). The function vcat(x, y) concatenates arrays x and y along one dimension.

Anonymous functions are used as arguments to reducing functions. Anonymous functions are

denoted as x → expression, where x is the argument consumed in the evaluation of the expression.

These functions are generic and represent widely used computing concepts. They are implemented

in most modern programming languages.

DMA geometry, dimensions, and configuration are abstracted into composite types Λ (config-

uration comprising flow rates, power supply polarity, and thermodynamic state) and δ (DMA

domain defined by a mobility/size grid). Each DMA is fully described by a pair Λ,δ. Subscripts

and superscripts are used to distinguish between different configurations in chained DMA setups,

e.g. δ1 and δ2 denoting the first and second DMA, respectively. Application of size distribution

expressions to transfer functions constructs a concise model of the transmitted DMA mobility dis-

tribution, denoted as the DMA response function. Implementation of the language is distributed

through a freely-available and independently documented package DifferentialMobilityAnalyzers.jl,

written in the Julia language. Expressions in the text are provided in general mathematical form

for readability.

Petters [2018] gives a simple expressions that model transfer through the DMA. The function

TΛ,δ
size (k, zs) evaluates to a vector representing the fraction of particles carrying k charges that exit

DMAΛ,δ as a function of mobility

TΛ,δ
size (k, zs) = Ω(Z, zs/k, k). ∗ Tc(k, Dp,1). ∗ Tl(Z, k) (10)

where zs is the centroid mobility selected by the DMA (determined by the voltage and DMA

geometry), Z is a vector of mobilities, Ω is the diffusing DMA transfer function [Stolzenburg

and McMurry, 2008], Tc is the charge frequency distribution [Wiedensohler, 1988], and Tl is the

diameter-dependent transmission loss [Reineking and Porstendörfer, 1986]. The functions Ω and
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Tl have been updated from Petters (2018). The version in Petters (2018) computed the shape of the

transfer function and losses for the mobility diameter corresponding to singly charged particles

and then apply the same shape of the transfer function and diffusional loss to the multiply charged

particles. Binding the charge state explicitly to Ω and Tl results in proper accounting of diffusional

losses and broadening of the transfer function for multiply charged particles in TΛ,δ
size (k, zs).

Petters [2018] also gives an expression that evaluates to the convolution matrix for passage

through a single DMA.

A = mapreduce{zs → Σ[k → TΛ,δ
size (k, zs), m]T , vcat, Z} (11)

where, m is the upper number of multiply charged particles, T is the transpose operator, and Z is

a vector of centroid mobilities scanned by the DMA. Eq. (11) evaluates to the same as Eq. (8) in

Petters (2018), but the notation is revised to be more general by removing the julia specific splatting

construct and replacing it with widely used generic functions.

To help with parsing the expression, TΛ,δ
size (k, zs) evaluates to a vector of transmission for k charges

and set point centroid mobility zs as a function of the entire mobility grid (e.g. 120 bins discretized

between mobility z1 and z2). The function Σ[k → TΛ,δ
size (k, zs), m] superimposes the vectors for

all charges. Mapping zs → Σ[k → TΛ,δ
size (k, zs), m] over the mobility grid Z produces an array of

vectors, each corresponding to the transmission for a single size bin. Transposing the vectors and

reducing the collection through concatenation produces the design matrix that links the mobility

size distribution to the response function, i.e.

r = A♥+ ǫ (12)

where r is the response distribution, ♥ is the true mobility size distribution, and ǫ is a vector

denoting the random error that may be superimposed as a result of measurement uncertainties.

Note that by design ♥ and r are SizeDistribution objects, which represented the distribution as a

histogram in both spectral density units (dN/dlnD) and concentration per bin units. The latter is

the raw response function defined as integrated response downstream of the DMA as a function of

upstream voltage (or corresponding zs or corresponding apparent +1 mobility diameter).

The mobility distribution exiting DMA 2 in the humidified tandem DMA is evaluated using the

expressions

M
δ1
k = Πk ·

{

g0 ·
[

TΛ,δ
size (k, zs) ∗ ♥

]}

(13)

In Eq. (13), M
δ1
k evaluates to the apparent +1 mobility distribution particles that exit the DMAΛ,δ

at the nominal setpoint-diameter defined by mobility zs (or z-star) in DMA 1 and particle charge

k. Subscripts are used to differentiate DMA 1 and 2 which possibly have different geometries,

flow rates, and grids, e.g. Λ1, Λ2 and δ1, δ2. Π
Λ,δ
k is the projection of particles having physical

diameter D and carrying k charges onto the apparent +1 mobility grid. It is a function that converts

each diameter/charge pair to mobility and interprets the result as apparent +1 mobility diameter.

g0 = Dwet/Ddry is the true diameter growth factor, Ddry is the selected diameter by DMA 1, Dwet is

the diameter after the humidifier, TΛ,δ
size (k, zs) is as in Eq. (10), and ♥ is the mobility size distribution

upstream of DMA 1.

To help parse Eq. (13), the product TΛ,δ
size (k, zs) ∗ ♥ evaluates to the transmitted mobility distribu-

tions of particles carrying k charges at the set-point mobility zs in DMA 1. The size distribution is
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grown by the growth factor g0. The resulting size distribution is shifted to the apparent +1 mobility

diameter using Π
Λ,δ
k . Equation (13) differs from that in Petters [2018] where it was assumed that

particles of all charges grow by the same amount. This is incorrect. Particles carrying more than a

single charge alias at a smaller particle size [Gysel et al., 2009, Shen et al., 2021]. The effect is due

to the size dependence of the slip-flow correction factor and captured through the function Π
Λ,δ
k .

Equation (13) assumes that g0 applies to all particle sizes.

The total humidified mobility distribution ♠δ2
t exiting DMA 2 is given by

♠
δ2
t =

m

∑
k=1

(

Ok ∗ M
δ1
k

)

(14)

where, m is upper number of charges on the multiply charged particles, Z is a vector of centroid

mobilities scanned by DMA 2, and

Ok = mapreduce{zs → [ΩΛ2,δ2(Z, zs, k). ∗ TΛ2,δ2
l (Z, k)]T , vcat, Z} (15)

is the convolution matrix for transport through DMA 2 and particles carrying k charges. Equations

(14) and (15) modified from those in Petters (2018) in the following manner. The convolution matrix

Ok is computed individually for each charge. The version in Petters (2018) computed the matrix

corresponding to singly charged particles and then apply the same matrix to multiply charged

particles. Since Ok is now charge resolved, it is moved into the summation in Eq. (14). Computation

of Ok through Eq. (15) has been revised to be more general by removing a julia language specific

construct. O1 computed by Eq. (15) produces the same matrix as in Petters (2018).

If the aerosol is externally mixed, the humidified distribution function is given by

♠
δ2
t =

∫ ∞

0
Pg

[

m

∑
k=1

(

Ok ∗ M
δ1
k

)

]

dg0 (16)

where Pg is the growth factor probability density function and the diameters in M
δ1
k are normalized

by Ddry. ♠δ2
t in Eq. (16) is the forward model through the tandem DMA. Using the notation in

section 2.2,

F(x, c) =
∫ ∞

0
Pg

[

m

∑
k=1

(

Ok ∗ M
δ1
k

)

]

dg0 (17)

where x is the true Pg and the vector c of constraining parameters comprises the DMA setup

Λ1, Λ2, δ1, δ2 and upstream size distribution ♥. Computer code that creates a forward model for

tandem DMAs has been added to the DifferentialMobiltyAnalyzers.jl package and is annotated in the

documentation of the package. For purposes of the forward model, the mobility grid for DMA 1

is discretized at a resolution of i bins. Transmission through DMA is computed for a specified zs

(the dry mobility), g0 (the growth factor), and an input size distribution, which results in a vector

i concentrations along this grid. If the input size distribution does not match the mobility grid the

grids are merged through interpolation. The mobility grid for DMA 2 is discretized at a resolution

of j bins. The transmitted and grown distribution from DMA 1 (i bins along the mobility axis

of DMA 1) is interpolated onto the mobility grid of DMA 2. The outer integral in Eq. (17) is

discretized into n bins that models Pg. If the output mobility of grid of DMA 2 does not match,

the grids are merged through interpolation. The choice of i, j, n, the ranges of mobility grids for

DMA 1, DMA 2, and the range of Pg is only constrained by computing resources and a physically
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reasonable representation of the problem domain. Reasonable choices are i = 120, j = n = 30.

The forward model is used to cast Eq. (17) into matrix form such that the humidified mobility

distribution function is given by

♠
δ2
t = A2Pg + ǫ (18)

where the subscript 2 specifies transmission through DMA 2, the matrix A2 is understood to be

computed for a specific input aerosol size distribution, and ǫ is a vector that denotes the random

error that may be superimposed as a result of measurement uncertainties. The size of A2 is j × n.

Uncertainties in the size distribution propagate into A2. The main influence of the error will be

the relative fraction of +1, +2, and +3 charged particles. Assuming a random error of ±20% in

concentration, the overall effect on the ♠δ2
t is expected to small.
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Response to Reviewer Comments

August 3, 2021

Author Statement

Dr. Stolzenburg contacted me via email and offered to send additional comments regarding

Section 2.3 as written in my response to the original comments. He did so on July 10, 2021. I thank

Dr. Stolzenburg for his additional effort (and very appreciated comments) to help me improve the

clarity of the manuscript. Since I had not uploaded a revised version of the manuscript prior to

receiving these comments, I respond to them here. The revised version of the manuscript that will

be submitted to AMT will have taken these comments into account. A new version of section 2.3 is

included at the end of this comment. It supersedes the version in AC1 and AC2.

Response to Reviewer #2 (Mark Stolzenburg)

The comments were sent in the form of an annotated pdf document. Below I transcribe the

comments in the following form (1) Text passage that the comment refers to, (2) Verbatim

annotated comment, (3) response to comment, (4) revisions. If the context is unclear from the text

fragment, please see the full text on starting on pg. 13 of AC2 on the discussion site.

Overview

1 The integrated response downstream of a tandem DMA that is operated at volt- 1 Text

ages V1 and V2 is given by a double integral and the summation of all selected

charges. The integrals are over the upstream size distribution and the aerosol con-

ditioner function, which here is the growth factor frequency distribution.

2The proper verbiage used with integrals is as follows: integral( f(x)dx ) is the inte- 2 Referee

gral of f(x) over x. f(x) is called the integrand. The integrals here are actually over

the upstream particle size, or some substitute for it, and the grown or downstream

particle size, or some substitute for that. The functions you specify represent only

part of the integrand in each case given here. Even if you change the "over"s to

"of"s, the statement is still very misleading given the many unaccounted for fac-

tors missing in the integrands. An integral over "the aerosol conditioner function"

makes little sense since it is a function of both upstream and downstream sizes.

3 Thank you. 3 Response

4 The integrated response downstream of a tandem DMA that is operated at volt- 4 Revision

ages V1 and V2 requires solving integrals of the upstream particle size distribu-

tion over size and the grown particle size distribution over size. The integration

must be repeated for each charge state.
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5The objective is to find find a design matrix that maps the growth factor frequency 5 Text

distribution to the raw TDMA response function.

6 Perhaps it would be clearer to say "For the forward calculation, the objective is ...". 6 Referee

Correct “find find”.

7 Thank you. 7 Response

8 For the forward calculation, the objective is to find a design matrix that maps 8 Revision

the growth factor frequency distribution to the raw TDMA response function.

9The resulting expressions are concise. They are easily identified within actual 9 Text

source code.

10 For anyone familiar with the specific language used. 10 Referee

11The resulting expressions are concise. They are easily identified within ac- 11 Revision

tual source code when working through the examples provided with the package

documentation.

12Size distributions encoded as a SizeDistribution composite data type. 12 Text

13 This is not a sentence, there is no verb. "Size distribution are encoded .."? 13 Referee

14Size distributions are represented as a histogram and internally stored in the 14 Revision

form of the SizeDistribution composite data type.

15Composite data types combine multiple arrays into a single symbol for ease of 15 Text

use, facilitating faster experimental design and analysis. SizeDistribution consists of

vectors of bin edges, bin midpoints, number concentration, log-normalized spectral

density, and logarithmic bin widths.

16"+1 mobility diameter bin edges, bin midpoints". Since later many different "size" 16 Referee

parameters are introduced and used, it is best to be specific here. As with the DMA

transfer function, are corresponding +1 mobilities also part of this data type?

17I agree with the suggestion. Yes, the mobility grid is also included. In practice arrays of 17 Response

centroid mobilities and mobility bin edges are created, from which the +1 mobility diameter

is computed.
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18Composite data types combine multiple arrays into a single symbol for ease 18 Revision

of use, facilitating faster experimental design and analysis. The size distribu-

tion data type SizeDistribution includes vectors of the selected mobility bins

considered by the DMA, +1 mobility diameter bin edges and +1 mobility di-

ameter bin midpoints computed from the mobility grid, number concentration,

log-normalized spectral density, and logarithmic bin widths.

19(Note that the Petters (2018) used T. · ♥ is the elementwise scaling. The extra dot 19 Text

has which has been dropped to stay consistent with the current software implemen-

tation).

20 [The referee highlighted multiple places of dangling wording introduced during 20 Referee

editing and made suggestions for improvements.]

21 (Note that Petters (2018) used T. · ♥ as the elementwise scaling. The extra dot 21 Revision

has been dropped to stay consistent with the current software implementation).

22Functions are used to reduce expressions. 22 Text

23 Not all of the following reduce the dimension of the expression. Or are you 23 Referee

talking about a reduction or compactness in notation? If so, use a different word to

avoid confusion with later usage.

24Functions are used to evaluate expressions. 24 Revision

25 If f (X) evaluates to a vector, the sum is the sum of the vectors. 25 Text

26Should this be f (x) or are you intentionally using X in indicate a vector? 26 Referee

27 If f (x) evaluates to a vector, the sum is the sum of the vectors. 27 Revision

28The function map( f , x) applies f(x) to each element of vector x and returns a vector 28 Text

of results in the same order.

29Perhaps this should be ( f , X)? 29 Referee
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30 Based on the above, no change. 30 Response

31 The function reduce( f , x) applies the bivariate function f (x, y) to each element of 31 Text

x and accumulates the result.

32From this and what I have read online, my understanding is that f(x,y) uses the 32 Referee

result of its previous application and combines that with the next x value. Nearly

every online example I can find only uses functions that treat x and y the same, e.g.

f is given as simply "+" or "*" such that interchanging x and y has no effect. Since f

can be a user-defined function, it need not be symmetric in x and y, e.g. f(x,y)=x2-y.

The documentation does not make it clear whether such usage is allowed. However,

if it is, the order of arguments in f(x,y) matters, that is, which is the result of the

previous operation and which is the new x value. From online examples, I have

gotten the impression that x is the previous result and y is the new x value. This

makes the limited documentation such as given here quite misleading. Given no

additional information, the most natural assumption would be that the new x value

is associated with the x in f(x,y) and the previous result is associated with y. But this

would be just the opposite of what is needed. At minimum, I would suggest writing

this as "f(y,x) where y is the result of the preceding operation". Also according to

an online example at jhub.com/julia, note that the for the first operation, x1 is the

previous result and x2 is the new x.

33 The referee is correct that reduce is not associative. The order of operation matters. 33 Response

The more general version of reduce(f,x) is foldl(f,x) and foldr(f,x), which guarantee left or

right associativity. In regular Julia programs, reduce(f,x) = foldl(f,x). However, there is

no guarantee made by the language and any applied parallelism could break the expression.

Using strictly associative folds is more precise. The change has been made throughout. The

definition has been clarified as suggested by the referee.

34The function foldl( f , x) applies the bivariate function f (a, x) to each element of 34 Revision

x and accumulates the result, where a represents the accumulated value. For the

first element in x, a is the neutral value. For example foldl(−, [1, 2, 3]) evaluates

the function −(a, x) and yields 1 − 2 − 3 = −4. The function mapfoldl( f , g, x)

combines map and foldl.

35 35 Revision

A = mapfoldl{zs → Σ[k → TΛ,δ
size (k, zs), m]T , vcat, Zs} (11)

36It applies function f to each element in x, and then reduces the result using the 36 Text

bivariate function function g(x, y).
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37g(y, x) or even g(a, x) where a represents the accumulated value so far. See pre- 37 Referee

ceding note.

38 Thanks for the suggestion. 38 Response

39 It applies function f to each element in x such that y = f (x) and then reduces 39 Revision

the result using the bivariate function function g(a, y) where a represents the

accumulated value. For the first element f (x), a is the neutral value. For example,

mapfoldl(sqrt,−, [4, 16, 64])evaluates to foldl(−, [2, 4, 8]) = 2 − 4 − 8 = −10.

40 The function vcat(x, y) concatenates arrays x and y along one dimension. 40 Text

41For clarity, shouldn’t this be "first dimension" according to online documentation? 41 Referee

42 The function vcat(x, y) concatenates arrays x and y along the first dimension in 42 Revision

Julia. However, other programming languages may concatenate along a different

dimension as definition of horizontal and vertical is arbitrary.

43Petters (2018) gives a simple expressions that model transfer through the DMA. 43 Text

44Either "a simple expression that models" or "simple expressions that model" with 44 Referee

no preceding "a".

45 Petters (2018) gives a simple expression that models transfer through the DMA. 45 Revision

46 46 Text

TΛ,δ
size (k, zs) = Ω(Z, zs/k, k). ∗ Tc(k, Dp,1). ∗ Tl(Z, k) (10)

47The given dependence of omega does not make sense to me. Let z be an element 47 Referee

of Z. For the mobility passed in a basic transfer calculation, it is the value of z/zs

that matters. For the diffusion calculation, it is z/k that matters. zs/k does not get

used directly. Though what is shown may not be technically wrong, it obscures the

true dependencies. Simply (Z, zs, k) would be better, as in Eq. (15) for DMA 2.

48 Note that revisions will be indicated after responding to the next few comment about 48 Response

this equation. The referee is correct that implementation of the function is Ω(Z, zs, k). The

charge state is needed to compute the diffusion coefficient. However, for the TΛ,δ
size (k, zs)
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function zs/k is the correct argument to produce the actually transmitted mobility size

distribution. One way to think about this is to ask the question: what centroid mobility

zswould I have to set the DMA to transmit particles carrying k charges if they had only a

single charge? Eq. (10) therefore represents the mobility size distribution transmitted. In

Eq. (15) is Ω(Z, zs, k), as all particles have the same mobility. This version allows using

the same omega function in both cases.

49 49 Text

TΛ,δ
size (k, zs) = Ω(Z, zs/k, k). ∗ Tc(k, Dp,1). ∗ Tl(Z, k) (10)

50What is Dp,1? Apparently, it is the true particle mobility (not electrical mobility) 50 Referee

diameter, Dp,1=Dp(z,k=1), where z is an element of Z. If it is to be used, has it

been defined elsewhere? Perhaps it is part of the definition of the size distribution

composite data type. If so, it should be defined there. Tl (penetration efficiency,

not loss) also depends on this diameter, Dp,1. Why is it not written that way?

Otherwise, simply Tc(Z,k).
51Are the dots necessary here in ".*" or should they be dropped as in Eq. 13? 51 Referee

52In Eq. (10), Z is a vector of mobilities -> "a vector of particle mobilities". As Z is 52 Referee

apparently used for both particle mobilities as well as DMA centroid mobilities (see

note below), it would be best to be clear to which it applies each time it is used.

53 Loss has been changed to “penetration efficiency”. Yes, the dots are still required for the * 53 Response

operator. They were only dropped for the · operator. The interpretation of Dp,1 = Dp(z, k =

1), where z is an element of Z is correct. Tl was written this way in the original draft and

in Petters (2018), but changed during the first round of revisions. The change is reverted

here to stay consistent with previous notation. I revised the text as follows to better explain

how this equation works. The meaning of Z is also further clarified when discussing the

discretization scheme near the end of the document.

54 Petters [2018] gives a simple expression that model transfer through the DMA. 54 Revision

The function TΛ,δ
size (k, zs) evaluates to a vector representing the fraction of particles

carrying k charges that exit DMAΛ,δ as a function of mobility

TΛ,δ
size (k, zs) = Ω(Z, zs/k, k). ∗ Tc(k, Dp,1). ∗ Tl(Dp,1) (10)

where zs is the centroid mobility selected by the DMA (determined by the voltage

and DMA geometry), Z is a vector of particle mobilities, Ω is the diffusing DMA

transfer function [Stolzenburg and McMurry, 2008], Tc is the charge frequency

distribution [Wiedensohler, 1988], and Tl is the diameter-dependent penetration

efficiency [Reineking and Porstendörfer, 1986]. The diameter Dp,1 = Dp(z, k = 1),

where z is an element of Z. The function Ω has been updated from Petters

(2018). The version in Petters (2018) computed the shape of the transfer function

corresponding to singly charged particles and then applied the same shape of
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the transfer function and diffusional loss to the multiply charged particles. The

functional Ω depends on three arguments Ω(Z, zs, k) [Stolzenburg and McMurry,

2008]. The charge state is used to compute the diffusion coefficient and thus ac-

count for diffusional losses and broadening of the transfer function for multiply

charged particles.

The output of TΛ,δ
size (k, zs) is the transmission of particles through the DMA in

terms of the true particle mobility diameter. This is achieved by passing zs/k as

argument to Ω, which corresponds to the centroid mobility setting for the DMA

to transmit particles with the size of particles with k charges under the assump-

tion that they carry only a single charge. The net result is that Dp,1 = Dp(z, k = 1),

where z is an element of Z becomes equal to the true mobility diameter axis. As

a consequence the charge fraction Tc(k, Dp,1) and penetration efficiency Tl(Dp,1)

are evaluated at the correct diameter. The function TΛ,δ
size (1, zs) evaluates to a vec-

tor of the same length as Z. Performing an elementwise sum over all TΛ,δ
size (k, zs)

produces the net mobility distribution transmitted by the DMA. Examples for

TΛ,δ
size (1, zs), TΛ,δ

size (2, zs), and TΛ,δ
size (3, zs) is shown in Figure 2, right panel in Petters

(2018). Note that Eq. (10) can be evaluated using arbitrarily discretized Z vectors.

55corresponding to singly charged particles and then apply the same shape of the 55 Text

transfer function

56”applied” 56 Referee

57 fixed in the revised paragraph above. 57 Revision

58 Petters (2018) also gives an expression that evaluates to the convolution matrix 58 Text

for passage through a single DMA.

59Summation over k means the information on particle physical diameter of multi- 59 Referee

ply charged particles is

lost. Eq. (11) will not work for the first DMA in a TDMA setup using diffusing

transfer functions or other diffusion effects in the second DMA. Something should

be included here to indicate that, or that this expression is only for something like

an SMPS system. I feel that "single DMA" is just not sufficient. The reference to

"apparent +1 mobility diameter" at the end of this topic is useful in making this

point but does not really make the point of "only apparent diameter, not physical"

and comes far too late to make the point in question.

60 Correct. The information is now explicitly included 60 Response
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61 Petters (2018) also gives an expression that evaluates to the convolution matrix 61 Revision

for passage through a single DMA that is valid in the context of size distribution

measurement system, e.g. SMPS. Since the expression includes a summation over

all charges, the information on particle physical diameter of multiply charged

particles is lost.

62 62 Text

A = mapreduce{zs → Σ[k → TΛ,δ
size (k, zs), m]T , vcat, Z} (11)

63I feel it would be cleaner to first define a convolution matrix for transport through 63 Referee

a DMA, with no summation over k, as in Eq. 15, perhaps Okv or better yet Ov(k)

where v (actually nu) is the DMA. This could then be used for DMA 2 as well

below, using an analogous definition of Tsize. Here, for use as the convolution

matrix through a single DMA, Av = sumk( Ov(k) ). Otherwise, in the current

development of the matrices, the similarity of treatment for DMA 1 and DMA 2 is

buried. At the very least, though hardly preferable, Eq. 11 should be rearranged

to put the summation as the outermost operation on the right side. This would at

least provide a little more symmetry of treatment of the two DMAs.

64 I do not fully disagree with the referee about the potential elegance of making the ex- 64 Response

pressions more symmetric. However, the matrices A and O serve two separate purposes.

The former is valid for passage through a single DMA that is valid in the context of size

distribution measurement system (which is now clarified), the latter is valid for evaluating

the response after passage through the tandem DMA, starting with the transmitted distribu-

tion. The expressions for these are well-defined. It should be clear by now that the approach

is in principle highly expressive. The version here, or the version in Petters (2018) are two

examples how to write A. More ways certainly exist, perhaps even more elegant ways. In

the context of this work, I believe that this approach will lead to further distance the expres-

sions from the original work and in the end result in more confusion rather than additional

clarity.

65 ... and Z is a vector of centroid mobilities scanned by the DMA. 65 Text

66Z=Zs (see following note) implies A is a square matrix. Do you really want to 66 Referee

introduce that restriction at this point?
67Eq. 10 used Z as a vector of particle mobilities. Are these two vectors identical, 67 Referee

that is, the DMA centroid mobilities and input particle mobility bin midpoints? If

so, that should be explicitly noted to avoid confusion. Better yet would be to change

Z here to Zs noting somewhere previously that Z=Zs.
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68 Although I have been using the same Z vectors in Eq. (10) and (11) - and thus square 68 Response

matrices - this is not a necessary restriction. This is also further clarified when discussing

the discretization scheme.

69 ... and Zs is a vector of centroid mobilities scanned by the DMA. The matrix is 69 Revision

square if Zs = Z in Eq. 10. However, this is not a necessary restriction.

70...removing the julia specific splatting... 70 Text

71Julia documentation uses this as capitalized, "Julia". Also, this should be hyphen- 71 Referee

ated as "Julia-specific".

72 Changed capitalization here and throughout the work. 72 Response

73...removing the Julia-specific splatting... 73 Revision

74 To help with parsing the expression, TΛ,δ
size (k, zs) evaluates to a vector of trans- 74 Text

mission for k charges and set point centroid mobility zs as a function of the entire

mobility grid (e.g. 120 bins discretized between mobility z1 and z2).

75So Tsize is actually a matrix of size [n x m] where n=120 is the number of particle 75 Referee

mobility bins. As the above equations are defined it would be useful to clearly

indicate the dimensions of the operands and the result.
76"entire particle mobility grid". Though Z serves a dual purpose, in this context it 76 Referee

is particle mobility.

77 TΛ,δ
size (1, zs) evaluates to a vector of length Z; TΛ,δ

size (2, zs) evaluates to a vector of length Z. 77 Response

The text prior to this paragraph is updated to better explain the origin and dimensionality

TΛ,δ
size (k, zs).

78 See revisions to previous comments. 78 Revision

79 Note that by design ♥ and r are SizeDistribution objects, which represented the 79 Text

distribution as a histogram in both spectral density units (dN/dlnD) and concen-

tration per bin units.

80The input distribution, (blackboard "n"), is readily defined in terms of the true 80 Referee

mobility (k=1) diameter, Dp1. However, information on the original charge state

exciting the charger is lost from the response distribution (blackboard "r") leaving
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only electrical mobility, z, as the size parameter. Thus, the response distribution

cannot accurately be converted to dN/dlnD. Any such conversion must neglect the

true charge distribution.

81 That is correct. Nonetheless the mathematical/computational representation is that of a 81 Response

SizeDistribution object. The limitation is now noted.

82 By design ♥ and r are SizeDistribution objects, which represent the distri- 82 Revision

bution as a histogram in both spectral density units (dN/dlnD) and concentra-

tion per bin units. The latter is the raw response function defined as integrated

response downstream of the DMA as a function of upstream voltage (or corre-

sponding zs or apparent +1 mobility diameter but not true physical diameter for

multiply charged particles). Note, however, that the response function is not a

true particle size distribution in the scientific sense since information about mul-

tiply charged particles is lost. The representation of r as SizeDistribution object

is to allow response functions to used in the expression-based framework used

here.

83The latter is the raw response function defined as integrated response down- 83 Text

stream of the DMA as a function of upstream voltage (or corresponding zs or cor-

responding apparent +1 mobility diameter).

84The first "corresponding" is sufficient for both, delete second "corresponding". 84 Referee

Perhaps one could add here ", but not true physical diameter for multiply charged

particles". Just a thought as to how to make this point clear.

85 Thank you for the suggestion. 85 Response

86 The latter is the raw response function defined as integrated response down- 86 Revision

stream of the DMA as a function of upstream voltage (or corresponding zs or ap-

parent +1 mobility diameter but not true physical diameter for multiply charged

particles).

87 87 Text

M
δ1
k = Πk ·

{

g0 ·
[

TΛ,δ
size (k, zs) ∗ ♥

]}

(13)

In Eq. (13), M
δ1
k evaluates to the apparent +1 mobility distribution particles that exit the DMAΛ,δ

at the nominal setpoint-diameter defined by mobility zs (or z-star) in DMA 1 and particle charge k.

88Πk: Given the appending of superscripts to this function in the following text, it 88 Referee
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should appear the same here with (capital lambda)1
89TΛ,δ

size (k, zs): The superscripts should have subscript 1 corresponding to the sub- 89 Referee

script 1 of the left side of the equation.
90You say that this is for DMA 1 but there should be an index/subscript of 1 on the 90 Referee

superscripts of the first "DMA" in this sentence and of Tsize in the above equation

to indicate this. Otherwise, there is no clear relationship between (delta)1 on the

left side of the equation and (delta) (no subscript) on the right side. And (capital

lambda)1 should also have a subscript of 1.

91 DMA 1 and 2 which possibly have different geometries, flow rates, and grids, 91 Text

e.g. Λ1, Λ2 and δ1, δ2.

92You introduce this notation here but then fail to properly apply it in Eq. (13) and 92 Referee

following.

93 Thank you for pointing this out. Superscripts have been added in the appropriate places. 93 Response

94 Π
Λ,δ
k is the projection of particles having physical diameter D and carrying k 94 Text

charges onto the apparent +1 mobility grid.

95This function needs to interpolate the diameters of the grown particles onto the 95 Referee

+1 mobility diameter grid corresponding to Z. From your description, it sounds

like multiply charged particles are mis-sized to smaller diameters. If this function

is used with storing the apparent diameter, rather than true diameter, in the distri-

bution, then there would have to be a later function just to undo that before use in

Eq. 14.

96This function involves both calculation of apparent mobility but also interpolation 96 Referee

of the grown bin sizes from Z back onto Z. This interpolation step is important as

it affects the propagation of the random error of the input distribution. As such, it

should be explicit noted here. In general, any interpolation of a noisy distribution

or decedents there of will tend to reduce the overall noise level, but not, I believe,

in a very predictable way.

97 Π
Λ,δ
k calculates the apparent +1 diameter of a particle that carries multiple charges. The 97 Response

implementation is quite simple. Start with a physical size e.g. 100 nm. Next compute

the mobility of that particle given it’s charge state. Next, reinterpret that mobility as if

the particle were to carry only a single charge. Finally divide this by the initial diameter

to get the projection. Obviously Π
Λ,δ
1 = 1. Less obviously Π

Λ,δ
2 < 1. Π

Λ,δ
k does not

do any interpolation. In the expression,
{

g0 ·
[

TΛ,δ
size (k, zs) ∗ ♥

]}

evaluates to the grown

transmitted size distribution. Πk ·
{

g0 ·
[

TΛ,δ
size (k, zs) ∗ ♥

]}

evaluates to the apparent size



response to reviewer comments 12

distribution. The · operator is what shifts the sizes. If a misfit occurs during the shift (which

invariably happens), the result in interpolated onto the original size grid of ♥. The role of

interpolation is now discussed together with the discretization scheme (see further below).

98Also, this function does NOT depend on the DMA configuration (capital lambda)1. 98 Referee

It does depend on (delta)1, including the subscript 1.

99 It does depend on the DMA configuration, which includes temperature and pressure, 99 Response

because the conversion from mobility to diameter, and hence the projection is temperature

and pressure dependent.

100 ...humidifier, TΛ,δ
size (k, zs) is as in Eq. (10), and ♥ is the mobility size distribution 100 Text

upstream of DMA 1.

To help parse Eq. (13), the product TΛ,δ
size (k, zs) ∗ ♥ evaluates to...

101Superscripts should have subscripts 1. 101 Referee

102 Fixed 102 Response

103 Equation (13) differs from that in Petters [2018] where it was assumed that par- 103 Text

ticles of all charges grow by the same amount. This is incorrect. Particles carrying

more than a single charge alias at a smaller particle size [Gysel et al., 2009, Shen

et al., 2021]. The effect is due to the size dependence of the slip-flow correction fac-

tor and captured through the function Π
Λ,δ
k . Equation (13) assumes that g0 applies

to all particle sizes.

104This does not make sense unless g0 is a function of particle size, or of zs and k. 104 Referee

If this is the case, it has not been made clear. Otherwise, it seems that both here and

in Petters it is assumed that particles of all charges grow by the same amount, g0, a

constant.

105 Yes, here and in Petters it is assumed that particles of all charges grow by the same 105 Response

amount, g0, a constant. It is said explicitly in “ Equation (13) assumes that g0 applies to

all particle sizes.” The initial wording was rather poor and the text is revised.

106 Equation (13) differs from that in Petters [2018] where it was assumed that the 106 Revision

apparent growth factor for particles carrying multiple charges is the same as for

single charged particles. This is incorrect. Particles carrying more than a single

charge alias at a smaller particle size [Gysel et al., 2009, Shen et al., 2021]. The

effect is due to the size dependence of the slip-flow correction factor and captured
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through the function Π
Λ,δ
k . Equation (13) assumes that g0 applies to all particle

sizes.

107 107 Text

Ok = mapreduce{zs → [ΩΛ2,δ2(Z, zs, k). ∗ TΛ2,δ2
l (Z, k)]T , vcat, Z} (15)

108zs has been used as the centroid mobility for both DMAs. These need to be 108 Referee

distinguished as two different parameters. Use subscripts "1" and "2" on these as

appropriate to avoid confusion, e.g. here and Eq. 13. There are others in the text as

well.
109Is the range of the DMA 2 scan really the same as the range of the input distri- 109 Referee

bution when the former uses 4 times fewer bins? The same Z is used for both.

110 I clarified Z as Zs (same as your earlier comment). Subscript has been added as sug- 110 Response

gested. The range in Z is arbitrary. Clarification about how the various Z and Zs relate to

the discretization has been added to the text (see further below).

111Please see revised section. 111 Revision

112 Equations (14) and (15) modified from those in Petters (2018) 112 Text

113"are modified" or "have been modified" 113 Referee

114 Equations (14) and (15) have been modified from those in Petters (2018) 114 Revision

115 ... matrix corresponding to singly charged particles and then apply the same 115 Text

matrix ...

116Referee suggested: “applied” 116 Referee

117 ... matrix corresponding to singly charged particles and then applied the same 117 Revision

matrix ...

118 If the aerosol is externally mixed, the humidified distribution function is given 118 Text

by ...

119"function exiting DMA 2". Otherwise, it sounds like the distribution entering 119 Referee
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DMA 2, right after humidification.

120 If the aerosol is externally mixed, the humidified distribution function exiting 120 Revision

DMA 2 is given by ...

121 ... where Pg is the growth factor probability density function ... 121 Text

122This still doesn’t say anything about the growth factor being a function of dry 122 Referee

diameter. So is Pg the same for all dry particle sizes, including those of multiply

charged particles?

123 Yes, it is. There is explicit discussion later in the text on how to potentially relax this 123 Response

assumption by using 2D inversions.

The following few comments are given without direct response. They all relate to the discretization of the grid

and the underlying interpolation scheme. In response (see below) the paragraph was revised to clarify. The

individual comments referenced here have been taken in to account.

124 For purposes of the forward model, the mobility grid for DMA 1 is discretized 124 Text

at a resolution of i bins. Transmission through DMA is computed for a specified zs

125This is not clear - "DMA 2", "DMA1" or "both DMAs"? From the following text, it 125 Referee

would appear that what is needed and being described is the "transmission through

DMA1 and subsequent growth". That is, up to the point of entering DMA 2. Note,

simply changing "DMA" to "DMA1" does not work as DMA 1 transmission does

not depend on g0.

126 If the input size distribution does not match the mobility grid the grids are 126 Text

merged through interpolation.

127Presumably, the input size distribution bins are interpolated onto diameter bins 127 Referee

corresponding to the Z bins. Saying they are "merged" is ambiguous as to which is

interpolated onto the other.

128 The transmitted and grown distribution from DMA 1 (i bins along the mobility 128 Text

axis of DMA 1) is interpolated onto the mobility grid of DMA 2.

129It seems to me the DMA 2 mobility grid must be dynamically set according to 129 Referee

how much growth there is. This would be good to note here. Wouldn’t it be simpler
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to just have the DMA 2 grid be a subset of the DMA 1 grid? However, if the setups

of the two DMAs are such that they do not have the same non-diffusing resolution,

Qa/Qsh, then perhaps it would be better to use grids of different resolutions. As

noted before, interpolations tend to smooth the data, thereby confounding the error

analysis.

130 First, in this framework, the DMA 2 mobility grid is arbitrary and fixed. Interpolation is 130 Response

used throughout. The effect is factored into the framework through the size distribution oper-

ators, specifically the · operator. Potential smoothing effects are factored into the framework

through the numerical tests.

The reason for using interpolation throughout is to ensure generality of the approach. For

example, the size distribution used in the forward model may come from a separate SMPS

system (or even a model) that comes with binning that is not necessarily known ahead of

time. The way we configured our TDMA is to set the voltage/size in DMA 1 denoted as Dd

and then perform an SMPS scan over the range, for example, 0.7 * Dd to 2.5 * Dd over 60

s. The flow ratios in DMA 1 and DMA can differ, though we usually keep both 5:1. The

bins are constructed as a geometrically stepped mobility grid between the lower and upper

range. The only information about DMA is that of the nominal diameter.

There might clever ways to select the bins in DMA 2 to be a subset of DMA 1, but

this does not quite obviate the need for interpolation in the forward model, unless one also

matches the allowable growth factor to the discrete bin values. Even then, the growth for

particles that carry multiple charges the corresponding mobility will not match that of the

discrete binning. The paragraph on discretization includes now text explaining where inter-

polation is necessary, and where it can be avoided.

131 Reasonable choices are i = 120, j = n = 30. 131 Text

132The transitions between mobility and diameter with their different natural bin- 132 Referee

ning make it difficult to minimize the problems of unpredictable smoothing by

interpolations. It seems little can be done about that unless you are willing to set

up a universal scale throughout based on either mobility or mobility diameter. Then

bin midpoints could be translated to the other parameter and from there to all other

scales. Each scale should either match the universal resolution and e midpoints or

use an integer multiple of the resolution (e.g. each midpoint in one scale matches

every third midpoint in another scale). If this approach were used, it would seem

best to use a universal scale with uniform increments in either ln(dp) or ln(z) as ap-

propriate. I believe that if the universal scale matched that of Pg and with uniform

increments in ln(g) or ln(dp), then grown particles from one bin would land exactly

into another bin with no interpolation or fractional bin calculation required.

133 Please see response to previous comment and text below. Interpolation is deeply interwo- 133 Response

ven in into this framework. Since the binning along all dimensions is arbitrary, it is possible

to setup a universal (or near universal) grid in which interpolation is minimized, which is
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now mentioned. The paragraph describing the discretization is revised as follows.

134 For purposes of the forward model, the mobility grid for DMA 1 is discretized 134 Revision

at a resolution of i bins by specifying the Z vector in Eq. (10). If the Z vector does

not match that of the aerosol size distribution ♥, the size distribution bins are

interpolated onto the diameter bins corresponding to the Z bins. Transmission

through DMA 1 is computed for a specified zs (the dry mobility) and g0 (the

growth factor) via Eq. (13). The resulting M
δ1
k lie on the same Z grid with i

bins. Any mismatches between the apparent growth factor and the underlying Z

grid are resolved via interpolation implicit in the · operator. ( f · ♥ is the uniform

scaling of the diameter field of the size distribution by factor f . If the resulting

diameters are off the original diameter grid, the result in interpolated onto the

grid defined within ♥)

The mobility grid for DMA 2 is represented by the vector Zs,2 in Eq. (15) and

discretized at a resolution of j bins over a custom mobility range. If the vector Z

inside the square bracket of Eq. (15), [ΩΛ2,δ2(Z, zs, k). ∗ TΛ2,δ2
l (Dp,1)] equals that of

DMA 1, the matrix is non square. The product Ok ∗ M
δ1
k will map the i bins from

DMA 1 to the j bins in DMA 2. Alternatively, if the Z vector inside the square

bracket of Eq. (15) is taken to be equal to Zs,2, the matrices Ok are square. In

that case, the transmitted and grown distribution from DMA 1 (i bins along the

mobility axis of DMA 1) is interpolated onto the mobility grid of DMA 2 prior to

evaluating Ok ∗ M
δ1
k . The advantage of interpolation is that the the matrices Ok

are smaller.

The forward model, defined by Eq. (14) can be evaluated for arbitrary g0 values.

Thus the growth factor probability distribution Pg in Eq. (17) can be discretized

into n arbitrary growth factor bins. A natural choice is to accept growth fac-

tor values that coincide with the mobility grid of DMA 2, i.e. the bins align

with g = Dp,1/Dd, where Dd is the nominal diameter selected by DMA 1 and

Dp,1 = Dp(z, k = 1) and z is an element of Zs,2. However, this is not required for

evaluating Eq. (17). Equation (17) is cast into matrix form such that the humidi-

fied mobility distribution function is given by

♠
δ2
t = BPg + ǫ (18)

where the matrix B is understood to be computed for a specific input aerosol

size distribution, and ǫ is a vector that denotes the random error that may be su-

perimposed as a result of measurement uncertainties. If the grids for Pg and that

of DMA 2 do not align, interpolation is used to map the Pg grid onto the DMA 2

grid. The choice of i, j, n, the ranges of mobility grids for DMA 1, DMA 2, and

the range of Pg is only constrained by computing resources and a physically rea-

sonable representation of the problem domain. Reasonable choices are i = 120,

j = n = 30. The size of B is j × n. Uncertainties in the size distribution propagate

into B. The main influence of the error will be the relative fraction of +1, +2, and

+3 charged particles. Assuming a random error of ±20% in concentration, the

overall effect on ♠
δ2
t is expected to be small.
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Note that interpolation is widely used in this framework. Interpolation may af-

fect how errors propagate through the model. Interpolation in Eq. (13) is unavoid-

able. However, interpolation can be minimized by working with non-square Ok

and matching the grid of Pg to that of DMA 2. Informal tests working with dif-

ferent binning schemes suggests that the influence of interpolation choices on

the final result is smaller than typical experimental errors.

135 135 Text

♠
δ2
t = A2Pg + ǫ (18)

where the subscript 2 specifies transmission through DMA 2, the matrix A2 is un-

derstood to be computed for a specific input aerosol size distribution

136The definition of this A is not analogous to that in Eq. 11; this one subsumes the 136 Referee

input distribution Mk(delta)1. To avoid confusion, use a different letter.

137 Done - see above. 137 Response

138 is expected to small. 138 Text

139 Done - see above. 139 Response
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Revised Section 2.3

Design Matrices For Differential Mobility Analyzers

Differential mobility analyzers consist of two electrodes held at a constant- or time-varying elec-

tric potential. Cylindrical [Knutson and Whitby, 1975] and radial [Zhang et al., 1995, Russell et al.,

1996] electrode geometries are the most common. Charged particles in a flow between the elec-

trodes are deflected to an exit slit and measured by a suitable detector, usually a condensation

particle counter. The fraction of particles carrying k charges is described by a statistical distribution

that is created by the charge conditioner used upstream of the DMA. The functions governing the

transfer through bipolar charge conditioners, single DMAs, and tandem DMAs are well understood

[Knutson and Whitby, 1975, Rader and McMurry, 1986, Reineking and Porstendörfer, 1986, Wang

and Flagan, 1990, Stolzenburg and McMurry, 2008, Jiang et al., 2014].

The traditional mathematical formulation of transfer through the DMA is summarized in Stolzen-

burg and McMurry [2008] and references therein. Briefly, the integrated response downstream of

the DMA operated at voltage V1 is given by a single integral that includes a summation over all

selected charges. The size distribution is measured by varying voltage V1, which produces the

raw response function defined as integrated response downstream of the DMA as a function of

upstream voltage. The size distribution is found by inversion. The basic mathematical problem

associated with inverting the response function to find the size distribution is summarized by

Kandlikar and Ramachandran [1999]. The integral is discretized by quadrature to find the design

matrix that maps the size distribution to the response function. L2 regularization is one of several

methods to reconstruct the size distribution from the response function [Voutilainen et al., 2001,

Kandlikar and Ramachandran, 1999].

The integrated response downstream of a tandem DMA that is operated at voltages V1 and V2

requires solving integrals of the upstream particle size distribution over size and the grown particle

size distribution over size. The integration must be repeated for each charge state. Scanning over

a range of voltages V2 results in the raw TDMA response function. For the forward calculation,

the objective is to find a design matrix that maps the growth factor frequency distribution to the

raw TDMA response function. The objective is to find a design matrix that maps the growth factor

frequency distribution to the raw TDMA response function.

Petters [2018] introduced a computational approach to model transfer through the DMA. The

main idea of the approach is to provide a domain specific language comprising a set of simple

building blocks that can be used to algebraically express the response functions intuitively through

a form of pseudo code. The main advantage of this approach is that the expressions simultane-

ously encode the theory governing the transfer through the DMA and the algorithmic solution to

compute the response function. The resulting expressions are concise. They are easily identified

within actual source code when working through the examples provided with the package docu-

mentation. This makes the code easily modifiable by non-experts to change existing terms or add

new convolution terms without the need to develop algorithms.

A disadvantage of the computational approach over the traditional mathematical approach is

that computation lacks standardization of notation. This can blur the line between general pseudo

code and language specific syntax. Some of the applied computing concepts may be less widely

known when compared to standard mathematical approaches. Nevertheless, the author believes

that the advantages of the computational approach outweigh the drawbacks. Therefore, this work
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builds upon the expressions reported in Petters [2018]. Updates and clarifications to the earlier

work are noted where appropriate.

The computational language includes a standardized representation of aerosol size distributions,

operators to construct expressions, and functions to evaluate the expressions. Size distributions are

represented as a histogram and internally stored in the form of the SizeDistribution composite data

type. Composite data types combine multiple arrays into a single symbol for ease of use, thus

facilitating faster experimental design and analysis. The size distribution data type SizeDistribution

includes vectors of the selected mobility bins considered by the DMA, +1 mobility diameter bin

edges and +1 mobility diameter bin midpoints computed from the mobility grid, number concen-

tration, log-normalized spectral density, and logarithmic bin widths. SizeDistributions are denoted

in blackboard bold font (e.g., ♥, r, etc.). SizeDistributions are the building block of composable

algebraic expressions through operators that evaluate to transformed SizeDistributions. For exam-

ples, ♥1 + ♥2 is the superposition of two size distributions and f ∗ ♥ is the uniform scaling of the

concentration fields by factor f , A ∗ ♥ is matrix multiplication of A and concentration fields of the

size distribution, and f · ♥ is the uniform scaling of the diameter field of the size distribution by

factor f , and T · ♥ is the elementwise scaling of the diameter field by factor T. (Note that Petters

(2018) used T. · ♥ as the elementwise scaling. The extra dot has been dropped to stay consistent

with the current software implementation).

Generic functions are used to evaluate expressions. The function ∑( f , m) evaluates the function

f (x) for x = [1, . . . , m] and sums the result. If f (x) evaluates to a vector, the sum is the sum of

the vectors. The function map( f , x) applies f (x) to each element of vector x and returns a vector

of results in the same order. The function foldl( f , x) applies the bivariate function f (a, x) to each

element of x and accumulates the result, where a represents the accumulated value. For the first

element in x, a is the neutral value. For example foldl(−, [1, 2, 3]) evaluates the function −(a, x)

and yields 1 − 2 − 3 = −4. The function mapfoldl( f , g, x) combines map and foldl. It applies

function f to each element in x such that y = f (x) and then reduces the result using the bivariate

function function g(a, y) where a represents the accumulated value. For the first element f (x),

a is the neutral value. For example, mapfoldl(sqrt,−, [4, 16, 64])evaluates to foldl(−, [2, 4, 8]) =

2 − 4 − 8 = −10. The function vcat(x, y) concatenates arrays x and y along the first dimension

in Julia. However, other programming languages may concatenate along a different dimension as

definition of horizontal and vertical is arbitrary. Anonymous functions are used as arguments to

reducing functions. Anonymous functions are denoted as x → expression, where x is the argument

consumed in the evaluation of the expression. These functions are generic and represent widely

used computing concepts. They are implemented in most modern programming languages.

DMA geometry, dimensions, and configuration are abstracted into composite types Λ (config-

uration comprising flow rates, power supply polarity, and thermodynamic state) and δ (DMA

domain defined by a mobility/size grid). Each DMA is fully described by a pair Λ,δ. Subscripts

and superscripts are used to distinguish between different configurations in chained DMA setups,

e.g. δ1 and δ2 denoting the first and second DMA, respectively. Application of size distribution

expressions to transfer functions constructs a concise model of the transmitted DMA mobility dis-

tribution, denoted as the DMA response function. Implementation of the language is distributed

through a freely-available and independently documented package DifferentialMobilityAnalyzers.jl,

written in the Julia language. Expressions in the text are provided in general mathematical form

for readability.
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Petters [2018] gives a simple expression that model transfer through the DMA. The function

TΛ,δ
size (k, zs) evaluates to a vector representing the fraction of particles carrying k charges that exit

DMAΛ,δ as a function of mobility

TΛ,δ
size (k, zs) = Ω(Z, zs/k, k). ∗ Tc(k, Dp,1). ∗ Tl(Dp,1) (10)

where zs is the centroid mobility selected by the DMA (determined by the voltage and DMA

geometry), Z is a vector of particle mobilities, Ω is the diffusing DMA transfer function [Stolzen-

burg and McMurry, 2008], Tc is the charge frequency distribution [Wiedensohler, 1988], and Tl is

the diameter-dependent penetration efficiency [Reineking and Porstendörfer, 1986]. The diameter

Dp,1 = Dp(z, k = 1), where z is an element of Z. The function Ω has been updated from Petters

(2018). The version in Petters (2018) computed the shape of the transfer function for the mobility

diameter corresponding to singly charged particles and then applied the same shape of the transfer

function and diffusional loss to the multiply charged particles. The functional Ω depends on three

arguments Ω(Z, zs, k) [Stolzenburg and McMurry, 2008]. The charge state is used to compute the

diffusion coefficient and thus account for diffusional losses and broadening of the transfer function

for multiply charged particles.

The output of TΛ,δ
size (k, zs) is the transmission of particles through the DMA in terms of the true

particle mobility diameter. This is achieved by passing zs/k as argument to Ω, which corresponds

to the centroid mobility setting for the DMA to transmit particles with the size of particles with k

charges under the assumption that they carry only a single charge. The net result is that Dp,1 =

Dp(z, k = 1), where z is an element of Z becomes equal to the true mobility diameter axis. As a

consequence the charge fraction Tc(k, Dp,1) and penetration efficiency Tl(Dp,1) are evaluated at the

correct diameter. The function TΛ,δ
size (1, zs) evaluates to a vector of the same length as Z. Performing

an elementwise sum over all TΛ,δ
size (k, zs) produces the net mobility distribution transmitted by the

DMA. Examples for TΛ,δ
size (1, zs), TΛ,δ

size (2, zs), and TΛ,δ
size (3, zs) is shown in Figure 2, right panel in

Petters (2018). Note that Eq. (10) can be evaluated using arbitrarily discretized Z vectors.

Petters [2018] also gives an expression that evaluates to the convolution matrix for passage

through a single DMA that is valid in the context of size distribution measurement system, e.g.

SMPS. Since the expression includes a summation over all charges, the information on particle

physical diameter of multiply charged particles is lost.

A = mapfoldl{zs → Σ[k → TΛ,δ
size (k, zs), m]T , vcat, Zs} (11)

where, m is the upper number of multiply charged particles, T is the transpose operator, and

is a vector of centroid mobilities scanned by the DMA. The matrix is square if Zs = Z in Eq.

10. However, this is not a necessary restriction. Eq. (11) evaluates to the same as Eq. (8) in

Petters (2018), but the notation is revised to be more general by removing the Julia-specific splatting

construct and replacing it with more widely used generic functions.

To help with parsing the expression, TΛ,δ
size (k, zs) evaluates to a vector of transmission for k charges

and set point centroid mobility zs as a function of the entire mobility grid (e.g. 120 bins discretized

between mobility z1 and z2). The function Σ[k → TΛ,δ
size (k, zs), m] superimposes the vectors for all

charges. Mapping zs → Σ[k → TΛ,δ
size (k, zs), m] over the centroid mobility grid Zs produces an array

of vectors, each corresponding to the transmission for a single size bin. Transposing the vectors and

reducing the collection through concatenation produces the design matrix that links the mobility
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size distribution to the response function, i.e.

r = A♥+ ǫ (12)

where r is the response distribution, ♥ is the true mobility size distribution, and ǫ is a vector de-

noting the random error that may be superimposed as a result of measurement uncertainties. By

design ♥ and r are SizeDistribution objects, which represent the distribution as a histogram in both

spectral density units (dN/dlnD) and concentration per bin units. The latter is the raw response

function defined as integrated response downstream of the DMA as a function of upstream voltage

(or corresponding zs or apparent +1 mobility diameter but not true physical diameter for multiply

charged particles). Note, however, that the response function is not a true particle size distribution

in the scientific sense since information about multiply charged particles is lost. The representa-

tion of r as SizeDistribution object is to allow response functions to used in the expression-based

framework used here.

The mobility distribution exiting DMA 2 in the humidified tandem DMA is evaluated using the

expression

M
δ1
k = Π

Λ1,δ1
k ·

{

g0 ·
[

TΛ1,δ1
size (k, zs) ∗ ♥

]}

(13)

In Eq. (13), M
δ1
k evaluates to the apparent +1 mobility distribution particles that exit the DMAΛ1,δ1

at the nominal setpoint-diameter defined by mobility zs (or z-star) in DMA 1 and particle charge

k. Subscripts are used to differentiate DMA 1 and 2 which possibly have different geometries,

flow rates, and grids, e.g. Λ1, Λ2 and δ1, δ2. Π
Λ,δ
k is the projection of particles having physical

diameter D and carrying k charges onto the apparent +1 mobility grid. It is a function that converts

each diameter/charge pair to mobility and interprets the result as apparent +1 mobility diameter.

g0 = Dwet/Ddry is the true diameter growth factor, Ddry is the selected diameter by DMA 1, Dwet is

the diameter after the humidifier, TΛ1,δ1
size (k, zs) is as in Eq. (10), and ♥ is the mobility size distribution

upstream of DMA 1.

To help parse Eq. (13), the product TΛ,δ
size (k, zs) ∗ ♥ evaluates to the transmitted mobility distribu-

tions of particles carrying k charges at the set-point mobility zs in DMA 1. The size distribution is

grown by the growth factor g0. The resulting size distribution is shifted to the apparent +1 mobility

diameter using Π
Λ,δ
k . Equation (13) differs from that in Petters [2018] where it was assumed that

particles that the apparent growth factor for particles carrying multiple charges is the same as for

single charged particles. This is incorrect. Particles carrying more than a single charge alias at a

smaller particle size [Gysel et al., 2009, Shen et al., 2021]. The effect is due to the size dependence

of the slip-flow correction factor and captured through the function Π
Λ,δ
k . Equation (13) assumes

that g0 applies to all particle sizes.

The total humidified mobility distribution ♠δ2
t exiting DMA 2 is given by

♠
δ2
t =

m

∑
k=1

(

Ok ∗ M
δ1
k

)

(14)

where, m is upper number of charges on the multiply charged particles and

Ok = mapfoldl{zs → [ΩΛ2,δ2(Z, zs, k). ∗ TΛ2,δ2
l (Dp,1)]

T , vcat, Zs,2} (15)
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is the convolution matrix for transport through DMA 2 and particles carrying k charges. In Eq. (15),

Zs,2 is a vector of centroid mobilities scanned by DMA 2. Equations (14) and (15) have been modi-

fied from those in Petters (2018) in the following manner. The convolution matrix Ok is computed

individually for each charge. The version in Petters (2018) computed the matrix corresponding to

singly charged particles and then applied the same matrix to multiply charged particles. Since Ok

is now charge resolved, it is moved into the summation in Eq. (14). Computation of Ok through

Eq. (15) has been revised to be more general by removing a Julia-language specific construct. O1

computed by Eq. (15) produces the same matrix as in Petters (2018).

If the aerosol is externally mixed, the humidified distribution function exiting DMA 2 is given

by

♠
δ2
t =

∫ ∞

0
Pg ∗

[

m

∑
k=1

(

Ok ∗ M
δ1
k

)

]

dg0 (16)

where Pg is the growth factor probability density function and the diameters in M
δ1
k are normalized

by Ddry. ♠δ2
t in Eq. (16) is the forward model through the tandem DMA. Using the notation in

section 2.2,

F(x, c) =
∫ ∞

0
Pg ∗

[

m

∑
k=1

(

Ok ∗ M
δ1
k

)

]

dg0 (17)

where x is the true Pg and the vector c of constraining parameters comprises the DMA setup

Λ1, Λ2, δ1, δ2 and upstream size distribution ♥. Computer code that creates a forward model for

tandem DMAs has been added to the DifferentialMobiltyAnalyzers.jl package and is annotated in the

documentation of the package.

For purposes of the forward model, the mobility grid for DMA 1 is discretized at a resolution

of i bins by specifying the Z vector in Eq. (10). If the Z vector does not match that of the aerosol

size distribution ♥, the size distribution bins are interpolated onto the diameter bins corresponding

to the Z bins. Transmission through DMA 1 is computed for a specified zs (the dry mobility)

and g0 (the growth factor) via Eq. (13). The resulting M
δ1
k lie on the same Z grid with i bins.

Any mismatches between the apparent growth factor and the underlying Z grid are resolved via

interpolation implicit in the · operator. ( f · ♥ is the uniform scaling of the diameter field of the size

distribution by factor f . If the resulting diameters are off the original diameter grid, the result in

interpolated onto the grid defined within ♥).

The mobility grid for DMA 2 is represented by the vector Zs,2 in Eq. (15) and discretized at a

resolution of j bins over a custom mobility range. If the vector Z inside the square bracket of Eq.

(15), [ΩΛ2,δ2(Z, zs, k). ∗ TΛ2,δ2
l (Dp,1)] equals that of DMA 1, the matrix is non square. The product

Ok ∗ M
δ1
k will map the i bins from DMA 1 to the j bins in DMA 2. Alternatively, if the Z vector

inside the square bracket of Eq. (15) is taken to be equal to Zs,2, the matrices Ok are square. In that

case, the transmitted and grown distribution from DMA 1 (i bins along the mobility axis of DMA

1) is interpolated onto the mobility grid of DMA 2 prior to evaluating Ok ∗ M
δ1
k . The advantage of

interpolation is that the the matrices Ok are smaller.

The forward model, defined by Eq. (14) can be evaluated for arbitrary g0 values. Thus the growth

factor probability distribution Pg in Eq. (17) can be discretized into n arbitrary growth factor bins.

A natural choice is to accept growth factor values that coincide with the mobility grid of DMA 2,

i.e. the bins align with g = Dp,1/Dd, where Dd is the nominal diameter selected by DMA 1 and

Dp,1 = Dp(z, k = 1) and z is an element of Zs,2. However, this is not required for evaluating Eq.
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(17). Equation (17) is cast into matrix form such that the humidified mobility distribution function

is given by

♠
δ2
t = BPg + ǫ (18)

where the matrix B is understood to be computed for a specific input aerosol size distribution,

and ǫ is a vector that denotes the random error that may be superimposed as a result of mea-

surement uncertainties. If the grids for Pg and that of DMA 2 do not align, interpolation is used

to map the Pg grid onto the DMA 2 grid. The choice of i, j, n, the ranges of mobility grids for

DMA 1, DMA 2, and the range of Pg is only constrained by computing resources and a physically

reasonable representation of the problem domain. Reasonable choices are i = 120, j = n = 30. The

size of B is j × n. Uncertainties in the size distribution propagate into B. The main influence of the

error will be the relative fraction of +1, +2, and +3 charged particles. Assuming a random error of

±20% in concentration, the overall effect on ♠δ2
t is expected to be small.

Note that interpolation is widely used in this framework. Interpolation may affect how errors

propagate through the model. Interpolation in Eq. (13) is unavoidable. However, interpolation

can be minimized by working with non-square Ok and matching the grid of Pg to that of DMA 2.

Informal tests working with different binning schemes suggests that the influence of interpolation

choices on the final result is smaller than typical experimental errors.
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