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Abstract. Detection of liquid-containing cloud layers in thick mixed-phase clouds or multi-layer cloud situations from ground-

based remote sensing instruments still pose observational challenges yet improvements are crucial since the existence of multi-

layer liquid layers in mixed-phase cloud situations influences cloud radiative effects, cloud life time, and precipitation formation

processes. Hydrometeor target classifications such as from Cloudnet that require a lidar signal for the classification of liquid

are limited to the maximum height of lidar signal penetration and thus often lead to underestimations of liquid-containing cloud5

layers. Here we evaluate the Cloudnet liquid detection against the approach of Luke et al. (2010) which extracts morphologi-

cal features in cloud-penetrating cloud radar Doppler spectra measurements in a artificial neural network (ANN) approach to

classify liquid beyond full lidar signal attenuation based on the simulation of the two lidar parameters particle backscatter coef-

ficient and particle depolarization ratio. We show that the ANN of Luke et al. (2010) which was trained in Arctic conditions can

successfully be applied to observations in the mid-latitudes obtained during the seven-week long ACCEPT field experiment in10

Cabauw, the Netherlands, 2014. In a sensitivity study covering the whole duration of the ACCEPT campaign, different liquid-

detection thresholds for ANN-predicted lidar variables are applied and evaluated against the Cloudnet target classification.

Independent validation of the liquid mask from the standard Cloudnet target classification against the ANN-based technique is

realized by comparisons to observations of microwave radiometer liquid water path, ceilometer liquid-layer base altitude, and

radiosonde relative humidity. In addition, a case-study comparison against the cloud feature mask detected by the spaceborne15

lidar aboard the CALIPSO satellite is presented. Three conclusions were drawn from the investigation: First, it was found that

the threshold selection criteria of liquid-related lidar backscatter and depolarization alone control the liquid detection consid-

erably. Second, all threshold values used in the ANN-framework were found to outperform the Cloudnet target classification

for deep or multi-layer cloud situations where the lidar signal is fully attenuated within low liquid layers and the cloud radar is

able to detect the microphysical fingerprint of liquid in higher cloud layers. Third, if lidar data is available, Cloudnet is at least20

as good as the ANN. The times when Cloudnet outperforms the ANN in liquid detections are often associated with situations

where cloud dynamics smear the imprint of cloud microphysics on the radar Doppler spectra.
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1 Introduction

In mixed-phase clouds the variable mass ratio between liquid water and ice as well as its spatial distribution within the cloud

plays an important role for cloud life time, precipitation processes, and the radiation budget (Sun and Shine, 1994; Yong-Sang

et al., 2014; Morrison et al., 2012). The complexity of interactions in mixed-phase clouds may result in parameterizations

that are based on highly uncertain mixed-phase cloud classifications and thus lead to a misrepresentation of those clouds in5

models of all scales. Illingworth (2007) compared vertical ice water and liquid-water content as observed by a combination

of ground-based radar, lidar, and microwave radiometer (MWR) comprised within the Cloudnet project with Global Climate

Models (GCM). They showed that many GCMs underestimate the presence of mid-level clouds (As, Ac) by at least 30 % and

that there is a large spread in the stated frequency of occurrence of liquid water in the models. This underestimation of the

supercooled liquid fraction (SLF) in mixed-phase clouds in many GCM was e.g. also described in Komurcu et al. (2014). Tan10

et al. (2016) argued that a realistic representation of the SLF in GCM is needed to better constrain the equilibrium climate

sensitivity. They stated that this can only be reached by more accurate observations of the distribution of supercooled liquid

in mixed-phase clouds. This remains a challenge due to the difficulty of identifying the presence of supercooled liquid water

layers embedded in cloud regions dominated by ice (Shupe et al., 2008; Luke et al., 2010; Silber et al., 2020). Besides single-

layer mixed-phase clouds existing of a supercooled liquid top where ice particles are nucleated and precipitate out, multi-layer15

clouds (MLC) often exist (Vassel et al., 2019). MLC can interact microphysically via the seeder-feeder effect (e.g., (Cotton and

Anthes, 1989; Hobbs and Rangno, 1998; Radenz et al., 2019; Ramelli et al., 2021), i.e. ice crystals nucleated in an upper liquid

layer can fall into lower liquid layers, interact with its hydrometeors and influence cloud lifetime and precipitation efficiency.

We thus argue that it is important to improve the detection of multi-layer liquid layer occurrences.

Synergistic measurements of cloud Doppler radar and polarization lidar can be used to identify cloud thermodynamic phase20

in mixed-phase clouds (e.g., Shupe (2007); Illingworth (2007); de Boer et al. (2009); Kalesse et al. (2016a) based on differences

in the scattering mechanisms at the different wavelengths. While cloud radars are highly sensitive to large particles such as ice

crystals (backscattering cross section is proportional to the particle size D6 for the size range in which the Rayleigh approxi-

mation is valid), lidars are sensitive to higher concentrations of smaller particles such as cloud droplets and aerosol particles

as the backscattering cross section is proportional to the projected surface area of the scatterers (O’Connor et al., 2005). As25

an additional variable, the state of polarization of the received lidar backscatter cross section gives information about particle

shape. This is usually utilized by means of the detection of the circular or linear depolarization ratio (Sassen, 1991), hereafter

referred to as lidar depolarization ratio. When multiple scattering is negligible, a low (high) lidar depolarization ratio indicates

the presence of spherical (non-spherical) particles (Hu et al., 2006). Except for small quasi-spherical ice particles, ice is usu-

ally non-spherical so that the lidar depolarization ratio can also be used to infer cloud phase (Seifert et al., 2010). Concluding,30

liquid-dominated layers are characterized by high lidar backscattering cross section, low lidar depolarization ratio concurrent

with small radar reflectivities and small mean radar Doppler velocities. Ice-dominated layers lead to a low lidar backscatter-

ing cross section, a high lidar depolarization ratio as well as higher radar reflectivities and higher mean Doppler velocities.

Such synergistic lidar-radar retrievals are however only applicable up to the maximum lidar observation height determined by
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complete signal attenuation at a penetrated optical depth of about three and thus do not allow for the characterization of cloud

liquid in the entire vertical column, e.g. in the presence of multi-layered mixed-phase clouds.

Since cloud Doppler radars are able to penetrate multiple liquid layers, they can be used to detect warm and supercooled

liquid layers (SCL) beyond the lidar measurement range via identification of morphological features in the cloud radar Doppler

spectrum (Luke et al., 2010; Verlinde et al., 2013; Kalesse et al., 2016b) and thus have great potential to characterize the5

distribution of SCL in the entire vertical column. Specifically, if cloud ice and liquid are observed in the same radar sampling

volume and if their populations are sufficiently separated by their respective terminal fall velocities, the cloud radar Doppler

spectra may contain multiple peaks. Since the terminal velocity of small cloud droplets is negligible they cause a peak at about

0 m s−1 in the Doppler spectra; any deviation from this is caused by vertical motions (Shupe et al., 2004). Ice particles have

larger and broader fall velocity distributions and thus cause a spectral peak at higher Doppler velocities. If the fall velocity10

difference between liquid and ice is small (for example when the ice population is comprised of smaller crystals), single-peak

skewed (non-Gaussian) Doppler spectra are observed (Williams et al., 2018). Sub-volume turbulence does however induce

spectrum broadening which can smear microphysically-induced morphological features in the Doppler spectrum (Kollias et al.,

2007). The separation of both hydrometeor populations is thus only possible if the cloud radar settings are optimized to reduce

spectrum broadening by a short dwell time, a small beam width, and a small resolution volume (Kollias et al., 2016). Sufficient15

range-dependent sensitivity of the cloud radar is also required as the reflectivity of the liquid peak comprised of small droplets

can be as low as -40 dBz for convective situations Lamer et al. (2015).

As specific technical settings and cloud conditions are required in order to identify liquid water directly from cloud radar

measurements, more sophisticated approaches are needed to make cloud radars applicable to a broader range of conditions.

Artificial neural networks (ANN) are increasingly being used in atmospheric science to evaluate large datasets and/or to com-20

bine the advantages of different sensors. In short, ANNs are mathematical models trained to recognize patterns. Validation is

often done by comparison to other (physical) retrievals. As emphasized in Liljegren (2009), ANN-based retrievals have been

proven to be reliable statistical techniques that are preferable to computationally expensive variational retrievals for certain ap-

plications. Liljegren (2009) developed an ANN algorithm in which G-band vapor radiometer measurements are used to retrieve

low amounts of liquid water and water vapor. Strandgren et al. (2017a) determine cirrus properties from the SEVIRI imager25

on Meteosat Second Generation satellites based on a set of ANN trained SEVIRI thermal observations and satellite-based

lidar backscatter products among others. Andersen et al. (2017) use an ANN based on 15 years of monthly averaged Moderate

Resolution Imaging Spectroradiometer (MODIS) liquid cloud products to determine the drivers of marine liquid-water cloud

occurrence. All of the above studies employ multi-layer perceptrons (MLP, a specific type of feed-forward artificial neural net-

work) that are commonly used in atmospheric sciences as they are able to model highly nonlinear functions (Andersen et al.,30

2017). Generally speaking, a vector of output data is estimated from an input data vector by modeling the relationship between

the input- and output data. The training of the MLP is done for a variety of examples where the input- and corresponding output

is known. The MLP structure consists of an input layer, a chosen number of hidden layers, and an output layer. Each of these

layers is made of a certain number of neurons that exchange information in a way that the output of the previous layer is used to

process the output for each connected neuron in the subsequent layer according to the corresponding numeric weights assigned35
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to each neuron–neuron connection through an activation function (Strandgren et al., 2017b). By using error back-propagation

introduced in Rumelhart et al. (1986), the numeric weights of the neurons are adjusted in an iterative process until the squared

error between the predicted (estimated) output and the known reference output data reaches its minimum.

In the present study an ANN pre-trained in Arctic conditions developed by Luke et al. (2010) for cloud radar-based liquid

detection beyond full lidar signal attenuation is applied to mid-latitude observations (Section 2). The objective of the study5

is to evaluate the ANN-based liquid classification against the Cloudnet target classification (Hogan and O’Connor, 2006) by

using independent measurements of MWR liquid water path (LWP), first liquid-dominated cloud base height from ceilometer

observations, relative humidities with respect to liquid as obtained from radio soundings and for one case study also space-

borne lidar observations from a CALIPSO overpass (Section 3). A short conclusion summarizing the findings is provided in

Section 4.10

2 Methods

2.1 Observations

2.1.1 ACCEPT field experiment

Data used in this study were obtained during the Analysis of the Composition of Clouds with Extended Polarization Tech-

niques (ACCEPT) field experiment which took place at the Cabauw Experimental Site for Atmospheric Research (CESAR,15

(51.971◦N, 4.927◦E)) in the Netherlands during 1 October- 18 November, 2014. During that field experiment, the remote-

sensing instrumentation suite operated by the Royal Netherlands Meteorological Institute (KNMI) was complemented by the

Leipzig Aerosol and Cloud Remote Observations System (LACROS; Büehl et al. (2013)) mainly consisting of a vertically-

pointing 35 GHz MIRA-35 cloud radar (Görsdorf et al., 2015), a ceilometer, a multi-wavelength polarization Raman lidar

(PollyXT; Engelmann et al. (2016)), and a HATPRO-MWR (Rose et al., 2005). Additionally, a new polarimetric hybrid-mode20

35 GHz cloud radar (named hybrid MIRA-35) from METEK GmbH described in Myagkov et al. (2016a, b) and the Trans-

portable Atmospheric Radar (TARA, S-band) operated by the TU-Delft were deployed (Pfitzenmaier et al., 2017).

2.1.2 MIRA-35 characteristics

In the present study, data from the vertically-pointing MIRA-35 was used as input to the ANN of Luke et al. (2010) to predict

liquid beyond full lidar signal attenuation. The MIRA-35 was operated with a pulse length of 208 ns, resulting in a vertical25

range resolution of 31.18 m. Incoherent averages of 20 Doppler spectra produced from a series of 256 consecutive radar pulses

with a pulse repetition frequency of 5000 Hz led to a temporal resolution of 1.024 s. The MIRA-35 Doppler spectra resolution

was 8 cm s−1.
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2.1.3 Cloudnet target classification

The observations of the MIRA-35, the ceilometer and the MWR have been processed using the widely-used Cloudnet pro-

cessing chain. One of the main products of Cloudnet is the target classification product (Hogan and O’Connor, 2006) which is

illustrated in Fig. 1 and which we use to validate the ANN-predicted liquid detections. In order to classify a cloud volume to

contain liquid, the Cloudnet target classification algorithm requires a valid lidar attenuated backscatter coefficient. For deep- or5

multiple liquid layers and situations with low-level fog the lidar signal can get fully attenuated, so the Cloudnet target classi-

fication thus underestimates the occurrence of liquid in the entire vertical atmospheric column and overestimates the presence

of ice as target category (Griesche et al., 2020). Such a situation is depicted in the synergistic radar-lidar observables and the

resulting Cloudnet target classification in Fig. 1. The signals of the PollyXT lidar /ceilometer were fully/partially attenuated

by the near-surface fog occurring after Nov 18, 2014 07:30 UTC so that the cloud in 1.5-2.5 km around the 0 °C-isotherm was10

classified as ice cloud.

2.2 Description of the used Artificial Neural Network

Luke et al. (2010) use collocated measurements with profiling cloud Doppler radar and polarization lidar in thin mixed-phase

clouds or lower layers of thick mixed-phase clouds to provide information about the existence of liquid water in higher cloud

layers by predicting the lidar backscatter and depolarization signal from morphological features in the cloud radar Doppler15

spectrum. The procedure to determine the existence of supercooled-liquid droplets from cloud radar Doppler spectra is a

two-step technique. In the first step, morphological feature extraction from cloud radar Doppler spectra is done by applying a

second order Gaussian continuous wavelet transform (CWT) to each measured radar Doppler spectrum. In that way, the spectral

power is decomposed into a 2D-array with feature localization in Doppler velocity and spectrum width; each Doppler spectrum

can thus be regarded as a sum of different Gaussians. In the second step, a selected subset of bins from six different scales20

of the CWT as well as the first three radar moments (reflectivity factor (Ze [dBZ]), mean Doppler velocity (VD [m s−1]),

and Doppler spectrum width (σ [m s−1])) of each Doppler spectrum are the input to the ANN used in this work to predict

the existence of liquid. The ANN is of the multi-layer perceptron (MLP) type consisting of 256 input nodes, five hidden

layers, and two output nodes. Each of the five hidden layers consists of 32 nodes. Lidar particle backscatter coefficient (β

[sr−1 m−1] ) and lidar depolarization ratio (δ) are the two output variables from which the existence of liquid is predicted25

using appropriate thresholds of β and δ later on. In the training phase (which was performed on data from the Mixed Phase

Arctic Clouds Experiment (MPACE, Verlinde et al. (2007)) obtained in fall 2004 at the U.S. Department of Energy’s (DOE)

Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) permanent site in Utqiagvik (formerly known

as Barrow), Alaska, the backpropagation of errors algorithm was applied. In short, the β and δ output of the ANN for each

time and height pixel were compared to values measured with a High Spectral Resolution Lidar (HSRL, Eloranta (2005)). The30

difference between ANN-predicted and lidar-observed (i.e., the error) was monitored and the internal weights of the nodes were

adjusted until the error did not decrease any further during the successive cycling through the Doppler spectra training data set.

Only a fraction of the MPACE data was considered in the training phase, most of the data was used for validation. Turbulent
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Figure 1. (A) MIRA-35 radar reflectivity factor, (B) radar mean Doppler velocity (middle), (C) radar spectrum width, (D) PollyXT lidar

attenuated backscatter coefficient at 532 nm, (E) PollyXT lidar linear volume depolarization, (F) Cloudnet target classification of Nov 17,

2014 00 UTC to Nov 18, 2014 13:30 UTC observed during the ACCEPT experiment in Cabauw, Netherlands. Black dots (A-C) indicate the

first cloud base detected by the ceilometer.

broadening of the cloud radar Doppler spectrum (e.g. in strong convection) decreases the imprint of cloud microphysics on

the Doppler spectra. The MPACE dataset was characterized by largely stratiform conditions. As stated in Gardner and Dorling

(1998), the ability of an ANN to predict cloud properties does not only dependent on an informed choice of predictors but

also requires sufficient data that fully represent all cases that the ANN is required to generalize, as ANNs perform well for

interpolation but poorly for extrapolation. We can thus only expect good predictions of liquid in low-turbulent clouds but not5

in strongly convective clouds. The objective of this study was to check the performance of the ANN trained with the MPACE

observations in Luke et al. (2010) on a new data set, the ANN was thus not re-trained.
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2.3 Classifying liquid containing sections from ANN-predictions

The ANN-predicts backscatter coefficient and particle depolarization ratio. Thresholds need to be applied to these predicted β

and δ in order to identify regions which show optical properties similar to the ones produced by liquid water.

For visual illustration of the mapping from predicted lidar variables to hydrometeor class labels, a scatter plot of predicted

β and δ was created (Fig. 2 (A)). As previously mentioned, lidar observed or ANN-predicted high values of β and near-zero5

δ are reliable indicators of liquid-dominated cloud regions; they clearly stand out as a feature in Fig. 2 (A). The scatter plot

of predicted β and δ shows two more distinct features, one between the functions "linear-1" and "linear-2" with higher values

of δ and lower values of β indicating ice and another feature of very high values of δ and very low values of β situated

below the function "linear-2" that can be attributed to the optically thinner ice cloud with lower radar reflectivities above 7 km

on Nov 18, 2014 (see Fig. 2 (B)). Similar to Luke et al. (2010), fixed thresholds of β and δ were used to derive a binary10

mask separating liquid predictions from other target types. For a sensitivity study of ANN-predicted liquid occurrence for the

entire ACCEPT data set, different HSRL-based published thresholds (Shupe, 2007; de Boer et al., 2009; Luke et al., 2010)

as well as a new linear function threshold (labeled "linear-1" in Fig. 2) were employed (see Table 1). Threshold values for

β of all three published studies are similar. Shupe (2007) and Luke et al. (2010) use the same δ threshold of 0.1 for liquid

classification while de Boer et al. (2009) with a value of 0.03 is much more stringent. The studies are subsequently referred to15

as "Shupe2007", "deBoer2009", and "Luke2010". The linear-1 threshold function was found by a sensitivity study and gave

the most similar classification results to the three cited published threshold values. Figure 2 (B) shows the corresponding time-

height representation color coded by linear separation of the predicted (backscatter vs. depolarization) dimension using linear

functions.

Table 1. Published thresholds of β and δ for lidar-based liquid classification and linear-1 function threshold used for ACCEPT data set.

method thresholds

Shupe2007 log(β)>−4.5, δ < 0.1

deBoer2009 log(β)>−4.3, δ < 0.03

Luke2010 log(β)>−4.3, δ < 0.1

linear function-1 (mδ+β) m= 12, β =−5.0

The liquid classification methods were applied to the entire ACCEPT dataset. For doing so, the following pre- and post-20

processing steps were applied to the seven-week long data set. Firstly, to account for the effects of radar partial beam filling,

cloud edges are excluded from the ANN input data by setting data in the first and last range gate of a detected cloud (i.e.

cloud base and cloud top pixel) to "clear sky". Secondly, pixels classified as aerosols/insects were explicitly excluded. Thirdly,

using model temperature data of the Global Data Assimilation System (GDAS1) employed by the Global Forecast System

(GFS) model, unphysical liquid predictions below −37 °C were re-classified as ice. The in-cloud pixels which were classified25

as liquid-containing by the ANN using the above-mentioned thresholds were sometimes quite patchy. Similar to Shupe (2007)
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(A) (B)

Figure 2. (A) Frequency of occurrence of ANN-predicted lidar backscatter coefficient β vs. predicted lidar linear depolarization δ for the

Nov 17 - 18, 2014 case study. (B) Time-height mapping of predicted β and δ of the three corresponding areas in the (A) panel, which are

separated by the two linear thresholds. Black dots (B) indicate the ceilometer cloud base height.

a homogenization step to create more coherent liquid layer structures, by using a 5x5 pixel neighborhood smoothing was in-

troduced. A pixel was kept as liquid-containing pixel, when at least 60% of the pixels in the 5x5 box around the center one

were also classified as liquid-containing.

3 Results and Discussion5

To assess the performance of the Luke et al. (2010) ANN-based liquid prediction from cloud radar Doppler spectra using

different published thresholds of lidar backscatter coefficient and depolarization ratio against the Cloudnet target classification

and against independent observables, a two-step validation was performed. Firstly, a case study (Nov 17-18, 2014 consisting of

100.000 samples) was analyzed in depth, see Table 2. Secondly, statistical results for the ANN-based liquid-prediction for the

entire ACCEPT data set (1070 hours of observations, i.e. 1.7 million samples) are given in Table 3 and discussed subsequently.10

In the following, the abbreviation CD is used for cloud droplets bearing samples and non-CD for non-cloud droplets bearing

samples. It should be noted that no further distinction between other liquid-bearing samples such as drizzle/rain is made for

the ANN-based liquid predictions.

Predictions that meet the criteria from Section 2.3 are compared to classifications from Cloudnet (treated as ground-truth).

The comparison yields an error matrix consisting of correctly classified predictions, i.e. true positive (TP) and true negatives15

(TN) as well as false positives (FP) and false negatives (FN) which concern wrong predictions, respectively. Described below

are four metrics used to evaluate the predictive performance against Cloudnets’ liquid detection, three correlation coefficients

ρa,b, and the fraction of liquid predicted located within a relative humidity above 90%.
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1. Error matrix: A 2 by 2 matrix consisting of the numbers for correctly identified CD (TP) and non-CD (TN) time-height

grid cells, as well as falsely classified non-CD (FP) and CD (FN) cells respectively, i.e.

EM =

TP FN

FP TN

 . (1)

2. Precision: A real value between 0 and 1, where 1 is the perfect score. prec= TP
TP+FP , i.e. the fraction of how many

predictions where correctly classified as CD (i.e. TP) by the sum of TP and predictions falsely classified as CD (i.e.5

FP). In the context of this work, it measures the amount of CD overestimation. The closer precision gets to 1, the more

precisely actual CD cells are predicted as such. Precision can also be described as 1 minus the false alarm rate.

3. Recall or probability of detection: A real value between 0 and 1, where 1 is the perfect score. recall = TP
TP+FN , i.e. the

fraction of TP and the sum of TP and falsely classified non-CD (i.e. FN). In the context of this work, recall measures

the amount of CD underestimation. The closer recall gets to 1, the less likely it is missing actual CD cells. Note: The10

ceilometer lidar signal which is used as ground-truth indicator for CD availability, is much more sensitive to CD than

Doppler cloud radar signals, thus recall values below 1 are expected.

4. Accuracy: A real value between 0 and 1, where 1 is the perfect score. acc= TP+TN
TP+TN+FP+FN , i.e. the fraction of all

correct predicted CD pixel and the sum of all samples. In the context of this work it measures the overall fraction of

correct versus incorrect predictions, where acc= 0.75 if the retrieval correctly classifies 3 out of 4 inputs.15

5. Correlation between MWR-LWP and retrieved liquid layer thickness LLT: The MWR-LWP time series is correlated

to the LLT time series computed as the sum of the vertical extend of CD containing volumes LLT=NCD · δh, with

δh= 40 m range resolution. Profiles in which rain was observed at ground were excluded from the correlation coefficient

determination to avoid wrong MWR-LWP caused by a wet MWR radome.

6. Correlation between ceilometer first CBH and retrieved first liquid layer height LLH: The Ceilometer first CBH time-20

series is correlated to the first LLH time-series as retrieved from the CD mask.

3.1 Nov 17-18, 2014 Case Study Results

The 37.5 h long case study of Nov 17, 2014 0 UTC - Nov 18, 2014 13:30 UTC was characterized by a multitude of cloud types

including pure liquid water clouds, stratiform mixed-phase clouds, high clouds, mid-level clouds and near-surface clouds (fog)

as shown in Fig. 1. On Nov 17, 2014 between 3-9 UTC and 15-24 UTC several rain showers from low mixed-phase clouds25

with cloud-top temperatures between −10 °C and −2 °C were observed. At around 12 UTC, a thin warm liquid cloud at 1 km

altitude with a LWP below 30 g m−2 was present. On Nov 18, different multi-layer clouds with varying vertical extent were

present, a high cloud in 6-9 km was firstly situated above a mid-level cloud in 2-5 km and later on over a precipitating stratiform

cloud in about 2 km altitude with cloud-top temperature of −5 °C . Below this cloud was a layer of near-surface fog.
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Figure 3. Sensitivity study of liquid pixel classifications of the Nov 17 - 18, 2014 case study using liquid mask thresholds of Shupe2007

(upper left), deBoer2009 (upper right), Luke2010 (lower left), linear-1 (lower right) on the ANN-predicted lidar variables. Light-brown:

Cloudnet-only liquid classifications, blue: ANN-predicted pixels using the given thresholds which were not classified as liquid droplets by

Cloudnet, red: pixels classified as liquid by the ANN and Cloudnet, grey shading: pixel for which neither Cloudnet nor the ANN classified

cloud droplets, black dots: ceilometer first cloud base height, white: clear-sky.

In Fig. 3 the comparison of the resulting liquid masks of the ANN of all presented thresholds and for Cloudnet for this case

study are shown. There is mostly good agreement in liquid-detection for the stratiform mixed-phase clouds on Nov 17 before

21 UTC and the liquid cloud at around 12 UTC on Nov 17. However, since the liquid-threshold boundaries of deBoer2009 are

very strict, many potential liquid pixel candidates are not considered (e.g. around 3 UTC, and 18 UTC on Nov 17). For this

particular case, the Cloudnet target classifcation algorithm was not able to fully identify the cloud-top layer at −10 °C during5

21-24 UTC on Nov 17 and at about 2 km during 9-12 UTC on Nov 18, as mixed-phase and/or supercooled liquid containing

because of full lidar signal attenuation in the rain/fog below. The ANN-based liquid-detection clearly outperforms Cloudnet in

these situations.

For independent validation of the areas classified as liquid-containing, the summed up liquid layer thickness (LLT) of all

pixels classified as liquid by the ANN or Cloudnet is compared to the MWR-LWP (Figure 4) as proposed by Luke et al. (2010).10

MWR-LWP uncertainty amounts to 25 g m−2 . Profiles in which considerable amounts of rain/drizzle reached the ground were

excluded in the LLT-determination to avoid situations with a wet MWR radome leading to an invalid MWR-LWP estimate (as
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Table 2. Error matrix, performance metrics, and correlation coefficients for ceilometer-CBH vs. LLH, MWR-LWP vs. LLT, MWR-LWP vs.

LWPad,cor, case study Nov 17-18. Statistic includes only valid pixel.

Shupe2007 deBoer2009 Luke2010 linear-1 Cloudnet

TP 28684 22209 26803 28816 46215

TN 59342 60605 59615 59620 62424

FP 3082 1819 2809 2804 0

FN 17531 24006 19412 17399 0

precision 0.903 0.924 0.905 0.911 1

recall 0.621 0.481 0.580 0.624 1

accuracy 0.810 0.762 0.795 0.814 1

ρMWR-LWP,LLT 0.436 0.533 0.490 0.489 0.471

ρMWR-LWP,LWPad 0.275 0.471 0.335 0.345 0.399

ρceilo-CBH,LLH 0.775 0.725 0.738 0.755 0.913

Liq-Pxl at RH > 90 % n/a n/a n/a n/a n/a

indicated by the rain flag in Figure 4). In some situations the ANN and in others Cloudnet matches the time series of MWR-

LWP better. A large discrepancy between ANN-LLT and MWR-LWP is obvious on Nov 18, 4-6 UTC: MWR-LWP are very

low, while the ANN-LLT is high. A misclassification of ice as liquid by the ANN in 2-3.5 km height can thus be concluded

which is corroborated by the PollyXT lidar signal showing high depolarization values indicating ice crystals. After 7 UTC on

Nov 18, the lidar signals are fully attenuated by the fog near the ground and are thus not available for assessment of ANN5

classifications in higher layers. Analysis of radar Doppler spectra time- and height spectrograms in around 6-9 km altitude

showed only monomodal spectra related to the falling ice crystals from above. In conclusion, most certainly, no formation

of supercooled liquid in 7 km altitude at −37 °C occurred. The ANN thus most likely misclassified ice as liquid because the

observed Doppler spectra at around 7 km were characterized by high spectrum width, small reflectivities and small mean

Doppler velocities. High Doppler spectrum width might be related to more turbulent conditions which result in a decrease of10

the performance of the ANN because the microphysical imprint of the hydrometeors on the radar Doppler spectra is decreased.

The error matrix and evaluation metrics (first 8 rows in Table 2) show the performance of the ANN by comparing ANN-

based liquid predictions to valid Cloudnet liquid detections for time-height cells with reliable radar and lidar signal status.

Depending on the threshold given in Table 1, precision ranges between 0.9 (Shupe2007) and 0.92 (deBoer2009). Contrarily,

recall values range between 0.53 (deBoer2009) and 0.67 (linear-1) indicating that more lose thresholds are better in detecting15

more TP, while keeping the number of FN comparably low. Overall accuracy ranges between 0.78 (deBoer2009) and 0.83

(linear-1).Regions with high Doppler spectrum width near cloud base (see Figure 1 Nov. 18, 3-6 UTC between 2-3 km altitude)

contribute to a large portion of those FP for all thresholds. Lower recall values indicate a higher degree of underestimation

of CD detections, which is caused by liquid layers with low LWP values below 50 g m−2, e.g. the thin liquid cloud on Nov.
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17 around 12 UTC in 0.5 to 1 km altitude. Profiles characterized by low precipitation rates of rain and drizzle have a negative

Cloudnet rain flag and are thus not excluded from the analysis. For these drizzle/rain pixel the ANN often predicts liquid (see

Figure 3 and A2 between 0-1.5 km). Since the ANN does not distinguish between different liquid classes such as drizzle/rain

and cloud droplets (CD), the ANN classifies all these pixels as cloud droplets which are then counted as FP. FN often occur

when Cloudnet classifies a certain hydrometeor class at low altitude and extends this target class for all pixel in the profile5

up to cloud top which e.g. either happens in low intensity precipitation (see Figure A1, misclassification of drizzle/rain as

cloud droplets by Cloudnet, e.g. Nov 17, 2014 3–4 UTC, 0.5–2 km) and for the ice and supercooled droplets class on Nov

17, 17:30 UTC resulting in a 1 km deep mixed-phase layer in 1.5-2.5 km altitude). In such situations the ANN might be more

accurate in determining the location of cloud droplets but since it is evaluated against Cloudnet as ground-truth, FN result.

In this work the ceilometer first cloud base height (CBH) is correlated to the predicted first liquid layer height (LLH).10

ρceilo-CBH,LLH of the four ANN methods are on the order of 0.86 (deBoer2009) to 0.92 (Shupe2007) for the entire ACCEPT

dataset (see Table 3), i.e., there is a failure rate of 8–14 %. This failure rate can be explained by several conditions: Firstly, in

some situations, like on Nov 18, 2014 between 1–4 UTC, the ceilometer cloud base variable is not representing the base of

the liquid layer but instead the base of precipitating ice crystals (Fig. 1). This is caused by specular reflection from the planar

planes of horizontally aligned ice crystals as described in Westbrook et al. (2010). When the ANN is not misclassifying these15

ice crystals as liquid, the difference in ceilo-CBH and ANN-LLH is high. Secondly, there are situations where liquid layers with

low LWP are only detected by the ceilometer but not by the cloud radar (Nov 17, 11 UTC, cloud at 1.7 km). Thirdly, there are

cloud scenes where the ceilometer is fully attenuated by precipitation or low level fog (thus reporting the precipitation or fog

base as first cloud base) which the radar can penetrate/is not sensitive to or which is below the first radar range gate. Fourthly,

in situations where the ceilometer is still able to penetrate light precipitation to detect CBH (Nov 17, 3-9 UTC, 17-24 UTC)20

and the ANN misclassifies drizzle/rain as cloud droplets, further discrepancies arise. These conditions lead to a decrease of

the ρceilo-CBH,LLH. The ρceilo-CBH,LLH for ceilometer-CBH and Cloudnet for the entire ACCEPT data set is higher and amounts

to 0.97. While the liquid layer base height variable in Cloudnet is based on the gradient of ceilometer attenuated backscatter

coefficient, the internal ceilometer cloud base determination is not precisely documented in the ceilometer manual. Differences

in cloud base height leading to a failure rate of 3 %may thus occur due to different backscatter coefficient thresholds.25

The ρMWR-LWP,LLT also shows positive correlations for all methods. As shown in Table 2, it ranges between 0.44 (Shupe2007)

to 0.53 (deBoer2009), for Cloudnet the ρMWR-LWP,LLT amounted to 0.47. Converting the LLT to the physical more meaningful

LWPad,cor results in ρMWR-LWP,LWPad
that are very similar to ρMWR-LWP,LLT with moderate correlation (0.47) for deBoer2009,

and weaker correlations for all other methods. Both ρMWR-LWP,LLT and ρMWR-LWP,LWPad
of deBoer2009 show the strongest rela-

tionship to the measured MWR-LWP. The period Nov. 17, 21 UTC to Nov. 18, 12 UTC in Figure 4 shows the highest differences30

in LLT between the deBoer2009, Cloudnet and the other methods. The number of CD predictions in the precipitating system

(Nov. 17, 20-23 UTC), the region with higher spectrum width (Nov. 18, 4-6 UTC at cloud base and Nov. 18, 10-13 UTC at

7 km altitude, see: Fig. 3) are lowest for deBoer2009, therefore reflecting the MWR-LWP best. However, deBoer2009 also

counts the least amount of TP, due to its tight thresholds, which seems to have minor effects on the correlation coefficient.
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Figure 4. Comparison of MWR-LWP (left y-axis, blue bars) and liquid layer thickness (LLT, right axis) of the ANN-predicted liquid layer

masks and Cloudnet-LLT (orange) for the Nov 17 - 18, 2014 case study for all used liquid-detection thresholds. The disdrometer-based

Cloudnet rain flag is depicted by green and red markers near the bottom of the plot respectively indicating profiles with rain (red) and times

where it was drizzle/rain free or precipitation rates were too low to be observed by the disdrometer.

Unfortunately, no radio sondes were launched during the presented case study, so the relative humidity related measure could

not be determined. Multiple other case studies had similar results.

3.2 Oct 5, 2014 Case Study Results

As previously mentioned, no validation of the ANN-liquid prediction can be made if the ground-based lidar signals are fully

attenuated. We therefore use the unique opportunity to compare the Cloudnet and ANN liquid identifications in multi-layer5

cloud situations to a nearby (47 km distant) CALIPSO overpass on Oct 5, 2014 01:05 UTC. On Oct 5, 2014 01-04 UTC

multiple cloud layers were present. Besides warm stratiform liquid clouds below 3 km altitude, a midlevel cloud with cloud

top temperature of −14 °C was observed in 5 km altitude. An extensive cirrus was present between 7-10.5 km altitude. From

01-03 UTC, the PollyXT lidar signal was mostly fully attenuated by the lowest liquid cloud in 1 km altitude leading to a

misclassification of liquid as ice by Cloudnet for the warm cloud in 2.5 km altitude. Also, (except for a few pixels where the10

lidar had a valid signal) Cloudnet classified the midlevel cloud as ice-cloud. The ANN correctly predicted liquid for all warm

clouds (note that below cloud base of the lowest cloud layer, ANN also predicts liquid which are counted as cloud droplets

(CD) since it does not distinguish between different liquid classes such as cloud droplets and rain/drizzle). The ANN classifies

the midlevel cloud as liquid-topped with ice precipitating from it below. The phase classification of the ANN in the cirrus is
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Figure 5. Observations and retrievals on October 5, 2014 01 - 04 UTC: a) MIRA-35 radar reflectivity factor, b) PollyXT 1064 nm attenuated

backscatter coefficient, c) Cloudnet target classification, d) comparison of Cloudnet and ANN liquid masks. First ceilometer cloud base is

indicated by black dots.

mostly ice except for some regions close to cloud base where high spectrum width and near-zero mean Doppler velocities

result in a prediction of supercooled liquid.

The cloud fields were extensive so CALIPSO identified a very similar cloud situation with a cirrus of high vertical extent and

a midlevel cloud in 3.5-5 km. The CALIOP signal was fully attenuated in this cloud layer so the low level warm clouds were

missed by the satellite observation. The CALIPSO cloud phase index classified the high cloud as ice cloud and the midlevel5

cloud as liquid-topped cloud with liquid-only or liquid+ice in the lower regions of this cloud. CALIPSO thus validates the

ANN-based liquid prediction for the midlevel cloud. This hints to the usefulness of employing satellite-based hydrometeor

target classifications as independent validation tool.

3.3 Statistical results for entire ACCEPT field campaign

A more general evaluation of all methods is done for the entire ACCEPT field campaign comprised of 1070 h of observations10

counting more than 1.7 M samples. The summary of this evaluation is presented in Table 3. All ANN-thresholds achieve high

precision values > 0.9, indicating a low FP rate. Recall values are moderately lower compared to the Nov 17-18, 2014 case

study, ranging from 0.4 (deBoer2009) to 0.54 (Shupe2007). Accuracy lies above 0.75 (three out of four predictions are correct)

for all methods except slightly lower values for deBoer2009 (explained in Section 3.1). However, deBoer2009 achieves best

correlation for ρMWR-LWP,LLT and ρMWR-LWP,LWPad
, due to CD overestimation (larger numbers of FP) for Shupe2007, Luke201015

and linear-1. Overall, all methods achieve better correlation values for the entire data set compared to the case study of Nov
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Figure 6. a) Curtain plots of CALIOP 1064 nm attenuated backscatter coefficient and b) CALIOP cloud phase index on Oct 5, 2014 where

the closest distance of CALIPSO to Cabauw was 47 km at 01:05 UTC.

17-18, 2014, with high ρceilo-CBH,LLH, values ranging from (0.86-0.92) and (0.97) for Cloudnet respectively. The similar values

of correlation coefficients and cloud droplet prediction error matrix elements in Table 2 and Table 3 indicate that the entire

data set is well represented by the Nov 17-18, 2014 case study. As indicated in Section 3.1, mis-interpreted spectral signatures

(small ice particles with low fall speed are misclassified as ice) and turbulence broadened radar Doppler spectra are the main

driver for miss-classifications of the pre-trained Luke et al. (2010) approach.5

An additional independent validation is done using radiosonde launches from the campaign site as well as launches from

DeBilt airport about 30 km away. Liquid-detected pixels are only evaluated in this way within ±30 min of a radiosonde launch,

meaning only a small subset of data from the entire field experiment is considered. Radio sounding profiles with RH with

respect to liquid water (w.r.t.l.) larger than 90 % overlapping with liquid detection layers occur only during 1.5 h out of 58 h

of available liquid detection data, i.e. only during 2.5 % of the time is liquid classified. This validation method thus only10

has very limited utility for the quality of the thermodynamic phase classifications made, but is shown here for the sake of

completeness as similar future evaluation studies might have larger data sets available. As shown in the last row of Table 3, for

all methods the majority of number of liquid-containing pixels occur when the radiosonde RH w.r.t.l. is larger than 90 % and

liquid occurrence is thus likely. There are two explanations why the fraction of Cloudnet-classified liquid pixel overlapping

with areas of radiosonde RH > 90 % is much higher (72 %) than for the ANN results (54-61 %). Firstly, with the radiosonde15
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Table 3. Error matrix, performance metrics, and correlation coefficients for ceilometer-CBH vs. LLH, MWR-LWP vs. LLT, MWR-LWP vs.

LWPad,cor, for the entire ACCEPT data set. Statistic includes only valid pixel.

Shupe2007 deBoer2009 Luke2010 linear-1 Cloudnet

TP 406235 302643 374880 401331 757342

TN 919571 938429 925740 925243 962586

FP 43015 24157 36846 37343 0

FN 351107 454699 382462 356011 0

precision 0.904 0.926 0.911 0.915 1

recall 0.536 0.400 0.495 0.530 1

accuracy 0.771 0.722 0.756 0.771 1

ρMWR-LWP,LLT 0.490 0.566 0.515 0.530 0.473

ρMWR-LWP,LWPad 0.348 0.462 0.370 0.387 0.432

ρceilo-CBH,LLH 0.915 0.859 0.897 0.905 0.974

Liq-Pxl at RH > 90 % 0.602 0.653 0.626 0.620 0.816

drifting away with height (and time), the assumption of having the same thermodynamic profile over the ACCEPT-site and the

sounding location becomes less certain for liquid detections higher in the atmospheric profile (where the ANN is predicting

more liquid than Cloudnet). Secondly, not all elements of the error matrix are represented in the overlap fraction of pixel with

liquid-detection and RH > 90 % While liquid pixels unrecognized by Cloudnet (i.e. beyond lidar attenuation) are not included

in the overlap fraction, wrongly detected ANN liquid pixels (i.e. false positives, FP) are included and thus reduce the fraction5

of overlap pixel for ANN-predicted liquid.

To understand the performance of the liquid prediction by the ANN more in depth, conditions under which enhanced spec-

trum width values lead to liquid-prediction error matrix elements TP, FP, and FN are described subsequently. The co-existence

of multiple hydrometeor types with sufficiently different fall velocities in the same radar volume leads to multimodal Doppler

spectra with a high total spectrum width. If the slow-falling hydrometeors have a low reflectivity and narrow peak width, the10

ANN likely predicts liquid. If there are indeed small cloud droplets and larger ice crystals in the volume, this results in TP. If

however, there is a co-existence of multiple ice crystal types of which one is small and has a small fall velocity, this results in

FP. Further, if the enhanced SW is not caused by multiple hydrometeor types but by turbulence, liquid peak signatures can be

smeared thus leading to FN. In calm conditions (low turbulence) it is more likely that a bimodal Doppler spectrum with two

ice classes is misclassified as one ice- and one liquid class leading to FP. This problem diminishes with increasing turbulence15

because of broadening of the peaks and smearing of the individual peaks. The latter (smearing) is the same mechanism for FN

in high turbulent conditions.
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However, considering only spectrum width is not sufficient as it is always a combination of radar reflectivity, mean Doppler

velocity, spectrum width etc. that leads to correct or incorrect classification of liquid by the ANN. By discussing relative

frequency of occurrence (FoO) plots of radar moments and environmental temperature of the liquid-prediction error matrix

elements TP, TN, FP, FN as illustrated in Figure A3 in the Appendix, we assess which combinations of moments mostly lead

to TP. As shown in Figure A3, the distribution of radar moments of TP is different from those of TN, FP, and FN while the5

FoO distribution of radar moments of the latter (TN, FP, FN) are mostly similar. Specifically, the radar reflectivities of TP

of cloud droplets is monomodal with a maximum FoO at -25 dbZ to -30 dBZ, while it is bimodal for TN, FP, FN with the

two maxima occurring at -25 dBZ and -10 dBZ. The second maximum at -10 dBZ can be attributed to situations in which the

ANN predicted cloud droplets in drizzle/rain. With values between -2 m s−1 and 0.5 m s−1 the distribution of mean Doppler

velocity of TP is narrower than of TN, FP, FN which have VD values of about -4 m s−1 and 1 m s−1 and a maximum FoO at10

more negative values of around -0.5 m s−1 than the TP (maximum FoO at -0.2 m s−1). TP generally occur at larger spectrum

width σ than TN, FP, FN with a maximum FoO of TP at 0.2–0.25 m s−1 while the FoO of TN, FP, FN peaks at 0.05-0.1 m s−1.

Spherical particles have a theoretical radar linear depolarization ratio (LDR) of minus infinity dB, however, due to technical

limitations, the smallest detectable LDR of the MIRA cloud radar is -30 dB which corresponds to the peak of FoO of TP.

While FN also peak at -30 dB, TN and FP are characterized by high FoO in the range of -30 dB to -25 dB which again can15

be attributed to drizzle/rain where perfect sphericity of the hydrometeors is not always given. The FoO distribution of error

matrix elements in the environmental temperature space show that only a considerable fraction of TN are detected at very

low temperatures which is plausible. Maximum FoO of all four error matrix elements occur at positive temperatures which

is caused by the consecutive attenuation of ground-based lidar signal with height leaving more pixel at higher temperature in

the Cloudnet-ANN comparison. Comparing the FoO of liquid detection error matrix with respect to the different backscatter-20

and depolarization thresholds (Shupe2007, deBoer2009, Luke2010, and linear-1), the more stringent criteria of deBoer2009

generally lead to narrower FoO distributions of TP. Summarizing, as shown in the description of FoO of the radar moments

of the error matrix components above, TP are mostly characterized by high spectrum width in combination with low absolute

values of VD and small radar reflectivities but due to the overlap of radar moments of all error matrix elements, the same

combination of Ze, VD, and σ can be caused by TP, TN, FP, FN.25

4 Summary and Outlook

The current study shows that synergistic observations of depolarization lidar and cloud Doppler radar in conjunction with

machine learning techniques can be used to detect liquid beyond full lidar signal attenuation. This approach performs well

in stratiform cloud situations but is not suited for situations in which the imprint of different hydrometeor populations in the

same cloud volume on the cloud radar Doppler spectrum is masked, e.g. by turbulent spectrum broadening. We demonstrated30

that the ANN of Luke et al. (2010) pre-trained with the MPACE data set in Alaska could successfully be applied to the

ACCEPT data set obtained in Cabauw, the Netherlands and is able to improve the Cloudnet target classification for stratiform

optically thick liquid-layers or situations in which multiple liquid layers exist. We applied different published lidar-based liquid-

17



detection thresholds to the predicted lidar backscatter coefficients and depolarization lidars - all were found to perform better

in some situations than others and could be seen as either to stringent (deBoer2009) missing thinner liquid layers or too broad

(Shupe2007, Luke2010, "linear-1") leading to misclassifications of ice as liquid. No suggestion on best thresholds can thus be

made. To overcome limitations due to ambiguities caused by thresholding, focus should therefore be put on the development

of techniques which do not rely on explicit lidar thresholds for liquid detection. This could be realizable by applying novel5

convolutional artificial neural networks which could be used to exploit the full information content of high-resolution cloud

radar Doppler spectra. Additionally, radar Doppler spectra peak-separation techniques such as PEAKO (Kalesse et al., 2019)

and peakTree (Radenz et al., 2019) are helpful assess the possibilities of liquid occurrence.

Furthermore, two recent studies also showed the benefit distinguishing between cloud-top liquid-bearing layers and embed-

ded liquid layers when assessing the performance of liquid-detection retrievals (Silber et al., 2020) and (Kalogeras et al., 2021).10

Silber et al. (2020) retrieved cloud thermodynamic phase of Arctic clouds based on one year zenith-pointing Ka-band radar

and HSRL observations. They found that cloud-top liquid-bearing samples can be more reliably detected than embedded liquid

layers as the latter are more difficult to separate from falling ice signatures in the PDF of the first three radar moments as well

as Doppler spectra left slope and right slope. Kalogeras et al. (2021) developed a Ka-band radar-only, moment-based technique

for supercooled liquid water detection in Arctic mixed-phase clouds. The novelty of this method is that it is a neighborhood-15

dependent algorithm employing gradients of moments. They concluded that best skill levels for liquid detection are realized

for combinations of spectral width and reflectivity vertical gradient and also found their algorithm to be most reliable when

applied to cloud tops.

The identification of the presence of liquid layers in the entire vertical column of optically thick or multi-layered cloud

situations is a first step to get a better understanding of which microphysical particle growth processes might occur in a mixed-20

phase cloud. The shown results will therefore be used in follow-up studies for characterization of microphysical hydrometeor

growth processes.

Data availability. Cloudnet-processed data for the ACCEPT campaign are available via https://cloudnet.fmi.fi. The Mira-35 moment data as

well as compressed (noise-removed) Doppler spectra are available upon request from Patric Seifert (seifert@tropos.de).
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Figure A1. Zoom of Cloudnet target classification from 0–4 km altitude for Nov 17-18, 2014 case study in Cabauw, Netherlands.

Figure A2. Zoom of comparison of cloud droplet detection of Cloudnet and ANN (using linear-1 thresholds) from 0–4 km altitude for Nov

17-18, 2014 case study in Cabauw, Netherlands. Black dots indicate ceilometer first cloud base height.
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Figure A3. Relative frequency of occurrence plots of radar moments reflectivity (Ze, left column), mean Doppler velocity (Vd, second left

column), spectrum width (middle column), linear depolarization ratio (LDR, second to right column), environmental temperature T (right

column) of ANN-liquid-prediction error matrix elements TP (blue), TN (green), FP (grey), and FN (red) for the four utilized ANN-lidar

variable thresholds of Shupe2007 (first row), deBoer2009 (second row), Luke2010 (third row), and linear-1 threshold (fourth row) for the

entire ACCEPT field experiment.
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