
Referee Comments: Christopher Oxford

This paper first lays a brief theoretical framework around regularization, SMPS inversion, and
TDMA inversion. The theory surrounding SMPS and TDMA inversion is framed within the
developed Julia software environment and not within the traditional DMA/TDMA inversion.
However, the author does reference the 2018 paper (first version of this software) which does
translate the software framing into the traditional SMPS/TDMA framework. Readers new to this
subject will likely need to use the 2018 paper to digest the results as mentioned at the end of the
introduction. I was able to do so without issue.

During the theoretical explanation, the author documents the differences between the 2018
edition and this new edition. These changes in TDMA inversion are positive and highlight our
current understanding of multicharged behavior. As such, this routine represents a full
multi-charge inversion in TDMAs as we currently understand it. Additionally, different
regularization techniques are now a part of this software package. These two changes are a
marked improvement over existing inversion methods which restrict inversion to a single method
or neglect multicharged particles.

The paper then proceeds to test different regularization methods on large data sets, which at this
point, is of great value to the community and to me. Comparison of different regularization
methods is of great interest, and I suspect I will read the final version several times to digest the
results of this study. After reading, I have no major issue with the revision. I have a few
comments and questions as documented below.

Line 26: I understand “mixing state” to be internal, external, or a combination of the two. The
mentioned variables do not fully define my understanding of mixing state. Maybe a sentence or
two clarifying this statement is needed.

The paper is revised to be in line with the formal definition by Riemer et al.: “Aerosol mixing
state is defined as the distribution of properties across a population of particles within an
aerosol.”

To predict the impact of aerosol on the Earth system, the distributions of particle size, chemical
composition, hygroscopicity, and morphology must be known. The distribution of these
properties across a population of particles formally defines the mixing state of the aerosol
(Riemer et al., 2019). Accurate measurements of the mixing state are critical for formulating
models that link aerosol, cloud, and climate properties.

Line 61: I am not crazy about the use of the word “shape.” I may misunderstand the inversion,
but many of these routines do not assume a “parameterized function”, however, they do assume a
shape. (i.e., a series of rectangles or a series of trapezoids (lines))

The paper has been changed to read “the functional form of the mobility growth factor frequency
distribution”.
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Line 111: Is this supposed to begin a new paragraph???

Fixed.

Line 144: I do not understand where the 8 combinations come from. Is it omission or presence of
D and B along with two algorithms?

Revised as follows.

There are eight combinations by which to compose methods via Eq. (5), L, Lx0, Lx0B, Lx0D,
Lx0BD, LB, LBD, and LD. Combined with the three most common filter matrices L0 = I, L1 =
upper bidiagonal(−1, 1) and, L2 = upper tridiagonal(1, −2, 1) this results in 24 unique methods.

Line 159: I may be a little confused. Does this mean that only the initial guess is bounded?

The solution is bounded. If the initial guess produces results that are outside the bounds, passing
this initial guess to the solver will result in an error. Hence the truncation. To be clear the text is
revised as.

The net result is an optimized solution that is within the specified upper and lower bounds. The
upper and lower bounds are vectors of the same size as x.

Line 169: Is the initial guess also the a-priori estimate? If so, the words “initial guess” seem
inappropriate. When I see “initial guess”, I assume these are the beginning values for x.
However, equation 5 states that x0 is not an “initial guess.” Is x0 both an initial guess and the
estimate?

The text is now changed to read a-priori estimate.

Line 276: there appears to be a Zs (or other variable) missing in the sentence.

Fixed

Equation 11: I do not see how this yields an array. Based on the previous example for mapfoldl, I
assume that the output is a sum (the variable a) as you have previously defined. Is the sum (or
subtraction) only an example and replacement of – with vcat changes the output from a
progressing sum to a concatenating array? If so, can we change the writing in the example to say
that the sum is an example.
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Yes, mapfoldl will just apply the given function to reduce the mapped collection. If the function
is +, it is a sum. If it is vcat, it concatenates arrays.

However, other programming languages may concatenate along a different dimension as the
definition of horizontal and vertical is arbitrary. Passing vcat to foldl (or mapfoldl) will result in
a concatenated array.

Line 295: I think the word “exiting” should be “entering.”

Thank you. Revised.

Lines 295 through 303: A gentle reminder to the reader regarding the meaning of the dot (∙)
between growth factor and the product of T and the inlet size distribution. For a long while, I
thought you were converting the size distribution into another form. Only after some extended
study did I realize that g0 was applied only to diameter.

Caveat added a little but further below (line 305).

The size distribution is grown by the growth factor g0, which is achieved by applying the ∙
operator to ....

Line 337: you state that the mobility grid for DMA 2 is Z s,2 . Do you mean this vector is the
array of centroid mobilities for DMA2? Line 315 states that it is such. Is this variable supposed
to be Z?

The following has been added to line 315 to clarify.

Note that the choice of Z inside Ω is up to the user. Sensible choices are Z = Zs,1 or Z = Zs,2 the
implications of which are further discussed later.

Line 351: is n the number of growth factor bins? This sentence may need rearrangement.

Yes. It is stated a few lines above. “Thus the growth factor probability distribution Pg in Eq. (17)
can be discretized into n arbitrary growth factor bins.”

Line 360: Equation 18? Do you mean 17?

The black line is from the Matrix form, i.e. Eq. (18). The colored lines are from Eq. (15) as
stated in the caption.
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Line 380: Our TDMA does not normally geometrically step (although it can). Will that impact
the use of this routine?

It will work with any binning. Perhaps the sentence is too myopic because our HTDMA operates
like that.

This is due to the evaluation of the humidified size distribution along a geometrically stepped
mobility grid, which is typical in scanning DMA setups.

Line 390: Please choose how to denote the subscript for D. Because there is no way to show the
superscript for e, confusion can ensue. The example on Line 151 does not use exponential form.
It would be good if one form or the other is used throughout. I spent a good amount of time
trying to figure out what “e” was. I had a long laugh when I did figure it out.

That is a good point. I fixed the notation for equation 6 and defined the use there.

The method L1D 1e-2 represents a filter matrix with a first-order derivative operator applied to Eq.
(6) with ϵ = 1e-2. Exponential notation is used because subscripts are difficult to superscript.

Line 552: I expected a more direct statement that summarized which inversion method was better
for the dataset. From this I assume I should choose L2B. Is this correct?

Perhaps. The answer for this dataset is yes. However, I don’t want to overgeneralize. I could
imagine cases where L2B results in over-smoothing when two modes are close together.

Line 628: Would prefer using the word function instead of shape as the inversion uses rectangles
which is also a shape.

Changed to

… functional form of the growth factor frequency distribution
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Referee Comments: Mark Stolzenburg

Referee Comments for Manuscript AMT-2021-51 Ver. 3 “Revisiting Matrix-Based Inversion of
SMPS and HTDMA Data” Markus D Petters

This manuscript addresses the important issue of automating the processing of SMPS and
tandem DMA data. The idea of inverting data with regularization is sound. However, there is still
a functional problem with the development of the matrix-based forward model of calculating
system response from a known input distribution. Furthermore, some of the descriptions in that
section could be much clearer. If these issues can be properly addressed, the resulting software
package should prove of great utility.

Major Comments

As before, the main focus of this review is the development of the forward matrix model in the
manuscript. The author has generally addressed my previous comments satisfactorily. In
particular, the changes to properly account for multiply-charged particles in the second DMA of
a tandem DMA setup are greatly appreciated. However, there appears to be a remaining problem
in this situation with tracking the true mobility diameter of the particles after growth, Dwet, to the
same diameter in DMA2.

When changing thermodynamic state, Λ  or (T,p), true mobility diameter (i.e. physical diameter)
of the particles is the only “size” parameter that remains constant regardless of charge state. For
multiply-charged particles, apparent mobility diameter does not equal true mobility diameter and
it depends on (T,p). Therefore, for multiply-charged particles transitioning from DMA1
conditions to DMA2 conditions, the relationship between apparent and true mobility diameters
changes. If apparent mobility diameter is held constant across the transition, then it is necessarily
true that mobility diameter is not.

The somewhat garbled explanation of the function of  Πk
Λ, δ (lines 299-301) seems to indicate

that the particle size sent to the convolution matrix, Ok, for transport through DMA2 is the
apparent mobility diameter at DMA1 conditions. Though the actual end effect may be small, this
is technically incorrect for multiply-charged particles.

In equation form, this may be seen as follows. Let the function h represent the forward
calculation of mobility from diameter as z1/k = h1(Dm) where the calculation is done at DMA1
conditions. Then the inverse calculation is represented as Dm = h1

-1 (z1/k) . Using this, the
apparent diameter at DMA1 conditions is given as Da1 = h1

-1(z1) = h1
-1 (k∙h1(Dm)) . If Da2 is

equated to Da1, then the corresponding true mobility diameter in DMA2 is given as Dm2 =
h2

-1(h2(Da2)/k). For |k|=1, all these equations simply collapse such that Dm2 = Da2 = Da1 = Dm. But
for |k|>1, Dm2 ≠ Dm , meaning that the true mobility (physical) diameter is not preserved across
the transition. Furthermore, if the output of   Πk

Λ, δ,  is apparent mobility diameter at DMA1
conditions, then in order to correctly compute the diffusion effects associated with DMA2, this
conversion to apparent mobility diameter would need to be directly reversed (at DMA1
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conditions) just to get back to true mobility diameter, a computational waste. As far as I can see,
the apparent mobility diameter is of no use in the context of these TDMA equations.

Eliminating that concept entirely from the development would also eliminate the need for such
strange terminology as an “apparent +1 mobility diameter”. At least to me, that equates to a
“false true mobility diameter”. The term “mobility diameter” alone is well-defined in terms of
the particle dynamic mobility (z/ke where e is the unsigned electronic charge). The addition of
“+1” is then, in fact, somewhat redundant. There is no need to retain the “+1” when referring to
an “apparent mobility diameter”.

Since I have not even looked at the code for this, I admittedly know little of the details of the
programming of these equations for the calculation of the forward model. However, with the
implementation of the corrections discussed above, it seems likely that there remains no
compelling reason to treat the input parameters of DMA1,  Ωδ,Λ(Z, zs /k, k) (Eq. 10), and DMA2,
Ωδ,Λ(Z, zs , k) (Eq. 15), differently in these equations. Assuming that the  algorithm has no hidden
switches for different input structures, these variations in input can be quite confusing and
seemingly contradictory.

In addition, there is an interpolation step from the input distribution diameter grid to the DMA1
mobility grid and a very similar interpolation step from the grown particle diameter grid, D wet ,
to the DMA2 mobility grid. Each of these interpolations takes as input the incoming diameter
grid and the outgoing mobility grid with its associated DMA Λ parameter. From this, a relatively
sparse matrix is generated to operate on the incoming concentration vector resulting in an
outgoing concentration vector interpolated to the new grid. In these equations, the two
interpolations could be similarly codified as ΠΛ1(Zs,1, Din) and  ΠΛ2(Zs,2 , d1

s ⋅G ) where D in is
the input diameter grid, d1

s = Dp(z1
s) is the mobility diameter associated with z1

s , G is the vector
of discretized g0 values, and d1

s, G is the grid of grown diameter bins.

Notation such as used above can greatly improve the clarity of these equations with significantly
less reliance on explanations in the surrounding text. In general, there is much room to improve
the consistency and logical arrangement of the notation. For instance, there is no obvious reason
why the Z dependence, which makes the result a vector, is omitted from (Eq. 10) and𝑇

𝑠𝑖𝑧𝑒
Λ,δ 𝑘,  𝑧𝑠( )

the subscript size seems to add no information at all. The use of a subscript 1 (to indicate
singly-charged?) in the expression Dp,1 = Dp(z,k=1) (line 259) becomes confusing when used in
Eq. (15) for DMA2 and especially so in g = Dp,1/Dd (line 345) where it represents the diameter
associated with an element of Zs,2. It would be far better to reserve subscripts 1 and 2 for their
most frequent usage in associating the parameter with a particular DMA. To distinguish
particular values of diameter from the function that generated them, lowercase ‘d ’s could be
used as above. And though the superscript s of zs was apparently originally representative of
“star” in “z-star” or z*, at this distant removal from that original notation and in this context, it
simply looks out of place. Even the author changed it to a subscript when the Zs parameter was
introduced. Given the number of flaws uncovered at this point in the formulation of the forward
model in Petters (2018), there would seem to be little value in clinging to its confusing notation.
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At least in terms of the forward model, the current work should be seen as superseding the
previous work.

Overall response: The manuscript was revised to eliminate the need for Πk
Λ, δ. The transfer

function Ωδ,Λ(Z, zs /k, k) in (Eq. 10) and (Eq. 15) are now treated identically. This simplifies the
notation and also addresses the concern about using the correct thermodynamic state for  DMA 2
in the forward model. Note that these changes did not affect the results in any meaningful
way.

In response to the comment to eliminate  “apparent + 1 mobility diameter”. To me, the concept
of “apparent + 1 mobility diameter” and “apparent growth factor” are useful and I wish to retain
them. I added a section upfront that defines these. This section also explains the utility of the
concept as I see it.

The DMA selects particles by electrical mobility. The relationship between mobility and
mobility diameter is well known and well defined. The relationship is given, for example, in Eq.
(2) in Petters (2018). This work also makes use of the “apparent +1 mobility diameter”. It is
defined as the conversion from mobility to diameter assuming singly charged particles using the
mobility grid scanned by either DMA 1 or DMA 2. The apparent +1 mobility diameter represents
the natural diameter axis of a DMA response function, i.e. a plot of the raw detector response
versus the nominal DMA setpoint diameter. It is an equivalent measure of mobility. The apparent
+1 mobility diameter is ambiguous. Larger particles carrying more than one charge may have the
same apparent +1 mobility diameter as smaller particles carrying fewer charges. The “apparent
growth factor” is defined as the apparent +1 mobility diameter in scanned by DMA 2 divided by
the nominal selected dry diameter in DMA.

In response to eliminating the Πk
Λ, δ notation/concept: I followed the referee’s suggestion but I do

want to give a brief explanation. The  Πk
Λ, δ function was introduced to map from mobility

diameter to apparent + 1 mobility diameter BEFORE entering DMA 2. The origin for this was a
simple back fold for visualization between mobility and apparent +1 mobility as
shown/calculated in Petters (2018). This is strictly correct when no size changes occur between
DMA 1 and DMA 2.  However, the mapping between mobility and apparent +1 mobility is non
linear in the humidified tandem DMA. For this reason Πk

Λ1, δ1 was introduced. It was applied
before entering DMA 2 to maintain conceptual symmetry to the prior work. As pointed out by
the referee, the pressure in DMA 2 may be lower. In practice, a few 10s Pa of pressure drop have
a negligible effect on Πk

Λ1, δ1. (In fact even 200 hPa is hardly noticeable). It is possible to apply
Πk

Λ2, δ2 after passage through the DMA to address this concern. However, when doing this there
is no utility for visualization. Furthermore, the  Πk

Λ, δ function can be eliminated while also
addressing the referee’s concern about the non-symmetrical treatment of the DMA transfer
function in the A and O matrices. For this reason, the Πk

Λ, δ function was removed from the
treatment. However, there is one BIG disadvantage incurred by doing so. The size grid in DMA
must be extended to much larger sizes to capture the humidified multiply charged particles. This
results in extra computational cost. Furthermore, the revised figures will have a slightly different
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binning due to the doubling of the range. The decision for removal of the Π function was
motivated by the desire for conceptual clarity and precision over computational speed.

Changes

1. Removal of the PI function and associated text. The key change is that PI is removed and
Omega in Eq. (15) is as in Eq. (10). The resulting Figure 1 is essentially unchanged (except for
the change in the binning scheme explained below).

Please see changed text after Eq. (13) up to Eq. (16)

2. Bin numbers in all figures were doubled and the range was extended (resulting in
approximately the same bin width as before. The reason for this is explained in the text. Due to
the new calculation the root mean square error values changed slightly and are updated
accordingly.

.. 120 bins between 0.8 < g < 5. Note that the size grid (or apparent growth factor grid) must be
extended to large sizes to capture the growth of multiply-charged particles computed via Eq.
(13).

In response to the remaining comments about notation: I appreciate the input and suggestions by
the referee. I have implemented most of the referee’s suggestions in this and prior revisions.  It is
my opinion that the added clarifications are sufficient to make the current representation clear
enough to follow.  The current notation remains close to the implementation in the code and I
prefer to keep it that way. Changing the formulation of T, renaming diameters, or introducing
alternate constructs to express the interpolation steps will muddy the waters more than clearing it
up. Specifically, the software package does retain full backward compatibility with Petters
(2018), while also enabling the more precise treatment that is described here. This link will
become harder to maintain, the more changes are introduced, and ultimately result in more
confusion.

While one aspect of Petters (2018) contained an approximation, i.e. the  mapping mobility and
apparent +1 mobility diameter for humidified particles in the tandem DMA, it does not mean that
it is flawed or superseded in general. The approximation was not that terrible, though it was an
unnecessary oversight on my part. However, the remaining points discussed in Petters (2018)
fully stand. For example, the excellent agreement between the TSI inversion and inversion using
the A matrix, the method to compute moments aereas from size selected aerosol using the T
function, the application to fit of size-resolved CCN activation spectra while accounting for
multiply charged particles, or the application to predict the output size distributions of the dual
tandem DMA method. The A matrix may be formulated differently in this work, but it is still the
A matrix. The larger point, a composable computational notation that can express transfer
algebraically is also still true. One outcome of this approach is that multiple formulations exist to
express the same thing, which is a feature of a language.
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Almost all of the excellent suggestions made by the referee in the “Minor Comments and
Corrections” were accepted as proposed. Exceptions are explained.

Minor Comments and Corrections

Line 31: “For examples example, …”. No matter how many examples are proffered in the
following text, standard usage is “For example”.

Corrected.

Lines 87-88: “Capital bold-roman letters denote matrices (A), lower case roman letters denote
vectors (x) and lowercase italic symbols denote scalars (n).” However, this list is far from
exhaustive. For instance, uppercase italic Ts are used as vectors in the later development of the
forward model.

Revised as follows.

Section 2.1 and 2.2 uses the following linear algebra notation. Capital bold-roman letters denote
matrices (A) , lowercase roman letters denote vectors (x) and lowercase italic symbols denote
scalars (n). AT denotes the matrix transpose, and A+ = (ATA)-1AT is the matrix pseudo-inverse.
Section 2.3 uses additional notation described there.

Line 88 or line 94: Include the definition of the pseudo inverse, A+ = (ATA) -1AT , as this is
perhaps less well known to many. It also helpful to have that available to compare to the form in
Eq. (3).

Added.

Lines 100-101: “Common choices are the first and or second derivative operator defined as the
upper bidiagonal(-1; 1) and the upper tridiagonal(1;-2; 1) matrix, respectively.” This same
reversal is also found in line 145. There is no such thing as an “upper tridiagonal”; the matrix is
symmetrically populated about the main diagonal.

Upper has been inserted for bidiagonal. The tridiagonal is defined as the upper tridiagonal matrix
as in Huckle and Sedlacek (2012), which is also accordance with the definition given by others,
e.g. Eq. 7 in Stout and Kalivas (2006), J. Chemometrics 2006; 20: 22–33, DOI:
10.1002/cem.975.

Line 106: “… the derivative of the right hand side of Eq. (2) with respect to x, …”

Corrected.
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Lines 108-109: “The L-curve method involves a plot of vs. . “Note that
x has been changed to xλ in these expressions.”

Corrected.

Line 109: “The optimal  occurs at the corner of the resulting L-shaped curve, …”

Corrected.

Lines 111 and following: The description up this point has been very helpful allowing for at least
some intuitive grasp of what is going on in these equations and their optimization. Then the GCV
estimator is introduced (Eq. 4) with absolutely no physical context for what it means. I realize
that the full definition for this is somewhat involved and beyond the scope of this paper, but is
there any sort of simplified view of what this parameter physically represents? At least for me,
the form of the equation provides no clue at all. Perhaps that is in part due to my ignorance of the
standard form and what that physically represents.

The red colored segments have been inserted.

The optimal regularization parameter can be obtained using a variety of techniques, including the
L-curve method (Hansen 2000) and generalized cross-validation (GCV, Golub et al., 1979). Both
methods use metrics that penalize solutions with large variance (amplified noise) or large bias.

The L-curve method involves …

The generalized cross-validation estimator presents a mathematical shortcut to compute the
leave-one out cross-validation estimate, which removes one point from the data, creates a model,
computes the error between the model and data point not included in the data, and then averages
the result over all permutations. It is given by ...

Line 113: AT should be AT (no italics on the superscript), two places.

Corrected.

Lines 150-151: Doesn’t imply ? But then that

together with for all creates a contradiction if the set is not empty.
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Apologies to the poor typesetting, above which is due to limited support of mathtype in google
docs. The sentence has been revised :

Elements that satisfy are set equal to ε , where 0 < ε << 1.

Line 179: “RegularizationTools.jl also provides an abstract generic interface …”

Corrected.

Line 196: “… the raw response function defined as the integrated response …”

Corrected.

Line 201: “… requires solving evaluating integrals …”

Corrected.

Lines 203-206: “For the forward calculation, the objective is to find a design matrix that maps
the growth factor frequency distribution to the raw TDMA response function. The objective is to
find a design matrix that maps the growth factor frequency distribution to the raw TDMA
response function.”

Corrected.

Line 208: “… provide a domain specific independent language …” This change would seem to
make more sense in this context.

Domain specific language is used as a language that is specific to a domain, in this case to
express the transformations occurring in the domain of differential mobility analyzer systems. No
change was made.

Line 223: “… +1 (singly charged) mobility diameter bin edges …” If you wish to continue to use
the somewhat superfluous “+1” notation, it should be explained such as this on first use.

Done.

Line 226: “For examples example, …”

Corrected.
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Line 227: “…f * 𝕟 is the uniform scaling of the concentration fields by factor f.” Here and in the
subsequent example of f ∙𝕟, f is treated as a simple scalar. But in the very next paragraph f and g
are used as functions. Rather than tempt confusion, use some other letter such as a for scalar
multiplication, e.g. a * 𝕟.

Corrected.

Line 233: “… and sums the results.”

Corrected.

Lines 234 and following: The description of the foldl() function is clearer than that of the
previous splatting function. However, you have stated the generic rule for the first element while
giving examples directly from Julia documentation which use a different rule. The generic rule is
that for the first element, a is the neutral value. In the Julia implementation of foldl, the first
element acts as a for the processing of the second element. For the example foldl(–; [1; 2; 3]), the
neutral value is 0 and the operation is – (a, x) = a – x. The generic implementation of this would
be 0 – 1 – 2 – 3 = – 6 while the Julia implementation is 1 – 2 – 3 = – 4. The way foldl is used in
the development of the forward model would appear to conform to the Julia implementation. So
the description of the first element rule should be changed.

The implementation is not Julia specific. Folds without specifying an initial value are used in
other languages as well, e.g. Haskell’s foldl1 which behaves identical to Julia foldl without initial
value. The “neutral value” means that -(a,x) = x. Perhaps the identity element is a better
description. In any case, the change below makes it explicit and has been added to the
manuscript.

If no initial value is provided, as is the case in this manuscript, foldl applies the function to the
first two elements of the list to compute the first a.

Lines 265-266: “… which corresponds to the centroid mobility setting for the DMA to transmit
particles with the size of particles with k charges under the assumption that they carry only a
single charge.”

Corrected.

Even with this change, I find it very difficult to understand what is going on in this section. The
only way I can make sense of this is that the Z vector at this point contains values of z/k, not
simply z. If this is the case, it needs to be stated as so somewhere. Also, if this is the case, then I
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believe the DMA transfer function dependence in Eq. (10) given as Ω (Z, zs /k, k) should actually
be  Ω(Z, zs /k, 1), assuming  Ω(Z, zs , k) is the “normal” arrangement of inputs.

This is not the case. It is just a mathematical trick to coax the generic function Ω(z, zs , k) to map
in a manner such that Dp,1 becomes equal to mobility diameter. It is what enables the use of Dp,1

in the subsequent terms. Below is a slightly revised explanation.

The functional Ω depends on three arguments Ω(Z, z*, k) and implicitly on the DMA
configuration Λ  (i.e., Eq. 13 in Stolzenburg and McMurry 2008). The output is a vector along
the mobility grid Z. The maximum transmission occurs at Z/z* = 1. The last argument denotes
the number of charges carried by the particle. It is used to compute the mobility diameter from z*
and in turn the diffusion coefficient which is required to account for diffusional broadening of
the transfer function. The output of is the transmission of particles through the𝑇

𝑠𝑖𝑧𝑒
Λ,δ 𝑘,  𝑧𝑠( )

DMA in terms of the true particle mobility diameter. This is achieved by passing zs/k as argument
to Ω, which corresponds to the centroid mobility setting for the DMA to transmit particles with k
charges under the assumption that they carry only a single charge. The net result is that Dp,1 =
Dp(z,k=1), where z is an element of Z, becomes equal to the true mobility diameter axis. As a
consequence the charge fraction Tc(k, Dp,1) and penetration efficiency Tl(Dp,1) are evaluated at the
correct diameter.

Line 268-270: “The function evaluates to a vector of the same length as Z.𝑇
𝑠𝑖𝑧𝑒
Λ,δ 1,  𝑧𝑠( )

Performing and elementwise sum over produces the net mobility distribution𝑇
𝑠𝑖𝑧𝑒
Λ,δ 𝑘,  𝑧𝑠( )

transmitted by the DMA.” Perhaps it is clear enough from context, but noting that the summation
is over all k could be helpful. More importantly, the result of the summation is only the net

mobility distribution if is multiplied by the input distribution, 𝕟. Otherwise, the
𝑘
∑ 𝑇

𝑠𝑖𝑧𝑒
Λ,δ 𝑘,  𝑧𝑠( )

bare summation is simply the net transmission probability function.

Revised as follows.

Performing an elementwise sum over all (where the sum is over all charges k)𝑇
𝑠𝑖𝑧𝑒
Λ,δ 𝑘,  𝑧𝑠( )

produces the net transmission probability function. Multiplication of the transmission probability
function with  the input distribution results in the mobility distribution transmitted by the DMA.
Examples for , , and are shown in Figure 2, right𝑇

𝑠𝑖𝑧𝑒
Λ,δ 1,  𝑧𝑠( ) * 𝕟 𝑇

𝑠𝑖𝑧𝑒
Λ,δ 2,  𝑧𝑠( ) * 𝕟 𝑇

𝑠𝑖𝑧𝑒
Λ,δ 3,  𝑧𝑠( ) * 𝕟

panel in Petters (2018).
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Line 270: “Examples for … is are shown in Figure 2, …”

Corrected.

Lines 276-277: “… and Zs is a vector of centroid mobilities scanned by the DMA.” The vector Zs

is missing from this description.

Corrected.

Line 277: “The matrix is square if Zs = Z in Eq. 10.” I think you mean Eq. 11.

Corrected.

As noted earlier, as this would be a lot clearer if the explicit Z dependence were actually shown
in as .𝑇

𝑠𝑖𝑧𝑒
Λ,δ 𝑘,  𝑧𝑠( ) 𝑇

𝑠𝑖𝑧𝑒
Λ,δ 𝑍,  𝑧𝑠, 𝑘( )

As discussed above I prefer to keep it the way it is. Once reason is that function𝑇
𝑠𝑖𝑧𝑒
Λ,δ 𝑘,  𝑧𝑠( )

generally queries the Z grid defined by the DMA (it doesn’t have to). Thus, in code the Z vector
becomes .Z and Dp,1 vector .Dp. Revising it as proposed would confuse the issue.δ δ

Lines 289-290: “The latter is the raw response function defined as integrated response
downstream of the DMA …” The latter refers to 𝕣 in Eq. 12. 𝕣 is similar to a size distribution, it
is NOT integrated over all sizes as would be the case for the response of a CPC detector.

Reworded as follows.

The latter is the raw response function, where each element corresponds to the integrated
response downstream of DMA 1 for a set upstream voltage (or corresponding zs or apparent +1
mobility diameter but not true physical diameter for multiply charged particles).

Line 295: “The mobility distribution exiting entering DMA 2 …”

Corrected.

Line 297: “… Eq. (13) … evaluates to … that exit the humidity conditioner DMA1 …”

Corrected.
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Lines 298-299: “Subscripts are used to differentiate DMA 1 and 2 which possibly have different
geometries, flow rates, and grids, …” This list should include thermodynamic states, that is,
different temperature and/or pressure. DMA2 is definitely at a lower pressure than DMA1 and
this is reflected in the relationship between mobility and mobility diameter.

Added as suggested.

..,which possibly have different geometries, flow rates, thermodynamic state, and mobility grids,

...

Line 311: “The total humidified mobility distribution exiting DMA 2 is given by (Eq. 14)𝑚
𝑡
δ2 

…” The total humified mobility distribution exiting DMA2 would be that observed at fixed zs,2

without integrating over particle size. is the total integrated concentration versus zs,2 . It is𝑚
𝑡
δ2

not a true particle distribution.

The “apparent +1 caveat was stated directly after the equation. It is now moved upfront.

The total humidified apparent +1 mobility diameter distribution exiting DMA 2 is given by:𝑚
𝑡
δ2 

Line 322: “… the humidified distribution function exiting DMA 2 …” Same as previous
comment. This might be considered to be a pseudo-distribution if what is meant by that is
explained up front.

If the aerosol is externally mixed, the humidified apparent +1 mobility diameter distribution
function exiting DMA 2

Line 324: In reference to Eq. 16, “…the diameters in are normalized by Ddry .” This does not𝕄
𝑡
δ1

seem correct. The diameters, or at least the associated mobilities, cannot be altered until after
passage through DMA2. I can’t figure out where in Eq. 16 you could safely normalize diameters.

Thank you. This is indeed a poor description on my part. (And the referee is of course correct).
In fact the code evaluates

which results in m apparent + 1 mobility diameter distributions after passage through DMA 2.
The resulting sizes are then normalized by Ddry. The text has been updated accordingly.
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Line 327: “… the DMA setup setups  Λ1, Λ2 ,  δ1,  δ2 …”

Corrected.

Lines 332-333: “Transmission through DMA 1 is computed for a specified zs (the dry mobility)
and g0 (the growth factor) via Eq. (13).” The humidity conditioner as represented by g0 is NOT
part of DMA1.

Corrected.

Line 339: “… the matrix is non square.” This is only true if j≠i. Perhaps j is typically much
smaller than i, but you haven’t said anything about that.

This was a “typo” (the sentence was meant to read):

If the vector Z inside the square bracket of Eq. (15) equals that of DMA 1, the matrix is non
square.

Line 342: “The advantage of interpolation is that the the matrices Ok are smaller.”

Corrected.

Here again it is implied that j is significantly smaller than i but you have not explained why that
is.

Corrected.

..the matrices Ok are square and of dimension j × j . In that case, the transmitted and grown
distribution from DMA 1 ( i bins along the mobility axis of DMA 1) is interpolated onto the
mobility grid of DMA 2 prior to evaluating Ok * Mk

δ 1 The advantage of this approach is that for
j < i the matrices Ok are smaller and subsequent calculations are faster.

Line 347: “… the humidified mobility pseudo-distribution function …” or some such
modification.

Corrected.

Equation (17) is cast into matrix form such that the humidified apparent +1 mobility diameter
distribution function is given by
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Lines 350-351: “If the grids for Pg and that of DMA 2 do not align, interpolation is used to map
the Pg grid onto the DMA 2 grid.” The Pg grid would refer to the discretization of g0 , or G, using
the notation from above. What is being interpolated onto the DMA2 grid is d1

s ⋅ G.

Changed as follows.

If the grids used to represent the growth factor distribution and that of DMA 2 do not align,
interpolation is used to map the growth factor bins from the growth factor distribution onto those
corresponding to the DMA 2 grid.

Lines 351-352: “The choice of i, j, n, the ranges of mobility grids for DMA 1, DMA 2, and the
range of Pg , is only constrained …” Insert comma after Pg . The range of Pg is simply [0,1]; it is
the range of g0 that is needed here or perhaps “the range of the growth grid for Pg ”.

Changed as suggested.

The choice of i , j , n, the ranges of mobility grids for DMA 1, DMA 2, and the range of the
growth grid for Pg , is only constrained by computing resources and a physically reasonable
representation of the problem domain.

Line 359: A new paragraph should start with “Figure 1 …”.

Corrected.

Line 390: Concerning bounds for Pg , if Pg = dF/dg from Figure 1 caption and as would be
appropriate in Eq.16, then there is no upper bound for Pg. For if one introduced a perfectly
monodisperse as the input aerosol, Pg would range from zero to infinity. However, in discretizing
the integral of Eq. 16 it is possible to assign the bin width factor, Δg, to the dF/dg vector to get a
ΔPg vector. This would be properly bounded by [0,1]. This should be explained more clearly or
the notation in the equations appropriately modified to show this.

The regularization/fitting is performed in frequency space and the data are subsequently
converted to Pg = dF/dg. The reasons for this are (1) the ability to specify B[0,1] and that the error
metrics are better behaved in the frequency domain. This was hinted at in the caption of Figure 3,
but should have been made more explicit in the text.

Here B[0,1] is shorthand for setting all lower bounds equal to zero and all upper bounds
equal to one. The a-priori estimate x0 is taken to be the normalized apparent growth factor
distribution derived from the measured response function, where the normalization ensures
that the sum over all bins is unity. Note that the inversion is performed treating the growth
factor distribution in units of frequency instead of frequency density. This choice enables
the upper bound constraint of unity. Since the true noise-free input growth factor
frequency distribution is known, the fidelity of the inversion can be evaluated by
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computing the root mean square error between the noise-free solution and the regularized
solution. Evaluating the root mean square error in frequency rather than frequency density
space results in more comparable values when contrasting narrow and broad probability
distribution functions.

Lines 396-397: “Visual evaluation … suggest suggests …”

Corrected.

The balance of the paper was not reviewed.
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