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Abstract. Solar-induced chlorophyll fluorescence (SIF) is emitted during photosynthesis in plant leaves. It constitutes a 17 

small additional offset to reflected radiance and can be observed by sensitive instruments that with high SNR and spectral 18 

resolution. The Chinese global carbon dioxide monitoring satellite (TanSat), as its mission, acquires greenhouse gas column 19 

density. The advanced technical characteristics of the hyper-spectrum grating spectrometer (ACGS) onboard TanSat enable 20 

SIF retrieval from space observations in the O2-A band. In this study, one-year SIF data at sounding scale was processed 21 

globally from Orbiting Carbon Observatory-2 (OCO-2) and TanSat using a physical-based algorithm. A comparison between 22 

the SIF results retrieved from OCO-2 spectra and the official OCO-2 SIF product (OCO2_Level 2_Lite_SIF.8r) shows their 23 

strong linear relationship (R2 > 0.85) and suggests the reliability of the SIF retrieval algorithm. The global distribution 24 

showed that the SIF retrieved from the two satellites shared the same spatial pattern for all seasons with the gridded SIF 25 

difference less than 0.3 W m−2 μm−1 sr−1, and they also agreed well with the official OCO-2 SIF product with the difference 26 

less than 0.2 W m−2 μm−1 sr−1. The retrieval uncertainty of seasonal-gridded TanSat SIF is less than 0.03 W m−2 μm−1 sr−1 27 

whereas the uncertainty of each sounding ranges from 0.1 to 0.6 W m−2 μm−1 sr−1. The relationship between annual averaged 28 

SIF products and FLUXCOM gross primary productivity (GPP) was also estimated for six vegetation types in a 1° × 1° grid 29 

over the globe, indicating that the SIF data from the two satellites have the same potential in quantitatively characterizing 30 

ecosystem productivity. The spatiotemporal consistency between TanSat and OCO-2 and their comparable data quality make 31 

the comprehensive usage of the two mission products possible. Data supplemented by TanSat observations are expected to 32 

contribute to the development of global SIF maps with more spatiotemporal detail, which will advance global research on 33 

vegetation photosynthesis. 34 
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1 Introduction 41 

Terrestrial vegetation accounts for a large part of the ecosystem, with its photosynthesis and respiration processes playing 42 

important roles in the global carbon cycle. Incoming radiation is absorbed, reflected, and/or transmitted by plant leaves. A 43 

portion of the absorbed radiation is used by the chlorophyll in plant leaves for carbon fixation, while the rest is either 44 

dissipated as heat or re-emitted as solar-induced chlorophyll fluorescence (SIF) at longer wavelengths (Frankenberg et al., 45 

2011a, 2014). In contrast to the traditional remotely sensed vegetation indices obtained from some studies (Frankenberg et 46 

al., 2011b; Guanter et al., 2014; Li et al., 2018; Sun et al., 2017a; Yang et al., 2015; Zhang et al., 2014), SIF offers the 47 

potential to measure photosynthesis activity and gross primary production (GPP), due to the strong correlation between these 48 

measures (Frankenberg et al., 2011b; Guanter et al., 2012, 2014). The fluorescence emission (Fs) adds a low-intensity 49 

radiance less than 10 W m−2 μm−1 sr−1 and fills in the solar absorption features of the reflected spectrum (Frankenberg et al., 50 

2011a). The filling-in effect of the solar lines (Fraunhofer lines) is the basic principle applied to measure SIF from space 51 

using the capabilities of hyperspectral observation (Frankenberg et al., 2011b; Guanter et al., 2012).  52 

The first attempt at SIF research based on space-based observations was performed using images acquired by the Medium 53 

Resolution Imaging Spectrometer (MERIS) onboard the ENVIronmental SATellite (ENVISAT) (Guanter et al., 2007). This 54 

led to a new idea for conducting SIF studies on a global scale. The first global SIF map was retrieved with high-resolution 55 

spectra from the Greenhouse-gases Observing SATellite (GOSAT) (Joiner et al., 2011; Frankenberg et al., 2011b). After that, 56 

SIF retrievals were implemented from a variety of satellite measurements, such as those from the Global Ozone Monitoring 57 

Experiment-2 (GOME-2) instruments onboard meteorological operational satellites, SCIAMACHY on board ENVISAT, and 58 

Orbiting Carbon Observatory-2 (OCO-2) (Joiner et al., 2016; Köhler et al., 2015). The TROPOspheric Monitoring 59 

Instrument (TROPOMI) on board Sentinel 5 Precursor (S-5P) provides more efficient SIF observations in terms of global 60 

coverage and new opportunities for exploring the application potential of SIF data in the terrestrial biosphere as well as in 61 

climate research (Doughty et al., 2019; Köhler et al., 2018b). Furthermore, an upcoming European Space Agency mission 62 

called FLuorescence EXplorer (FLEX), the first satellite dedicated to SIF emission observation, will launch in the middle of 63 

2024 (Drusch et al., 2017). Many studies on SIF applications have been initiated with the accumulation of SIF products in 64 

recent years. The responses of satellite-measured SIF to environmental conditions have been applied to drought dynamics 65 

monitoring and regional vegetation water stress estimation (Lee et al., 2013; Sun et al., 2015; Yoshida et al., 2015). As a 66 

proxy of photosynthesis, SIF acts as a powerful constraint parameter in estimating carbon exchange in an ecosystem between 67 

the atmosphere, ocean, and soil; as such, the analysis of the relationship between SIF and GPP has become an important 68 

research topic (Li et al., 2018; Köhler et al., 2018a; Sun et al., 2017a; Zhang et al., 2018). The strong linear relationship 69 

between them paves the way for improving terrestrial ecosystem model simulation of GPP, along with consequent 70 

improvement of global carbon flux estimation (MacBean et al., 2018; Yin et al., 2020). GPP estimations based on satellite-71 

measured SIF have proven to be an effective method validated by in-situ flux observations (Joiner et al., 2018; Qiu et al., 72 

2020). However, uncertainty in the factors that determine the relationship between SIF and GPP still exists and is a key 73 

删除的内容: ;74 

删除的内容: Middle 75 

带格式的: 字体颜色: 自动设置



3 

 

limitation in the application of SIF to flux estimation. Based on multi-satellite SIF products, eddy covariance flux tower 76 

observations, and ecological models, the relationship between SIF and GPP under different environmental conditions has 77 

been discussed in a number of studies to analyze the dominant factors for the growing status of different biomes, such as 78 

temperature, soil moisture, and vegetation types (Chen et al., 2020; Doughty et al., 2019; Li et al., 2020; Qiu et al., 2020; Yin 79 

et al., 2020). 80 

The Chinese global carbon dioxide monitoring satellite (TanSat) was launched in December 2016. Aiming at acquiring CO2 81 

concentrations as OCO-2, TanSat flies in a sun-synchronous orbit at approximately 700 km in height with a 16-day repeat 82 

cycle and an equator crossing time of ~1:30 p.m. local time (Cai et al., 2014; Liu et al., 2018; Yang et al., 2018). Onboard 83 

TanSat, the hyperspectral Atmospheric Carbon-dioxide Grating Spectrometer (ACGS) is designed to separately record solar 84 

backscatter spectra in three channels centered at 0.76 μm (O2-A band), 1.61 μm (weak CO2 absorption band), and 2.06 μm 85 

(strong CO2 absorption band). With the recorded spectra, many Optimal Estimation Method (OEM) full physics retrieval 86 

algorithms have been developed and applied for XCO2 retrievals (Boesche et al., 2009; Butz et al., 2009, 2011; O’Dell et al., 87 

2012; Reuter et al., 2010; Yang et al., 2015b; Yoshida et al., 2011, 2013). The Institute of Atmospheric Physics Carbon 88 

Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS) algorithm has been applied for TanSat retrieval (Yang 89 

et al., 2018; Yang et al., 2021) and was also previously tested on GOSAT and OCO-2 missions (Yang et al., 2015b). 90 

However, the fluorescence feature causes substantial biases when retrieving surface pressure and scattering parameters from 91 

the O2-A band, and the associated errors propagate into the XCO2 retrievals. In previous XCO2 retrieval, the surface 92 

emissions were well modeled as a continuum zero offset of the O2-A band to reduce errors (Frankenberg et al., 2011a, 2012; 93 

Butz et al., 2009, 2010; Joiner et al., 2012). The high spectral resolution of ~0.044 nm and a signal-to-noise ratio of ~360 in 94 

the O2-A band makes it possible to obtain SIF from space measurements, with a spatial resolution of 2 km × 2 km in nadir 95 

mode (Liu et al., 2018).  96 

Various approaches have been used to infer SIF from satellite measurements (Frankenberg et al., 2011b, 2014a, 2014b; 97 

Guanter et al., 2007, 2012, 2015; Joiner et al., 2011, 2013, 2016; Köhler et al., 2015, 2018b). The SIF signal induces a 98 

filling-in effect of solar lines, which can be used for SIF retrieval, as the fractional depth of solar Fraunhofer lines does not 99 

change during radiation transmission in the atmosphere. To recognize the filling-in features by SIF, high-resolution spectra 100 

and an instrument spectral response function (ISRF) are required to describe subtle changes in the spectral absorption lines. 101 

With the detailed spectral features, a method was developed based on solar line fitting and the Beer-Lambertian law. This 102 

method is robust and accurate when the spectrum is out of the influence of telluric absorptions, even in the presence of 103 

aerosols (Frankenberg et al., 2011a; Joiner et al., 2011); in the current study, this method was applied to develop the 104 

IAPCAS/SIF algorithm. Another SIF retrieval method is the data-driven algorithm based on the singular value 105 

decomposition (SVD) technique (Joiner et al., 2011; Guanter et al., 2012), which has been broadly applied in GOSAT, OCO-106 

2, TanSat and TROPOMI SIF retrieval (Joiner et al., 2011; Guanter et al., 2012, 2015; Frankenberg et al., 2014a; Du et al., 107 

2018; Köhler et al., 2018b). In the data-driven method, the spectrum is represented as a linear combination of the SIF signal 108 

and several singular vectors that are trained from non-fluorescent scenes by SVD; thus, the SIF signal can be obtained with 109 
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linear least-squares fitting  (Du et al., 2018; Guanter et al., 2012). The first TanSat SIF map was obtained by the SVD 130 

method (Du et al., 2018), in a previous study, a preliminary comparison between the TanSat SIF products retrieved by 131 

IAPCAS/SIF algorithm and the SVD data-driven method was performed, and the comparison shows that the two SIF 132 

products share a similar global pattern and signal magnitude for all seasons while different biases still exist in four seasons 133 

(Yao et al., 2021). The different biases in four seasons may be caused by the different training samples of the SVD method. 134 

In order to obtain stable SIF data products from TanSat and other subsequent satellite missions, it is particularly important to 135 

establish a stable and high-precision SIF inversion algorithm. To validate the IAPCAS/SIF algorithm and test the potential of 136 

comprehensive usage of multi-satellites SIF data in analysis, in this study, we detailed the TanSat SIF retrieval using the 137 

IAPCAS/SIF algorithm and made the comparison of SIF products between TanSat and OCO-2.  138 

2 Data and retrieval algorithm 139 

2.1 Retrieval Principle and Method 140 

We used TanSat version 2 Level 1B (L1B) nadir-mode earth observation data in the retrieval process. The measurements 141 

covered the period from March 2017 to February 2018. Polarized radiance in the O2-A band with a spectral resolution of 142 

0.044 nm was provided in the L1B data, and two micro-windows near 757 nm (758.3-759.2 nm) and 771 nm (769.6-770.3 143 

nm) were chosen to retrieve the top-of-atmosphere (TOA) SIF while avoiding the contamination from strong lines of 144 

atmospheric gas absorption. The retrieval was independent for each micro-window as shown in Figure 1. To avoid 145 

duplication of information, we use the SIF product at 757 nm as the example in the analysis. 146 

 147 

Figure 1: The fitted spectra and residuals for the (a) 757 nm and (b) 771 nm micro-windows of TanSat measurement. The error 148 
bar of the measured spectra depicts the estimated precision of each TanSat sounding.  149 

 150 

Filling-in on solar lines by chlorophyll fluorescence in the O2-A band can be detected in the hyperspectral measurements 151 

from TanSat. This effect on spectral radiance is different from the impact of atmospheric and surface processes, e.g., 152 
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scattering and absorption. For example, scattering by aerosols and clouds does not change the relative depth of clear solar 162 

lines, unlike the SIF emission signal. We applied the differential optical absorption spectroscopy (DOAS) technique to 163 

IAPCAS/SIF algorithm for TanSat measurement (Frankenberg, 2014b; Sun et al., 2018).  164 

The TOA spectral radiance (𝐿𝑇𝑂𝐴
𝜆 ) at wavelength 𝜆 can be represented as follows: 165 

𝐿𝑇𝑂𝐴
𝜆 = 𝐼t

𝜆 ⋅ 𝜇0 ⋅ (𝜌0
𝜆 +

𝜌𝑠
𝜆⋅𝑇↓

𝜆⋅𝑇↑
𝜆

𝜋
) + 𝐹𝑇𝑂𝐴

𝜆                                                                                                                                   (1) 166 

where 𝐼t
𝜆 is the incident solar irradiance at the TOA, 𝜇0 is the cosine of the solar zenith angle (SZA), 𝜌0

𝜆 is atmospheric path 167 

reflectance, 𝜌𝑠
𝜆 is surface reflectance, and 𝑇↓

𝜆  and 𝑇↑
𝜆  are the total atmospheric transmittances along the light-path in the 168 

downstream and upstream directions, respectively. 𝐹𝑇𝑂𝐴
𝜆  is the SIF radiance at TOA. 169 

The first term on the right of Eq. (1) represents the transmission process of solar radiance. In the micro-windows used in SIF 170 

retrieval, gas absorption is very weak and smooth, and hence, the atmosphere term 𝜇0 ∙ (𝜌0
𝜆 +

𝜌𝑠
𝜆∙𝑇↓

𝜆∙𝑇↑
𝜆

𝜋
) can be simplified to a 171 

low-order polynomial that varies with λ (Joiner et al., 2013; Sun et al., 2018); this is always valid as long as the spectrum 172 

fitting range is out of sharp atmospheric absorptions. In the retrieval, the spectral radiance measurement was converted to 173 

logarithmic space by the instrument and the radiative transfer process 𝑓(𝐹𝑠
𝑟𝑒𝑙 , 𝒂) was represented as follows: 174 

𝑓(𝐹𝑠
𝑟𝑒𝑙 , 𝒂) = 𝑙𝑜𝑔(< 𝐼t + 𝐹𝑠

𝑟𝑒𝑙 >) + ∑ 𝑎𝑖 ⋅ 𝜆𝑖𝑛
𝑖=0                                                                                                                       (2) 175 

where < > denote the convolution with the ISRF from line-by-line spectra. The polynomial coefficient 𝒂 determines the 176 

wavelength dependence polynomial for the atmosphere term; in the retrieval, we used a second-order polynomial (n = 2). 177 

The radiance is normalized to the continuum level; hence, 𝐼t is a normalized disk-integrated solar transmission model, and 178 

𝐹𝑠
𝑟𝑒𝑙  is the normalized relative SIF. In the micro-window, SIF was regarded as a constant signal due to its small changes.  179 

Although the atmospheric gas absorption was very weak in the micro-window, the weak absorption and the far-wing effects 180 

(O2 lines) can still change spectral features, which induces errors in spectrum fitting. Therefore, we used the European 181 

Centre for Medium-Range Weather Forecasts (ECMWF) interim surface pressure (0.75° × 0.75°) to estimate O2 absorption 182 

firstly and then modified the absorption feature by a scale factor. The scale factor is obtained simultaneously in SIF retrieval 183 

to reduce the error induced by the uncertainty in surface pressure. As described by Yang (2020), there is also a continuum 184 

feature in TanSat L1B data that needs to be considered for the high-quality fitting of the O2-A band. However, in this study, 185 

this continuum feature was not corrected, as the impact of such a smooth continuum variation in the micro-window is weak 186 

and the polynomial continuum model is capable of compensating for most of this effect. 187 

The state vector list in the retrieval includes the relative SIF signal 𝐹𝑠
𝑟𝑒𝑙 , a wavenumber shift, the scale of O2 column 188 

absorption for surface pressure correction, and coefficients of the polynomial. The continuum level radiance 𝐼𝑐𝑜𝑛𝑡  within the 189 

fitting window is calculated using the radiance outside the absorption features in the micro-window and is then used for the 190 

actual SIF signal calculation thus: 𝐹 = 𝐹𝑠
𝑟𝑒𝑙 ∙ 𝐼𝑐𝑜𝑛𝑡.  191 

In the IAPCAS/SIF algorithm, we used an OEM for state vector optimization in the retrieval process. Unlike XCO2 retrieval, 192 

SIF retrieval employs a state vector with fewer elements and a much simpler forward model, so there is no need to perform 193 
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complex radiation transmission calculations. Considering the low complexity of SIF retrieval, the Gauss-Newton method 197 

was applied in inversion iteratively to find the optimal solution.  198 

2.2 Bias Corrections 199 

A systematic error remains in the raw SIF retrieval output if no bias correction is performed; similar results have been 200 

reported in GOSAT and OCO-2 SIF retrieval studies (Frankenberg et al., 2011a, 2011b; Sun et al., 2018). This is because the 201 

SIF signal is weak (e.g., typically ~1-2% of the continuum level radiance), which means that even a small issue in the 202 

measurement, such as a zero-offset caused by radiometric calibration error, could induce significant bias. Unfortunately, the 203 

lack of knowledge on in-flight instrument performance makes it difficult to perform a direct systematic bias correction in the 204 

measured spectrum. In the retrieval, a continuum level radiance bin fit was used to estimate the bias. The bins have a 205 

continuum level radiance interval of 5 W m−2 μm−1 sr−1. In each bin, the mean bias was estimated using all non-fluorescence 206 

measurements, and a piecewise linear function was built from the mean bias of each continuum level radiance interval. 207 

The non-fluorescence soundings that were used in the bias estimation were based on the dataset “sounding_landCover” in 208 

TanSat L1B data. This dataset depends on the MODIS land cover product and provides a scheme consisting of 17 land cover 209 

classifications defined by the International Geosphere-Biosphere Programme. These retrieved measurements marked as 210 

“snow and ice,” “barren,” and “sparsely vegetated” were chosen to estimate the bias. Calibrations compensated for most of 211 

the instrument degradations, but this alone was not perfect. To reduce the impact from the remaining minor discrepancies, 212 

we built the bias correction function daily to obtain bias for each sounding via interpolation of the continuum level radiance 213 

(Sun et al., 2017b, 2018). 214 

 The bias curves shown in Figure 2 differ significantly between TanSat and OCO-2. This is mostly due to the differences in 215 

instrument performance and radiometric calibration. In general, the TanSat bias curves exhibited two peaks at radiance levels 216 

of approximately 40 and 125 W m−2 μm−1 sr−1, separately, and most biases were larger than 0.015. For OCO-2, the curves 217 

dropped sharply at low radiance levels, reaching the valley at a radiance level of approximately 40 W m−2 μm−1 sr−1, and then 218 

increased slowly with the radiance level. 219 

 220 
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Figure 2: Variations in the bias correction curves of continuum level radiance from (a) TanSat on July 7, 2017, and (b) Orbiting 224 
Carbon Observatory-2 (OCO-2) on June 16, 2017. The different colors in the legend present different footprints of the satellite 225 
frame.  226 

2.3 Data Quality Controls 227 

Only data that passed quality control were used in further applications. There were two data quality control processes for the 228 

SIF products: pre-screening and post-screening. Pre-screening focused mainly on cloud screening; only cloud-free 229 

measurements were used in SIF retrieval. A surface pressure difference (SPD), defined as: 230 

∆𝑃0 = |𝑃𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 − 𝑃𝐸𝐶𝑀𝑊𝐹|                                                                                                                                                   (3) 231 

was used to evaluate cloud contamination along with a chi-square test 232 

𝜒2 = ∑
(𝑦𝑠𝑖𝑚−𝑦𝑜𝑏𝑠)2

𝑦𝑛𝑜𝑖𝑠𝑒
2                                                                                                                                                                   (4) 233 

where 𝑦𝑠𝑖𝑚, 𝑦𝑜𝑏𝑠, and 𝑦𝑛𝑜𝑖𝑠𝑒  represent the model fitting spectrum, observation spectrum, and spectrum noise, respectively. 234 

𝑃𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙  is the apparent surface pressure obtained from O2-A band surface pressure retrieval, assuming a single scattering 235 

atmosphere. 𝑃𝐸𝐶𝑀𝑊𝐹  is the ECMWF interim (0.75° × 0.75°) surface pressure. A “cloud-free” measurement was required to 236 

simultaneously satisfy an SPD of less than 20 hPa and a 𝜒2 value of less than 80. Here, post-screening was applied to filter 237 

out “bad” retrievals; this screening process involved the following steps: (1) SIF retrievals with reduced 𝜒2 (𝜒𝑟𝑒𝑑
2 ) values 238 

ranging from 0.7 to 1.3 were considered “good” fitting, (2) continuum level radiance outside the range of 15 ~ 200 W m−2 239 

μm−1 sr−1 was screened out to avoid scenes too bright or too dark, and (3) soundings with the SZA higher than 60° were also 240 

filtered out. 241 

2.4 IAPCAS versus IMAP-DOAS OCO-2 SIF Retrieval 242 

Before applied to TanSat retrievals, we tested the IAPCAS/SIF algorithm on the OCO-2 L1B data first 243 

(OCO2_L1B_Science.8r) and then compared the retrieval results with the OCO-2 L2 Lite SIF product (OCO2_Level 244 

2_Lite_SIF.8r) retrieved by the Iterative Maximum A Posteriori-Differential Optical Absorption Spectroscopy (IMAP-245 

DOAS) algorithm (Frankenberg, 2014b). The Lite product provides the SIF value for each sounding on a daily basis and 246 

hence the SIF comparison could be performed on the sounding scale for each month. 247 

Table 1 displays the relationship of OCO-2 SIF values between the IAPCAS/SIF and IMAP-DOAS at 757 nm micro-248 

window for each month. Overall, the two SIF products were in good agreement. The linear fitting of the two SIF products 249 

suggests that they are highly correlated, as indicated by the strong linear relationship with R2 mostly larger than 0.85 and the 250 

root mean square error (RMSE) of about 0.2 W m−2 μm−1 sr−1. Good consistency between the two SIF products implies the 251 

reliability of the IAPCAS/SIF algorithm; thus, it was further applied to TanSat SIF retrieval. However, there was still a small 252 

bias in the comparisons, which was due, most likely, to the impact of differences in the bias correction method, retrieval 253 

algorithm, and fitting window. 254 
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Table 1: Summary of the relationship between the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for 263 

Satellite Remote Sensing (IAPCAS) OCO-2 and Iterative Maximum A Posteriori-Differential Optical Absorption Spectroscopy 264 

(IMAP-DOAS) OCO-2 solar-induced chlorophyll fluorescence (SIF) products at 757nm micro-window. 265 

month Number of soundings Slope Intercept R2 RMSE/ W m−2 μm−1 sr−1 

2017/03 1097277 0.85 0.034 0.86 0.18 

2017/04 1119464 0.86 0.045 0.87 0.19 

2017/05 1054235 0.88 0.041 0.88 0.19 

2017/06 1014848 0.91 0.032 0.90 0.19 

2017/07 965309 0.92 0.011 0.91 0.19 

2017/09 211219 0.88 0.005 0.81 0.23 

2017/10 473359 0.88 0.031 0.88 0.17 

2017/11 579009 0.87 0.022 0.85 0.19 

2017/12 645134 0.87 0.020 0.88 0.16 

2018/01 788655 0.87 0.019 0.88 0.17 

2018/02* 629995 0.86 0.024 0.87 0.18 

* Due to the lack of OCO-2 measurements in August 2017, the comparison is only performed for 11 months. 266 

3 Results and Discussion 267 

3.1 Comparison between TanSat and OCO-2 SIF Measurements 268 

Directly comparing OCO-2 and TanSat SIF measurements could provide information on joint data application at the 269 

sounding scale for further studies. However, an identical sounding overlap barely exists because the two satellites often have 270 

different nadir tracks on the ground, which is induced by the different temporal and spatial intervals of the two satellite 271 

missions. Fortunately, the ground tracks of the two satellites were relatively close from April 17 to April 23, 2017. A couple 272 

of overlapping orbits were found in the measurements obtained from Africa with the orbit number of 1733 from TanSat and 273 

14890a from OCO-2 (Figure 3). In the comparison, the OCO2_Level 2_Lite_SIF.8r product was used to present the SIF 274 

emission over the study area. These overlapping measurements encompassed multiple land cover types, in which the SIF 275 

varied within an acceptable time difference (<5 min).  276 

Overall, measurements from the two satellites indicated SIF variation with land cover type. The SIF emission over evergreen 277 

broadleaf forests was larger than that over savannas, and grasslands exhibited the lowest SIF emission in April (Figure  3a,b). 278 

The mean SIF emission over evergreen broadleaf forests was approximately 0.9-1.1 W m−2 μm−1 sr−1, whereas those over 279 

savannas and grasslands were 0.5-0.7 W m−2 μm−1 sr−1 and less than 0.1 W m−2 μm−1 sr−1, respectively (Figure 3c,d). 280 

Furthermore, we also found a significant difference in the SIF emission intensity over tropical savannas, which was observed 281 

by both satellites (Figure 3c,d).  282 

 283 

 284 
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 297 

Figure 3: Overlapping orbits of TanSat and OCO-2 on April 19, 2017 over Africa displayed in Google Earth, (a) the SIF 298 
measurements from both the two satellites and (b) the footprint land cover type were compared. Compared to OCO-2, TanSat has 299 
a wider swath width. A zoom-in view over savannas shows variations in the SIF signal measured by (c) OCO-2 and (d) TanSat. 300 
The land surface image shown in Google earth is provided by Landsat/Copernicus team. Following the International Geosphere-301 
Biosphere Programme classification scheme, the vertical legend on the bottom right corner depicts the land cover type that occurs 302 
in the study area.  The middle horizontal color bar represents the intensity of the SIF radiance. (e) Small-area SIF comparison 303 
between OCO-2 and TanSat; each data point represents the mean SIF of a degree in latitude (colors) along the track. The marker 304 
legend that is shown on the bottom right of the plot indicates the dominant land cover (defined as the majority land cover type of 305 
each sounding) in each small area. There are six land cover types including evergreen broadleaf forest (EBF), open shrubland 306 
(OSL), woody savanna (WSAV), savanna (SAV), grassland (GRA), and barren land (BL). The red dashed line represents the 307 
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linear fit between the two SIF products with statistics shown in the upper left of the plot. The gray line indicates a 1:1 relationship 314 
for reference.  315 

 316 

Because the footprint sizes of the two satellites are different, it is difficult to make a direct footprint-to-footprint comparison. 317 

Therefore, we made the comparison between the two satellite measurements based on a small area average. Each small area 318 

spans a degree in latitude and continues along the track. The small area-averaged SIF comparison is shown in Figure 3e. The 319 

results indicate good agreement, with an R2 of 0.94 and an RMSE of 0.096 W m−2 μm−1 sr−1. Additional ground-based SIF 320 

measurement setups (Guanter et al., 2007; Liu et al., 2019; van der Tol et al., 2016; Yang et al., 2015a; Yu et al., 2019) 321 

should allow for direct evaluation of satellite retrieval accuracy in the future. 322 

 323 

 324 

Figure 4: Global TanSat SIF (left, a-d), differences between TanSat and IAPCAS OCO-2 SIF values (middle, e-h), and the grid-325 
cell retrieval uncertainty estimated from TanSat (right, i-l) at 1° × 1° spatial resolution. The maps in each row represent a 326 
Northern Hemisphere season, i.e., spring (MAM), summer (JJA), fall (SON), and winter (DJF).  327 

 328 
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Figure 4 shows the global SIF comparison between IAPCAS/SIF retrieved OCO-2 and TanSat; this comparison is only 329 

performed at 1° × 1° spatial resolution. In general, the difference in SIF globally is mostly less than 0.3 W m−2 μm−1 sr−1 for 330 

all seasons, and on average, the smallest difference appears in fall. There are regional biases observed in North Africa, South 331 

Africa, South America, and Europe in all seasons except fall. This is mainly caused by the differences in instrument 332 

performance between TanSat and OCO-2, such as the Instrument Respond Function and the Signal-to-Noise. The instrument 333 

performance difference is represented by the different structural characteristics of the bias curves. The bias correction 334 

compensates for most of the bias caused by instrument performance; however, small biases could remain. Furthermore, the 335 

hundreds of kilometers of distance between the OCO-2 and TanSat footprints, for example, over different vegetation regions, 336 

will also cause some measurement discrepancies. The global distribution of the two satellites was also compared with the 337 

official OCO-2 SIF data on the global scale, the results show that the difference between the retrieved SIF maps and the 338 

official map is less than 0.2 W m−2 μm−1 sr−1, indicating that the retrieved SIF data from OCO-2 and TanSat both have good 339 

SIF characterization capabilities on a global scale. The uncertainty σ  of each sounding was estimated to validate SIF 340 

reliability and is provided in the product. σ is derived from the retrieval error covariance matrix, 𝑆𝑒 = (𝐾𝑇𝑆0
−1𝐾)−1, where 𝐾 341 

is the Jacobian matrix from the forward model fitting and 𝑆0 is the measurement error covariance matrix that is calculated 342 

from the instrument spectrum noise. In general, σ ranges from 0.1 to 0.6 W m−2 μm−1 sr−1 for both TanSat and OCO-2 343 

measurements in the 757 nm fitting window, which is of a similar magnitude and data range as those of previous studies (Du 344 

et al., 2018; Frankenberg et al., 2014a). Meanwhile, the standard error of the mean SIF in each grid σ𝑚𝑒𝑎𝑠 was estimated to 345 

represent the gridded retrieval error and natural variability, which is calculated from TanSat SIF values with σ𝑚𝑒𝑎𝑠 =
σ𝑠𝑡𝑑

√𝑛
 346 

and σ𝑠𝑡𝑑 = √
∑ (𝑆𝐼𝐹𝑖−𝑆𝐼𝐹̅̅ ̅̅ ̅)2𝑛

𝑖=1

𝑛
, where σ𝑠𝑡𝑑  represents the standard deviation of the grid cell with 𝑛 soundings,  𝑆𝐼𝐹𝑖 is the 347 

retrieved SIF values of each sounding, and 𝑆𝐼𝐹̅̅ ̅̅ ̅ is the mean SIF value for all measurements in the grid. As depicted in the 348 

right column of Figure 4, the σ𝑚𝑒𝑎𝑠 of each grid cell is much lower than the precision of a single sounding. The σ𝑚𝑒𝑎𝑠 for 349 

South America is larger than that for any other region on the globe (Figure 4i-l). This is similar to that of OCO-2 SIF 350 

retrieval and caused by fewer effective measurements due to the South Atlantic Anomaly (Sun et al., 2018). The difference 351 

in SIF emission values between the two satellites indicates that the collaborative usage of two satellite SIF products still 352 

requires analysis of the impact of instrument differences, although the two satellite SIF products share the same 353 

spatiotemporal pattern on a global scale. 354 

3.2 SIF Global Distribution and Temporal Variation 355 

The SIF emission intensity reflects the growth status of vegetation due to its correlation with photosynthetic efficiency; 356 

hence, the overall global vegetation status can be represented by global SIF maps for each season. TanSat SIF over a whole 357 

year’s cycle, from March 2017 to February 2018, is represented seasonally as a 1° × 1° grid spatially. The seasonal variation 358 
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in SIF emission is clear in the Northern Hemisphere, i.e., it is enhanced from spring to summer and then decreases (Sun et al., 365 

2018).  366 

In general, the SIF emission varied with latitude and the vegetation-covered areas near the equator maintained a continuous 367 

SIF emission throughout the year. Large SIF emissions in the Northern Hemisphere, above 1.5 W m−2 μm−1 sr−1, mostly from 368 

the eastern U.S., southeast of China, and southern Asia in summer, were due to the large areas of cropland. There was also 369 

an obvious SIF emission of 1-1.2 W m−2 μm−1 sr−1 observed over Central Europe and northeastern China during the summer. 370 

In these regions, croplands and deciduous forests contribute to SIF emissions. In the Southern Hemisphere, the strongest SIF 371 

emission occurred in the Amazon, with a level of approximately 1-2 W m−2 μm−1 sr−1 in DJF (Northern Hemisphere winter), 372 

where there is an evergreen broadleaf rainforest. Africa, which is covered by evergreen broadleaf rainforests and woody 373 

savannas, had an average SIF value of 0.7-1.5 W m−2 μm−1 sr−1 during the year. 374 

The SIF-GPP relationship over different vegetation types was also investigated by comparing the annual mean satellite SIF 375 

measurements with the FLUXCOM GPP (Jung et al., 2020; Tramontana et al., 2016) dataset in a 1° × 1° grid over the globe. 376 

The FLUXCOM GPP dataset used in the study comprises monthly global gridded flux products with remote sensing and 377 

meteorological/climate forcing (RS+METEO) setups, which are derived from mean seasonal cycles according to MODIS 378 

data and daily meteorological information (Jung et al., 2020; Tramontana et al., 2016). The satellite-measured SIF is an 379 

instantaneous emission signal that varies with incident solar radiance within the day. To reduce the differences caused by the 380 

observation time and SZA at different latitudes, we applied a daily adjustment factor to convert the instantaneous SIF 381 

emission into a daily mean SIF (Du et al., 2018; Frankenberg et al., 2011b; Sun et al., 2018). The daily adjustment factor d is 382 

calculated as follows:  383 

 𝑑 =
∫ 𝑐𝑜𝑠 (𝑆𝑍𝐴(𝑡))∙𝑑𝑡

𝑡=𝑡0+12ℎ
𝑡=𝑡0−12ℎ

𝑐𝑜𝑠 (𝑆𝑍𝐴(𝑡0))
                                                                                                                                                        (5) 384 

where 𝑡0 is the observation time in fractional days and 𝑆𝑍𝐴(𝑡) is a function of latitude, longitude, and time for calculating 385 

the SZA of the measurements. The annual averaged SIF is calculated from the daily mean SIF. To evaluate the relationship 386 

between SIF and GPP on the periodic scale of vegetation growth status, annually-averaged data were used in the regression 387 

fitting analysis. 388 
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 389 

Figure 5: Relationship between annual mean SIF and FLUXCOM gross primary production (GPP) from March 2017 to February 390 
2018. Blue and red dots represent OCO-2 and TanSat SIF grids, respectively. Fitted lines and statistics for OCO-2 and TanSat are 391 
shown in each plot. 392 

Figure 5 shows the linear fits for six vegetation types, including needle leaf forest, evergreen broadleaf forest, shrubland, 393 

savanna, grassland, and cropland. Recent studies have shown a strong linear correlation between SIF and GPP. The TanSat 394 

SIF and the OCO-2 official SIF data were used to estimation the SIF-GPP correlation. To make a direct comparison of the 395 

relationship between SIF and GPP among various vegetation types, we used non-offset linear fitting to indicate the 396 

correlation between satellite SIF and FLUXCOM GPP. For savanna and cropland, there were strong relationships between 397 

the mean SIF and GPP with an R-value above 0.84. The fitting results show that the SIF products of the two satellites have 398 

similar capabilities in characterizing GPP, especially for the evergreen broadleaf forest, savanna, and cropland, with slopes 399 

of approximately 21, 18, and 13, respectively. For shrubland and grassland, the slope of OCO-2 SIF with GPP is higher than 400 

that of TanSat and has a worse correlation. For forests, OCO-2 SIF present a better correlation with GPP, especially in the 401 

needle leaf forest. The markedly different fitting slopes across various biomes suggest that the application of SIF in GPP 402 

estimation needs more detailed analysis although the evidence of the strong linear relationship between them.  403 

4 Conclusions 404 

In this paper, we introduced the retrieval algorithm IAPCAS/SIF and its application in TanSat and OCO-2 measurements. 405 

One-year (March 2017-February 2018) TanSat SIF data was introduced and compared with OCO-2 measurements in this 406 
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study. The TanSat and OCO-2 SIF products based on the IAPCAS/SIF algorithm are available on the Cooperation on the 410 

Analysis of carbon SAtellites data (CASA) website, www.chinageoss.org/tansat. Comparisons between TanSat and OCO-2 411 

measurements directly, using a case study, and indirectly, with global 1°×1° grid data, showed consistency between the two 412 

satellite missions, indicating that the coordinated usage of the two data products is possible in future studies. With increasing 413 

satellites becoming available for SIF observations, space-based SIF observations have recently expanded in range to provide 414 

broad spatiotemporal coverage. The next-generation Chinese carbon monitoring satellite (TanSat-2) is now in the 415 

preliminary design phase, which is designed to be a constellation of six satellites to measure different kinds of greenhouse 416 

gases and trace gases in a more efficient way, including CO2，CH4, CO, NOx, as well as SIF. SIF measurements from 417 

TanSat-2 will provide global data products over broader coverage areas with less noise. The improvement in the 418 

spatiotemporal resolution of SIF data will benefit GPP predictions based on the numerous studies of the linear relationship 419 

between SIF and GPP. In future work, the measurement accuracy should be validated directly using ground-based 420 

measurements to ensure data quality.   421 

Data availability 422 

The SIF products of TanSat and OCO-2 by IAPCAS/SIF algorithm are available on the Cooperation on the Analysis of 423 

carbon SAtellites data (CASA) website (www.chinageoss.org/tansat).  424 
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