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Response to RC1: 

referee’s comments are given in blue, 

our responses are given in red. 

 

RC1: The submitted article develops a method to estimate PM2.5 values 

over China using a linear combination of three machine learning model. 

The innovative of this approach is the method to have an ensemble PM2.5 

data from multiple machine learning model outputs. The research method 

is solid, and the results are convincing. 

Response: We would like to thank the editor and referee for carefully 

reading the manuscript and providing detailed and constructive comments, 

which have helped a lot in improving the manuscript. We quote each 

comment below, followed by our response. 

RC1: The background of the research does not cover all of the most recent 

machine learning produced PM2.5 products over China and provide 

convincing reason of why this approach is superior to the rest products. 

The big advantage of using AHI is the high temporal data (sub-hourly), 

however, the results section does not reflect this advantage. 

Response: Due to the early start of this study, the latest research progress 



was not quoted when writing the research background. To make up for 

these deficiencies, we will add 18 references to the manuscript. These 

references are listed at the page 8-10 of this document. 

The advantage that AHI can provide high temporal resolution data is also 

discussed, but for some reasons it was not included in the previous version 

of the manuscript. In the revised manuscript we have added this content. 

The results are shown in the figure below. 

Figure 6 shows the scatterplot fitted with the inversion results of the mixed 

model from 9:00-17:00 Local Time. The model R2 ranged from 0.556 to 

0.88 at different times. Except for 17:00 when the model had the worst 

performance, the model R2 exceeded 0.7 at other times, indicating that the 

model had a good performance. The optimal performance time is 13:00, R2 

is 0.88. According to the results, the hourly differences in model 

performance were significant. 

 

Figure 6 Hourly validation of model performance 



The temporal distribution of PM2.5 is shown in Figure 10, The PM2.5 

concentration began to rise from 9:00, and peaked at 55.65μg/m3 between 

10:00 and 11:00 every day. After that, it maintained a high concentration 

until 15:00, and began to decrease. In the most polluted areas of China, the 

peak concentration of PM2.5 can reach 85.05μg/m3, while the peak in the 

less polluted areas is only about 40μg/m3. On a national scale, daily PM2.5 

concentrations fluctuate little. 

 

Figure 10 Hourly distribution of PM2.5 in China in 2019 

RC1: The most contribution of this study is the linear hybrid ML model. 

However, the paper does not explain details of this procedure. For example, 

why using linear combination, and how are the coefficients are determined? 

Instead of a simple regression, complexed error evaluations of individual 



ML PM2.5 data may provide insights on a better way of combining these 

model outputs. 

Response: Wolpert et al. (1992) pointed out that the combination of 

multiple models can improve the robustness and generalization ability of 

the model. In other words, machine learning models can be integrated in 

the same way as multi-mode ensemble forecasting. Thus, we could further 

improve the accuracy of the fitting by hybrid model. 

The coefficient is determined by multiple linear regression model. Firstly, 

we use three sub-models to calculate the predicted value under the 

corresponding model. Then, multiple linear regressions are performed 

between the calculated predicted values and the label values in the original 

data. Finally, the output coefficients and intercepts of the multiple linear 

regression model are taken as the parameters of the RGD-LHMLM.  

RC1: The parameter impotency is listed but no further explanation of 

parameter selection is mentioned. 

Response: We mainly used feature importance to analyze the contribution 

of different parameters to the model. This can provide an explanation of 

the interpretability of the model. The selection of parameters is mainly 

based on the variable information provided in some references. Finally, 

these characteristics we screened are all physical quantities that have a 

certain influence on PM2.5, such as AOD, boundary layer height, relative 

humidity, population density. 



RC1: Bias analysis as functions of other influence factors is needed to 

better understand the uncertainties in PM2.5 product.  

Response: We use formula (5) and formula (6) to calculate the value of the 

Bias and the generalization error of the Bias (GEB). It is generally believed 

that when we take the generalization error, the Bias must be expressed in 

the form of a square. The average GEB between estimated PM2.5 based on 

the RGD-LHMLM and measured PM2.5 are shown in Table 1.  

The results show that the average GEB of the mixed model is smaller, and 

the deviation between the predicted data and the label data is lower. 
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Table 1 Comparison of model accuracy 

Model   Fitting   
 

Validation  
 

R² RMSE MAE GEB R² RMSE MAE GEB 

RF 0.95 6.99 4.05 114.19 0.79 14.89 9.33 208.97 

GBRT 0.96 6.87 4.52 110.00 0.81 14.09 9.18 198.65 

DNN 0.97 5.03 3.49 59.16 0.80 14.45 9.06 221.86 

RGD-

LHMLM 
0.98 4.39 3.00 44.97 0.84 12.92 8.01 166.95 

Then the bias of the mixed model in different PM2.5 concentration ranges 

was analyzed. As shown in the figure below: The average bias of the mixed 

model in different PM2.5 concentration ranges was analyzed, and the result 

is shown in the figure 4. when the PM2.5 concentration is less than 60 μg/m3, 



the average bias of the model is less than 0. As the PM2.5 concentration 

increases, the model deviation gradually increases. In other words, when 

the PM2.5 concentration is small, the predicted value of the model will 

generally overestimate PM2.5, and when the PM2.5 further increases, it will 

underestimate the PM2.5 concentration. 

 

Figure 4 Bias between model predicted values and label values 

 

 

 

 

 

 

 

 



We have compared other studies with our own and listed the results in Table 

1: 

Table 1 

Model R2 RMSE MAE Reference 

Stacking model  0.85 17.3 10.5 (Chen et al., 2019) 

Two-stage random 

forests (YRD) 
0.86 12.4 / (Tang et al., 2019) 

LME (BTH) 0.86 24.5 14.2 (Wang et al., 2017) 

GTWR 0.78 20.10 / (Xue et al., 2020b) 

STLG 0.85 13.62 8.49 (Wei et al., 2021a) 

RGD-LHMLM 0.84 12.92 8.01 This paper 
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