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Abstract.

Ambient aerosol size distributions obtained with a compact, scanning mobility analyzer, the “Spider” DMA, are compared

to those obtained with a conventional mobility analyzer, with specific attention to the effect of mobility resolution on the

measured size distribution parameters. The Spider is a 12-cm diameter radial differential mobility analyzer that spans the

10–500 nm size range with 30s mobility scans. It achieves its compact size by operating at a nominal mobility resolution5

R= 3 (sheath flow = 0.9 L/min, aerosol flow = 0.3 L/min), in place of the higher sheath-to-aerosol flow commonly used.

The question addressed here is whether the lower resolution is sufficient to capture the dynamics and key characteristics of

ambient aerosol size distributions. The Spider, operated at R= 3 with 30s up and down scans, was collocated with a TSI 3081

long-column mobility analyzer, operated at R= 10 with a 360s sampling duty cycle. Ambient aerosol data were collected over

26 consecutive days of continuous operation, in Pasadena, CA. Over the 20-500 nm size range, the two instruments exhibit10

excellent correlation in the total particle number concentrations and geometric mean diameters, with regression slopes of 1.13

and 1.00, respectively. Our results suggest that particle sizing at a lower resolution than typically employed is sufficient in

obtaining the key properties of ambient size distributions.

1 Introduction

Mobility measurements of atmospheric aerosols in the 10–500 nm size range are important to atmospheric aerosol character-15

ization (McMurry, 2000). Measurements aloft are especially important to understand aerosols in remote regions (Creamean

et al., 2020; Herenz et al., 2018), and to mapping three-dimensional profiles (Mamali et al., 2018; Ortega et al., 2019; Zheng

et al., 2021). Traditional mobility analyzers that span this size range are large, and not suitable for most unmanned aerial ve-

hicle (UAV) or tethered balloon payloads that increasingly serve as the platform for aerosol characterization aloft. Moreover,

aircraft measurements also require a fast scan time resolution to enable a good spatial resolution, as time is proportional to20

distance traveled in a moving platform.

To that end, Amanatidis et al. (2020) developed the "Spider DMA", a compact, lightweight, and fast differential mobility

analyzer (DMA). The instrument was designed for 10–500 nm sizing, with an aerosol flowrate of 0.3 L/min to provide adequate
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counting statistics on ambient aerosol over the time window appropriate for moving platforms. However, its compact size was

achieved through reduction of mobility resolution; instead of the typical factor of 10 ratio between the sheath and aerosol flows,25

the Spider DMA employs a factor of 3. For given sample flowrate, obtaining higher resolution requires increasing the sheath

flowrate, which in turn comes at the expense of dynamic sizing range; thus, a larger classifier would be required to maintain

both sizing range and high resolution.

While high size resolution is important for specific applications, such as in laboratory calibrations that employ a DMA as a

calibration aerosol source, it may not be critical for ambient size distribution measurements, wherein the particle distribution30

spans a much wider size range than the transfer function of the DMA. In addition to the smaller physical size for the instrument,

operating at lower resolution increases the number of particle counts per size bin, and thus decreases the statistical uncertainty.

This can be an important factor for low-concentration measurements.

The question explored in this paper is whether the moderate resolution mobility sizing of the Spider DMA is sufficient

to capture the important characteristics of atmospheric aerosol size distributions. We begin with the derivation of the Spider35

DMA transfer function through a combination of finite element simulations and laboratory calibrations. We then present a field

validation by comparison of ambient aerosol data from the new instrument with that obtained from a traditional long-column

cylindrical DMA (LDMA) operated at a nominal resolution of R= 10 during nearly one month of continuous operation of the

two, co-located instruments.

2 Methods40

2.1 Spider DMA

The prototype Spider DMA sizing system consists of the "Spider" DMA (Amanatidis et al., 2020) and the "MAGIC" parti-

cle counter (Hering et al., 2014, 2019). The Spider is a compact mobility analyzer designed for applications requiring high

portability and time resolution. It features a radial flow geometry and a sample inlet distribution system where the flow is

azimuthally distributed through curved ("Spider"-like) flow channels. The instrument was designed to operate at 0.3 L/min45

sample, and 0.6–1.2 L/min sheath flowrates, offering size classification in the 10–500 nm size range. Owing to its small classi-

fication volume, the mean gas residence time in the classifier is on the order of∼ 1 s, making it possible to complete its voltage

scan in times well below 60 s without significant smearing of its transfer function.

The "MAGIC" (Moderated Aerosol Growth with Internal water Cycling) particle counter is a laminar-flow water-based

CPC. It employs a particle growth tube chamber with three stages (cool, warm, and cool) in which ultrafine particles grow by50

heterogeneous water vapor condensation to > 1µm, and are subsequently counted by an optical detector. The final stage of

the MAGIC CPC growth tube (moderator) recovers excess water vapor, enabling long-term operation without the need of a

reservoir or water refilling. The instrument operates at a sample flowrate of 0.3 L/min, and has a 50% detection cut-point of ∼
7 nm.
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2.2 Transfer function determination by finite element modeling55

Amanatidis et al. (2020) evaluated the Spider DMA transfer function in static-mode based on the Stolzenburg (1988) transfer

function model and its derivation for radial flow classifiers (Zhang et al., 1995; Zhang and Flagan, 1996). Here, we evaluate

its transfer function at "scanning" mobility mode, wherein the electric field is varied continuously in an exponential voltage

ramp (Wang and Flagan, 1990). The scanning transfer function was evaluated with 2D finite element simulations of flows,

quasi-steady-state electric field, and particle trajectories, using COMSOL Multiphysics. Simulations were performed for 0.960

/ 0.3 L/min sheath / aerosol flowrates, scanning voltage in the range 5 – 5000V, and 30s exponential ramps for both up- and

down-scans. Particles were modeled with the "Mathematical particle tracing" module, in which particle mass was assumed to

be negligible since the electric field varies slowly, on a time scale that is long compared to the aerodynamic relaxation time

of the particles being measured. Particle motion was calculated explicitly, by assigning particle velocity vector components

equal to the steady-state fluid field solution, combined with the axial velocity acquired from interaction with the time-varying65

electrostatic field. Moreover, a Gaussian random-walk was employed in each time step of the solver to simulate particle Brow-

nian motion, with a standard deviation proportional to particle diffusivity, i.e. dσ =
√

2Ddt. Monodisperse particles were

injected in regular intervals over the scan, varying from 0.025s for large particles to 0.003s for those in the diffusing size range.

Modeling was repeated for 10 discrete particle sizes, spanning the dynamic range of the classifier.

2.3 Experimental70

The two sizing instruments, the Spider DMA and the LDMA system, were operated in parallel, sampling ambient air from a

roof top at the Caltech campus in Pasadena, CA. Measurements were made between May 16 - June 11, 2020, and were done

as part of a study of the impacts of the COVID-19 pandemic shut-down on air quality.

The experimental setup used is shown in Figure 1. Ambient aerosol samples passed through a soft X-ray charge conditioner,

and were subsequently split between the two mobility sizing systems. Both systems were operated in scanning mode. Both used75

a MAGIC water-based CPC as the detector. The size pre-cut stage in the inlet of both CPCs was removed to avoid additional

smearing of the transfer functions. The Spider DMA was operated at 0.9 L/min sheath and 0.3 L/min aerosol flowrates. Its

scanning program included a 30s upscan followed by a 30s downscan, during which the electrode voltage was exponentially

varied between 5 – 5,000V. The voltage was held steady for an additional 2s at each end of the voltage ramp to allow for

incoming particles to transmit through the classifier. Particle counts over the scan were recorded with a 5 Hz rate. The LDMA80

system was based on a TSI 3081 long-column DMA operated at 3.0 L/min sheath and 0.3 L/min aerosol flowrates, offering

classification in the 17–989 nm size range. The scans consisted of an exponentially increasing (upscan) voltage ramp between

25–9,875V with a 330s duration. As with the Spider DMA, the LDMA voltage was held constant at the beginning and end of

the ramp for 15s, bringing its duty cycle to 360s. Particle counts for the LDMA system were recorded with a 2 Hz sampling

rate. Data acquisition and instrument control (flows, high voltage) was performed with custom LabVIEW software for both85

systems.
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Figure 1. Schematic of the experimental setup used to evaluate the Spider DMA. The prototype instrument was operated at 0.9 L/min sheath

and 0.3 L/min aerosol flowrates, and a scanning voltage program consisting of a 30s upscan followed by a 30s downscan. A TSI 3081 long-

column DMA, operated at 3.0 L/min sheath and 0.3 L/min aerosol flows, 330s upscans, was used for comparison. Both sizing systems used

an ADI "MAGIC" CPC as the particle detector.

2.4 Data inversion & analysis

Particle size distributions were obtained by inverting the raw particle counts recorded over each voltage scan. Raw counts

were smoothed prior the inversion by Locally Weighted Scatterplot Smoothing (LOWESS) regression (Cleveland, 1979) to

minimize inversion artefacts for noisy scans. The smoothed data were then inverted by employing regularized non-negative90

least squares minimization for both systems.

The inversion kernel for the Spider DMA system was based on the scanning transfer function of the Spider DMA obtained by

finite element modeling. In order to generate a dense kernel required for the inversion, the modeled transfer function data were

fitted in Gaussian distributions, whose parameters were subsequently fitted to analytical expressions that allowed generation

of transfer functions at any instant (i.e., time bin) over the voltage scan. The Spider transfer functions were subsequently95

convoluted with a continuous stirred-tank reactor (CSTR) model (Russell et al., 1995; Collins et al., 2002; Mai et al., 2018) to

take into account the time response of the MAGIC CPC. A 0.35s time-constant was used for the CSTR model in the Spider

DMA system (Hering et al., 2017). The resulting transfer function was combined with a size-dependent transmission efficiency

model described by Amanatidis et al. (2020) to take into account particle losses occurring at the Spider inlet, as those are not

evaluated in the 2D finite element modeling. Raw counts were shifted to earlier time bins to account for the 1.50s plumbing100

time delay between the Spider outlet and the MAGIC CPC detector. Because the simulation enabled a strictly monodisperse

"calibration" aerosol, the ratio of the number exiting the DMA during a particular counting time interval over the upstream

particle number is the instrument transfer function.

The kernel for the LDMA system was based on the scanning transfer function model derived recently by Huang et al. (2020).

A CSTR model with a characteristic time of 0.35s, and a plumbing delay time of 0.95s were used to incorporate the response105
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of the MAGIC CPC used in the LDMA system. The particle charge probability in the data inversion for both systems was

assumed to follow the Wiedensohler approximation of the Boltzmann charge distribution (Wiedensohler, 1988).

3 Results

3.1 Spider scanning transfer function

Figure 2 shows the scanning transfer function of the Spider DMA evaluated by finite element modeling. Results are plotted as110

a function of time in the scan, for upscan and downscan voltage ramps. Each peak represents the ratio of particle number at the

outlet over the inlet, for a specific input particle size. Finite element modeling data, shown with symbols, have been fitted to

Gaussian distributions, shown with solid lines, which provide a close approximation to both upscan and downscan modeling

data. As will be shown next, the Gaussian fits are subsequently employed to generate the transfer function at any time instance

over the scan. Comparison between upscan and downscan peaks reveals a distinct difference; downscan peaks have a higher
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Figure 2. Finite element modeling of the Spider DMA scanning transfer function for (a) upscan and (b) downscan exponential voltage ramps

with 30s duration, 0.9 L/min sheath and 0.3 L/min aerosol flowrates. Symbols correspond to finite element modeling data (ratio of particle

number at the outlet over the inlet); solid lines show Gaussian distributions fitted to the modeling data; dashed lines indicate the scanning

voltage program (values shown on right y-axis).
115

maximum number ratio. Moreover, they are somewhat narrower than the upscan peaks. This difference is the result of the

scanning voltage operating mode. It should be noted that the transmission efficiency through the classification zone of a DMA

is proportional to the area under the peak, rather than its maximum value. Hence, particle transmission over downscans is not
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necessarily higher than upscans. Diffusional broadening of the transfer function becomes important in the low voltage region

of each ramp, increasing the transfer function width as voltage decreases, though the broadening is less than would be seen120

with a higher resolution DMA (Flagan, 1999).

Figure 3 shows the integrated transfer function of the Spider DMA system for the same operating conditions as those used

in the experiments. The voltage program, shown in Figure 3a, consists of a 2s hold time at 5V, followed by a 30s upscan up to

5000V, a 2s hold time at 5000V, and a 30s downscan to 5V. The classified particle size follows roughly the exponential increase

and decrease of the voltage over the scan. The peaks shown in Figure 3b consist of the Gaussian approximation of the Spider125

transfer function shown in Figure 2, combined with the size and time response of the MAGIC CPC, and the size-dependent

transmission efficiency in the Spider inlet (Amanatidis et al., 2020).
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Figure 3. a) Scanning voltage and classified particle size over the Spider DMA scan. b) Transfer function of the integrated Spider DMA -

MAGIC CPC system (ratio of particle number at the outlet over the inlet), consisting of the Spider DMA scanning transfer function combined

with its inlet transmission efficiency and the MAGIC CPC response.

3.2 Data inversion example

Figure 4 demonstrates an inversion example for representative Spider DMA data. Particle raw counts recorded at each time bin

over the upscan and downscan are shown in Figure 4a. Smooth lines are fitted to the raw counts data to minimize artefacts in130

the inversion process. The resulting size distributions, employing an inversion kernel based on the scanning transfer function

in Figure 3b, are shown in Figure 4b. Up- and downscan distributions are almost identical in both shape and magnitude. The

mean of the two distributions, as shown here, is used as the output of each scan.
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Figure 4. Example of Spider DMA data inversion. a) Raw counts per bin (symbols) recorded over the voltage ramp (up- and down-scan).

Solid lines indicate LOWESS smoothing to the raw counts. b) Resulting size distributions after data inversion. The dashed line shows the

mean of the up- and downscan distributions.

3.3 Instrument comparison

Figure 5 illustrates an excerpt of the Spider and LDMA size distribution measurements over a time period of 3 days. The two135

instruments report similar diurnal variation in the particle size distribution, in both size and number concentration. Increased

particle concentrations were recorded in the early afternoon of each day, a regular occurrence as particles from morning traffic

are transported by the sea breeze from Los Angeles to Pasadena where the measurements took place. Concentrations begin

to drop later in the afternoon and through the evening, from about 15,000 cm−3 to below 5,000 cm−3. The geometric mean

diameter (GMD) of the size distribution ranged between about 30–60 nm, and was smaller over the high number concentration140

events recorded in early afternoon.

Figure 6 shows the evolution of the size distribution over a period of 2 hours in the afternoon of May 28, 2020 (indicated

with dashed box in Figure 5d), measured with the Spider and the LDMA system. Since the measurement duty cycle of the

two instruments was different (66s for the Spider vs 360s for the LDMA), we employed 30 min averaging of the recorded size

distributions. This corresponds to 5 scans for the LDMA, and about 27 up- and down-scans for the Spider. The shaded areas145

of the averaged distributions represent the variation over the averaging period. Starting from a mono-modal distribution with

a peak at ∼ 45 nm (panel a), the size distribution transitioned to a bi-modal one over a period of 60 min (panels b, c), before

transitioning back to a mono-modal distribution (panel d). As indicated by the shaded areas, there was high variation in the
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Figure 5. Evolution of the particle size distribution over a period of 3 days measured by a) the Spider DMA, and b) the LDMA system.

Corresponding total particle number and geometric mean diameter, calculated over the 17–500 nm size range, are shown in panels (c) and

(d), respectively. Solid blue color in panel (b) (size range <17nm) was used for no available data in the LDMA system. The dashed box in

panel (d) indicates the time period shown in Figure 6.

aerosol concentration during this transition event. Overall, the measurement of the two instruments was in good agreement both

in terms of sizing and concentration, suggesting that the lower sizing resolution in the Spider DMA was adequate in capturing150

the details of the size distribution. An animation video with side-by-side comparison of 30-min averaged distributions for the

entire testing period is included in the Supplementary Material (Amanatidis et al., 2021).

Figure 7 compares the total number and geometric mean diameter measured by the two instruments over the entire testing

period. Each data point corresponds to a 1-hour average of the size distribution measured by each instrument, calculated over

the 17–500 nm size range where the two systems overlap. Overall, the comparison includes 550h of measurement data. In155

order to identify outliers in the data, we employed the "RANSCAC" (random sample consensus) algorithm (Fischler and

Bolles, 1981). In this, random samples of the data are selected, analyzed, and classified as inliers and outliers through an

iterative routine. The outliers identified are shown in Figure 7 with open square symbols.
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the mean of size distributions measured over a period of 30 min. Shaded areas demonstrate the variation of the size distribution over the

averaging period, indicating maximum and minimum values.

Next, a linear regression model (no intercept) was fitted to the data (excluding outliers) to evaluate the correlation between

the two instruments. Since both instruments include measurement errors, we employed Orthogonal Distance Regression (Boggs160

et al., 1987), where errors on both the dependent and independent variable are taken into account in the least squares minimiza-

tion. The resulting regression lines exhibit slopes of α= 1.13 and α= 1.00 for number concentration and GMD, respectively,

suggesting an overall excellent agreement between the instruments. Moreover, Pearson correlation coefficients of ρ= 0.98 and

ρ= 0.93 indicate a strong correlation for both metrics of the size distribution.

3.4 Operational observations165

The prototype Spider DMA used in this study incorporated an electrostatic-dissipative plastic that failed after several months

of continuous operation, causing arcing within the instrument at the highest voltages. The Spider DMA has been redesigned to

eliminate this material, and is currently being tested. This new Spider DMA has relatively minor changes to the classification

region of the prototype presented here, and employs the same moderate resolution approach to maintain a compact size.
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Figure 7. Comparison of a) total particle number, and b) geometric mean diameter, measured by the Spider and LDMA systems over a

period of 26 days of continuous testing. Each point represents 1 hour averaged data, calculated over the 17–500 nm size range where the two

instruments overlap. Square symbols show outliers excluded from the regression analysis. Dashed lines represent a linear regression model

(no intercept) fitted to the data. ρ values denote the Pearson correlation coefficient between the measurement data of the two instruments.
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4 Summary & conclusions170

We evaluated the performance of the Spider DMA, a highly-portable particle sizer, in measuring ambient size distributions

against a co-located particle sizer based on a TSI 3081 long-column DMA (LDMA). Comparison measurements were per-

formed at the Caltech campus in Pasadena, CA over a period of 26 days, between May 16 – June 11, 2020, as part of a field

campaign examining the effects of COVID-19 shut-down on air quality. The Spider DMA system was operated at a lower

nominal sizing resolution (0.9 L/min sheath and 0.3 L/min aerosol flowrates, R= 3) than the LDMA (3.0 L/min sheath and175

0.3 L/min aerosol flowrates, R= 10), and at a higher time resolution (30s vs 330s scans).

The transfer function of the Spider DMA was obtained by finite element modeling at the conditions employed in the exper-

iment, which included both up- and downscan exponential voltage ramps with 30s duration. Modeling data were fitted to

Gaussian distributions, and were combined with the experimentally-determined transmission efficiency of the Spider DMA

and the MAGIC particle counter response function to generate the inversion kernel of the combined system. Data inversion of180

the LDMA system was based on the semi-analytical model of the LDMA scanning transfer function derived by Huang et al.

(2020).

Regression analysis of 550h of measurement data showed an overall excellent correlation between the two instruments, with

slopes of α= 1.13 and α= 1.00, and Pearson correlation coefficients of ρ= 0.98 and ρ= 0.93 in the reported particle number

and geometric mean diameter (GMD), respectively. The good agreement between the two instruments suggests that particle185

sizers operated at moderate resolution (R= 3 in this study) can sufficiently capture the dynamics and key characteristics of am-

bient size distributions, at least in the 10–500 nm size range. Lowering the resolution enables a wider dynamic range, or a more

compact particle sizer for a desired size range, which is essential in many field applications, such as for measurements aloft

with small UAVs or tethered balloons that have limited payloads. Moreover, it enables better counting statistics, as the wider

transfer function results in higher counts per size bin, which is an important factor at low concentration aerosol measurements.190
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