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Abstract. Detection of liquid-containing cloud layers in thick mixed-phase clouds or multi-layer cloud situations from ground-

based remote sensing instruments still pose observational challenges yet improvements are crucial since the existence of multi-

layer liquid layers in mixed-phase cloud situations influences cloud radiative effects, cloud life time, and precipitation formation

processes. Hydrometeor target classifications such as
::::
from

:
Cloudnet that require a lidar signal for the classification of liquid

are limited to the maximum height of lidar signal penetration and thus often lead to underestimations of liquid-containing cloud5

layers. Here we evaluate the Cloudnet liquid detection against the approach of Luke et al. (2010) which extracts morphological

features in cloud-penetrating cloud radar Doppler spectra measurements in a artificial neural network (ANN) approach to

classify liquid beyond full lidar signal attenuation based on the simulation of the two lidar parameters particle backscatter

coefficient and particle depolarization ratio. We show that the ANN of Luke et al. (2010) which was trained in Arctic conditions

can successfully be applied to observations in the mid-latitudes obtained during the seven-week long ACCEPT field experiment10

in Cabauw, the Netherlands, 2014. In a sensitivity study covering the whole duration of the ACCEPT campaign, different liquid-

detection thresholds for ANN-predicted lidar variables are applied and evaluated against the Cloudnet target classification.

Independent validation of the liquid mask from the standard Cloudnet target classification against the ANN-based technique

is realized by comparisons to observations of microwave radiometer liquid water path, ceilometer liquid-layer base altitude,

and radiosonde relative humidity. Four
::
In

::::::::
addition,

:
a
:::::::::
case-study

::::::::::
comparison

::::::
against

::::
the

:::::
cloud

::::::
feature

:::::
mask

:::::::
detected

:::
by

:::
the15

:::::::::
spaceborne

::::
lidar

::::::
aboard

::::
the

:::::::::
CALIPSO

::::::
satellite

::
is
:::::::::

presented.
::::::
Three conclusions were drawn from the investigation: First, it

was found that the threshold selection criteria of liquid-related lidar backscatter and depolarization alone control the liquid

detection considerably. Second, nevertheless, all threshold values used in the ANN-framework were found to outperform the

Cloudnet target classification for deep or multi-layer cloud situations where the lidar signal is fully attenuated within low

liquid layers and the cloud reflectivity
::::
radar

::
is

::::
able

::
to

:::::
detect

:::
the

::::::::::::
microphysical

:::::::::
fingerprint

::
of

::::::
liquid in higher cloud layerswas20

sufficiently high to be detectable by the cloud radar. Third, in convective situations for which
:
if
:
lidar data is availableand for

which the
:
,
::::::::
Cloudnet

::
is

::
at

::::
least

::
as

:::::
good

::
as

:::
the

:::::
ANN.

::::
The

:::::
times

:::::
when

::::::::
Cloudnet

::::::::::
outperforms

:::
the

:::::
ANN

::
in

:::::
liquid

:::::::::
detections

:::
are

::::
often

:::::::::
associated

::::
with

::::::::
situations

:::::
where

:::::
cloud

::::::::
dynamics

::::::
smear

::
the

:
imprint of cloud microphysics on the radar Doppler spectrum
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is decreased, Cloudnet outperforms the ANN retrieval. Fourth, in high-level clouds both approaches (Cloudnet and the ANN

technique), are limited.
::::::
spectra.

:

Copyright statement. TEXT

1 Introduction

In mixed-phase clouds the variable mass ratio between liquid water and ice as well as its spatial distribution within the5

cloud plays an important role for cloud life time, precipitation processes, and the radiation budget (Sun and Shine, 1994;

Yong-Sang et al., 2014; Morrison et al., 2012). The complexity of interactions in mixed-phase clouds may result in param-

eterizations that are based on highly uncertain mixed-phase cloud classifications and thus lead to a misrepresentation of

those clouds in models of all scales. Illingworth (2007) compared vertical ice water and liquid-water content as observed

by a combination of ground-based radar, lidar, and microwave radiometer (MWR) comprised within the Cloudnet project10

with Global Climate Models (GCM). They showed that many GCMs underestimate the presence of mid-level clouds (As,

Ac) by at least 30 % and that there is a large spread in the stated frequency of occurrence of liquid water in the mod-

els. This underestimation of the supercooled liquid fraction (SLF) in mixed-phase clouds in many GCM was e.g. also de-

scribed in Komurcu et al. (2014). Tan et al. (2016) argued that a realistic representation of the SLF in GCM is needed

to better constrain the equilibrium climate sensitivity. They stated that this can only be reached by more accurate obser-15

vations of the distribution of supercooled liquid in mixed-phase clouds. This remains a challenge due to the difficulty of

identifying the presence of supercooled liquid water layers embedded in cloud regions dominated by ice (Shupe et al.,

2008; Luke et al., 2010; Silber et al., 2020). Besides single-layer mixed-phase clouds existing of a supercooled liquid top

where ice particles are nucleated and precipitate out, multilayer
:::::::::
multi-layer clouds (MLC) often exist (Vassel et al., 2019).

MLC can interact microphysically via
::
the

:
seeder-feeder effect (e.g., (Cotton and Anthes, 1989; Hobbs and Rangno, 1998)20

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cotton and Anthes, 1989; Hobbs and Rangno, 1998; Radenz et al., 2019; Ramelli et al., 2021), i.e. ice crystals nucleated in an

upper liquid layer can fall into lower liquid layers, interact with its hydrometeors and influence cloud lifetime and precipitation

efficiency. We thus argue that it is important to improve the detection of multilayer
::::::::
multi-layer

:
liquid layer occurrences.

Synergistic measurements of cloud Doppler radar and polarization lidar can be used to identify cloud thermodynamic phase

in mixed-phase clouds (e.g., Shupe (2007); Illingworth (2007); de Boer et al. (2009); Kalesse et al. (2016a) based on differ-25

ences in the scattering mechanisms at the different wavelengths. While cloud radars are highly sensitive to large particles such

as ice crystals (backscattering cross section is proportional to the particle size D6
::
for

:::
the

::::
size

:::::
range

::
in

::::::
which

:::
the

::::::::
Rayleigh

::::::::::::
approximation

::
is

::::
valid), lidars are sensitive to higher concentrations of smaller particles such as cloud droplets and aerosol

particles as the backscattering cross section is proportional to the projected surface area of the scatterers (O’Connor et al.,

2005). As an additional variable, the state of polarization of the received lidar backscatter cross section gives information about30

particle shape. This is usually utilized by means of the detection of the circular or linear depolarization ratio (Sassen, 1991),
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hereafter referred to as lidar depolarization ratio. When multiple scattering is negligible, a low (high) lidar depolarization ratio

indicates the presence of spherical (non-spherical) particles (Hu et al., 2006). Except for small quasi-spherical ice particles,

ice is usually non-spherical so that the lidar depolarization ratio can also be used to infer cloud phase (Seifert et al., 2010).

Concluding, liquid-dominated layers are characterized by high lidar backscattering cross section, low lidar depolarization ratio

concurrent with small radar reflectivities and small mean radar Doppler velocities. Ice-dominated layers lead to a low lidar5

backscattering cross section, a high lidar depolarization ratio as well as higher radar reflectivities and higher mean Doppler

velocities. Such synergistic lidar-radar retrievals are however only applicable up to the maximum lidar observation height deter-

mined by complete signal attenuation at a penetrated optical depth of about three and thus do not allow for the characterization

of cloud liquid in the entire vertical column, e.g. in the presence of mulilayered
:::::::::::
multi-layered mixed-phase clouds.

Since cloud Doppler radars are able to penetrate multiple liquid layers, they can be used to detect warm and supercooled10

liquid layers (SCL) beyond the lidar measurement range via identification of morphological features in the cloud radar Doppler

spectrum (Luke et al., 2010; Verlinde et al., 2013; Kalesse et al., 2016b) and thus have great potential to characterize the

distribution of SCL in the entire vertical column. Specifically, if cloud ice and liquid are observed in the same radar sampling

volume and if their populations are sufficiently separated by their respective terminal fall velocities, the cloud radar Doppler

spectra may contain multiple peaks. Since the terminal velocity of small cloud droplets is negligible they cause a peak at about15

0 m s−1 in the Doppler spectra; any deviation from this is caused by vertical motions (Shupe et al., 2004). Ice particles have

larger and broader fall velocity distributions and thus cause a spectral peak at higher Doppler velocities. If the fall velocity

difference between liquid and ice is small (for example when the ice population is comprised of smaller crystals), single-peak

skewed (non-Gaussian) Doppler spectra are observed (Williams et al., 2018). Sub-volume turbulence does however induce

spectrum broadening which can smear microphysically-induced morphological features in the Doppler spectrum (Kollias et al.,20

2007). The separation of both hydrometeor populations is thus only possible if the cloud radar settings are optimized to reduce

spectrum broadening by a short dwell time, a small beam width, and a small resolution volume (Kollias et al., 2016). Sufficient

range-dependent sensitivity of the cloud radar is also required as the reflectivity of the liquid peak comprised of small droplets

can be as low as -40 dBz for convective situations Lamer et al. (2015).

As specific technical settings and cloud conditions are required in order to identify liquid water directly from cloud radar25

measurements, more sophisticated approaches are needed to make cloud radars applicable to a broader range of conditions.

Artificial neural networks (ANN) are increasingly being used in atmospheric science to evaluate large datasets and/or to com-

bine the advantages of different sensors. In short, ANNs are mathematical models trained to recognize patterns. Validation is

often done by comparison to other (physical) retrievals. As emphasized in Liljegren (2009), ANN-based retrievals have been

proven to be reliable statistical techniques that are preferable to computationally expensive variational retrievals for certain ap-30

plications. Liljegren (2009) developed an ANN algorithm in which G-band vapor radiometer measurements are used to retrieve

low amounts of liquid water and water vapor. Strandgren et al. (2017a) determine cirrus properties from the SEVIRI imager

on Meteosat Second Generation satellites based on a set of ANN trained SEVIRI thermal observations and satellite-based

lidar backscatter products among others. Andersen et al. (2017) use an ANN based on 15 years of monthly averaged Mod-

erate Resolution Imaging Spectroradiometer (MODIS) liquid cloud products to determine the drivers of marine liquid-water35
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cloud occurrence. All of the above studies employ multilayer
::::::::
multi-layer

:
perceptrons (MLP, a specific type of feed-forward

artificial neural network) that are commonly used in atmospheric sciences as they are able to model highly nonlinear functions

(Andersen et al., 2017). Generally speaking, a vector of output data is estimated from an input data vector by modeling the

relationship between the input- and output data. The training of the MLP is done for a variety of examples where the input- and

corresponding output is known. The MLP structure consists of an input layer, a chosen number of hidden layers, and an output5

layer. Each of these layers is made of a certain number of neurons that exchange information in a way that the output of the

previous layer is used to process the output for each connected neuron in the subsequent layer according to the corresponding

numeric weights assigned to each neuron–neuron connection through an activation function (Strandgren et al., 2017b). By

using error back-propagation introduced in Rumelhart et al. (1986), the numeric weights of the neurons are adjusted in an

iterative process until the squared error between the predicted (estimated) output and the known reference output data reaches10

its minimum.

In the present study a pre-trained ANN
::
an

:::::
ANN

:::::::::
pre-trained

::
in

::::::
Arctic

:::::::::
conditions developed by Luke et al. (2010) for cloud

radar-based liquid detection beyond full lidar signal attenuation (pre-trained in Arctic conditions) is applied to mid-latitude

observations (Section 2). The objective of the study is to evaluate the ANN-based liquid classification against the Cloudnet

target classification (Hogan and O’Connor, 2006) by using independent measurements of MWR liquid water path (LWP), first15

liquid-dominated cloud base height from ceilometer observationsand ,
:
relative humidities with respect to liquid as obtained

from radio soundings
:::
and

:::
for

:::
one

:::::
case

:::::
study

:::
also

:::::::::::
space-borne

::::
lidar

:::::::::::
observations

::::
from

::
a
:::::::::
CALIPSO

:::::::
overpass

:
(Section 3). A

short conclusion summarizing the findings is provided in Section 4.

2 Methods

2.1 Observations20

2.1.1 ACCEPT field experiment

Data used in this study were obtained during the Analysis of the Composition of Clouds with Extended Polarization Tech-

niques (ACCEPT) field experiment which took place at the Cabauw Experimental Site for Atmospheric Research (CESAR,

(51.971◦N, 4.927◦E)) in the Netherlands during 1 October- 18 November, 2014. During that field experiment, the remote-

sensing instrumentation suite operated by the Royal Netherlands Meteorological Institute (KNMI) was complemented by the25

Leipzig Aerosol and Cloud Remote Observations System (LACROS; Büehl et al. (2013)) mainly consisting of a vertically-

pointing 35 GHz MIRA-35 cloud radar (Görsdorf et al., 2015), a ceilometer, a multi-wavelength polarization Raman lidar

(PollyXT; Engelmann et al. (2016)), and a HATPRO-MWR (Rose et al., 2005). Additionally, a new polarimetric hybrid-mode

35 GHz cloud radar (named hybrid MIRA-35) from METEK GmbH described in Myagkov et al. (2016a, b) and the Trans-

portable Atmospheric Radar (TARA, S-band) operated by the TU-Delft were deployed (Pfitzenmaier et al., 2017).30
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2.1.2 MIRA-35 characteristics

In the present study, data from the vertically-pointing MIRA-35 was used as input to the ANN of Luke et al. (2010) to predict

liquid beyond full lidar signal attenuation. The MIRA-35 was operated with a pulse length of 208 ns, resulting in a vertical

range resolution of 31.18 m. Incoherent averages of 20 Doppler spectra produced from a series of 256 consecutive radar pulses

with a pulse repetition frequency of 5000 Hz led to a temporal resolution of 1.024 s. The MIRA-35 Doppler spectra resolution5

was 8 cm s−1.

2.1.3 Cloudnet target classification

The observations of the MIRA-35, the ceilometer and the MWR have been processed using the widely-used Cloudnet pro-

cessing chain. One of the main products of Cloudnet is the target classification product (Hogan and O’Connor, 2006) which is

illustrated in Fig. 1 and which we use to validate the ANN-predicted liquid detections. In order to classify a cloud volume to10

contain liquid, the Cloudnet target classification algorithm requires a valid lidar attenuated backscatter coefficient. For deep- or

multiple liquid layers and situations with low-level fog the lidar signal can get fully attenuated, so the Cloudnet target classi-

fication thus underestimates the occurrence of liquid in the entire vertical atmospheric column and overestimates the presence

of ice as target category (Griesche et al., 2020). Such a situation is depicted in the synergistic radar-lidar observables and the

resulting Cloudnet target classification in Fig. 1. The signals of the PollyXT lidar /ceilometer were fully/partially attenuated15

by the near-surface fog occurring after Nov 18, 2014 07:30 UTC so that the cloud in 1.5-2.5 km around the 0 °C-isotherm was

classified as ice cloud.

2.2 Description of the used Artificial Neural Network

Luke et al. (2010) use collocated measurements with profiling cloud Doppler radar and polarization lidar in thin mixed-phase

clouds or lower layers of thick mixed-phase clouds to provide information about the existence of liquid water in higher cloud20

layers by predicting the lidar backscatter and depolarization signal from morphological features in the cloud radar Doppler

spectrum. The procedure to determine the existence of supercooled-liquid droplets from cloud radar Doppler spectra is a two-

step technique. In the first step, morphological feature extraction from cloud radar Doppler spectra is done by applying a second

order Gaussian continuous wavelet transform (CWT) to each measured radar Doppler spectrum. In that way, the spectral power

is decomposed into a 2D-array with feature localization in Doppler velocity and spectrum width; each Doppler spectrum can25

thus be regarded as a sum of different Gaussians. In the second step, a selected subset of bins from six different scales of

the CWT as well as the first three radar moments (reflectivity factor (Ze [dBZ]), mean Doppler velocity (VD [m s−1]), and

Doppler spectrum width (σ [m
:
s−1])) of each Doppler spectrum are the input to the ANN used in this work to predict the

existence of liquid. The ANN is of the multilayer
:::::::::
multi-layer

:
perceptron (MLP) type consisting of 256 input nodes, five hidden

layers, and two output nodes. Each of the five hidden layers consists of 32 nodes. Lidar particle backscatter coefficient (β30

[sr−1 m−1] ) and lidar depolarization ratio (δ) are the two output variables from which the existence of liquid is predicted

using appropriate thresholds of β and δ later on. In the training phase (which was performed on data from the Mixed Phase
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Figure 1. left:
::
(A)

:
MIRA-35 radar reflectivity factor,

:
(top

:
B) , radar mean Doppler velocity (middle),

::
(C)

:
radar spectrum width

:
, (bottom

:
D) ,

right: PollyXT lidar attenuated backscatter coefficient at 532 nm, (top
:
E) , PollyXT lidar linear volume depolarization,

:
(middle

:
F) and Cloudnet

target classification (bottom) of Nov 17, 2014 00:00 UTC to Nov 18, 2014 13:30 UTC observed during the ACCEPT experiment in Cabauw,

Netherlands. Black stars
:::
dots (in the lidar variable panels

:::
A-C) indicate the first cloud base detected by the ceilometer.

Arctic Clouds Experiment (MPACE, Verlinde et al. (2007)) obtained in fall 2004 at the U.S. Department of Energy’s (DOE)

Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) permanent site in Utqiagvik (formerly known

as Barrow), Alaska, the backpropagation of errors algorithm was applied. In short, the β and δ output of the ANN for each

time and height pixel were compared to values measured with a High Spectral Resolution Lidar (HSRL, Eloranta (2005)). The

difference between ANN-predicted and lidar-observed (i.e., the error) was monitored and the internal weights of the nodes were5

adjusted until the error did not decrease any further during the successive cycling through the Doppler spectra training data set.

Only a fraction of the MPACE data was considered in the training phase, most of the data was used for validation. Turbulent

broadening of the cloud radar Doppler spectrum (e.g. in strong convection) decreases the imprint of cloud microphysics on

the Doppler spectra. The MPACE dataset was characterized by largely stratiform conditions. As stated in Gardner and Dorling

(1998), the ability of an ANN to predict cloud properties does not only dependent on an informed choice of predictors but10
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also requires sufficient data that fully represent all cases that the ANN is required to generalize, as ANNs perform well for

interpolation but poorly for extrapolation. We can thus only expect good predictions of liquid in low-turbulent clouds but not

in strongly convective clouds. The objective of this study was to check the performance of the ANN trained with the MPACE

observations in Luke et al. (2010) on a new data set, the ANN was thus not re-trained.

2.3 Classifying liquid containing sections from ANN-predictions5

The ANN-predicts backscatter coefficient and particle depolarization ratio. Thresholds need to be applied to these predicted β

and δ in order to identify regions which show optical properties similar to the ones produced by liquid water.

For visual illustration of the mapping from predicted lidar variables to hydrometeor class labels, a scatter plot of predicted

β and δ was created (Fig. 2
:::
(A)). As previously mentioned, lidar observed or ANN-predicted high values of β and near-zero δ

are reliable indicators of liquid-dominated cloud regions; they clearly stand out as a feature in Fig. 2
:::
(A). The scatter plot of10

predicted β and δ shows two more distinct features, one between the functions "linear-1" and "linear-2" with higher values of

δ and lower values of β indicating ice and another feature of very high values of δ and very low values of β situated below

the function "linear-2" that can be attributed to the optically thinner ice cloud with lower radar reflectivities above 7 km on

Nov 18, 2014 (see Fig. 2 , right)
::::
(B)). Similar to Luke et al. (2010), fixed thresholds of β and δ were used to derive a binary

mask separating liquid predictions from other target types. For a sensitivity study of ANN-predicted liquid occurrence for the15

entire ACCEPT data set, different HSRL-based published thresholds (Shupe, 2007; de Boer et al., 2009; Luke et al., 2010)

as well as a new linear function threshold (labeled "linear-1" in Fig. 2) were employed (see Table 1). Threshold values for

β of all three published studies are similar. Shupe (2007) and Luke et al. (2010) use the same δ threshold of 0.1 for liquid

classification while de Boer et al. (2009) with a value of 0.03 is much more stringent. The studies are subsequently referred to

as "Shupe2007", "deBoer2009", and "Luke2010". The linear-1 threshold function was found by a sensitivity study and gave20

the most similar classification results to the three cited published threshold values. Figure 2
:::
(B) shows the corresponding time-

height representation color coded by linear separation of the predicted (backscatter vs. depolarization) dimension using linear

functions. Slightly paler color indicate regions of complete lidar attenuation by PollyXT and can also be seen as extended lidar

signal predicted from cloud radar spectra, are excluded by the latter analysis.

Table 1. Published thresholds of β and δ for lidar-based liquid classification and linear-1 function threshold used for ACCEPT data set.

method thresholds

Shupe2007 log(β)>−4.5, δ < 0.1

deBoer2009 log(β)>−4.3, δ < 0.03

Luke2010 log(β)>−4.3, δ < 0.1

linear function-1 (mδ+β) m= 12, β =−5.0
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:::::::::::
(A)

::::::::::::::::::::::::::::::::::::::::
(B)

Figure 2. Left:
::
(A)

:
Frequency of occurrence of ANN-predicted lidar backscatter coefficient β vs. predicted lidar linear depolarization δ

for the Nov 17 - 18, 2014 case study. Right:
::

(B) Time-height mapping of predicted β and δ of the three corresponding areas in the left
:::
(A)

panel, which are separated by the two linear thresholds. Black dots
::
(B)

:
indicate the ceilometer cloud base height.Light colors indicate regions

beyond complete attenuation of the lidar beam.

The liquid classification methods were applied to the entire ACCEPT dataset. For doing so, the following pre- and post-

processing steps were applied to the seven-week long data set. Firstly, to account for the effects of radar partial beam filling,

cloud edges are excluded from the ANN input data by setting data in the first and last range gate of a detected cloud (i.e. cloud

base and cloud top pixel) to "clear sky". Secondly, only "cloud" pixels of the Cloudnet target classification mask (between first

cloud base and last cloud top) are considered, so that pixels classified as rain/drizzle and
::::::::
Secondly,

:::::
pixels

::::::::
classified

::
as aerosol-5

s/insects were explicitly excluded. Thirdly, ANN liquid predictions for regions with good lidar echo and Cloudnet-classified as

non-liquid class, are reclassified as non-liquid. Fourthly,
::::::
Thirdly,

:
using model temperature data of the Global Data Assimilation

System (GDAS1) employed by the Global Forecast System (GFS) model, unphysical liquid predictions below −37 °C were

re-classified as ice. The in-cloud pixels which were classified as liquid-containing by the ANN using the above-mentioned

thresholds were sometimes quite patchy. Similar to Shupe (2007) a homogenization step to create more coherent liquid layer10

structures, by using a 5x5 pixel neighborhood smoothing was introduced. A pixel was kept as liquid-containing pixel, when at

least 60% of the pixels in the 5x5 box around the center one were also classified as liquid-containing.

3 Results and Discussion

To assess the performance of the Luke et al. (2010) ANN-based liquid prediction from cloud radar Doppler spectra using15

different published thresholds of lidar backscatter coefficient and depolarization ratio against the Cloudnet target classification

and against independent observables, a two-step validation was performed. Firstly, a case study (Nov 17-18, 2014 consisting of

8



100.000 samples) was analyzed in depth, see Table 2. Secondly, statistical results for the ANN-based liquid-prediction for the

entire ACCEPT data set (1070 hours of observations, i.e. 1.7 million samples) are given in Table 3 and discussed subsequently.

::
In

:::
the

::::::::
following,

:::
the

:::::::::::
abbreviation

:::
CD

::
is

::::
used

:::
for

:::::
cloud

:::::::
droplets

:::::::
bearing

:::::::
samples

::
and

:::::::
non-CD

:::
for

:::::::::
non-cloud

:::::::
droplets

:::::::
bearing

::::::
samples

:
.
::
It

::::::
should

::
be

:::::
noted

::::
that

:::
no

::::::
further

:::::::::
distinction

:::::::
between

:::::
other

::::::::::::
liquid-bearing

:::::::
samples

::::
such

::
as

::::::::::
drizzle/rain

::
is

:::::
made

:::
for

::
the

::::::::::
ANN-based

::::::
liquid

::::::::::
predictions.5

Predictions that meet the criteria from Section 2.3 are compared to classifications from Cloudnet (
::::::
treated

::
as ground-truth),

resulting in an 2x2 .
::::
The

::::::::::
comparison

:::::
yields

::
an

:
error matrix consisting of correctly classified CD predictions, i.e. true positive

(TP) and correctly classified non-CD predictions, i.e. true negatives . Additionally, CD predictions that are actually non-CD

::::
(TN)

::
as

::::
well

:::
as

:
false positives (FP) , and predicted non-CD which are CD

:::
and

:
false negatives (FN)

:::::
which

:::::::
concern

::::::
wrong

:::::::::
predictions,

:::::::::::
respectively. Described below are four metrics used to evaluate the predictive performance against Cloudnets’10

liquid detection, three correlation coefficients ρa,b, and the fraction of liquid predicted located within a relative humidity above

90%.

1. precision = TP
TP+FP : The precision value

:::::
Error

::::::
matrix:

::
A

:
2
:::
by

:
2
::::::
matrix

::::::::
consisting

::
of

:::
the

:::::::
numbers

:::
for

::::::::
correctly

::::::::
identified

:::
CD

::::
(TP)

:::
and

:::::::
non-CD

::::
(TN)

::::::::::
time-height

:::
grid

:::::
cells,

::
as

::::
well

::
as

::::::
falsely

:::::::
classified

:::::::
non-CD

::::
(FP)

::::
and

:::
CD

::::
(FN)

::::
cells

::::::::::
respectively,

::
i.e.

:
15

EM =

TP FN

FP TN

 .

::::::::::::::::::

(1)

2.
::::::::
Precision:

::
A

::::
real

:::::
value

:::::::
between

::
0
:::
and

:::
1,

:::::
where

::
1
::
is

:::
the

::::::
perfect

::::::
score.

:::::::::::::
prec= TP

TP+FP ,
:::
i.e.

:::
the

:::::::
fraction

:::
of

::::
how

:::::
many

:::::::::
predictions

:::::
where

::::::::
correctly

::::::::
classified

::
as

:::
CD

::::
(i.e.

:::
TP)

:::
by

:::
the

:::
sum

:::
of

::
TP

::::
and

:::::::::
predictions

::::::
falsely

::::::::
classified

::
as

:::
CD

::::
(i.e.

::::
FP).

::
In

:::
the

::::::
context

::
of

::::
this

:::::
work,

::
it measures the amount of CD overestimation. The closer

::::::::
precision

::::
gets to 1, the fewer FP

classification a method computes. (if precision< 1⇒ CD overestimation)
::::
more

::::::::
precisely

:::::
actual

::::
CD

::::
cells

:::
are

::::::::
predicted20

::
as

::::
such.

::::::::
Precision

::::
can

:::
also

:::
be

::::::::
described

::
as

:
1
::::::
minus

:::
the

::::
false

:::::
alarm

::::
rate.

:

3. recall = TP
TP+FN : The recall value

:::::
Recall

::
or

:::::::::
probability

::
of

::::::::
detection:

::
A
::::
real

:::::
value

:::::::
between

:
0
:::
and

::
1,
::::::
where

:
1
::
is

:::
the

::::::
perfect

:::::
score.

::::::::::::::
recall = TP

TP+FN ,
:::
i.e.

:::
the

:::::::
fraction

::
of

:::
TP

:::
and

:::
the

::::
sum

::
of

:::
TP

::::
and

:::::
falsely

::::::::
classified

:::::::
non-CD

::::
(i.e.

::::
FN).

::
In

:::
the

:::::::
context

::
of

:::
this

:::::
work,

::::::
recall measures the amount of CD underestimation. The closer

::::
recall

::::
gets to 1, the fewer FN classification

a method computes. (if recall< 1⇒ CD underestimation)25

4. accuracy = TP+TN
TP+TN+FP+FN : The closer the accuracy value gets to

:::
less

:::::
likely

::
it
::
is

:::::::
missing

:::::
actual

:::
CD

:::::
cells.

:::::
Note:

::::
The

::::::::
ceilometer

:::::
lidar

:::::
signal

::::::
which

::
is

::::
used

::
as

:::::::::::
ground-truth

::::::::
indicator

:::
for

:::
CD

::::::::::
availability,

::
is

:::::
much

:::::
more

:::::::
sensitive

::
to

::::
CD

::::
than

:::::::
Doppler

:::::
cloud

:::::
radar

::::::
signals,

:::::
thus

:::::
recall

::::::
values

:::::
below

:
1 the more pixel were classified correctly in an absolute and

non-balanced way. (overall accuracy)
:::
are

::::::::
expected.

5. F1− score = 2
1

recall+
1

precision

: The balanced (harmonic) mean of CD over- and underestimation. (harmonic mean of30

precision
::::::::
Accuracy:

::
A
::::

real
:::::
value

:::::::
between

::
0 and recall)

:
1,

::::::
where

:
1
::
is

:::
the

::::::
perfect

:::::
score.

::::::::::::::::::::
acc= TP+TN

TP+TN+FP+FN ,
:::
i.e.

:::
the

9



::::::
fraction

::
of

:::
all

::::::
correct

::::::::
predicted

:::
CD

:::::
pixel

:::
and

:::
the

::::
sum

::
of

:::
all

:::::::
samples.

::
In
:::

the
:::::::

context
::
of

:::
this

:::::
work

::
it

::::::::
measures

:::
the

::::::
overall

::::::
fraction

::
of

::::::
correct

::::::
versus

::::::::
incorrect

::::::::::
predictions,

:::::
where

:::::::::
acc= 0.75

::
if

:::
the

:::::::
retrieval

::::::::
correctly

:::::::
classifies

::
3

:::
out

::
of

:
4
::::::
inputs.

:

6. ρceilo-CBH,LLH: correlation of first ceilometer cloud base height (CBH) with first liquid layer height (LLH) of ANN and

Cloudnet

7. ρMWR-LWP,LLT: correlation of
:::::::::
Correlation

:::::::
between

:
MWR-LWP with ANN- and Cloudnet-derived

:::
and

:::::::
retrieved

:
liquid5

layer thickness (LLT, product of sum of liquid containing pixel per profile times range gate resolution)

8. ρMWR-LWP,LWPad
: more physically meaningful correlation of

::::
LLT:

::::
The

:
MWR-LWP with LWP calculated from LLT and

profiles of temperature and pressure under adiabatic assumption (as in Karstens et al. (1994))

9. Liq-Pxl at RH
::::
time

:::::
series

::
is
:::::::::

correlated
::
to
::::

the
::::
LLT

:::::
time

:::::
series

:::::::::
computed

::
as

::::
the

::::
sum

::
of

::::
the

::::::
vertical

:::::::
extend

::
of

::::
CD

::::::::
containing

::::::::
volumes

::::::::::::::
LLT=NCD · δh,

::::
with

:::::::
δh= 40 > 90 %: fraction of liquid-classified pixels that overlap with pixels10

of radio-sounding based relative humidity (RH) with respect to water above 90 %
:
m
:::::
range

:::::::::
resolution.

:::::::
Profiles

::
in

::::::
which

:::
rain

::::
was

::::::::
observed

::
at

::::::
ground

::::
were

::::::::
excluded

:::::
from

:::
the

:::::::::
correlation

:::::::::
coefficient

::::::::::::
determination

::
to

:::::
avoid

:::::
wrong

:::::::::::
MWR-LWP

:::::
caused

:::
by

:
a
::::
wet

:::::
MWR

:::::::
radome.

:

10.
:::::::::
Correlation

:::::::
between

:::::::::
ceilometer

:::
first

:::::
CBH

:::
and

::::::::
retrieved

:::
first

:::::
liquid

:::::
layer

:::::
height

:::::
LLH:

:::
The

::::::::::
Ceilometer

:::
first

::::
CBH

::::::::::
time-series

:
is
:::::::::
correlated

::
to

:::
the

:::
first

:::::
LLH

:::::::::
time-series

::
as

::::::::
retrieved

::::
from

:::
the

:::
CD

::::::
mask.15

3.1
:::
Nov

::::::
17-18,

::::
2014

:
Case Study Results

The 37.5 h long case study of Nov 17, 2014 00:00
:
0 UTC - Nov 18, 2014 13:30 UTC was characterized by a multitude of cloud

types including pure liquid water clouds, stratiform mixed-phase clouds, high clouds, mid-level clouds and near-surface clouds

(fog) as shown in Fig. 1. On Nov 17, 2014 between 3-9 UTC and 15-00
::::
15-24 UTC several rain showers from low mixed-phase

clouds with cloud-top temperatures between −10 °C and −2 °C were observed. At around 12 UTC, a thin warm liquid cloud20

at 1 km altitude with a LWP below 30 g m−2 was present. On Nov 18, different multi-layer clouds with varying vertical extent

were present, a high cloud in 6-9 km was firstly situated above a mid-level cloud in 2-5 km and later on over a precipitating

stratiform cloud in about 2 km altitude with cloud-top temperature of −5 °C which had .
::::::

Below
::::

this
:::::
cloud

::::
was

:
a layer of

near-surface fogbelow.

In Fig. 3 the
:::::::::
comparison

:::
of

:::
the

:
resulting liquid masks of

::
the

:::::
ANN

:::
of all presented thresholds and

::
for

:
Cloudnet for this25

case study are shown. There is mostly good agreement in liquid-detection for the stratiform mixed-phase cloud
:::::
clouds

:::
on

::::
Nov

::
17

::::::
before

:::::::
21 UTC and the liquid cloud in 1 km

:
at
:::::::
around

::::::
12 UTC on Nov 17. However, since the liquid-threshold boundaries

of deBoer2009 are very strict, many potential liquid pixel candidates are not considered (e.g. around 3 UTC, and 18 UTC

on Nov 17). For this particular case, the Cloudnet
:::::
target

:::::::::::
classifcation algorithm was not able to fully identify the cloud-top

layer at −10 °C during 0-6
:::::
21-24 UTC and at

::
on

::::
Nov

:::
17

:::
and

:::
at

:::::
about

:
2 km during 9-12 UTC on Nov 18, as mixed-phase30

and/or supercooled liquid
::::::::
containing

:
because of full lidar signal attenuation in the rain/fog below. The ANN-based liquid-

detection
:::::
clearly

:
outperforms Cloudnet in these situations. However, as stated in Luke2010, the ANN performance is expected

10



Figure 3. Sensitivity study of liquid pixel classifications of the Nov 17 - 18, 2014 case study using liquid mask thresholds of Shupe2007

(upper left), deBoer2009 (upper right), Luke2010 (lower left), linear-1 (lower right) on the ANN-predicted lidar variables. Light-brown:

Cloudnet only
::::::::::
Cloudnet-only liquid classifications, blue: ANN-predicted pixels using the given thresholds which were not classified as liquid

::::::
droplets by Cloudnet, red: pixels classified as liquid by the ANN and Cloudnet, black contour

:::
grey

::::::
shading:

::::
pixel

::
for

:::::
which

::::::
neither

:::::::
Cloudnet

::
nor

:::
the

:::::
ANN

:::::::
classified

:
cloud edges

::::::
droplets, green stars

::::
black

::::
dots: ceilometer

:::
first cloud base height, white: clear-skyor not classified as

liquid by either method.

to decrease in more turbulent conditions leading to Doppler spectrum broadening. This is the case at 10-13 UTC on Nov 19 in

a layer at about 7 km altitude around −37 °C (very low probability for liquid) for all but the deBoer2009 threshold.

For independent validation of the areas classified as liquid-containing, the summed up liquid layer thickness (LLT) of all

pixels classified as liquid by the ANN or Cloudnet is compared to the MWR-LWP (Figure 4) as proposed by Luke2010.

::::::::::::::
Luke et al. (2010)

:
.
::::::::::
MWR-LWP

::::::::::
uncertainty

::::::::
amounts

::
to

::::::::
25 g m−2

::
.
:
Profiles in which

::::::::::
considerable

:::::::
amounts

:::
of

:
rain/drizzle5

reached the ground were excluded in the LLT-determination to avoid situation
:::::::
situations

:
with a wet MWR radome leading

to an invalid MWR-LWP estimate (as indicated by the rain flag in Figure 4). In some situations the ANN and in others Cloud-

net matches the timeseries
:::
time

:::::
series

:
of MWR-LWP betteron Nov 17 while on Nov .

::
A

:::::
large

::::::::::
discrepancy

:::::::
between

:::::::::
ANN-LLT

:::
and

::::::::::
MWR-LWP

::
is

:::::::
obvious

::
on

::::
Nov 18

:
,
::::::::
4-6 UTC:

::::::::::
MWR-LWP

:::
are

::::
very

:::
low,

:::::
while

:
the ANN-LLT mostly (except when using the

deBoer threshold) overestimates LLT due to the explained misclassifications. More ACCEPT case studies have been analyzed10

in detail but are not presented here because they show very similar results.
:
is

:::::
high.

::
A

::::::::::::::
misclassification

::
of

:::
ice

::
as

:::::
liquid

:::
by

:::
the

::::
ANN

::
in
::::::::
2-3.5 km

:::::
height

::::
can

:::
thus

:::
be

:::::::::
concluded

:::::
which

::
is

::::::::::
corroborated

:::
by

:::
the

:::::::
PollyXT

::::
lidar

::::::
signal

:::::::
showing

::::
high

::::::::::::
depolarization

11



Table 2.
::::
Error

::::::
matrix,

:::::::::
performance

:::::::
metrics,

:::
and

::::::::
correlation

:::::::::
coefficients

::
for

::::::::::::
ceilometer-CBH

:::
vs.

::::
LLH,

::::::::::
MWR-LWP

::
vs.

::::
LLT,

:::::::::
MWR-LWP

:::
vs.

:::::::::
LWPad,cor, :::

case
:::::
study

:::
Nov

:::::
17-18.

::::::
Statistic

:::::::
includes

:::
only

:::::
valid

::::
pixel.

::::::::
Shupe2007

: :::::::::
deBoer2009

:::::::
Luke2010

: ::::::
linear-1

:::::::
Cloudnet

::
TP

:::::
28684

:::::
22209

::::
26803

: ::::
28816

: :::::
46215

::
TN

:::::
59342

:::::
60605

::::
59615

: ::::
59620

: :::::
62424

::
FP

::::
3082

: :::
1819

: ::::
2809

::::
2804

:
0

::
FN

:::::
17531

:::::
24006

::::
19412

: ::::
17399

: :
0

:::::::
precision

::::
0.903

: ::::
0.924

::::
0.905

::::
0.911

:
1

::::
recall

::::
0.621

: ::::
0.481

::::
0.580

::::
0.624

:
1

::::::
accuracy

::::
0.810

: ::::
0.762

::::
0.795

::::
0.814

:
1

:::::::::
ρMWR-LWP,LLT ::::

0.436
: ::::

0.533
::::
0.490

::::
0.489

:::::
0.471

:::::::::::
ρMWR-LWP,LWPad ::::

0.275
: ::::

0.471
::::
0.335

::::
0.345

:::::
0.399

:::::::::
ρceilo-CBH,LLH ::::

0.775
: ::::

0.725
::::
0.738

::::
0.755

:::::
0.913

::::::
Liq-Pxl

:
at
:::

RH
::
>
::::
90 %

::
n/a

: :::
n/a

::
n/a

::
n/a

: :::
n/a

:::::
values

:::::::::
indicating

:::
ice

:::::::
crystals.

:::::
After

::::::
7 UTC

::
on

:::::
Nov

:::
18,

:::
the

::::
lidar

::::::
signals

:::
are

:::::
fully

:::::::::
attenuated

::
by

:::
the

::::
fog

::::
near

:::
the

::::::
ground

::::
and

::
are

::::
thus

::::
not

::::::::
available

:::
for

:::::::::
assessment

:::
of

:::::
ANN

::::::::::::
classifications

::
in

::::::
higher

::::::
layers.

:::::::
Analysis

:::
of

:::::
radar

:::::::
Doppler

::::::
spectra

:::::
time-

::::
and

:::::
height

:::::::::::
spectrograms

::
in

::::::
around

:::::::
6-9 km

::::::
altitude

:::::::
showed

::::
only

::::::::::
monomodal

::::::
spectra

::::::
related

::
to

:::
the

::::::
falling

:::
ice

:::::::
crystals

::::
from

::::::
above.

::
In

:::::::::
conclusion,

:::::
most

::::::::
certainly,

:::
no

::::::::
formation

:::
of

::::::::::
supercooled

:::::
liquid

::
in
:::::

7 km
:::::::
altitude

::
at

::::::
−37 °C

::::::::
occurred.

::::
The

:::::
ANN

::::
thus

:::::
most

:::::
likely

::::::::::
misclassified

:::
ice

:::
as

:::::
liquid

:::::::
because

:::
the

::::::::
observed

:::::::
Doppler

::::::
spectra

::
at
:::::::

around
::::
7 km

:::::
were

:::::::::::
characterized

:::
by

::::
high

::::::::
spectrum5

:::::
width,

:::::
small

::::::::::
reflectivities

::::
and

::::
small

:::::
mean

:::::::
Doppler

:::::::::
velocities.

::::
High

:::::::
Doppler

::::::::
spectrum

:::::
width

:::::
might

:::
be

:::::
related

::
to
:::::
more

::::::::
turbulent

::::::::
conditions

::::::
which

:::::
result

::
in

:
a
::::::::
decrease

::
of

:::
the

:::::::::::
performance

::
of

:::
the

:::::
ANN

:::::::
because

:::
the

::::::::::::
microphysical

::::::
imprint

::
of

:::
the

::::::::::::
hydrometeors

::
on

:::
the

:::::
radar

:::::::
Doppler

::::::
spectra

::
is

::::::::
decreased.

:

The error matrix and evaluation metrics (first 8 rows in table
:::::
Table

:
2) show the performance of Luke et al. (2010) by

comparing the
::
the

:::::
ANN

:::
by

:::::::::
comparing

:::::::::::
ANN-based

:::::
liquid

:
predictions to valid Cloudnet liquid detections

:::
for

::::::::::
time-height10

::::
cells

::::
with

:::::::
reliable

::::
radar

::::
and

::::
lidar

::::::
signal

:::::
status. Depending on the threshold given in Table 1, precision ranges between 0.9

(Shupe2007) and 0.92 (deBoer2009). Contrarily, recall values range between 0.53 (deBoer2009) and 0.67 (linear-1) indicating

that more lose thresholds are better in detecting more TP, while keeping the number of FN comparably low. Overall accuracy

ranges between 0.78 (deBoer2009) and 0.83 (linear-1), with the more balanced F1-score showing the same threshold candidates

for minimum 0.67 (deBoer2009) and maximum 0.77 (linear-1) values..Regions with high radar Doppler spectrum width at
::::
near15

cloud base (see figure 1 Nov
:::::
Figure

:
1
:::::

Nov. 1803:00 - 06:00,
:::
3-6 UTC between 2 and 3

::
2-3 km altitude) contribute to a large

portion of those FP for all thresholds. Lower recall values indicate a higher degree of underestimation of CD detections, which

is caused by liquid layers with low LWP values below 50 g m−2, e.g. the thin liquid cloud on Nov
:
. 17 around 12:00 UTC in 0.5

to 1 km altitude.
:::::::
Profiles

:::::::::::
characterized

::
by

::::
low

::::::::::
precipitation

:::::
rates

::
of

:::
rain

::::
and

::::::
drizzle

::::
have

:
a
:::::::
negative

::::::::
Cloudnet

::::
rain

:::
flag

::::
and

:::
are
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:::
thus

:::
not

::::::::
excluded

:::::
from

:::
the

:::::::
analysis.

:::
For

:::::
these

::::::::::
drizzle/rain

::::
pixel

:::
the

:::::
ANN

:::::
often

:::::::
predicts

:::::
liquid

::::
(see

::::::
Figure

:
3
::::
and

:::
A2

:::::::
between

::::::::
0-1.5 km).

:::::
Since

:::
the

:::::
ANN

::::
does

::::
not

:::::::::
distinguish

:::::::
between

::::::::
different

:::::
liquid

::::::
classes

::::
such

::
as

::::::::::
drizzle/rain

::::
and

:::::
cloud

:::::::
droplets

:::::
(CD),

::
the

:::::
ANN

::::::::
classifies

:::
all

::::
these

::::::
pixels

::
as

:::::
cloud

:::::::
droplets

:::::
which

:::
are

::::
then

:::::::
counted

::
as

:::
FP.

:::
FN

:::::
often

:::::
occur

:::::
when

::::::::
Cloudnet

:::::::
classifies

::
a

:::::
certain

:::::::::::
hydrometeor

::::
class

::
at
::::
low

::::::
altitude

:::
and

:::::::
extends

:::
this

:::::
target

:::::
class

::
for

:::
all

::::
pixel

::
in

:::
the

::::::
profile

::
up

::
to

:::::
cloud

:::
top

:::::
which

::::
e.g.

:::::
either

:::::::
happens

::
in

:::
low

:::::::
intensity

:::::::::::
precipitation

::::
(see

:::::
Figure

::::
A1,

::::::::::::::
misclassification

::
of

::::::::::
drizzle/rain

::
as

:::::
cloud

:::::::
droplets

::
by

::::::::
Cloudnet,

::::
e.g.

::::
Nov5

:::
17,

::::
2014

::::::::
3–4 UTC,

:::::::::
0.5–2 km)

::::
and

::
for

::::
the

::
ice

::::
and

::::::::::
supercooled

:::::::
droplets

:::::
class

::
on

::::
Nov

:::
17,

::::::::::
17:30 UTC

:::::::
resulting

::
in
::

a
::::
1 km

:::::
deep

::::::::::
mixed-phase

:::::
layer

::
in

:::::::::
1.5-2.5 km

::::::::
altitude).

::
In

::::
such

:::::::::
situations

:::
the

::::
ANN

::::::
might

::
be

:::::
more

:::::::
accurate

::
in

::::::::::
determining

:::
the

:::::::
location

:::
of

::::
cloud

:::::::
droplets

:::
but

:::::
since

::
it

:
is
:::::::::
evaluated

::::::
against

::::::::
Cloudnet

::
as

:::::::::::
ground-truth,

:::
FN

:::::
result.

:

In this work the ceilometer first cloud base height variable
::::::
(CBH) is correlated to the predicted first liquid layer height

(if liquid is present). However,
:::::
LLH).

:::::::::::
ρceilo-CBH,LLH:::

of
:::
the

::::
four

:::::
ANN

:::::::
methods

:::
are

:::
on

:::
the

::::
order

:::
of

::::
0.86

:::::::::::
(deBoer2009)

:::
to

::::
0.9210

::::::::::
(Shupe2007)

:::
for

::::
the

:::::
entire

::::::::
ACCEPT

:::::::
dataset

::::
(see

:::::
Table

:::
3),

:::
i.e.,

:::::
there

::
is
::

a
::::::
failure

::::
rate

::
of

:::::::
8–14 %.

:::::
This

::::::
failure

::::
rate

:::
can

:::
be

::::::::
explained

:::
by

::::::
several

::::::::::
conditions:

::::::
Firstly,

:
in some situations, like on Nov 18, 2014 between 1–4 UTC

:::::
UTC, the ceilometer

cloud base variable is not representing the base of the liquid layer but instead the base of precipitating ice crystals (Fig. 1).

Situations like these are the most important factor for leading to ρceilo-CBH,LLH of the four ANN threshold methods to be on the

order of 0.86 (deBoer2009)to 0.92 (Shupe2007)
:::
This

::
is

::::::
caused

:::
by

:::::::
specular

::::::::
reflection

:::::
from

:::
the

:::::
planar

::::::
planes

::
of

:::::::::::
horizontally15

::::::
aligned

:::
ice

::::::
crystals

:::
as

::::::::
described

::
in

::::::::::::::::::::
Westbrook et al. (2010).

:::::
When

:::
the

:::::
ANN

::
is
:::
not

::::::::::::
misclassifying

:::::
these

:::
ice

:::::::
crystals

::
as

::::::
liquid,

::
the

:::::::::
difference

::
in

:::::::::
ceilo-CBH

::::
and

:::::::::
ANN-LLH

::
is

:::::
high.

::::::::
Secondly,

::::
there

:::
are

:::::::::
situations

:::::
where

:::::
liquid

::::::
layers

::::
with

:::
low

:::::
LWP

:::
are

::::
only

:::::::
detected

::
by

:::
the

:::::::::
ceilometer

:::
but

:::
not

:::
by

:::
the

:::::
cloud

::::
radar

:::::
(Nov

::
17, i. e., a failure rate of 8–14 %. Higher

:::::::
11 UTC,

:::::
cloud

::
at

:::::::
1.7 km).

::::::
Thirdly,

:::::
there

:::
are

:::::
cloud

::::::
scenes

::::::
where

:::
the

:::::::::
ceilometer

::
is

::::
fully

:::::::::
attenuated

:::
by

::::::::::
precipitation

:::
or

:::
low

:::::
level

:::
fog

:::::
(thus

::::::::
reporting

:::
the

::::::::::
precipitation

::
or

::::
fog

::::
base

::
as

::::
first

:::::
cloud

::::
base)

::::::
which

:::
the

:::::
radar

:::
can

::::::::::
penetrate/is

:::
not

:::::::
sensitive

::
to
:::
or

:::::
which

::
is

:::::
below

:::
the

::::
first

:::::
radar20

::::
range

:::::
gate.

::::::::
Fourthly,

::
in

::::::::
situations

::::::
where

:::
the

:::::::::
ceilometer

::
is
::::
still

::::
able

::
to

::::::::
penetrate

:::::
light

::::::::::
precipitation

:::
to

:::::
detect

:::::
CBH

:::::
(Nov

:::
17,

:::::::
3-9 UTC,

:::::::::::
17-24 UTC)

:::
and

:::
the

:::::
ANN

:::::::::::
misclassifies

:::::::::
drizzle/rain

:::
as

:::::
cloud

:::::::
droplets,

::::::
further

::::::::::::
discrepancies

::::
arise.

::::::
These

:::::::::
conditions

:::
lead

:::
to

:
a
::::::::
decrease

::
of

:::
the

::::::::::::
ρceilo-CBH,LLH.

:::
The

:
ρceilo-CBH,LLH for ceilometer-CBH and Cloudnet (which uses ceilometer data as

input for the thermodynamic phase classification) are expected because the ceilometer is better able to detect thin liquid water

layers with low LWP than the cloud radar is
:::
for

:::
the

:::::
entire

::::::::
ACCEPT

::::
data

:::
set

::
is

:::::
higher

::::
and

:::::::
amounts

::
to
:::::
0.97.

:::::
While

:::
the

::::::
liquid25

::::
layer

::::
base

::::::
height

:::::::
variable

::
in

::::::::
Cloudnet

::
is

:::::
based

:::
on

:::
the

:::::::
gradient

:::
of

:::::::::
ceilometer

:::::::::
attenuated

:::::::::
backscatter

::::::::::
coefficient,

:::
the

:::::::
internal

::::::::
ceilometer

:::::
cloud

:::::
base

:::::::::::
determination

::
is
:::
not

::::::::
precisely

:::::::::::
documented

::
in

:::
the

:::::::::
ceilometer

:::::::
manual.

::::::::::
Differences

::
in

:::::
cloud

::::
base

::::::
height

::::::
leading

::
to

:
a
::::::
failure

::::
rate

::
of

:::::::
3 %may

:::
thus

:::::
occur

::::
due

::
to

:::::::
different

::::::::::
backscatter

:::::::::
coefficient

::::::::
thresholds. This being said, ρceilo-CBH,LLH

for Cloudnet is actually expected to be 100 %- it is slightly lower due to averaging of ceilometer data to the 30 s Cloudnet input

file resolution.30

The ρMWR-LWP,LLT also shows positive correlations for all methodsand thresholds
:
.
:::
As

::::::
shown

::
in

:::::
Table

:
2, it ranges between

0.44 (Shupe2007) to 0.53 (deBoer2009), for Cloudnet the ρMWR-LWP,LLT amounted to 0.47. Converting the LLT to the phys-

ical more meaningful LWPad,cor results in ρMWR-LWP,LWPad
that are very similar to ρMWR-LWP,LLT :::

with
::::::::
moderate

::::::::::
correlation

:::::
(0.47) for Shupe2007 (0.28) , Luke2010 (0.34)

::::::::::
deBoer2009,

:::
and

::::::
weaker

::::::::::
correlations

:::
for

:::
all

::::
other

::::::::
methods.

:::::
Both

:::::::::::
ρMWR-LWP,LLT

and "linear-1" (0.35) while they increase
::::::::::::
ρMWR-LWP,LWPad:::

of
::::::::::
deBoer2009

:::::
show

:::
the

::::::::
strongest

:::::::::::
relationship

::
to

:::
the

:::::::::
measured35
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Figure 4.
:::::::::
Comparison

::
of

:::::::::
MWR-LWP

::::
(left

:::::
y-axis,

::::
blue

::::
bars)

:::
and

:::::
liquid

::::
layer

:::::::
thickness

:::::
(LLT,

::::
right

::::
axis)

::
of

::
the

::::::::::::
ANN-predicted

:::::
liquid

::::
layer

::::
masks

::::
and

:::::::::::
Cloudnet-LLT

::::::
(orange)

:::
for

:::
the

::::
Nov

::
17

:
-
:::

18,
:::::

2014
:::
case

:::::
study

:::
for

::
all

::::
used

::::::::::::
liquid-detection

::::::::
thresholds.

::::
The

::::::::::::::
disdrometer-based

:::::::
Cloudnet

:::
rain

:::
flag

::
is

::::::
depicted

:::
by

::::
green

:::
and

:::
red

::::::
markers

::::
near

::
the

::::::
bottom

::
of

:::
the

:::
plot

:::::::::
respectively

::::::::
indicating

:::::
profiles

::::
with

:::
rain

::::
(red)

:::
and

:::::
times

::::
where

::
it
:::
was

:::::::::
drizzle/rain

:::
free

::
or

:::::::::
precipitation

::::
rates

::::
were

:::
too

:::
low

::
to

::
be

:::::::
observed

::
by

:::
the

:::::::::
disdrometer.

::::::::::
MWR-LWP.

::::
The

:::::
period

:::::
Nov.

:::
17,

:::::::
21 UTC

::
to

::::
Nov.

:::
18,

:::::::
12 UTC

::
in
::::::

Figure
::
4
:::::
shows

:::
the

:::::::
highest

:::::::::
differences

::
in
::::
LLT

::::::::
between

:::
the

::::::::::
deBoer2009,

::::::::
Cloudnet

:::
and

:::
the

:::::
other

:::::::
methods.

::::
The

::::::
number

:::
of

:::
CD

:::::::::
predictions

::
in

:::
the

::::::::::
precipitating

::::::
system

:::::
(Nov.

:::
17,

:::::::::::
20-23 UTC),

::
the

::::::
region

::::
with

::::::
higher

::::::::
spectrum

:::::
width

:::::
(Nov.

:::
18,

:::::::
4-6 UTC

::
at
:::::
cloud

::::
base

::::
and

::::
Nov.

:::
18,

::::::::::
10-13 UTC

::
at

::::
7 km

:::::::
altitude,

::::
see:

::::
Fig.

::
3)

::
are

::::::
lowest

:
for deBoer2009(0.47) showing the ,

::::::::
therefore

::::::::
reflecting

:::
the

::::::::::
MWR-LWP

::::
best.

::::::::
However,

::::::::::
deBoer2009

::::
also

::::::
counts

:::
the

least amount of FP which cause lower correlations for other thresholdsand Cloudnet (0.40) which can only be explained by5

the fact that thin LLT (which are better detected by the latter one) result in rather low LWPad,cor:::
TP,

:::
due

::
to

::
its

:::::
tight

:::::::::
thresholds,

:::::
which

:::::
seems

::
to

::::
have

::::::
minor

:::::
effects

:::
on

:::
the

:::::::::
correlation

:::::::::
coefficient. Unfortunately, no radio sondes were launched during the pre-

sented case study.
:
,
::
so

:::
the

::::::
relative

::::::::
humidity

::::::
related

:::::::
measure

:::::
could

:::
not

:::
be

::::::::::
determined.

:::::::
Multiple

:::::
other

::::
case

::::::
studies

::::
had

::::::
similar

::::::
results.

3.2
:::
Oct

::
5,

::::
2014

:::::
Case

:::::
Study

:::::::
Results10

::
As

:::::::::
previously

::::::::::
mentioned,

::
no

:::::::::
validation

::
of

:::
the

::::::::::
ANN-liquid

:::::::::
prediction

:::
can

:::
be

:::::
made

::
if

:::
the

:::::::::::
ground-based

::::
lidar

::::::
signals

:::
are

:::::
fully

:::::::::
attenuated.

:::
We

::::::::
therefore

:::
use

:::
the

::::::
unique

::::::::::
opportunity

:::
to

:::::::
compare

:::
the

::::::::
Cloudnet

::::
and

:::::
ANN

:::::
liquid

::::::::::::
identifications

::
in

::::::::::
multi-layer

::::
cloud

:::::::::
situations

::
to

::
a
::::::
nearby

::::
(47

:::
km

:::::::
distant)

:::::::::
CALIPSO

::::::::
overpass

:::
on

:::
Oct

::
5, 2014 case study for all used liquid-detection

thresholds. Green and red dots near the bottom of the plots respectively indicate valid MWR-LWP data (no drizzle or rain

detected
:::::
01:05

:::::
UTC.

:::
On

::::
Oct

::
5,

::::
2014

::::::::::
01-04 UTC

:::::::
multiple

:::::
cloud

::::::
layers

::::
were

:::::::
present.

:::::::
Besides

:::::
warm

:::::::::
stratiform

:::::
liquid

::::::
clouds15
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Figure 5. Comparison of MWR-LWP (left y-axis
:::::::::
Observations

:::
and

::::::::
retrievals

::
on

::::::
October

::
5, blue bars

::::
2014

::
01

:
-
:::::::
04 UTC:

:
a) and liquid layer

thickness (LLT
:::::::
MIRA-35

:::::
radar

::::::::
reflectivity

:::::
factor, right axis

:
b) of the ANN-predicted liquid layer mask (red

::::::
PollyXT

:::::::
1064 nm

::::::::
attenuated

::::::::
backscatter

:::::::::
coefficient,

:
c)

::::::
Cloudnet

:::::
target

::::::::::
classification,

::
d)

:::::::::
comparison

::
of

:::::::
Cloudnet

:
and Cloudnet-LLT (

::::
ANN

:::::
liquid

:::::
masks.

::::
First

::::::::
ceilometer

::::
cloud

::::
base

:
is
:::::::
indicated

:::
by black ) for the Nov 17 - 18

::::
dots.

:::::
below

::::
3 km

:::::::
altitude,

::
a

:::::::
midlevel

:::::
cloud

::::
with

:::::
cloud

:::
top

::::::::::
temperature

::
of

::::::
−14 °C

::::
was

::::::::
observed

::
in

::::
5 km

:::::::
altitude.

:::
An

::::::::
extensive

:::::
cirrus

:::
was

::::::
present

::::::::
between

::::::::
7-10.5 km

:::::::
altitude.

:::::
From

::::::::::
01-03 UTC,

:::
the

:::::::
PollyXT

:::::
lidar

:::::
signal

::::
was

:::::
mostly

:::::
fully

:::::::::
attenuated

::
by

:::
the

::::::
lowest

:::::
liquid

:::::
cloud

::
in

::::
1 km

:::::::
altitude

::::::
leading

::
to

::
a
::::::::::::::
misclassification

::
of

:::::
liquid

::
as

:::
ice

:::
by

::::::::
Cloudnet

:::
for

:::
the

:::::
warm

:::::
cloud

::
in

::::::
2.5 km

:::::::
altitude.

::::
Also,

:::::::
(except

:::
for

:
a
::::

few
::::::
pixels

:::::
where

:::
the

:::::
lidar

:::
had

::
a
:::::
valid

::::::
signal)

::::::::
Cloudnet

::::::::
classified

:::
the

::::::::
midlevel

:::::
cloud

::
as

:::::::::
ice-cloud.

::::
The

::::
ANN

::::::::
correctly

::::::::
predicted

:::::
liquid

:::
for

:::
all

:::::
warm

::::::
clouds

::::
(note

::::
that

:::::
below

:::::
cloud

::::
base

::
of
:::

the
::::::

lowest
:::::
cloud

:::::
layer,

:::::
ANN

::::
also

:::::::
predicts5

:::::
liquid

:::::
which

:::
are

:::::::
counted

:::
as

:::::
cloud

:::::::
droplets

::::
(CD)

:::::
since

::
it

::::
does

:::
not

::::::::::
distinguish

:::::::
between

::::::::
different

:::::
liquid

::::::
classes

::::
such

:::
as

:::::
cloud

::::::
droplets

::::
and

:::::::::::
rain/drizzle).

::::
The

:::::
ANN

:::::::
classifies

::::
the

:::::::
midlevel

:::::
cloud

:::
as

:::::::::::
liquid-topped

::::
with

:::
ice

:::::::::::
precipitating

::::
from

::
it
::::::
below.

::::
The

:::::
phase

:::::::::::
classification

::
of

:::
the

:::::
ANN

::
in

:::
the

:::::
cirrus

::
is

::::::
mostly

:::
ice

::::::
except

:::
for

:::::
some

::::::
regions

:::::
close

::
to

:::::
cloud

::::
base

::::::
where

::::
high

::::::::
spectrum

:::::
width

:::
and

::::::::
near-zero

:::::
mean

:::::::
Doppler

::::::::
velocities

:::::
result

::
in

:
a
:::::::::
prediction

::
of

::::::::::
supercooled

::::::
liquid.

:::
The

:::::
cloud

:::::
fields

::::
were

::::::::
extensive

::
so

:::::::::
CALIPSO

::::::::
identified

:
a
::::
very

::::::
similar

:::::
cloud

:::::::
situation

::::
with

::
a

:::::
cirrus

::
of

::::
high

::::::
vertical

:::::
extent

::::
and10

:
a
:::::::
midlevel

:::::
cloud

::
in
:::::::::

3.5-5 km.
:::
The

::::::::
CALIOP

:::::
signal

::::
was

::::
fully

:::::::::
attenuated

::
in

::::
this

:::::
cloud

::::
layer

:::
so

:::
the

:::
low

::::
level

::::::
warm

:::::
clouds

:::::
were

::::::
missed

::
by

:::
the

:::::::
satellite

::::::::::
observation.

::::
The

:::::::::
CALIPSO

:::::
cloud

:::::
phase

:::::
index

::::::::
classified

:::
the

::::
high

:::::
cloud

:::
as

:::
ice

:::::
cloud

:::
and

:::
the

::::::::
midlevel

::::
cloud

:::
as

:::::::::::
liquid-topped

:::::
cloud

::::
with

:::::::::
liquid-only

:::
or

:::::
liquid+15 min

:::
ice

::
in

:::
the

:::::
lower

::::::
regions

::
of
::::

this
:::::
cloud.

:::::::::
CALIPSO

::::
thus

::::::::
validates

::
the

::::::::::
ANN-based

::::::
liquid

::::::::
prediction

:::
for

:::
the

:::::::
midlevel

::::::
cloud.

::::
This

::::
hints

::
to

:::
the

:::::::::
usefulness

::
of

:::::::::
employing

::::::::::::
satellite-based

:::::::::::
hydrometeor

:::::
target

:::::::::::
classifications

::
as

:::::::::::
independent

::::::::
validation

::::
tool.

:
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Figure 6.
::
a)

::::::
Curtain

::::
plots

::
of

:::::::
CALIOP

::::::
1064 nm

::::::::
attenuated

:::::::::
backscatter

::::::::
coefficient

:::
and

::
b)

:::::::
CALIOP

::::
cloud

:::::
phase

:::::
index

::
on

:::
Oct

::
5,

::::
2014

:::::
where

::
the

::::::
closest

::::::
distance

::
of

::::::::
CALIPSO

::
to

::::::
Cabauw

:::
was

:::::
47 km

::
at

:::::::::
01:05 UTC.

3.3
::::::::
Statistical

::::::
results

:::
for

::::::
entire

::::::::
ACCEPT

::::
field

:::::::::
campaign

:
A
:::::

more
:::::::
general

::::::::
evaluation

:::
of

::
all

::::::::
methods

::
is

::::
done

:::
for

:::
the

:::::
entire

::::::::
ACCEPT

:::::
field

::::::::
campaign

:::::::::
comprised

::
of

::::::
1070 h for the MWR

radome to dry)
::
of

::::::::::
observations

::::::::
counting

::::
more

::::
than

:::::
1.7 M

::::::::
samples.

:::
The

::::::::
summary

:::
of

:::
this

:::::::::
evaluation

::
is

::::::::
presented

::
in

:::::
Table

::
3.

:::
All

:::::::::::::
ANN-thresholds

:::::::
achieve

::::
high

::::::::
precision

:::::
values

::::::
> 0.9,

:::::::::
indicating

:
a
::::
low

::
FP

::::
rate.

::::::
Recall

::::::
values

:::
are

:::::::::
moderately

:::::
lower

:::::::::
compared

::
to

::
the

::::
Nov

:::::
17-18,

::::
2014

::::
case

:::::
study,

:::::::
ranging

::::
from

:::
0.4

::::::::::::
(deBoer2009)

::
to

::::
0.54

:::::::::::
(Shupe2007).

::::::::
Accuracy

:::
lies

::::::
above

:::
0.75

::::::
(three

:::
out

::
of5

:::
four

::::::::::
predictions

:::
are

::::::
correct)

:::
for

:::
all

:::::::
methods

::::::
except

::::::
slightly

:::::
lower

::::::
values

:::
for

::::::::::
deBoer2009

:::::::::
(explained

::
in

::::::
Section

:::::
3.1).

::::::::
However,

::::::::::
deBoer2009

:::::::
achieves

::::
best

:::::::::
correlation

:::
for

:::::::::::
ρMWR-LWP,LLT:

and invalid MWR-LWP data masked for analysis due to precipitation.

(Garrett and Peng, 2021)
:::::::::::::
ρMWR-LWP,LWPad

,
::::
due

::
to

:::
CD

:::::::::::::
overestimation

::::::
(larger

::::::::
numbers

::
of

::::
FP)

:::
for

::::::::::
Shupe2007,

:::::::::
Luke2010

::::
and

:::::::
linear-1.

:::::::
Overall,

::
all

:::::::
methods

:::::::
achieve

:::::
better

:::::::::
correlation

::::::
values

::
for

:::
the

:::::
entire

::::
data

:::
set

::::::::
compared

::
to

:::
the

::::
case

:::::
study

::
of

::::
Nov

::::::
17-18,

:::::
2014,

::::
with

:::::
high

::::::::::::
ρceilo-CBH,LLH,

:::::
values

:::::::
ranging

:::::
from

:::::::::
(0.86-0.92)

::::
and

::::::
(0.97)

:::
for

::::::::
Cloudnet

::::::::::
respectively.

::::
The

:::::::
similar

:::::
values

:::
of10

:::::::::
correlation

:::::::::
coefficients

::::
and

:::::
cloud

::::::
droplet

:::::::::
prediction

::::
error

::::::
matrix

::::::::
elements

::
in

:::::
Table

:
2
::::
and

:::::
Table

:
3
:::::::
indicate

::::
that

:::
the

:::::
entire

::::
data

::
set

::
is
::::
well

::::::::::
represented

:::
by

:::
the

::::
Nov

::::::
17-18,

:::::
2014

::::
case

:::::
study.

:::
As

::::::::
indicated

:::
in

::::::
Section

::::
3.1,

:::::::::::::
mis-interpreted

:::::::
spectral

:::::::::
signatures

:::::
(small

:::
ice

:::::::
particles

::::
with

::::
low

:::
fall

:::::
speed

:::
are

:::::::::::
misclassified

::
as

::::
ice)

:::
and

:::::::::
turbulence

:::::::::
broadened

:::::
radar

:::::::
Doppler

::::::
spectra

:::
are

:::
the

:::::
main

:::::
driver

:::
for

::::::::::::::::
miss-classifications

::
of

:::
the

:::::::::
pre-trained

:::::::::::::::
Luke et al. (2010)

::::::::
approach.

:
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Table 3. Error matrix, performance metrics, and correlation coefficients for ceilometer-CBH vs. LLH, MWR-LWP vs. LLT, MWR-LWP vs.

LWPad,cor:
, for case study Nov 17-18

::
the

:::::
entire

:::::::
ACCEPT

::::
data

::
set. Statistic includes only valid pixel.

Shupe2007 deBoer2009 Luke2010 linear-1 Cloudnet

TP 28684
::::::
406235 22209

::::::
302643 26803

::::::
374880 28816

::::::
401331 46215

::::::
757342

TN 59342
::::::
919571 60605

::::::
938429 59615

::::::
925740 59620

::::::
925243 62424

::::::
962586

FP 3082
:::::
43015 1819

:::::
24157 2809

:::::
36846 2804

:::::
37343 0

FN 17531
::::::
351107 24006

::::::
454699 19412

::::::
382462 17399

::::::
356011 0

precision 0.903
::::
0.904 0.924

::::
0.926 0.905 0.911

::::
0.915

:
1

recall 0.621
::::
0.536 0.481

::::
0.400 0.580

::::
0.495 0.624

::::
0.530 1

accuracy 0.810
::::
0.771 0.762

::::
0.722 0.795

::::
0.756 0.814

::::
0.771 1

F1-score 0.736 0.632 0.707 0.740 1 ρMWR-LWP,LLT 0.436
::::
0.490 0.533

::::
0.566 0.490

::::
0.515 0.489

::::
0.530 0.471

::::
0.473

ρMWR-LWP,LWPad 0.275
::::
0.348 0.471

::::
0.462 0.335

::::
0.370 0.345

::::
0.387 0.399

::::
0.432

ρceilo-CBH,LLH 0.775
::::
0.915 0.725

::::
0.859 0.738

::::
0.897 0.755

::::
0.905 0.913

::::
0.974

Liq-Pxl at RH > 90 % n/a
::::
0.602 n/a

::::
0.653 n/a

::::
0.626 n/a

::::
0.620 n/a

::::
0.816

3.4 Statistical results for entire ACCEPT field campaign

A second, more general evaluation of the cloud droplet (CD) classification results of the ANN using the different mentioned

thresholds against the Cloudnet liquid target classification via error matrix and several independent observations is presented

in Table 3.

Overall, evaluation results are similar to the case study presented in Table 2) meaning the presented case study represents5

the data set well. Looking at the entire data set, all thresholds used in the ANN achieve high precision values > 0.9. Accuracy

values are slightly lower than for the case study and range between 0.72 (deBoer2009) and 0.77 (Shupe2007, linear-1). Again,

recall values are moderately lower ranging from 0.4 (deBoer2009) to 0.54 (Shupe2007). Multiple other case studies were

investigated with the same conclusion for false predictions. Missing spectral signatures and turbulence broadened spectra are

the main driver for miss-classifications of the pre-trained Luke et al. (2010) approach.10

An additional independent validation is done using radiosonde launches from the campaign site as well as launches from

DeBilt airport about 30 km away. Liquid-detected pixels are only evaluated in this way within±30 min of a radiosonde launch,

meaning only a small subset of data from the entire field experiment is considered. Radio sounding profiles with RH with

respect to liquid water (w.r.t.l.) larger than 90 % overlapping with liquid detection layers occur only during 1.5 h out of 58 h of

available liquid detection data, i.e. only during 2.5 % of the time is liquid classified. This validation method thus only has
::::
very15

limited utility for the quality of the thermodynamic phase classifications made, but is shown here for the sake of completeness

as similar future evaluation studies might have larger datasets available. However
::::
data

:::
sets

::::::::
available.

:::
As

::::::
shown

::
in

:::
the

:::
last

::::
row
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::
of

:::::
Table

:
3, for all methods the majority of number of liquid-containing pixels occur when the radiosonde RH w.r.t.l. is larger

than 90 % and liquid occurrence is thus likely. There are two explanations why the fraction of Cloudnet-classified liquid pixel

overlapping with areas of radiosonde RH > 90 % is much higher (72 %) than for the ANN results (54-61 %). Firstly, with the

radiosonde drifting away with height (and time), the assumption of having the same thermodynamic profile over the ACCEPT-

site and the sounding location becomes less certain for liquid detections higher in the atmospheric profile (where the ANN is5

predicting more liquid than Cloudnet). Secondly, the overlap fraction does include false positives(mostly caused by the ANN)

but not true negatives.
:::
not

::
all

::::::::
elements

::
of

:::
the

::::
error

::::::
matrix

:::
are

::::::::::
represented

::
in

:::
the

::::::
overlap

:::::::
fraction

::
of

::::
pixel

:::::
with

:::::::::::::
liquid-detection

:::
and

:::
RH

::
>
:::::
90 %

:::::
While

::::::
liquid

:::::
pixels

:::::::::::
unrecognized

:::
by

::::::::
Cloudnet

::::
(i.e.

::::::
beyond

::::
lidar

::::::::::
attenuation)

:::
are

::::
not

:::::::
included

::
in

:::
the

:::::::
overlap

:::::::
fraction,

:::::::
wrongly

:::::::
detected

:::::
ANN

:::::
liquid

:::::
pixels

::::
(i.e.

::::
false

::::::::
positives,

:::
FP)

:::
are

:::::::
included

::::
and

:::
thus

::::::
reduce

:::
the

:::::::
fraction

::
of

::::::
overlap

:::::
pixel

::
for

:::::::::::::
ANN-predicted

::::::
liquid.10

Error matrix, performance metrics, and correlation coefficients for ceilometer-CBH vs. LLH, MWR-LWP vs. LLT, MWR-LWP

vs. LWPad,cor, for the entire ACCEPT data set. Statistic includes only valid pixel.

::
To

::::::::::
understand

:::
the

:::::::::::
performance

::
of

::::
the

:::::
liquid

:::::::::
prediction

:::
by

:::
the

:::::
ANN

:::::
more

::
in
::::::

depth,
:::::::::
conditions

::::::
under

:::::
which

:::::::::
enhanced

:::::::
spectrum

:::::
width

::::::
values

:::
lead

::
to
::::::::::::::
liquid-prediction

::::
error

::::::
matrix

::::::::
elements

:::
TP,

::
FP,

::::
and

:::
FN

::
are

::::::::
described

::::::::::::
subsequently.

:::
The

:::::::::::
co-existence

::
of

:::::::
multiple

:::::::::::
hydrometeor

::::
types

::::
with

::::::::::
sufficiently

:::::::
different

:::
fall

::::::::
velocities

:::
in

:::
the

::::
same

:::::
radar

::::::
volume

:::::
leads

::
to

::::::::::
multimodal

:::::::
Doppler15

::::::
spectra

::::
with

:
a
::::
high

::::
total

::::::::
spectrum

::::::
width.

::
If

:::
the

::::::::::
slow-falling

::::::::::::
hydrometeors

::::
have

:
a
::::
low

:::::::::
reflectivity

::::
and

::::::
narrow

::::
peak

::::::
width,

:::
the

::::
ANN

:::::
likely

:::::::
predicts

::::::
liquid.

::
If

::::
there

:::
are

::::::
indeed

:::::
small

:::::
cloud

:::::::
droplets

::::
and

:::::
larger

:::
ice

::::::
crystals

::
in
:::
the

:::::::
volume,

::::
this

::::::
results

::
in

:::
TP.

::
If

:::::::
however,

:::::
there

::
is

:
a
::::::::::
co-existence

:::
of

:::::::
multiple

:::
ice

::::::
crystal

::::
types

:::
of

:::::
which

:::
one

::
is
:::::
small

::::
and

:::
has

:
a
:::::
small

:::
fall

:::::::
velocity,

::::
this

::::::
results

::
in

:::
FP.

::::::
Further,

::
if
:::
the

::::::::
enhanced

::::
SW

::
is

:::
not

::::::
caused

::
by

:::::::
multiple

:::::::::::
hydrometeor

:::::
types

:::
but

::
by

::::::::::
turbulence,

:::::
liquid

::::
peak

:::::::::
signatures

:::
can

:::
be

:::::::
smeared

::::
thus

::::::
leading

::
to

::::
FN.

::
In

:::::
calm

::::::::
conditions

:::::
(low

:::::::::
turbulence)

::
it
::
is

:::::
more

:::::
likely

:::
that

::
a
:::::::
bimodal

:::::::
Doppler

::::::::
spectrum

::::
with

::::
two20

::
ice

::::::
classes

::
is
:::::::::::
misclassified

::
as

::::
one

:::
ice-

::::
and

:::
one

:::::
liquid

:::::
class

::::::
leading

::
to
:::
FP.

:::::
This

:::::::
problem

:::::::::
diminishes

::::
with

:::::::::
increasing

:::::::::
turbulence

::::::
because

::
of
::::::::::
broadening

::
of

:::
the

:::::
peaks

::::
and

:::::::
smearing

::
of
:::
the

:::::::::
individual

::::::
peaks.

:::
The

:::::
latter

:::::::::
(smearing)

::
is

:::
the

::::
same

::::::::::
mechanism

:::
for

:::
FN

::
in

::::
high

:::::::
turbulent

::::::::::
conditions.

::::::::
However,

:::::::::
considering

::::
only

::::::::
spectrum

:::::
width

::
is
:::
not

::::::::
sufficient

::
as

::
it

::
is

::::::
always

:
a
:::::::::::
combination

::
of

::::
radar

::::::::::
reflectivity,

:::::
mean

:::::::
Doppler

:::::::
velocity,

::::::::
spectrum

:::::
width

::::
etc.

::::
that

::::
leads

:::
to

::::::
correct

::
or

::::::::
incorrect

:::::::::::
classification

:::
of

:::::
liquid

:::
by

:::
the

::::::
ANN.

:::
By

:::::::::
discussing

:::::::
relative25

::::::::
frequency

::
of

::::::::::
occurrence

:::::
(FoO)

:::::
plots

::
of

:::::
radar

::::::::
moments

:::
and

:::::::::::::
environmental

::::::::::
temperature

::
of

:::
the

::::::::::::::
liquid-prediction

:::::
error

::::::
matrix

:::::::
elements

:::
TP,

::::
TN,

:::
FP,

:::
FN

::
as

:::::::::
illustrated

::
in

::::::
Figure

:::
A3

::
in

:::
the

:::::::::
Appendix,

:::
we

:::::
assess

:::::
which

::::::::::::
combinations

::
of

::::::::
moments

::::::
mostly

::::
lead

::
to

:::
TP.

:::
As

:::::
shown

:::
in

:::::
Figure

::::
A3,

:::
the

::::::::::
distribution

::
of

:::::
radar

::::::::
moments

::
of

:::
TP

::
is

:::::::
different

:::::
from

:::::
those

::
of

::::
TN,

:::
FP,

:::
and

::::
FN

:::::
while

:::
the

::::
FoO

:::::::::
distribution

:::
of

:::::
radar

::::::::
moments

::
of

:::
the

:::::
latter

::::
(TN,

::::
FP,

:::
FN)

::::
are

::::::
mostly

::::::
similar.

:::::::::::
Specifically,

:::
the

:::::
radar

::::::::::
reflectivities

:::
of

:::
TP

::
of

:::::
cloud

:::::::
droplets

::
is

::::::::::
monomodal

::::
with

::
a
:::::::::
maximum

::::
FoO

::
at

:::::::
-25 dbZ

::
to

::::::::
-30 dBZ,

:::::
while

::
it

::
is

:::::::
bimodal

:::
for

::::
TN,

:::
FP,

:::
FN

:::::
with

:::
the30

:::
two

:::::::
maxima

::::::::
occurring

::
at

:::::::
-25 dBZ

::::
and

:::::::
-10 dBZ.

::::
The

::::::
second

:::::::::
maximum

::
at

:::::::
-10 dBZ

:::
can

:::
be

::::::::
attributed

::
to

::::::::
situations

::
in

::::::
which

:::
the

::::
ANN

::::::::
predicted

:::::
cloud

:::::::
droplets

:::
in

::::::::::
drizzle/rain.

::::
With

::::::
values

:::::::
between

::::::::
-2 m s−1

:::
and

:::::::::
0.5 m s−1

:::
the

:::::::::
distribution

:::
of

:::::
mean

:::::::
Doppler

::::::
velocity

:::
of

:::
TP

:
is
::::::::

narrower
::::
than

::
of

::::
TN,

:::
FP,

:::
FN

::::::
which

::::
have

::::
VD :::::

values
::
of

:::::
about

::::::::
-4 m s−1

:::
and

:::::::
1 m s−1

:::
and

::
a
:::::::::
maximum

::::
FoO

::
at

::::
more

:::::::
negative

::::::
values

::
of

::::::
around

:::::::::
-0.5 m s−1

::::
than

:::
the

:::
TP

::::::::::
(maximum

::::
FoO

::
at

::::::::::
-0.2 m s−1).

:::
TP

::::::::
generally

:::::
occur

::
at

:::::
larger

::::::::
spectrum

:::::
width

:
σ
::::
than

::::
TN,

:::
FP,

:::
FN

::::
with

:
a
:::::::::
maximum

::::
FoO

::
of

:::
TP

::
at

::::::::::::
0.2–0.25 m s−1

:::::
while

:::
the

::::
FoO

::
of

::::
TN,

:::
FP,

:::
FN

:::::
peaks

::
at

:::::::::::::
0.05-0.1 m s−1.35
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::::::::
Spherical

:::::::
particles

::::
have

::
a
:::::::::
theoretical

::::
radar

::::::
linear

::::::::::::
depolarization

::::
ratio

::::::
(LDR)

::
of

::::::
minus

::::::
infinity

:::
dB,

::::::::
however,

::::
due

::
to

::::::::
technical

:::::::::
limitations,

:::
the

:::::::
smallest

:::::::::
detectable

:::::
LDR

::
of

::::
the

:::::
MIRA

::::::
cloud

::::
radar

::
is
:::::::

-30 dB
:::::
which

:::::::::::
corresponds

::
to

:::
the

::::
peak

:::
of

::::
FoO

::
of

::::
TP.

:::::
While

:::
FN

::::
also

::::
peak

::
at
:::::::

-30 dB,
:::
TN

::::
and

:::
FP

:::
are

:::::::::::
characterized

:::
by

::::
high

::::
FoO

::
in

:::
the

:::::
range

:::
of

::::::
-30 dB

::
to

::::::
-25 dB

:::::
which

:::::
again

::::
can

::
be

::::::::
attributed

::
to

::::::::::
drizzle/rain

::::::
where

::::::
perfect

::::::::
sphericity

:::
of

:::
the

:::::::::::
hydrometeors

::
is
::::
not

::::::
always

:::::
given.

::::
The

::::
FoO

::::::::::
distribution

::
of

:::::
error

:::::
matrix

::::::::
elements

::
in

:::
the

:::::::::::::
environmental

::::::::::
temperature

:::::
space

:::::
show

::::
that

::::
only

:
a
:::::::::::

considerable
:::::::
fraction

::
of
::::

TN
:::
are

:::::::
detected

:::
at

::::
very5

:::
low

:::::::::::
temperatures

:::::
which

::
is
:::::::::

plausible.
:::::::::
Maximum

::::
FoO

::
of

:::
all

::::
four

::::
error

::::::
matrix

::::::::
elements

:::::
occur

::
at
:::::::
positive

:::::::::::
temperatures

::::::
which

:
is
::::::
caused

:::
by

:::
the

::::::::::
consecutive

:::::::::
attenuation

:::
of

:::::::::::
ground-based

::::
lidar

::::::
signal

::::
with

:::::
height

:::::::
leaving

::::
more

:::::
pixel

::
at

:::::
higher

:::::::::::
temperature

::
in

::
the

:::::::::::::
Cloudnet-ANN

:::::::::::
comparison.

:::::::::
Comparing

:::
the

::::
FoO

:::
of

:::::
liquid

::::::::
detection

::::
error

::::::
matrix

::::
with

::::::
respect

::
to

:::
the

::::::::
different

::::::::::
backscatter-

:::
and

::::::::::::
depolarization

:::::::::
thresholds

:
(Shupe2007,

:
deBoer2009,

:
Luke2010,

::::
and

:
linear-1Cloudnet TP406235 302643 374880 401331

757342 TN919571 938429 925740 925243 962586 FP43015 24157 36846 37343 0 FN351107 454699 382462 356011 010

precision 0.904 0.926 0.911 0.915 1 recall 0.536 0.400 0.495 0.530 1 accuracy 0.771 0.722 0.756 0.771 1 F1-score 0.673 0.558

0.641 0.671 1 ρMWR-LWP,LLT 0.490 0.566 0.515 0.530 0.473 ρMWR-LWP,LWPad
0.348 0.462 0.370 0.387 0.432 ρceilo-CBH,LLH 0.915

0.859 0.897 0.905 0.974 Liq-Pxl at RH > 90 % 0.602 0.653 0.626 0.620 0.816
:
),
:::
the

:::::
more

::::::::
stringent

::::::
criteria

::
of

:::::::::::
deBoer2009

:::::::
generally

::::
lead

:::
to

:::::::
narrower

::::
FoO

:::::::::::
distributions

::
of

::::
TP.

:::::::::::
Summarizing,

:::
as

::::::
shown

::
in

:::
the

:::::::::
description

:::
of

::::
FoO

::
of

:::
the

:::::
radar

::::::::
moments

::
of

:::
the

::::
error

::::::
matrix

::::::::::
components

::::::
above,

:::
TP

:::
are

::::::
mostly

:::::::::::
characterized

::
by

::::
high

::::::::
spectrum

:::::
width

::
in
:::::::::::
combination

::::
with

::::
low

:::::::
absolute15

:::::
values

::
of

::::
VD::::

and
:::::
small

::::
radar

:::::::::::
reflectivities

:::
but

::::
due

::
to

:::
the

:::::::
overlap

::
of

:::::
radar

::::::::
moments

::
of

:::
all

:::::
error

:::::
matrix

:::::::::
elements,

:::
the

:::::
same

::::::::::
combination

::
of

:::
Ze,

::::
VD,

::::
and

:
σ
::::
can

::
be

::::::
caused

::
by

:::
TP,

::::
TN,

:::
FP,

::::
FN.

4 Summary and Outlook

The current study shows that synergistic observations of depolarization lidar and cloud Doppler radar in conjunction with

machine learning techniques can be used to detect liquid beyond full lidar signal attenuation. It was shown that this
::::
This20

approach performs well in stratiform (low-turbulent) cloud situations but is not suited for strongly convective situations in

which the imprint of different hydrometeor populations in the same cloud volume on the cloud radar Doppler spectrum is

masked
:
,
:::
e.g.

:
by turbulent spectrum broadening. We demonstrated that the ANN of Luke et al. (2010) pre-trained with the

MPACE data set in Alaska could successfully be applied to the ACCEPT data set obtained in Cabauw, the Netherlands and

is able to improve the Cloudnet target classification for stratiform optically thick liquid-layers or situations in which multiple25

liquid layers exist. We applied different published lidar-based liquid-detection thresholds to the predicted lidar backscatter

coefficients and depolarization lidars - all were found to perform better in some situations than others and could be seen as

either to stringent (deBoer2009) missing thinner liquid layers or to
:::
too broad (Shupe2007, Luke2010, "linear-1") leading to

misclassification
::::::::::::::
misclassifications of ice as liquid. No suggestion on best thresholds can thus be made. To overcome limitations

due to ambiguities caused by thresholding, focus should therefore be put on the development of techniques which do not rely on30

explicit lidar thresholds for liquid detection. This could be realizable by applying novel convolutional artificial neural networks

which could be used to exploit the full information content of high-resolution cloud radar Doppler spectra.
:::::::::::
Additionally,
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Figure A1.
::::
Zoom

::
of

:::::::
Cloudnet

::::
target

::::::::::
classification

::::
from

::::::
0–4 km

::::::
altitude

::
for

::::
Nov

:::::
17-18,

::::
2014

::::
case

::::
study

::
in

::::::
Cabauw,

::::::::::
Netherlands.

::::
radar

:::::::
Doppler

:::::::
spectra

:::::::::::::
peak-separation

:::::::::
techniques

::::
such

:::
as

:::::::
PEAKO

::::::::::::::::::
(Kalesse et al., 2019)

:::
and

::::::::
peakTree

::::::::::::::::::
(Radenz et al., 2019)

::
are

:::::::
helpful

:::::
assess

:::
the

::::::::::
possibilities

::
of

:::::
liquid

::::::::::
occurrence.

:

::::::::::
Furthermore,

::::
two

:::::
recent

::::::
studies

::::
also

::::::
showed

:::
the

::::::
benefit

:::::::::::
distinguishing

::::::::
between

::::::::
cloud-top

:::::::::::
liquid-bearing

:::::
layers

::::
and

::::::::
embedded

:::::
liquid

:::::
layers

:::::
when

::::::::
assessing

:::
the

:::::::::::
performance

:::
of

:::::::::::::
liquid-detection

::::::::
retrievals

:::::::::::::::::
(Silber et al., 2020)

:::
and

:::::::::::::::::::
(Kalogeras et al., 2021)

:
.

:::::::::::::::
Silber et al. (2020)

::::::::
retrieved

:::::
cloud

:::::::::::::
thermodynamic

:::::
phase

::
of

::::::
Arctic

::::::
clouds

:::::
based

:::
on

:::
one

:::::
year

::::::::::::
zenith-pointing

::::::::
Ka-band

:::::
radar5

:::
and

:::::
HSRL

:::::::::::
observations.

:::::
They

:::::
found

::::
that

::::::::
cloud-top

:::::::::::
liquid-bearing

:::::::
samples

::::
can

::
be

::::
more

:::::::
reliably

:::::::
detected

::::
than

:::::::::
embedded

:::::
liquid

:::::
layers

::
as

:::
the

:::::
latter

:::
are

:::::
more

:::::::
difficult

::
to

:::::::
separate

:::::
from

::::::
falling

:::
ice

:::::::::
signatures

::
in

:::
the

:::::
PDF

::
of

:::
the

::::
first

:::::
three

::::
radar

::::::::
moments

:::
as

:::
well

:::
as

:::::::
Doppler

:::::::
spectra

:::
left

:::::
slope

::::
and

::::
right

::::::
slope.

:::::::::::::::::::
Kalogeras et al. (2021)

::::::::
developed

::
a
::::::::
Ka-band

:::::::::
radar-only,

:::::::::::::
moment-based

::::::::
technique

:::
for

::::::::::
supercooled

::::::
liquid

:::::
water

::::::::
detection

::
in
::::::

Arctic
:::::::::::
mixed-phase

:::::::
clouds.

::::
The

::::::
novelty

:::
of

:::
this

:::::::
method

::
is
::::

that
::
it
::
is

::
a

::::::::::::::::::::
neighborhood-dependent

::::::::
algorithm

:::::::::
employing

::::::::
gradients

::
of

:::::::::
moments.

::::
They

:::::::::
concluded

:::
that

::::
best

::::
skill

:::::
levels

:::
for

:::::
liquid

::::::::
detection10

::
are

:::::::
realized

::::
for

:::::::::::
combinations

::
of

:::::::
spectral

::::::
width

:::
and

::::::::::
reflectivity

::::::
vertical

:::::::
gradient

::::
and

::::
also

:::::
found

:::::
their

::::::::
algorithm

:::
to

::
be

:::::
most

::::::
reliable

:::::
when

::::::
applied

::
to

:::::
cloud

:::::
tops.

The identification of the presence of liquid layers in the entire vertical column of optically thick or multilayered
:::::::::::
multi-layered

cloud situations is a first step to get a better understanding of which microphysical particle growth processes might occur in

a mixed-phase cloud. The shown results will therefore be used in follow-up studies for characterization of microphysical15

hydrometeor growth processes.

Data availability. Cloudnet-processed data for the ACCEPT campaign are available via https://cloudnet.fmi.fi. The Mira-35 moment data as

well as compressed (noise-removed) Doppler spectra are available upon request from Patric Seifert (seifert@tropos.de).
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Figure A2.
::::
Zoom

::
of

:::::::::
comparison

::
of

::::
cloud

::::::
droplet

:::::::
detection

::
of

:::::::
Cloudnet

:::
and

::::
ANN

:::::
(using

::::::
linear-1

:::::::::
thresholds)

::::
from

::::::
0–4 km

::::::
altitude

::
for

::::
Nov

:::::
17-18,

::::
2014

:::
case

:::::
study

:
in
:::::::
Cabauw,

::::::::::
Netherlands.

::::
Black

::::
dots

::::::
indicate

::::::::
ceilometer

:::
first

:::::
cloud

:::
base

::::::
height.
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