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Abstract. The satellite remote-sensing aerosol optical depth (AOD) and meteorological elements 7 

were employed to invert PM2.5 in order to control air pollution more effectively. This paper proposes 8 

a restricted gradient-descent linear hybrid machine learning model (RGD–LHMLM) by integrating a 9 

random forest (RF), a gradient boosting regression tree (GBRT), and a deep neural network (DNN) 10 

to estimate the concentration of PM2.5 in China in 2019. The research data included Himawari-8 AOD 11 

with high spatiotemporal resolution, ERA-5 meteorological data, and geographic information. The 12 

results showed that, in the hybrid model developed by linear fitting, the DNN accounted for the largest 13 

proportion, whereas the weight coefficient was 0.62. The R2 values of RF, GBRT, and DNN were 14 

reported 0.79, 0.81, and 0.8, respectively. Preferably, the generalization ability of the mixed model 15 

was better than that of each sub-model, and R2 reached 0.84, whereas RMSE and MAE were reported 16 

12.92 µg/m3 and 8.01 µg/m3, respectively. For the RGD-LHMLM, R2 was above 0.7 in more than 70% 17 

of the sites, whereas RMSE and MAE were below 20 µg/m3 and 15 µg/m3, respectively, in more than 18 

70% of the sites due to the correlation coefficient having seasonal difference between the 19 

meteorological factor and PM2.5. Furthermore, the hybrid model performed best in winter (mean R2 20 

was 0.84) and worst in summer (mean R2 was 0.71). The spatiotemporal distribution characteristics 21 

of PM2.5 in China were then estimated and analyzed. According to the results, there was severe 22 

pollution in winter with an average concentration of PM2.5 being reported 62.10 µg/m3. However, 23 

there was slight pollution in summer with an average concentration of PM2.5 being reported 47.39 24 

µg/m3. The period from 10:00 to 15:00 every day is the best time for model inversion, also at this time 25 

the pollution is high. The findings also indicate that North China and East China are more polluted 26 

than other areas and that their average annual concentration of PM2.5 was reported 82.68 µg/m3. 27 

Moreover, there was relatively low pollution in Inner Mongolia, Qinghai, and Tibet, for their average 28 

PM2.5 concentrations were reported below 40 µg/m3. 29 
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1 Background 1 

 In recent years, pollutants have been discharged increasingly in China where air pollution is 2 

becoming worse than ever before due to rapid urbanization and industrialization (Wang et al., 2019a). 3 

The fine particulate matter (PM2.5) with a diameter below 2.5μm is the main component of air pollutants 4 

having considerable impacts on human health, atmospheric visibility, and climate change (Gao et al., 5 

2015;Pan et al., 2018;Pun et al., 2017;Qin et al., 2017). The global concern about PM2.5 has increased 6 

significantly since it was listed as a top carcinogen (Apte et al., 2015;Lim et al., 2020). Currently, ground 7 

monitoring is the most efficient method of measuring PM2.5 (Yang et al., 2018). However, monitoring 8 

stations are not evenly distributed due to terrain and construction costs; therefore, it is difficult to obtain 9 

a wide range of accurate PM2.5 concentration data (Han et al., 2015). To solve the problem, the method 10 

of estimating PM2.5 with satellite remote-sensing was developed. Satellite remote-sensing is 11 

characterized by a wide coverage and high resolution (Hoff and Christopher, 2009;Xu et al., 2021). There 12 

is also a high correlation between AOD, obtained from satellite remote sensing inversion, and PM2.5; 13 

therefore, AOD is a very effective method of monitoring the spatiotemporal concentration characteristics 14 

of PM2.5. 15 

 After Engel-Cox et al. (2004) proposed using satellite AOD to estimate PM2.5 concentration, several 16 

studies are reported in the literature to address this theory. Based on the regression model, Liu et al. (2005) 17 

introduced AOD, boundary layer height, relative humidity, and geographical parameters as the main 18 

controlling factors to estimate PM2.5 in the eastern part of the United States, and the verification 19 

coefficient R2 obtained was 0.46. Tian and Chen (2010) used AOD, PM2.5, and meteorological parameters 20 

in Southern Ontario, Canada, to establish a semi-empirical model to predict PM2.5 concentration per hour, 21 

and the verification coefficient R2 obtained in rural and urban areas was 0.7 and 0.64, respectively. Hu et 22 

al. (2013) proposed a geography weighted regression model to estimate the surface PM2.5 concentration 23 

in southeastern America by combining AOD, meteorological parameters, and land use information. Their 24 

model average R2 was 0.6. Lee et al. (2012) believed that the satellite remote sensing AOD data would 25 

be interfered by clouds and snow and ice, and the reliability of the data was questionable. They proposed 26 

a mixed model based on AOD calibration to predict the ground PM2.5 concentration in New England, 27 

USA, and achieved good results (R2 = 0.83). Li et al. (2016) used PMRS method to remote sensing 28 

ground PM2.5.Combined with MODIS AOD and ground observation data, Lv et al. (2017) estimated the 29 
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daily surface PM2.5 concentration in the Beijing-Tianjin-Hebei region and improved the data resolution 1 

to 4 km. Using interpretable self-adaptive deep neural network, Chen et al. (2021) estimated daily 2 

spatially-continuous PM2.5 concentrations across China, and analyzed the contribution of various 3 

characteristics to the PM2.5 model. The data used in these early studies are AOD products obtained from 4 

polar-orbit satellite sensors. The daily observation frequency is limited. Due to the influence of cloud 5 

and ground reflection, the dynamic change information of PM2.5 cannot be obtained. As a result, 6 

geostationary satellite observations can be used to overcome the problem of low temporal resolution for 7 

estimating surface PM2.5 (Emili et al., 2010).  8 

The Himawari-8 satellite commonly used in the Asia-Pacific region is a geostationary satellite 9 

launched by the Japan Meteorological Agency in 2014. The observation frequency is 10 minutes, and the 10 

observation results can characterize the aerosol and provide AOD data with a resolution of 5 km (Bessho 11 

et al., 2016;Yumimoto et al., 2016). Due to its excellent performance, some scholars use Himawari-8 12 

data to estimate ground PM2.5(Wei et al., 2021a).Wang et al. (2017) proposed an improved linear model, 13 

introduced AOD, meteorological parameters, geographic information to estimate PM2.5 in the Beijing-14 

Tianjin-Hebei region, and the verification coefficient R² was 0.86. Zhang et al. (2019b) used Himawari-15 

8 hourly AOD product to estimate ground PM2.5 in China's four major urban agglomerations. The results 16 

showed significant diurnal, seasonal, and spatial changes and improved the temporal resolution of 17 

estimating PM2.5 concentration to the hourly level. Yin et al. (2021) used Himawari-8 hourly TOA data 18 

to estimate ground PM2.5 in China, improved data coverage area. 19 

As research into ground-based PM2.5 estimation deepens, traditional linear or nonlinear models 20 

cannot meet the requirements of large-scale estimation and are gradually being replaced by machine 21 

learning algorithms with strong nonlinear fitting ability(Guo et al., 2021;Mao et al., 2021). Liu et al. 22 

(2018) combined Kriging interpolation and random forest algorithm to obtain the concentration of high-23 

resolution ground PM2.5 in the United States. To demonstrate the accuracy and superiority of the proposed 24 

method, the results were compared with the PM2.5 concentration in ground measurement stations. Chen 25 

et al. (2019) stacked and predicted PM2.5 concentration based on a variety of machine learning algorithms, 26 

discussed the influence of meteorological factors on PM2.5 and achieved an R2 = 0.85. Li et al. (2017a) 27 

established a GRNN model for the whole of China to estimate PM2.5 concentration, and the results 28 

demonstrated that the performance of the deep learning model was better than that of the traditional linear 29 

model. In addition, there are some novel algorithms such as STET(Wei et al., 2021b) and STRF(Wei et 30 
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al., 2019a) that are also used for PM2.5 inversion research. 1 

A large number of existing studies in the broader literature have examined the estimation of ground 2 

PM2.5 concentrations using satellite remote sensing AOD. However, the performance of PM2.5 estimation 3 

models established in the existing studies varies greatly and the performance of the models is not stable 4 

in different seasons and regions. To overcome this limitation, in this paper, a linear hybrid machine 5 

learning model (RGD-LHMLM) based on random forest (RF), gradient lifting regression tree (GBRT), 6 

and deep neural network (DNN) is proposed to estimate ground PM2.5 concentration. The model 7 

performance is evaluated from time and space to analyze its causes. Finally, spatiotemporal distribution 8 

of PM2.5 concentration in China in 2019 is obtained. 9 

2 Data 10 

2.1 Ground PM2.5 Monitoring Data 11 

 PM2.5 concentration data for 2019 used in this study are available from the China Environmental 12 

Monitoring Center's Air Quality Real-Time Publication System. The PM2.5 datasets are calibrated and 13 

quality-controlled according to national standards GB 3095-2012 (China’s National Ambient air quality 14 

standards)(China, 2012).The system extracts hourly mean PM2.5 data. By the end of 2019, China had 15 

1641 monitoring stations built and in operation. Figure 1 shows the spatial distribution of monitoring 16 

stations in China. 17 

 18 
Figure 1 Distribution diagram of Environmental monitoring stations in China (2019) 19 
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2.2 Satellite AOD Data 1 

 The Himawari Imager (AHI) on the Himawari-8 satellite launched by the Japan Meteorological 2 

Agency is a highly improved multi-wavelength imager. It adopts the whole disk observation method and 3 

has 16 visible and infrared channels. It has the characteristics of fast imaging speed, flexible observation 4 

area, and time. Himawari-8 AOD is obtained by an aerosol retrieval algorithm based on Lambertian-5 

surface-assumed developed by Yoshida et al. (2018). The Level-3-hour AOD product, released by the 6 

Japan Aerospace Space Agency (JAXA), provides 500 nm AOD data with a spatial resolution of 5km 7 

during the day. In previous studies (Zang et al., 2018), Himawari-8 AOD was compared with the AOD 8 

data of AERONET (Aerosol Robotic Network) in China and achieved good performance (Zhang et al., 9 

2019c), so that the results show that they are consistent (R2=0.75), RMSE and MAE were achieved 0.39 10 

and 0.21, respectively(Wei et al., 2019b). The AOD data used in this study is the Himawari-8 Level 3-11 

hour AOD data in 2019 obtained from the Himawari Monitor website of the Japan Meteorological 12 

Agency. In the study, we selected AOD with strict cloud screening, that is, AOD data with low 13 

uncertainty. 14 

2.3 Meteorological Data 15 

 ERA-5 reanalysis data is an hourly collection of atmospheric and land-surface meteorological 16 

elements since 1979 that the European Centre (ECMWF) has used its prediction model and data 17 

assimilation system to "Reanalyse" archived observations(Jiang et al., 2021). Data used in this paper 18 

include surface relative humidity (RH, expressed as a percentage), air temperature at a height of 2 m 19 

(TM, expressed as K), Wind speed (U10, V10, in m/s), surface pressure (SP, in Pa), boundary layer height 20 

(BLH, in m) and cumulative precipitation (RAIN, in m) at 10 m above the ground. A series of studies 21 

has indicated that these parameters can affect the concentration of PM2.5 (Fang et al., 2016;Guo et al., 22 

2017;Li et al., 2017b;Wang et al., 2019b;Zheng et al., 2017;Gui et al., 2019). Uncertainty estimation of 23 

ERA5 data has described in detail in the following website:  24 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+uncertainty+estimation. 25 

2.4 Auxiliary Data 26 

 The auxiliary data used in this study include high and low vegetation index (LH, LL), 27 

ground elevation data (DEM), and population density data (PD). The high and low vegetation 28 
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index is derived from ERA5 reanalysis data, which respectively represent half of the total green 1 

leaf area per unit level ground area of high and low vegetation type. The ground elevation data 2 

are derived from SRTM-3 measurements jointly conducted by NASA and the Defense 3 

Department's National Mapping Agency (NIMA), with a spatial resolution of 90 m. The 4 

population data come from the 2015 United Nations Adjust Population Density data provided 5 

by NASA's Center for Socio-Economic Data and Applications (SEDAC), which is based on 6 

national censuses and adjusted for relative spatial distribution. 7 

3 Method 8 

3.1 Random Forest 9 

 Random Forest (RF) is built based on the combination of the Bagging algorithm and decision 10 

tree(Breiman, 2001), which is an extended variant of the parallel ensemble learning method (Stafoggia 11 

et al., 2019). To construct a large number of decision trees, the random forest model takes multiple 12 

samples of the sample data. In the decision tree, the nodes are divided into sub-nodes by using the 13 

randomly selected optimal features until all the training samples of the node belong to the same class. 14 

Finally, all the decision trees are merged to form the random forest. This method has proved to be 15 

effective in regression and classification problems and is one of the most well-known Machine learning 16 

algorithms used in many different fields (Yesilkanat, 2020). 17 

3.2 Gradient Boosted Regression Trees 18 

 Different from the random forest, Gradient Boosting Regression Tree (GBRT) is based on Boosting 19 

algorithm and decision tree(Friedman, 2001). The basic principle of GBRT is to construct M different 20 

basic learners through multiple iterations, and constantly add the weight of the learners with a small error 21 

probability, to eventually generate a strong learner (Johnson et al., 2018). The core of this method is that 22 

after each iteration, a learner will be built in the direction of residual reduction (gradient direction) to 23 

make the residual decrease in the gradient direction (Schonlau, 2005). The basic learner of GBRT is the 24 

regression tree in the decision tree. During the prediction, a predicted value is calculated according to the 25 

model obtained. The minimum square root error is used to select the optimal feature to split the dataset, 26 

and the average value of the child node is then taken as the predicted value. 27 
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3.3 Deep Neural Networks 1 

 Deep Neural Networks (DNN) is a supervised learning technique that uses a backpropagation 2 

algorithm to minimize the loss function. It adjusts the parameters through an optimizer, and has high 3 

computational power, making it ideal for solving classification and regression problems (Wang and Sun, 4 

2019). The structure of DNN includes an input layer, an output layer, and several hidden layers. Each 5 

layer takes the output of all nodes of the previous layer as the input, and this process requires activation 6 

functions. Compared with other activation functions, the linear rectifying function (ReLU) has the 7 

advantages of simple derivation, faster convergence, and higher efficiency. At the same time, among the 8 

adaptive learning rate optimizers, the Adamx optimizer performs the best. It not only has the advantages 9 

of Adam in determining the learning rate range and having stable parameters in each iteration but also 10 

simplifies the method of defining the upper limit range of the learning rate and improves the iteration 11 

efficiency (Diederik and Jimmy, 2015). Therefore, in this paper, we selected the Adamx optimizer and 12 

ReLU activation function to train the DNN. 13 

3.4 Model Establishment and Verification 14 

 After data processing, RF, GBRT, and DNN are used for modeling.  15 

               𝑃𝑀ଶ.ହ, ൌ 𝐴𝑂𝐷,  𝐵𝐿𝐻,  𝑅𝐻,  𝑇𝑀,  𝐿𝐿,  𝐿𝐻,  𝑆𝑃,                      ሺ1ሻ16 

 𝑅𝐴𝐼𝑁,  𝑈ଵ,  𝑉ଵ,  𝑃𝐷,  𝐻𝐸𝐼𝐺𝐻𝑇,  𝐿𝑂𝑁,  𝐿𝐴𝑇,17 

𝑀𝑂𝑁𝑇𝐻,  𝐻𝑂𝑈𝑅, 18 

Formula (1) is applicable to RF, GBRT and DNN, where PM2.5i,j is the PM2.5 at time i on station j. 19 

To prevent model parameters from being controlled by large or small range data and speed up the 20 

convergence rate of the model, the data must be normalized before starting the training process. Finally, 21 

the three optimal sub-models are linear combined to achieve the final mixed model. To verify the model 22 

performance, this paper uses the "10-fold cross-validation" method (Adams et al., 2020). In this method, 23 

the data is split into 10 copies, 9 copies for training and 1 copy for verification; this process is repeated 24 

10 times, and then the average of the 10 predictions is computed as the final result. Finally, the predicted 25 

value and the measured value are fitted linearly. At the same time, several indicators are used to evaluate 26 

the model, including the mean absolute error (MAE, when the predicted value and the true value are 27 

exactly equal to 0, that is, perfect model; The larger the error, the greater the value), the root mean square 28 

error (RMSE, when the predicted value and the real value are completely consistent is equal to 0, that is, 29 
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the perfect model; The larger the error, the greater the value), the slope of the fitting equation and the 1 

determination coefficient R2 (the greater the value, the better the model fitting effect), the bias (Bias, is  2 

the difference between the predicted values and the true values, so that models with larger bias performed 3 

worse), and the GME (generalization error of the bias, It is generally believed that bias should be 4 

expressed as a square when using generalization error). The calculation formula of each indicator is 5 

shown as follows: 6 

                                                        𝑅ଶ ൌ 1 െ
௦௦ೝೞ
ௌௌ

                                        ሺ2ሻ 7 

                                                𝑀𝐴𝐸 ൌ
ଵ


∑ |𝑦పෝ െ 𝑦|  

ୀଵ                                   ሺ3ሻ 8 

                                            𝑅𝑀𝑆𝐸 ൌ ටଵ


∑ ሺ𝑦పෝ െ 𝑦ሻଶ

ୀଵ                                  ሺ4ሻ 9 

                                        𝐵𝑖𝑎𝑠 ൌ  
∑ ௬ഢෝି௬
ಿ
సభ

ே
                               ሺ5ሻ 10 

                                        𝐺𝐸𝐵 ൌ
∑ ሺ௬ഢෝି௬ሻమ
ಿ
సభ

ே
                                         ሺ6ሻ 11 

Where 𝑦పෝ  represents the predicted value, 𝑦  shows the true value, 𝑠𝑠௦ denotes the error between 12 

the regression data and the mean value, 𝑆𝑆௧௧ represents the error between the real data and the mean 13 

value, and the mean value is the mean value of the true value. 14 

 The research process is illustrated in Figure 2: 15 

 16 

Figure 2 Schematic diagram of model 17 
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4 Results and Discussion 1 

4.1 Modeling Results 2 

 According to the above steps, the mixed model RGD-LHMLM is obtained through modeling 3 

verification, and is compared with RF, GBRT, and DNN. The fitting and verification accuracy results of 4 

each model are shown in Table 1. 5 

Table 1 Comparison of model accuracy 6 

Model 

 

 Fitting   
 

Validation  
 

R² RMSE MAE GEB R² RMSE MAE GEB 

RF 0.95 6.99 4.05 114.19 0.79 14.89 9.33 208.97 

GBRT 0.96 6.87 4.52 110.00 0.81 14.09 9.18 198.65 

DNN 0.97 5.03 3.49 59.16 0.80 14.45 9.06 221.86 

RGD-

LHMLM 
0.98 4.39 3.00 44.97 0.84 12.92 8.01 166.95 

The PM2.5 inversion results of a single machine learning model show that DNN has the best 7 

inversion performance, followed by GBRT, and RF has the worst performance. The expression of the 8 

mixing model obtained after linear mixing is as follows: 9 

𝑃𝑀ଶ.ହோீିுெெ ൌ 0.25𝑃𝑀ଶ.ହோி  0.17𝑃𝑀ଶ.ହீோ்  0.62𝑃𝑀ଶ.ହேே െ 2.13                    (7) 10 

The weight coefficient of DNN in the mixed model was the largest (0.62). The R2 of RGD-LHMLM in 11 

the training set was 0.98, and the RMSE was only 4.39 μg/m3, indicating that the model had an excellent 12 

data fitting effect. Meanwhile, the generalization ability of the mixed model is also good, with R2 of 0.84 13 

and RMSE of 12.92 μg/m3 on the validation data set. Among all the models, the deviation generalization 14 

error of the linear mixed model is also the lowest, indicating that the difference between the results 15 

obtained by this model and the real value is the least. Compared with RF, GBRT, and DNN, the inversion 16 

performance of RGD-LHMLM is improved. In other words, the combination of multiple models can 17 

improve the robustness and generalization ability of the model (Wolpert, 1992). The linear fitting 18 

equation coefficients between the predicted and measured values in the training set and the verification 19 

set were 0.98 and 0.84, respectively, indicating that the prediction accuracy of the model reached a high 20 

level. The fitting curve between the model predicted value and the real value is shown in Figure 3. The 21 

RGD-LHMLM model has the smallest degree of data dispersion, and the slope of the fitting line reaches 22 



10 
 

0.84, indicating that 84% of the prediction results are accurate, higher than the three sub-models. The 1 

accuracy of the model decreased in the site-based validation, in which the R2 and RMSE values are 0.8 2 

and 14.59 μg/m3, respectively. 3 

 4 
Figure 3 Accuracy of model Fitting and Validation (A: RF, B: GBRT, C: DNN, D: RGD-LHMLM (Based on 5 

sample), E: RGD-LHMLM (Based on site)) 6 
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4.2 Model Performance Analysis 1 

4.2.1 Bias analysis of Model 2 

 The average bias of the mixed model in different PM2.5 concentration ranges was analyzed, and the 3 

result is shown in figure 4. When the PM2.5 concentration is less than 60 μg/m3, the average bias of the 4 

model is less than 0. As the PM2.5 concentration increases, the model deviation gradually increases. In 5 

other words, when the PM2.5 concentration is small, the predicted value of the model will generally 6 

overestimate PM2.5, and when the PM2.5 further increases, it will underestimate the PM2.5 concentration. 7 

 8 
Figure 4 Model bias at different PM2.5 concentrations 9 

4.2.2 Performance Analysis of Monitoring Station Model 10 

 The spatial performance of the model was analyzed by measuring R2, RMSE, and MAE at the 11 

monitoring stations. According to Figure 5, there are regional differences in the inversion performance 12 

of RGD-LHMLM. At all monitoring stations, the average R2 was reported 0.74, and R2 was above 0.7 at 13 

more than 70% of the stations, especially in the densely populated and industrially developed areas. The 14 

model prediction accuracy was reported low (R2<0.6) in Xinjiang, Tibet, Qinghai, Western Sichuan, and 15 

a few other areas of Northeast China. The mean values of RMSE and MAE were reported 11.4 μg/m3 16 

and 8.01 μg/m3, respectively. In fact, the mean values of RMSE and MAE were below 20 μg/m3 and 15 17 
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μg/m3 in more than 95% of stations, something showed a low estimation error. 1 

 2 
Figure 5 Model precision parameters (A)R2, (B)RMSE, (C)MAE and (D)Mean PM2.5 concentration site 3 

distribution 4 

  Based on the analysis of spatial differences in the RGD-LHMLM inversion performance, the 5 

following deductions can be made. First, the environmental monitoring stations in the central and eastern 6 

regions with better inversion performance were distributed densely, and there are large data available; 7 

therefore, the model had a satisfactory training effect. Moreover, data matching was lower in the western 8 

region than in other regions, something which resulted in model over-fitting and reduced accuracy 9 

(Zhang et al., 2018). Second, some areas of western and northeastern China are covered by snow and the 10 

Gobi Desert with high surface albedo. This reduces the accuracy of AOD obtained by satellite 11 

observation and brings errors to model training. Finally, the Himawari-8 scanning range is limited, and 12 

the satellite observation data obtained in Western China are limited in terms of quantity and accuracy. In 13 

general, the RGD-LHMLM has a satisfactory spatial performance, especially in areas with high annual 14 

average concentration of PM2.5; therefore, it can leave a good inversion effect. 15 

4.2.3 Time-Scale Model Performance Analysis 16 

 Figure 6 shows the scatterplot fitted with the inversion results of the mixed model from 9:00-17:00 17 

local Time. The model R2 ranged from 0.556 to 0.88 at different times. Except for 17:00 when the model 18 

had the worst performance, the model R2 exceeded 0.7 at other times, indicating that the model had a 19 
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good performance. The optimal performance time is 13:00, and R2 is 0.88. According to the results, the 1 

hourly differences in model performance were significant. 2 

 3 
Figure 6 Hourly model performance fitting scatter diagram in 2019 4 

Figure 7 shows the inversion performance results of the hybrid model collected from January to 5 

December 2019. The model performed the worst in summer months because R2 was reported 0.73, 0.72, 6 

and 0.68, respectively; however, RMSE and MAE were only 9.37, 9.22, 8.26 μg/m3 and 6.59, 6.34, and 7 

5.91 μg/m3, respectively, due to the lower average concentration of PM2.5 in summer. Winter and autumn 8 

models gained better performance results with an average R2 over 0.8. However, in contrast to summer, 9 

the estimation errors of these two seasons were relatively large, with average RMSE of 20.10 μg/m3 and 10 

10.72 μg/m3 and average MAE of 11.20 μg/m3 and 7.25 μg/m3, respectively. The mean R2 was 0.74, 11 

whereas the mean RMSE and MAE were 13.71 μg/m3 and 8.39 μg/m3, respectively. 12 
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 1 

Figure 7 Monthly model performance fitting scatter diagram in 2019 2 

4.2.4 Feature importance analysis 3 

The model performance differences were also analyzed to extract and rank the model features of 4 

RF and GBRT based on the feature importance. The higher the feature importance, the greater the 5 

contribution of factors to the model. Figure 8 shows that AOD, boundary layer height, 2 m surface 6 

temperature, and relative humidity had the greatest effect on the mixed model performance out of all 7 

variable characteristic parameters. Accordingly, AOD is greatly affected by the fine particulate matter 8 

and is the main factor in the inversion of PM2.5. Changes of the boundary layer height can affect the 9 

diffusion ability of the atmosphere. If the boundary layer height is low, the accumulation of pollutants 10 

will be caused. At the same time, the 2 m surface temperature has a great impact on the boundary layer 11 

height (Miao et al., 2018). Finally, higher rates of atmospheric humidity can improve the fine particulate 12 

matter accumulation. 13 
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 1 
Figure 8 Importance of model features (represent the contribution of feature factors to the model) 2 

The correlation coefficients between the monthly mean values of important meteorological 3 

parameters (AOD, BLH, TM and RH) and R2 were also analyzed. According to the results, the correlation 4 

coefficients between the meteorological parameters and PM2.5 were lower in summer. Furthermore, there 5 

are many rainy days and large cloud coverage, which is not conducive to satellite observation and 6 

decreases the accuracy of AOD data in summer. Therefore, the summer model performance is poor. There 7 

was a strong correlation between meteorological parameters and PM2.5 in autumn. There were also 8 

similar correlations between spring and winter; however, the winter model performed was better. The 9 

reasons can be interpreted as below. The winter temperature and boundary layer height are low, whereas 10 

the atmosphere is stable but not conducive to the diffusion of pollutants. Moreover, during the heating 11 

period in winter, pollutant emissions soar greatly and result in a sharp rise in the concentration of PM2.5. 12 

The increased pollution in winter ensures the quality and quantity of data, thereby improving the model 13 

performance effectively. 14 

 15 

Table 2 Correlation coefficient between meteorological parameters with PM2.5 16 

Season AOD BLH TM RH 

Spring 0.47 -0.33 0.12 0.36 

Summer 0.42 -0.21 0.06 0.19 

Autumn 0.38 -0.29 0.24 0.41 

Winter 0.44 -0.33 0.12 0.35 
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 1 

Figure 9 Variation trend of monthly average of meteorological parameters (AOD, BLH, TM, RH) and R2 2 

4.3 Temporal and Spatial Distribution Characteristics of PM2.5 Concentration in China 3 

In terms of spatial distribution, Shandong, Henan, Jiangsu, Anhui, as well as parts of Hubei and 4 

Hebei were the most polluted areas in China in 2019, with an annual average PM2.5 concentration of 5 

82.86 μg/m3. On the one hand, these areas are economically developed and densely populated, resulting 6 

in a large amount of pollutant emissions. On the other hand, the barrier of the peripheral mountains 7 

(Taihang Mountains, Qinling Mountains and the Southern Hills) leads to the accumulation of pollutants 8 

that are difficult to diffuse. Sichuan Basin is a rare area with a high PM2.5 value due to its unique 9 

topography (Zhang et al., 2019a), with an annual average PM2.5 concentration of 64.69 μg/m3. In addition, 10 

Inner Mongolia, Qinghai, Tibet and other places, the pollution level is low, the average annual PM2.5 11 

concentration is less than 40 μg/m3. 12 

The temporal distribution of PM2.5 is shown in Figure 10, The PM2.5 concentration began to rise 13 

from 9:00, and peaked at 55.65μg/m3 between 10:00 and 11:00 every day. After that, it maintained a high 14 

concentration until 15:00; and began to decrease. In the most polluted areas of China, the peak 15 

concentration of PM2.5 can reach 85.05μg/m3, while the peak in the less polluted areas is only about 16 

40μg/m3. On a national scale, daily PM2.5 concentrations fluctuates slightly. 17 

 18 
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 1 
Figure 10 Monthly distribution of PM2.5 concentration in China in 2019 2 

PM2.5 concentration in China varies significantly with the seasons. As shown in Figure 11, PM2.5 3 

concentration in winter is the highest, with an average value of 62.10μg/m3. January 2019 was the most 4 

polluted month in China, with the average PM2.5 concentration reaching 63.58μg/m3. The average PM2.5 5 

concentration was 47.39 μg/m3 in summer. The average concentration of PM2.5 in spring and autumn was 6 

54.21μg/m3 and 52.26 μg/m3, respectively, indicating similar levels of pollution. 7 

 8 

Figure 11 Monthly distribution of PM2.5 concentration in China in 2019 9 



18 
 

5 Conclusion 1 

It is essential to collect the spatiotemporal evolution characteristics regarding the concentration of 2 

PM2.5 for air pollution prevention and containment. Based on the linear hybrid machine learning model, 3 

this paper used the AOD data of Himawari-8 to invert the concentration of PM2.5 in China and obtain its 4 

distribution characteristics. The model performance and inversion results are analyzed and summarized 5 

below: 6 

(1) In the RGD-LHMLM obtained from linear fitting, the DNN accounted for the largest proportion 7 

with a weight coefficient of 0.62. The R2 of RGD-LHMLM was 0.84, whereas its generalization ability 8 

was significantly better than that of a single model (DNN: 0.80; GBRT: 0.81; RF: 0.79). Moreover, 9 

RMSE and MAE were 12.92 μg/m3 and 8.01 μg/m3, respectively. 10 

(2) The RGD-LHMLM was spatially stable, with R2>0.7 in more than 70% of sites as well as 11 

RMSE<20 μg/m3 and MAE<15μg/m3 in more than 95% of sites. These sites are mainly located in densely 12 

populated and industrially developed areas. The correlation difference between the inversion factor and 13 

PM2.5 in various seasons would lead to seasonal variations in the model performance. In addition, the 14 

performance was the worst in summer with an average R2 of 0.71; however, winter showed the best 15 

performance with an average R2 of 0.84. The diurnal variation of the model inversion effect is also 16 

obvious, and the 11:00-14:00 model usually has better performance. 17 

(3) Changes in the spatiotemporal characteristics were obvious in the concentration of PM2.5 in 18 

China. In other words, North China and East China had the highest concentration of PM2.5 with an 19 

average annual concentration of 82.86 μg/m3, whereas Inner Mongolia, Qinghai, Tibet, and other regions 20 

had low pollution levels with an average annual concentration of PM2.5 below 40 μg/m3. In winter, the 21 

concentration of PM2.5 was higher with an average of 62.10 μg/m3, whereas the pollution was lighter in 22 

summer with an average concentration of PM2.5 being reported 47.39 μg/m3. In the most polluted areas, 23 

the peak concentration of PM2.5 can reach 85.05μg/m3, but the daily PM2.5 concentration fluctuates 24 

slightly. 25 

In conclusion, the RGD-LHMLM can accurately measure the concentration of PM2.5 and perform 26 

the seasonal evolution of pollutants. These results can help control the local pollution. This study also 27 

indicated that integrating multiple Machine learning models improved the accuracy of fitting results 28 

effectively. For more accurate pollutant data, such models can be employed to fit the PM2.5 in the future 29 
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with more parameters closely related to PM2.5. However, there are some vacant values in the results of 1 

this study. There are also no data for some areas. Thus, other satellite data can be used in future studies 2 

to solve this problem. 3 
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