
 1 

reply to reviews of “amt-2021-60”  
https://amt.copernicus.org/preprints/amt-2021-60/amt-2021-60.pdf 
Title: Evaluating cloud liquid detection using cloud radar Doppler spectra in a pre-trained 
artificial neural network against Cloudnet liquid detection 
Author(s): Heike Kalesse-Los et al. 
MS No.: amt-2021-60 
MS type: Research article 
 

 

We thank both reviewers for their comments which we addressed in a point by point way 
below and which resulted in major additions to the manuscript. Reviewer comments are 
in black, our replies in green. 

 

Reviewer #1 

 General comments: 
 
This study compares the performance of different techniques (#1lidar (Cloudnet product); #2 
ANN applied to radar Doppler spectra) in detecting supercooled liquid water. The ANN 
method (Luke et al., 2010) trained with radar Doppler spectra data obtained in the Arctic was 
applied to radar data recorded during the ACCEPT in Cabauw, the Netherlands, 2014.The 
comparison was firstly conducted to an event with some analysis, and then statistical results 
for the whole campaign were presented.The results show that the ANN approach 
outperforms the Cloudnet algorithm in multi-layered stratiform clouds.This is actually 
expected since Cloudnet target classifications relied on lidar data which have been totally 
attenuated by the lowest liquid layer. I feel the most interesting part of the study will be 
assessing the performance of ANN method in presence of convection. I will list more specific 
comments below. 
Overall, this manuscript is well-written and relevant studies are properly cited. I like the 
Introduction section, since it is quite comprehensive and reads very friendly for researchers 
who are not very familiar with this topic.Some parts in results section need further 
clarification.The scientific merit that just showing the (Luke et al., 2010) works well in a 
different climatology seems weak to me. I think the evaluation in presence of convection 
could be supplemented by more detailed analysis. Then, this could be a nice paper that I 
would recommend to be published on AMT. 
 
General reply:  
As stated by the reviewer, we show that the ANN approach outperforms the Cloudnet liquid 
classification in multi-layered clouds. While this indeed is not surprising, we believe that 
there is a need to make the Cloudnet community more sensitive to the limitations of the built-
in lidar-only based Cloudnet liquid classification. This is for example corroborated by 
numerous papers giving Cloudnet-based cloud phase statistics (e.g. Fig 8 and Fig 9 of 
https://acp.copernicus.org/articles/19/4105/2019/, of Fig 11 of 
https://acp.copernicus.org/articles/21/289/2021/, etc), or Figure 16 of 
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https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3971 , where the underestimation of 
observed w.r.t. modelled liquid is increasing with height (likely because of the decreasing 
likelihood that lidar can detect liquid water).  
Our objective of this manuscript is to show that there are methods that do better in detecting 
liquid than the current Cloudnet algorithm in certain conditions. We will describe more state-
of-the-art ANN and cloud climatologies in subsequent studies (in progress) and thus refrain 
from expanding the current manuscript too much.  
 
Major comments: 
 
1) It appears that the method works well as shown by rho_ceilo-CBH,LLH > 85% in Table 2. 
However, I think it is more important to know under what conditions the 15% fails.  
 
True, trying to assess under which conditions the liquid-layer height (LLH) of ANN and 
ceilometer cloud base height (CBH) differ is important. We thus expanded the section on 
rho_ceilo-CBH,LLH accordingly to address the failure rate more in depth.:  
“In this work the ceilometer first cloud base height variable is correlated to the predicted first 
liquid layer height (if liquid is present). rho_ceilo-CBH,LLH of the four ANN methods are on 
the order of  0.86 (deBoer2009) to 0.92 (Shupe2007) for the entire ACCEPT dataset, i.e., 
there is a failure rate of 8--14%. This failure rate can be explained by several conditions: 
Firstly, in some situations, like on Nov 18, 2014 between 1-4 UTC, the ceilometer cloud base 
variable is not representing the base of the liquid layer but instead the base of precipitating 
ice crystals. This is caused by specular reflection from the planar planes of horizontally 
aligned ice crystals as described in Westbrook  et al., 2010. As shown in the comparison of 
ceilometer CBH and ANN LLH below, when the ANN is not sensitive to these ice crystals, 
the difference in ceilo-CBH and ANN-LLH is high. Secondly, there are situations where liquid 
layers with low LWP are only detected by the ceilometer but not by the cloud radar (Nov 17, 
11 UTC, 1.7 km) and thirdly, there are cloud scenes where the ceilometer is fully attenuated 
by precipitation or low level fog (thus reporting the precipitation base or fog base as first 
cloud base, see Figure below) which the radar can penetrate/is not sensitive to or which is 
below the first radar range gate. Fourthly, in situations where the ceilometer is still able to 
penetrate light precipitation to detect CBH (Nov 17, 3-9 UTC, 17-24 UTC) and the ANN 
misclassifies drizzle/rain as cloud droplets, further discrepancies arise. These conditions 
lead to a decrease of the rho_ceilo-CBH,LLH. The rho_ceilo-CBH,LLH for ceilometer-CBH 
and Cloudnet for the entire ACCEPT data set is higher and amounts to 0.97. While the cloud 
base height variable in Cloudnet is based on the gradient of ceilometer attenuated 
backscatter coefficient, the internal ceilometer cloud base determination is not precisely 
documented in the ceilometer manual. Differences in cloud base height leading to a failure 
rate of 3% may thus occur due to different backscatter coefficient thresholds.” 
 
As an example, we show in Fig. 1 below a comparison of ceilometer first cloud base height 
(CBH) and first liquid layer base height (LLH) from the ANN and Cloudnet below, which 
illustrates the larger differences between ceilometer and ANN leading to lower rho_ceilo-
CBH,LLH. 
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Fig 1: Top: Time series of difference of ceilometer first cloud base height variable  and first liquid layer 
base from ANN (red) and Cloudnet (black) for Nov 17-18 2014 case study.  
Bottom: Time series of ceilometer first cloud base height (CBH) variable (green) and first liquid layer 
base height (LLH) from ANN (red) and Cloudnet (blue) for Nov 17-18 2014 case study.  
 
Rev1: Although it is already well known that the liquid peak in Doppler spectrum can be 
blurred by turbulence, at what extent the turbulence can smear the liquid peak is still not very 
clear. This may be described by factors related to turbulence, such as spectrum width, 
velocity, Z, variance of V and so forth. Then, the scientific significance of this study will be 
improved. I think the current explanation is widely accepted knowledge. As the author wrote 
‘the objective of this study was to check the performance of the ANN trained with the 
MPACE observations in Luke et al. (2010) on a new data set’. The clouds over the 
Netherlands are definitely more convective than the Arctic, therefore the convective 
conditions should be well addressed.  
 
Thank you for this remark. We considered this problem by trying to assess conditions in 
which the ANN algorithm does well in predicting liquid or not by doing the following: 

a) analysis of radar moments for error matrix elements TP, FP, TN, FN in terms of 
Frequency of Occurrence (FoO) plots and 3D scatter plots as well as of time-height 
masks of error matrix elements  

b) determination of convective index kappa  
which we are elaborating on subsequently. 
 

a) To evaluate the performance of the ANN for liquid detection, we created normalized 
frequency of occurrence (FoO) histograms for the entire ACCEPT data set (Fig 2) to 
see in which way the elements of the ANN cloud droplet prediction error matrix (TP, 
TN, FP, FN) differ in terms of radar moments (radar reflectivity factor Ze, mean 
Doppler velocity Vd, spectrum width, linear depolarization radio LDR) and 
environmental temperature.  
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What is evident in Fig2 below, is that the distribution of radar moments of TP is different from 
TN, FP, and FN while the FoO of radar moments of the latter TN, FP, FN are mostly similar. 
Specifically,  

● Ze: the FoO of reflectivities of TP of liquid droplets is monomodal with a maximum 
occurrence at -25dbZ to -35dBZ, it is bimodal for TN, FP, FN with the two maxima 
occurring at -25dBZ and -10dBZ 

● Vd: With values between -2 m/s and + 0.5 m/s the distribution of Vd of TP is narrower 
than of TN, FP, FN which have values of about -4 m/s and + 1 m/s and a maximum 
FoO at more negative values of around -0.5 m/s than the TP (max. FoO at -0.2 m/s) 

● spectrum width: TP generally occur at larger spectrum width than TN, FP, FN with a 
max. FoO of TP at 0.2-0.25 m/s while the max. FoO of TN, FP, FN peaks at 0.05-0.1 
m/s 

● LDR: cloud droplets are spherical, their theoretical radar linear depolarization ratio 
(LDR) is thus minus infinity dB, due to technical limitations, the smallest LDR of the 
MIRA cloud radar is -30 dB. The FoO of TP exhibits a narrow peak around -30 dB 
and then declines sharply to low FoO values of higher LDR. Again, LDR FoO of TN, 
FP, FN are more similar to each other than to TP. However, while the max. FoO of 
FN is also at - 30 dB, the max. FoO of TN and FP spans a broad range between -30 
dB and -24 dB. The FoO of increasingly higher LDR values decreases rapidly with an 
especially sharp decrease at -20 dB for all elements of the error matrix.  

● environmental T: Plausibly, at lower temperatures T, more TN than TP occur. Most 
TP were found at T > 0 C which owes to the consecutive extinction of ground-based 
lidar signal with height, where the atmospheric T decreases. 

● Comparing FoO of liquid detection error matrix with respect to the different 
thresholds, the more stringent criteria of deBoer2009 generally lead to narrower FoO 
distributions. 
 

→ We included the FoO plot below and part of these explanations in Section 3 of the 

manuscript where the ANN-liquid prediction scores of the entire ACCEPT field experiment 

are discussed (please see “diff-pdf file”).  
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Fig2: Normalized frequency of occurrence (FoO) of radar moments (Ze, Vd, spectrum width, LDR) 
and temperature of error matrix elements (TP, TN, FP, FN) of ANN-based liquid detection for the 
studies employing different thresholds of lidar backscatter and depolarization for the entire ACCEPT 
field experiment. 
 
Another way to compare the error matrices of the ANN-predicted liquid occurrences is via 2D 
or 3D scatter plots of the first three radar moments Ze, Vd, and spectrum width for the entire 
data set. A complete view of the 3D scatter plot are shown in the following youtube videos: 
https://www.youtube.com/watch?v=Z9Z4ui8f4Z0 and 
https://www.youtube.com/watch?v=gz5iL51EzZw with (black=TP, red=FN, gold=FP, 
green=TN). It is evident that the error matrix elements mostly overlap and do not show 
distinctive separate clusters, meaning that the same combination of Ze, Vd, width can result 
in TP, TN, FP, FN. Same is true for the 2D scatter plots (not shown). 
 However, a few features in the 3D scatter plot are noteworthy: 

● TP generally have higher Doppler spectrum width over the entire covered Ze values 
(as in FoO Fig 2 of this reply) 

● FN and TN both can occur at high Ze. For Ze > 20 dBZ, the FN have large negative 
Vd and spectrum width < 0.6 m/s (rain/drizzle, see time-height plot below) while the 
Vd of TN at Ze > 20 dBZ are all grouped in a narrow Vd range between 0 to -1 m/s 
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To find out where TP, TN, FP, FN occur, time-height plots of masks of these error matrix 
scores for the Nov 17-18, 2014 case study are shown in Fig. 3 and the Cloudnet target 
classification from 0-4 km is shown in Fig 4 while the comparison of Cloudnet and ANN 
target classification from 0-4 km is shown in Fig 5.  

 
Fig3: Time-height plot of mask of TP, TN, FP, FN for Nov 17-18, 2014 case study using the linear-1 
threshold. Shown are the masks up to an altitude of 4 km. 
 

Fig 4: Zoom of Cloudnet target classification in 0-4 km altitude for Nov 17-18, 2014 case study. 
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Fig 5: Zoom of liquid detection comparison of Cloudnet and ANN (using linear-1 thresholds)  for 0-4 
km altitude for Nov 17-18, 2014 case study. Ceilometer cloud base is indicated by black dots. 
 
Fig 3. shows that FN often occur at the outlines of layers of TP, while many FP and TN are 
related to pixels classified by Cloudnet as rain/drizzle. A closer look showed that: Profiles 
with low precipitation rates of rain/drizzle have a negative Cloudnet rain flag and are thus not 
excluded from the analysis. For these drizzle/rain pixel (see Fig 4 between 0-1.5 km), the 
ANN often predicts liquid. Since the ANN does not distinguish between different liquid 
classes such as drizzle/rain and cloud droplets (CD), the ANN classifies all these pixels as 
CD which are then counted as FP. However, in many cases, the ANN does not predict CD 
when Cloudnet classifies drizzle/rain also leading to high rates of TN in 0-1.5 km as shown in 
Fig 5.  
FN often occur during precipitating profiles which Cloudnet treats as follows: On Nov 17, 
2014 3-4 UTC, for example, the lidar detects a very thin liquid cloud in about 700m altitude. 
Cloudnet classifies all pixel above this first CBH as CD and does thus not distinguish 
between CD and precipitation falling from the cloud in 1.5 km which is questionable. These 
drizzle/rain pixel (falsely classified by Cloudnet as CD) which are not predicted to be CD by 
the ANN are then counted as FN even though the ANN correctly did not classify them as 
CD. The same issue is evident on Nov 18 when the near-surface fog is present above 
which’s base Cloudnet often classifies entire profiles of CD even though the cloud in 1.5 km 
produces precipitation. In sum, FN often occur when Cloudnet classifies a certain 
hydrometeor and extends this target class to the cloud top (also true for ice & supercooled 
droplets on Nov 17, 17:30 UTC, 1.5-2.5 km).  
 
→ We included part of these explanations in Section 3 of the manuscript where the case Nov 
17-18, 2014 case study results are discussed (please see “diff-pdf file”).  
 
b) Additionally, we checked if we can find a measure to distinguish between stratiform and 
convective clouds and thereby evaluate the performance of the hydrometeor target 
classification.  
For that purpose we determined the convective index kappa which characterizes the 
variability of mean Doppler velocity (Vd) within a time window of 20 min as done in 
Mosimann, 1995 (https://doi.org/10.1016/0169-8095(94)00050-N) and Kneifel and Moisseev, 
2020 (https://journals.ametsoc.org/view/journals/atsc/77/10/jasD200007.xml):  
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kappa = |Vd(z) - mean(Vd(z))|/mean(Vd(z)). Positive kappa values refer to updrafts, negative 
values to downdrafts. In Fig 6 below, pixels exceeding kappa values of the range of [-0.5,1] 
that refer to more turbulent conditions are labeled in black.  
The inherent problem of the convective index kappa in trying to distinguish between 
stratiform/convective conditions to assess in which situations the ANN-based liquid 
prediction performs well is shown: While turbulent regions near the top of the deep cloud on 
Nov 18, 3-12 UTC in 7-8 km are correctly flagged, most of the stratiform cloud regions in 2-
4 km throughout the case study where both, Cloudnet and the ANN classify liquid are 
marked by high kappa indices. In conclusion, the convective index kappa which is a 
turbulent measure based on the variance of Vd is thus found to not be a good measure to 
find out where the ANN performs well in detecting liquid and where not as it flags the 
majority of TP of liquid detection.   

 
Fig 6: Case study of Nov 17-18, 2014 with radar spectrum width (upper panel) and convective index 
kappa (lower panel) . 
 
 
We here refrain from further exploration of the performance of the ANN in different 
turbulence conditions or to separate the performance of the ANN for stratiform vs convective 
clouds because a) the error matrix scores can often be explained by 
shortcomings/deficiencies of the ANN itself (it classifies only liquid and does not distinguish 
between cloud droplets and drizzle/rain) or of the Cloudnet algorithm (e.g. the extension of 
hydrometeor class found in lower layers to cloud top which e.g. leads to wrong 
classifications in multi-layer situations with precipitation falling from an upper cloud into a 
lower cloud) and b) using a convective measure as the convective index kappa was not 
found to be useful as it would remove the majority of TP.  
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Rev1: Also, one explanation for the FP of ANN is enhanced SW.To my understanding, the 
enhanced SW should smear the liquid signature, thus leading to FN. So, turbulence can lead 
to FP and FN. In what conditions can those two ‘bad’ classes be expected? 
 
We thank the reviewer for this remark which led us to include a paragraph on the causes of 
enhanced spectrum width in the manuscript: 
 
The co-existence of multiple hydrometeor types with sufficiently different fall velocities in the 
same radar volume leads to multimodal Doppler spectra with a high total spectrum width. If 
the slow-falling hydrometeor has a low reflectivity and narrow peak width, the ANN likely 
predicts liquid. If there are indeed small cloud droplets and larger ice crystals in the volume, 
this results in TP. If however there is a co-existence of multiple ice crystal types of which one 
is small and has a small fall velocity, this results in FP. If however the enhanced SW is not 
caused by multiple hydrometeor types but by turbulence, liquid peak signatures can be 
smeared thus leading to FN. In calm conditions (low turbulence) it is more likely that a 
bimodal spectrum with two ice classes is misclassified as one ice- and one liquid class 
leading to FP. This problem diminishes with increasing turbulence because of broadening of 
the peaks and smearing of the individual peaks. The latter (smearing) is the same 
mechanism for FN in high turbulent conditions.  
However, only looking at one variable, the SW, is not sufficient as it is always a combination 
of MDV, Ze, SW that leads to correct or incorrect classification of liquid class. As shown in 
the FoO of the radar moments of the error matrix components above, high SW (in 
combination with low Vd and small Ze) is mostly caused by the TP.  
 
2) Figure 2a. I am curious how well the ANN can predict β and δ. This may also be a part of 
the ‘evaluation’. The accuracy of estimated β and δ may be as important as the selection of 
thresholds as presented in Table 1. Have you compared the predicted values with 
observations? At least with beta observed by the ceilometer.  
 
For the MPACE dataset, a comparison between the 2D histograms of observed vs predicted 
β and δ has been made. Observed (left) and predicted (right) β and δ cluster in the upper left 
of the 2D histogram. The grey edge encompasses the thresholds for liquid used in Luke et 
al., 2010. 
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A comparison of ANN-derived and measured backscatter coefficient and particle 
depolarization ratio is not directly possible for ACCEPT and thus also not the scope for the 
underlying study. The ANN retrieval is trained to simulate HSRL particle backscatter 
coefficient. The lidar instruments operated during ACCEPT provide only attenuated 
backscatter and volume depolarization ratio. Conversion of attenuated backscatter to particle 
backscatter requires knowledge about the transmission loss (optical depth) of lidar signal 
between the instrument (ground) and the range under study. The detected linear 
depolarization in liquid-water clouds, in turn, relies strongly on the field-of-view of the lidar 
instrument. With increasing field of view, multiple-scattering effects increase which go along 
with an increase of the linear volume depolarization ratio (Hogan et al., 2008). Whereas the 
ACCEPT lidar instruments PollyXT and Ceilometer have fields of view of > 1mrad, the HSRL 
has a field of view of 0.04 mrad. Therefore, we presume for our study that the ANN retrieval 
is also valid for non-convective cloud situations as observed during ACCEPT. This is 
plausible, since the technical specifications of the Mira-35 and ARM cloud-radars (field of 
view, averaging times) are similar.   
 
Hogan et al., 2008: https://journals.ametsoc.org/view/journals/atsc/65/12/2008jas2642.1.xml 
 
For a visual impression of predicted BSC and depolarization ratio, we are here showing the 
time-height plots of ANN-predicted values for the Nov 17-18, 2014 case study. 
 

 
 
 
3) P5 L6.’Thirdly, ANN liquid predictions for regions with good lidar echo and Cloudnet-
classified as non-liquid class, are reclassified as non-liquid.’ This step confuses me. I think it 
is of importance to know at what conditions the ANN misclassifies lidar-detected non-liquid 
to liquid. I would not simply ignore this scenario. 
HKL: We apologize for the confusion. We tried this early on but do NOT do that step 
anymore. We deleted the corresponding sentence in the manuscript.  
 
Minor comments: 
 
Figure 1. Numbers for subfigures are missing. 
Subfigure labeling is now included in Figure 1. 
 
P2 L23 D^6 comes from Rayleigh approximation, which may not be valid for a large fraction 
of large ice crystals for a cloud radar 
True. We added “for the size range in which the Rayleigh approximation is valid”. 
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Figure 2 and 3. I suggest overlap the temperature isothermal lines which will greatly help the 
interpretation of the results. 
True. We now included isotherms. 
 
Figure 3. The green circles are hardly identifiable from black cloud edges. Please use the 
color which is more contrasting with others. 
We added ceilometer CBH as black dots in Figure 1(A-C) and Figure 2 (B) and Figure 3.  
 
Figure3. The overview of this precipitation event has already been presented on Figure 2 
(b).I suggest the use of smaller yaxis range. Most interesting signatures are below 2 km. ok 
The current yaxis scale seems too large to see the differences among these subfigures are 
difficult to recognize.The liquid layer above 4 km may deserve a separate figure. 
We decided to leave the 0-10 km y-axis range to show the full cloud scene from surface to 
highest cloud top.Including the ceilometer first cloud base as small black dots should help to 
improve the clarity of the figure.  
We included a zoomed time-height plot (0-4 km) in the Appendix. 
 
Figure3. (Although I doubt the reasonability of ‘Thirdly, ANN liquid predictions for regions 
with good lidar echo and Cloudnet-classified as non-liquid class, are reclassified as non-
liquid.’) The region marked by red circle should correspond to ‘good lidar echo’ in Figure 1. 
Why ANN still identified liquid in this region? 
As mentioned above, we do not re-classify the ANN as non-liquid when there is good lidar 
echo and Cloudnet classified non-liquid. Again, sorry about the confusion. 
 
P9 L22. ‘cloud-top layer at −10 °C during 0-6 UTC’. I am confused by this sentence. -10°Cis 
around 3.5 km. The cloud top during 0-6 UTC Nov18 is definitely much higher. Do you mean 
21-24UTC Nov 17?  
Sorry, of course. We changed that in the text.  
 
 
P9 L25.This is interesting. Turbulence favors liquid formation,but may lead to weakened 
liquid spectral signature if liquid is present. As shown in Figure1, it is obvious that the SW is 
enhanced at this layer. However, given the weak signal in deBoer2009 and the rather low 
temperature, it is very unlikely that they are liquid layers. Could you please present 
examples of the radarDoppler spectrum in this layer as well as at 8 km 6 UTC Nov 18? 
 
Thanks to the reviewer, we realized that in Fig3, we had provided the results before the post-
processing step of removing pixel that were classified as liquid at T < -38°C (like at 8km at 6 
UTC on Nov 18, 2014). We corrected this in the new version of the manuscript.  
 
Time spectrograms and height spectrograms of Doppler velocities are presented in the 
figure below.  
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As illustrated, the Doppler spectrum width during 10-13 UTC on Nov 18, 2014 is high in 
altitudes of 6.6 - 7 km and smaller above and below this altitude range.  As shown in the 
range- and height spectrograms, Doppler velocities are usually negative and fluctuate 
between -0.1 - 0.8 m/s but a few updrafts of up to a few tenths of cm/s are present. Total 
reflectivies in that time-height range (6.6-7 km 10-12 UTC) are relatively uniform (-20 +/-7 
[dBZ]). The Doppler spectra are monomodal. Since ice was formed at higher altitudes in the 
cloud which then grew by water vapor deposition on its way downward and the spectrum is 
monomodal we can conclude that NO liquid formation happened at this altitude range at 
around -37°C - otherwise we would see a bimodal spectrum. The ANN thus most likely 
misclassified ice as liquid because the observed Doppler spectra were characterized by high 
spectrum width, small Ze and small Vd. Since the lidar is fully attenuated, we cannot validate 
this conclusion though.  

To check another point of view, we looked into wind profile data. Wind shear can lead to 
supercooled liquid formation. We thus consulted GDAS1 wind data which however showed 
only weak wind shear in the altitudes of question thus corroborating the conclusion that no 
liquid was present at around 7 km altitude.  
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Figure 4. The rain flag is missing. 
True. We included the Cloudnet rain flag as stated in the figure caption and presented all 
results in one figure (instead of four subfigures). 
 
P10 L1. May not be the ‘Misclassification’. In some cases, e.g. after 7 UTC Nov 18, lidar 
signals are totally attenuated by the lowest liquid. So, ANN may be correct in the upper 
layer. Please carefully address this point. 
True, we need to phrase this better: Instead of saying on Nov 18 without giving a time 
restraint, we need to narrow down the time periods where ANN misclassification are likely 
based on the MWR-LWP comparison.  
We rephrased the passage to: 
“In some situations the ANN and in others Cloudnet matches the time series of MWR-LWP 
better. A large discrepancy between ANN-LLT and MWR-LWP is obvious on Nov 18, 4-6 
UTC: MWR-LWP are very low, while the ANN-LLT is high. A misclassification of ice as liquid 
by the ANN in 2-3.5 km height can thus be concluded which is corroborated by the PollyXT 
lidar signal showing high depolarization values. After 7 UTC on Nov 18, the lidar signals are 
totally attenuated at the ground and are not available for assessment of ANN classifications 
in higher layers. Analysis of radar Doppler spectra time- and height spectrograms in around 
6-9 km altitude showed only monomodal spectra related to the falling ice. Most certainly, no 
formation of supercooled liquid in 7 km altitude at -37 °C occurred. ” 
 
To further consider this point of how to validate the ANN results in upper cloud layers where 
the ground-based lidar is fully attenuated, we decided to check if nearby CALIPSO 
overpasses happened during the ACCEPT field experiment when multi-layer cloud situations 
were present. As a unique case study of a CALIPSO overpass in 41 km distance, we are 
now also including the case study of Oct 5, 2014 in the manuscript as Section 3.2. while 
statistical results for the entire ACCEPT field experiment are moved to Section 3.3.:  
 
“As previously mentioned, no validation of the ANN-liquid prediction can be made if the 
ground-based lidar signals are fully attenuated. We therefore use the unique opportunity to 
compare the Cloudnet and ANN liquid identifications in multi-layer cloud situations to a 
nearby (47 km distant) CALIPSO overpass on Oct 5, 2014 01:05 UTC.  
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On Oct 5, 2014 01-04 UTC multiple cloud layers were present. Besides warm stratiform 
liquid clouds below 3 km altitude, a midlevel cloud with cloud top temperature of - 14 C was 
observed in 5 km altitude. An extensive cirrus was present between 7-10.5 km altitude. From 
01- 03 UTC, the PollyXT lidar signal was mostly fully attenuated by the lowest liquid cloud in 
1 km altitude leading to a misclassification of liquid as ice by Cloudnet for the warm cloud in 
2.5km altitude. Also, (except for a few pixels where the lidar had a valid signal) Cloudnet 
classified the midlevel cloud as ice-cloud. The ANN correctly predicted liquid for all warm 
clouds (note that below cloud base of the lowest cloud layer, ANN also predicts liquid which 
are counted as cloud droplets (CD) since it does not distinguish between different liquid 
classes such as cloud droplets and rain/drizzle). The ANN classifies the midlevel cloud as 
liquid-topped with ice precipitating from it below. The phase classification of the ANN in the 
cirrus is correctly ice except for at the cloud base where high spectrum width and near-zero 
Vd led to a prediction of liquid. 
 
The cloud fields were extensive (as seen in the MODIS image from midday, which shows the 
cloudband further east as it was advected from west to east over the past hours) so 
CALIPSO identified a very similar cloud situation with a cirrus of high vertical extent and a 
midlevel cloud in 3.5-5 km. The CALIOP signal was fully attenuated in this cloud layer so the 
low level warm clouds were missed by the satellite observation. The CALIPSO cloud phase 
index classified the high cloud as ice cloud and the midlevel cloud as liquid-topped cloud 
with liquid-only or liquid+ice in the lower regions of this cloud. CALIPSO thus validates the 
ANN-based liquid prediction for the midlevel cloud. This hints to the usefulness of employing 
satellite-based hydrometeor target classifications as independent validation tool.”   
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P10 L4.‘by comparing the predictions to valid Cloudnet liquid detections’. Do you mean the 
cloudnet product with ‘good lidar echo’?Or regardless of the lidar signal quality? 
As previously explained, valid pxl are the union of time-height cells with reliable radar and 
lidar signal status.  
 
P11 L7. To my understanding, high ρceilo-CBH,LLH for ceilometer-CBH and Cloudnet is 
expected, because cloudnet uses ceilometer data as input. How is this linked to the 
sensitivity between lidar and radar? I am confused by the logic. 
As this paragraph led to several questions, we rephrased it in the answer to major comment 
1).   
 
 
P11 L9.How the averaging affects the performance? 
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We removed this sentence (as the ceilometer also has a time resolution of 30s) and added a 
more detailed explanation in the answer to major comment 1.  
While the liquid layer base height variable in Cloudnet is based on the gradient of ceilometer 
backscatter coefficient, the cloud base determination of the ceilometer is not precisely 
documented in the ceilometer manual. Differences may thus occur due to different methods.  
 
 
P13L10.The first point may explain the difference between radiosonde and cloud/lidar 
method, but not the reason why the liquid pixel is higher in cloudnet than ANN.  
 
We assume with “why the liquid pixel is higher in Cloudnet than the ANN” the reviewer refers 
to the higher overlap fraction of liquid pixels with RH>90% for Cloudnet. We are 
subsequently explaining more in detail how the differences can be explained:  
Not all elements of the error matrix are represented in the overlap fraction of pixel with liquid-
detection and RH > 90%: While liquid pixels unrecognized by Cloudnet (i.e. beyond lidar 
attenuation) are not included in the overlap fraction, wrongly detected ANN liquid pixels (i.e. 
false positives, FP) are included and thus reduce the fraction of overlap pixel for ANN-
predicted liquid. 
 
P14L15. It would be nice to refer to the relevant machine learning techniques. For example, 
the work by the authors (Kalesse et al., AMT, 2019). 
...as well as radar Doppler spectra peak-separation techniques such as PEAKO (Kalesse et 
al., AMT 2019) and peaktree (Radenz et al., AMT 2019) to check for possibilities of liquid 
occurrence. 
 
Typos: 
P9 L25. Nov 18 
P11 L7. The high value of rho_ceilo-CBH,LLH…is expected, because… 
P11 L21. Case;resulted  
 
Typos have been corrected. 
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################################################################# 

Reviewer #2: 

The paper investigates the value of using Doppler radar to infer the presence of 
supercooled liquid layers in clouds. They test the performance of an ANN approach 
proposed by Luke et al. 2010 on a completely different dataset. As such the study is 
interesting because it tries to establish how ``portable'' these methodologies are when 
moving to different cloud regimes. However the paper lacks further analysis and 
therefore needs substantial improvements before being published. See suggestions 
below.  

Major comments: 

1) The authors state that ``The objective of this study was to check the performance of 
the ANN trained with the MPACE observations in Luke et al. (2010)''. Isn't this objective 
a little bit too limited? For instance the conclusion that the algorithm does not work in 
convection is pretty obvious given the fact that the Luke's algorithm was trained in low 
turbulent conditions. But how if we train a ANN in convective regions? Is it more 
successful or still we have issues because of the intrinsic problem of convection (i.e. 
smearing of cloud peak)? How do the statistical metrics improve overall?  

We agree this would be a good study to perform but it is not our objective here. 
However, as mentioned in the manuscript, the goal is really to see the portability of the 
ANN without re-training.  

2) I find the description of the four metrics at the end of page 8 a little bit confused.  If I 
follow your guidelines:  if precision < 1==> CD overestimation and if recall < 1==> CD 
underestimation then in all your cases precision and recall are lower than 1 which makes 
no sense. Please rephrase properly. Same for ``were classified correctly in an absolute 
and non-balanced way. (overall accuracy)'' not sure what you mean with ``non-
balanced'' and what is the meaning of ''overall accuracy in the bracket?''  
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Source: WIKI  

The graph above shows the distribution of the two classes predicted by the ANN: CD 
and non-CD. The beige window-pane like layer represents the decision boundary of the 
ANN, which can be rotated or shifted in position, depending on the lidar thresholds used. 
This is to illustrate that the number of FN and FP can grow or shrink independently of 
each other. Precision and recall therefore take independently different values between 0 
and 1, where 1 (perfect) and 0 (bad). If precision becomes smaller, there is more often a 
"false alarm" (1 - prec = false alarm rate). The recall or "probability for detection" score 
indicates how often the ANN misses cloud droplets, ergo both are possible: many/few 
false alarms (CD overestimation) and many/few undetected CD (CD underestimation).  

The term “non-balanced” refers to number of pxl of liquid within the entire data set (more 
ice than liquid is present). We removed the F1-score (it is used to compare different 
ANN with each other). We removed the word “overall”. 

Maybe mention that “recall” is the same as ``probability of detection'' (which is a 
terminology used as well outside the ANN) (right?) and precision =1-false alarm rate 
(right?).  

In the explanation of the scores, we have added “probability of detection” as synonym for 
recall. And true, precision = 1 - false alarm rate. 

Finally it is not clear to me why the authors have not adopted variables more commonly 
used in literature (like ETS) to assess the overall performances. 

We are aware that there are other scores used for verification of forecasts like the Threat 
Score (TS) or the  Equitable-Threat-Score (ETS) (e.g. threat-score) 
(https://www.cawcr.gov.au/projects/verification/verif_web_page.html): 
 
Below:  hits = TP, misses = FN, false alarms = FP, total = TP + FP + FN + TN 
 
Threat-Score (TS): 
TS = hits / (hits + misses + false alarms) 
TS answers the question: How well did the forecast "yes" events correspond to the observed 
"yes" events? 
Range: 0 to 1, 0 indicates no skill. Perfect score: 1. 
Characteristics: Measures the fraction of observed and/or forecast events that were correctly 
predicted. It can be thought of as the accuracy when correct negatives have been removed 
from consideration, that is, TS is only concerned with forecasts that count. Sensitive to hits, 
penalizes both misses and false alarms. Does not distinguish source of forecast error. 
Depends on climatological frequency of events (poorer scores for rarer events) since some 
hits can occur purely due to random chance. TS does not take randomness of the classifyer 
into account. 
  
Equitable-Threat-Score (ETS) or Gilbert skill score: 
ETS = (hits – hits_random) / (hits + misses + false alarms – hits_random), where 
hits_random = (hits + misses)*(hits + false alarms)/total 
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ETS answers the question: How well did the forecast "yes" events correspond to the 
observed "yes" events (accounting for hits due to chance)? 
Range: -1/3 to 1, 0 indicates no skill.   Perfect score: 1. 
Characteristics: Measures the fraction of observed and/or forecast events that were correctly 
predicted, adjusted for hits associated with random chance (for example, it is easier to 
correctly forecast rain occurrence in a wet climate than in a dry climate). The ETS is often 
used in the verification of rainfall in NWP models because its "equitability" allows scores to 
be compared more fairly across different regimes. Sensitive to hits. Because it penalises 
both misses and false alarms in the same way, it does not distinguish the source of forecast 
error. 
   
 The Equitable Thread Score is actually not equitable see Hogan et al., 2010: 
https://journals.ametsoc.org/view/journals/wefo/25/2/2009waf2222350_1.xml  
 
For our two case studies, the ETS achieves lower scores compared to the TS probably 
caused by the deficiency of Cloudnets’ target classification (i.e. liquid extension to cloud top). 
 
Nov17-18 case: TS = 0.588, ETS = 0.432 
  
Oct5-Nov18 dataset: TS = 0.505, ETS = 0.346 
 

As our paper is not about comparing different scores, we will refrain from introducing TS 
and ETS  in the manuscript.  

3) Conclusions 2 and 3 in the abstract are not really corroborated by proper statistical 
analysis. Which figures/tables prove these statements? Of course we expect such 
results but we need to prove them.  

After adding a more in-depth analysis on the ANN performance based on PDF of radar 
moments for the error matrix elements in the appendix (see also answer to questions 
raised by reviewer 1) and after adding another case study where the ANN performance 
was validated by the CALIOP phase retrieval, we feel that we sufficiently corroborate 
conclusion 2. We decided to rephrase conclusion 3 and leave out conclusion 4 (since we 
did not discuss it in depth. The corresponding section of the abstract now is: 

“Three conclusions were drawn from the investigation: First, it was found that the threshold 
selection criteria of liquid-related lidar backscatter and depolarization alone control the liquid 
detection considerably. Second, all threshold values used in the ANN-framework were found 
to outperform the Cloudnet target classification for deep or multi-layer cloud situations where 
the lidar signal is fully attenuated within low liquid layers and the cloud radar is able to detect 
the microphysical fingerprint of liquid in higher cloud layers. Third, if lidar data is available, 
Cloudnet is at least as good as the ANN. The times when Cloudnet outperforms the ANN in 
liquid detections are often associated with situations where cloud dynamics smear the 
imprint of cloud microphysics on the radar Doppler spectra.“ 
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4) Apart from the homogenization step to create more coherent liquid layer structures 
the overall concept underpinning the ANN methodology is still based on point 
measurements. My understanding is that there is more potential in these ANN 
techniques if we try to exploit local information (e.g. involving vertical and horizontal 
gradients, especially at cloud top e.g. Silber et al, IEEE 2019; Kalogeras et al., 2021 
Remote Sensing) and not simply pixel variables (Doppler spectra). But this is not 
explored at all here because we are still using the approach from 2010 (not much 
novelty). I see the merit of the current study but the authors should discuss in more 
depth the way forward.  

We agree that citing the mentioned recent publications is of merit to show ways forward 
and have added the following section in the outlook:  

“Additionally, two recent studies also showed the benefit distinguishing between cloud-
top liquid-bearing layers and embedded liquid layers when assessing the performance of 
liquid-detection retrievals (Silber et al., IEEE 2020; Kalogeras et al., Remote Sensing 
2021). Silber et al., IEEE 2020 retrieved cloud thermodynamic phase of Arctic clouds 
based on one year zenith-pointing Ka-band radar and HSRL observations. They found 
that cloud-top liquid-bearing samples can be more reliably detected than embedded 
liquid layers as the latter are more difficult to separate from falling ice signatures in the 
PDF and CDF (cumulative distribution functions) of the first three radar moments as well 
as Doppler spectra left slope and right slope. Kalogeras et al., 2021 developed a Ka-
band radar-only, moment-based technique for supercooled liquid water detection in 
Arctic mixed-phase clouds. The novelty of this method is that it is a neighborhood-
dependent algorithm employing gradients of moments. They concluded that best skill 
levels for liquid detection are realized for combinations of spectral width and reflectivity 
vertical gradient and also found their algorithm to be most reliable when applied to cloud 
tops.” 

Minor comments: 

p4, Line 19-21: these instruments have not been used afterwards. I do not see the 
reason of including them here. 

These instruments were only included for completion as to acknowledge the full 
instrument setup of ACCEPT. 

Fig4: Caption: ``Green and red dots near the bottom of the plots'' I cannot see them, 
where are they????  

Sorry, rain flag is now added. 

 
 


