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Abstract. Solar-induced chlorophyll fluorescence (SIF) is emitted during photosynthesis in plant leaves. It constitutes a 17 

small additional offset to reflected radiance and can be observed by sensitive instruments that with high signal-to-noise ratio 18 

and spectral resolution. The Chinese global carbon dioxide monitoring satellite (TanSat), as its mission, acquires greenhouse 19 

gas column density. The advanced technical characteristics of the hyper-spectrum grating spectrometer (ACGS) onboard 20 

TanSat enable SIF retrieval from space observations in the O2-A band. In this study, one-year SIF data for each sounding 21 

was retrieved from Orbiting Carbon Observatory-2 (OCO-2) and TanSat measurements using the IAPCAS/SIF algorithm. A 22 

comparison between the SIF results retrieved from OCO-2 spectra and the official OCO-2 SIF product (OCO2_Level 23 

2_Lite_SIF.8r) shows their strong linear relationship (R2 > 0.85) and suggests the reliability of the SIF retrieval algorithm. 24 

The global distribution showed that the SIF retrieved from the two satellites shared the same spatial pattern for all seasons 25 

with the gridded SIF difference less than 0.3 W m−2 μm−1 sr−1, and they also agreed well with the official OCO-2 SIF product 26 

with the difference less than 0.2 W m−2 μm−1 sr−1. The retrieval uncertainty of seasonal-gridded TanSat SIF is less than 0.03 27 

W m−2 μm−1 sr−1 whereas the uncertainty of each sounding ranges from 0.1 to 0.6 W m−2 μm−1 sr−1. The relationship between 28 

annually-averaged SIF products and FLUXCOM gross primary productivity (GPP) was also estimated for six vegetation 29 

types in a 1° × 1° grid over the globe, indicating that the SIF data from the two satellites have the same potential in 30 

quantitatively characterizing ecosystem productivity. The spatiotemporal consistency between TanSat and OCO-2 and their 31 

comparable data quality make the comprehensive usage of the two mission products possible. Data supplemented by TanSat 32 

observations are expected to contribute to the development of global SIF maps with more spatiotemporal detail, which will 33 

advance global research on vegetation photosynthesis. 34 
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1 Introduction 35 

Terrestrial vegetation accounts for a large part of the ecosystem, with its photosynthesis and respiration processes playing 36 

important roles in the global carbon cycle. Incoming radiation is absorbed, reflected, and/or transmitted by plant leaves. A 37 

portion of the absorbed radiation is used by the chlorophyll in plant leaves for carbon fixation, while the rest is either 38 

dissipated as heat or re-emitted as solar-induced chlorophyll fluorescence (SIF) at longer wavelengths (Frankenberg et al., 39 

2011a, 2014). In contrast to the traditional remotely sensed vegetation indices obtained from some studies (Frankenberg et 40 

al., 2011b; Guanter et al., 2014; Li et al., 2018; Sun et al., 2017a; Yang et al., 2015; Zhang et al., 2014), SIF offers the 41 

potential to measure photosynthesis activity and gross primary production (GPP), due to the strong correlation between these 42 

measures (Frankenberg et al., 2011b; Guanter et al., 2012, 2014). The fluorescence emission (Fs) adds a low-intensity 43 

radiance less than 10 W m−2 μm−1 sr−1 and fills in the solar absorption features of the reflected spectrum (Frankenberg et al., 44 

2011a). The filling-in effect of the solar lines (Fraunhofer lines) is the basic principle applied to measure SIF from space 45 

using the capabilities of hyperspectral observation (Frankenberg et al., 2011b; Guanter et al., 2012).  46 

The first attempt at SIF research based on space-based observations was performed using images acquired by the Medium 47 

Resolution Imaging Spectrometer (MERIS) onboard the ENVIronmental SATellite (ENVISAT) (Guanter et al., 2007). This 48 

led to a new idea for conducting SIF studies on a global scale. The first global SIF map was retrieved with high-resolution 49 

spectra from the Greenhouse-gases Observing SATellite (GOSAT) (Joiner et al., 2011; Frankenberg et al., 2011b). After that, 50 

SIF retrievals were implemented from a variety of satellite measurements, such as those from the Global Ozone Monitoring 51 

Experiment-2 (GOME-2) instruments onboard meteorological operational satellites, SCIAMACHY on board ENVISAT, and 52 

Orbiting Carbon Observatory-2 (OCO-2) (Joiner et al., 2016; Köhler et al., 2015). The TROPOspheric Monitoring 53 

Instrument (TROPOMI) on board Sentinel 5 Precursor (S-5P) provides more efficient SIF observations in terms of global 54 

coverage and new opportunities for exploring the application potential of SIF data in the terrestrial biosphere as well as in 55 

climate research (Doughty et al., 2019; Köhler et al., 2018b). Furthermore, an upcoming European Space Agency mission 56 

called FLuorescence EXplorer (FLEX), the first satellite dedicated to SIF emission observation, will launch in the middle of 57 

2024 (Drusch et al., 2017). Many studies on SIF applications have been initiated with the accumulation of SIF products in 58 

recent years. The responses of satellite-measured SIF to environmental conditions have been applied to drought dynamics 59 

monitoring and regional vegetation water stress estimation (Lee et al., 2013; Sun et al., 2015; Yoshida et al., 2015). As a 60 

proxy of photosynthesis, SIF acts as a powerful constraint parameter in estimating carbon exchange in an ecosystem between 61 

the atmosphere, ocean, and soil; as such, the analysis of the relationship between SIF and GPP has become an important 62 

research topic (Li et al., 2018; Köhler et al., 2018a; Sun et al., 2017a; Zhang et al., 2018). The strong linear relationship 63 

between them paves the way for improving terrestrial ecosystem model simulation of GPP, along with consequent 64 

improvement of global carbon flux estimation (MacBean et al., 2018; Yin et al., 2020). GPP estimations based on satellite-65 

measured SIF have proven to be an effective method validated by in-situ flux observations (Joiner et al., 2018; Qiu et al., 66 

2020). However, uncertainty in the factors that determine the relationship between SIF and GPP still exists and is a key 67 
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limitation in the application of SIF to flux estimation. Based on multi-satellite SIF products, eddy covariance flux tower 68 

observations, and ecological models, the relationship between SIF and GPP under different environmental conditions has 69 

been discussed in a number of studies to analyze the dominant factors for the growing status of different biomes, such as 70 

temperature, soil moisture, and vegetation types (Chen et al., 2020; Doughty et al., 2019; Li et al., 2020; Qiu et al., 2020; Yin 71 

et al., 2020). 72 

The Chinese global carbon dioxide monitoring satellite (TanSat) was launched in December 2016. Aiming at acquiring CO2 73 

concentrations as OCO-2, TanSat flies in a sun-synchronous orbit at approximately 700 km in height with a 16-day repeat 74 

cycle and an equator crossing time of ~1:30 p.m. local time (Cai et al., 2014; Liu et al., 2018; Yang et al., 2018). Onboard 75 

TanSat, the hyperspectral Atmospheric Carbon-dioxide Grating Spectrometer (ACGS) is designed to separately record solar 76 

backscatter spectra in three channels centered at 0.76 μm (O2-A band), 1.61 μm (weak CO2 absorption band), and 2.06 μm 77 

(strong CO2 absorption band). With the recorded spectra, many Optimal Estimation Method (OEM) full physics retrieval 78 

algorithms have been developed and applied for XCO2 retrievals (Boesche et al., 2009; Butz et al., 2009, 2011; O’Dell et al., 79 

2012; Reuter et al., 2010; Yang et al., 2015b; Yoshida et al., 2011, 2013). The Institute of Atmospheric Physics Carbon 80 

Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS) algorithm has been applied for TanSat retrieval (Yang 81 

et al., 2018; Yang et al., 2021) and was also previously tested on GOSAT and OCO-2 missions (Yang et al., 2015b). 82 

However, the fluorescence feature causes substantial biases when retrieving surface pressure and scattering parameters from 83 

the O2-A band, and the associated errors propagate into the XCO2 retrievals. In previous XCO2 retrieval, the surface 84 

emissions were well modeled as a continuum zero offset of the O2-A band to reduce errors (Frankenberg et al., 2011a, 2012; 85 

Butz et al., 2009, 2010; Joiner et al., 2012). The high spectral resolution of ~0.044 nm and a signal-to-noise ratio of ~360 in 86 

the O2-A band makes it possible to obtain SIF from space measurements, with a spatial resolution of 2 km × 2 km in nadir 87 

mode (Liu et al., 2018).  88 

Various approaches have been used to infer SIF from satellite measurements (Frankenberg et al., 2011b, 2014a, 2014b; 89 

Guanter et al., 2007, 2012, 2015; Joiner et al., 2011, 2013, 2016; Köhler et al., 2015, 2018b). The SIF signal induces a 90 

filling-in effect of solar lines, which can be used for SIF retrieval, as the fractional depth of solar Fraunhofer lines does not 91 

change during radiation transmission in the atmosphere. To recognize the filling-in features by SIF, high-resolution spectra 92 

and an instrument spectral response function (ISRF) are required to describe subtle changes in the spectral absorption lines. 93 

With the detailed spectral features, a method was developed based on solar line fitting and the Beer-Lambertian law. This 94 

method is robust and accurate when the spectrum is out of the influence of telluric absorptions, even in the presence of 95 

aerosols (Frankenberg et al., 2011a; Joiner et al., 2011); in the current study, this method was applied to develop the 96 

IAPCAS/SIF algorithm. Another SIF retrieval method is the data-driven algorithm based on the singular value 97 

decomposition (SVD) technique (Joiner et al., 2011; Guanter et al., 2012), which has been broadly applied in GOSAT, OCO-98 

2, TanSat and TROPOMI SIF retrieval (Joiner et al., 2011; Guanter et al., 2012, 2015; Frankenberg et al., 2014a; Du et al., 99 

2018; Köhler et al., 2018b). In the data-driven method, the spectrum is represented as a linear combination of the SIF signal 100 

and several singular vectors that are trained from non-fluorescent scenes by SVD; thus, the SIF signal can be obtained with 101 

abutz
Hervorheben
similar to

abutz
Durchstreichen

abutz
Durchstreichen

abutz
Hervorheben
Correct reference? Should it be Boesch et al., 2006, doi:10.1029/2006JD007080.

abutz
Hervorheben
Butz et al., 2009,2011 ist not based on optimal estimation but Philipps-Tikhonov.

abutz
Hervorheben
XCO2 retrievals

abutz
Durchstreichen

abutz
Hervorheben
on spectra from the GOSAT and OCO-2 missions

abutz
Hervorheben
Define XCO2 at first occurrence.

abutz
Hervorheben
retrievals

abutz
Hervorheben
Butz et al., 2009, 2010 are simulations i.e. no offset included, remove references.

abutz
Durchstreichen

abutz
Durchstreichen

abutz
Hervorheben
For Tansat, its high spectral 

abutz
Durchstreichen

abutz
Hervorheben
be able to measure

abutz
Hervorheben
from

abutz
Durchstreichen

abutz
Hervorheben
Given highly resolved spectral features

abutz
Hervorheben
to

abutz
Durchstreichen

abutz
Durchstreichen



4 

 

linear least-squares fitting  (Du et al., 2018; Guanter et al., 2012). The first TanSat SIF map was obtained by the SVD 102 

method (Du et al., 2018). In a previous study, a new TanSat SIF product retrieved by IAPCAS/SIF algorithm was introduced 103 

and the two kinds of TanSat SIF product by IAPCAS/SIF and SVD methods were compared. The preliminary comparison 104 

between the two TanSat SIF products shows that the two SIF products share a similar global pattern and signal magnitude 105 

for all seasons while different biases still exist in four seasons (Yao et al., 2021). The different biases in four seasons may be 106 

caused by the different training samples of the SVD method, which indicates that the training samples have a significant 107 

impact on the retrieval results. In order to obtain stable SIF data products from TanSat and other subsequent satellite 108 

missions, it is particularly important to establish a stable and high-precision SIF inversion algorithm. To detailed validate the 109 

IAPCAS/SIF algorithm and test the potential of comprehensive usage of multi-satellites SIF data in analysis, in this study, 110 

we detailed the TanSat SIF retrieval using the IAPCAS/SIF algorithm and made a comparison of SIF products between 111 

TanSat and OCO-2 in variety of temporal-spatial scales, although a preliminary test was shown in previous work.   112 

2 Data and retrieval algorithm 113 

2.1 Retrieval Principle and Method 114 

We used TanSat version 2 Level 1B (L1B) nadir-mode earth observation data in the retrieval process. The measurements 115 

covered the period from March 2017 to February 2018. Polarized radiance in the O2-A band with a spectral resolution of 116 

0.044 nm was provided in the L1B data, and two micro-windows near 757 nm (758.3-759.2 nm) and 771 nm (769.6-770.3 117 

nm) were chosen to retrieve the top-of-atmosphere (TOA) SIF while avoiding the contamination from strong lines of 118 

atmospheric gas absorption. The retrieval was independent for each micro-window as shown in Figure 1. To avoid 119 

duplication of information, we use the SIF product at 757 nm as the example in the analysis. 120 

 121 

Figure 1: The fitted spectra and residuals for the (a) 757 nm and (b) 771 nm micro-windows of TanSat measurement. The error 122 
bar of the measured spectra depicts the estimated precision of each TanSat sounding.  123 
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Filling-in on solar lines by chlorophyll fluorescence in the O2-A band can be detected in the hyperspectral measurements 125 

from TanSat. This effect on spectral radiance is different from the impact of atmospheric and surface processes, e.g., 126 

scattering and absorption. For example, scattering by aerosols and clouds does not change the relative depth of clear solar 127 

lines, unlike the SIF emission signal. We applied the differential optical absorption spectroscopy (DOAS) technique to 128 

IAPCAS/SIF algorithm for TanSat measurement (Frankenberg, 2014b; Sun et al., 2018).  129 

The TOA spectral radiance (𝐿𝑇𝑂𝐴
𝜆 ) at wavelength 𝜆 can be represented as follows: 130 

𝐿𝑇𝑂𝐴
𝜆 = 𝐼t

𝜆 ⋅ 𝜇0 ⋅ (𝜌0
𝜆 +

𝜌𝑠
𝜆⋅𝑇↓

𝜆⋅𝑇↑
𝜆

𝜋
) + 𝐹𝑇𝑂𝐴

𝜆                                                                                                                                   (1) 131 

where 𝐼t
𝜆 is the incident solar irradiance at the TOA, 𝜇0 is the cosine of the solar zenith angle (SZA), 𝜌0

𝜆 is atmospheric path 132 

reflectance, 𝜌𝑠
𝜆  is surface reflectance, and 𝑇↓

𝜆  and 𝑇↑
𝜆  are the total atmospheric transmittances along the light-path in the 133 

downstream and upstream directions, respectively. 𝐹𝑇𝑂𝐴
𝜆  is the SIF radiance at TOA. 134 

The first term on the right of Eq. (1) represents the transmission process of solar radiance. In the micro-windows used in SIF 135 

retrieval, gas absorption is very weak and smooth, and hence, the atmosphere term 𝜇0 ∙ (𝜌0
𝜆 +

𝜌𝑠
𝜆∙𝑇↓

𝜆∙𝑇↑
𝜆

𝜋
) can be simplified to a 136 

low-order polynomial that varies with λ (Joiner et al., 2013; Sun et al., 2018); this is always valid as long as the spectrum 137 

fitting range is out of sharp atmospheric absorptions. In the retrieval, the spectral radiance measurement was converted to 138 

logarithmic space by the instrument and the radiative transfer process 𝑓(𝐹𝑠
𝑟𝑒𝑙 , 𝒂) was represented as follows: 139 

𝑓(𝐹𝑠
𝑟𝑒𝑙 , 𝒂) = 𝑙𝑜𝑔(< 𝐼t + 𝐹𝑠

𝑟𝑒𝑙 >) + ∑ 𝑎𝑖 ⋅ 𝜆𝑖𝑛
𝑖=0                                                                                                                       (2) 140 

where < > denote the convolution with the ISRF from line-by-line spectra. The polynomial coefficient 𝒂 determines the 141 

wavelength dependence polynomial for the atmosphere term; in the retrieval, we used a second-order polynomial (n = 2). 142 

The radiance is normalized to the continuum level; hence, 𝐼t is a normalized disk-integrated solar transmission model, and 143 

𝐹𝑠
𝑟𝑒𝑙  is the normalized relative SIF. In the micro-window, SIF was regarded as a constant signal due to its small changes.  144 

Although the atmospheric gas absorption was very weak in the micro-window, the weak absorption and the far-wing effects 145 

(O2 lines) can still change spectral features, which induces errors in spectrum fitting. In other physical-based retrievals, the 146 

surface pressure data of the European Centre for Medium-Range Weather Forecasts (ECMWF) is usually used as the true 147 

surface pressure to simulate the molecular absorption cross-section. However, there is still a difference between the true 148 

surface pressure and the model surface pressure, so we introduced a factor here to reduce the influent of the inaccurate 149 

surface pressure. In IAPCAS/SIF algorithm, we used the ECMWF interim surface pressure (0.75° × 0.75°) to estimate O2 150 

absorption firstly and then modified the absorption feature by a scale factor. The scale factor is obtained simultaneously in 151 

SIF retrieval to reduce the error induced by the uncertainty in surface pressure. As described by Yang (2020), there is also a 152 

continuum feature in TanSat L1B data that needs to be considered for the high-quality fitting of the O2-A band. However, in 153 

this study, this continuum feature was not corrected, as the impact of such a smooth continuum variation in the micro-154 

window is weak and the polynomial continuum model is capable of compensating for most of this effect. 155 
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The state vector list in the retrieval includes the relative SIF signal 𝐹𝑠
𝑟𝑒𝑙 , a wavenumber shift, the scale of O2 column 156 

absorption for surface pressure correction, and coefficients of the polynomial. The continuum level radiance 𝐼𝑐𝑜𝑛𝑡  within the 157 

fitting window is calculated using the radiance outside the absorption features in the micro-window and is then used for the 158 

actual SIF signal calculation thus: 𝐹 = 𝐹𝑠
𝑟𝑒𝑙 ∙ 𝐼𝑐𝑜𝑛𝑡.  159 

In the IAPCAS/SIF algorithm, we used an OEM for state vector optimization in the retrieval process. Unlike XCO2 retrieval, 160 

SIF retrieval employs a state vector with fewer elements and a much simpler forward model, so there is no need to perform 161 

complex radiation transmission calculations. Considering the low complexity of SIF retrieval, the Gauss-Newton method 162 

was applied in inversion iteratively to find the optimal solution.  163 

2.2 Bias Corrections 164 

A systematic error remains in the raw SIF retrieval output if no bias correction is performed; similar results have been 165 

reported in GOSAT and OCO-2 SIF retrieval studies (Frankenberg et al., 2011a, 2011b; Sun et al., 2018). This is because the 166 

SIF signal is weak (e.g., typically ~1-2% of the continuum level radiance), which means that even a small issue in the 167 

measurement, such as a zero-offset caused by radiometric calibration error, could induce significant bias. Unfortunately, the 168 

lack of knowledge on in-flight instrument performance makes it difficult to perform a direct systematic bias correction in the 169 

measured spectrum. In the retrieval, a continuum level radiance bin fit was used to estimate the bias. The bins have a 170 

continuum level radiance interval of 5 W m−2 μm−1 sr−1. In each bin, the mean bias was estimated using all non-fluorescence 171 

measurements, and a piecewise linear function was built from the mean bias of each continuum level radiance interval. 172 

The non-fluorescence soundings that were used in the bias estimation were based on the dataset “sounding_landCover” in 173 

TanSat L1B data. This dataset depends on the MODIS land cover product and provides a scheme consisting of 17 land cover 174 

classifications defined by the International Geosphere-Biosphere Programme. These retrieved measurements marked as 175 

“snow and ice,” “barren,” and “sparsely vegetated” were chosen to estimate the bias. Calibrations compensated for most of 176 

the instrument degradations, but this alone was not perfect. To reduce the impact from the remaining minor discrepancies, 177 

we built the bias correction function daily to obtain bias for each sounding via interpolation of the continuum level radiance 178 

(Sun et al., 2017b, 2018). 179 

 The bias curves shown in Figure 2 differ significantly between TanSat and OCO-2. This is mostly due to the differences in 180 

instrument performance and radiometric calibration. In general, the TanSat bias curves exhibited two peaks at radiance levels 181 

of approximately 40 and 125 W m−2 μm−1 sr−1, separately, and most biases were larger than 0.015. For OCO-2, the curves 182 

dropped sharply at low radiance levels, reaching the valley at a radiance level of approximately 40 W m−2 μm−1 sr−1, and then 183 

increased slowly with the radiance level. 184 
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 185 

Figure 2: Variations in the bias correction curves of continuum level radiance from (a) TanSat on July 7, 2017, and (b) Orbiting 186 
Carbon Observatory-2 (OCO-2) on June 16, 2017. The different colors in the legend present different footprints of the satellite 187 
frame.  188 

2.3 Data Quality Controls 189 

Only data that passed quality control were used in further applications. There were two data quality control processes for the 190 

SIF products: pre-screening and post-screening. Pre-screening focused mainly on cloud screening; only cloud-free 191 

measurements were used in SIF retrieval. A surface pressure difference (SPD), defined as: 192 

∆𝑃0 = |𝑃𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 − 𝑃𝐸𝐶𝑀𝑊𝐹|                                                                                                                                                   (3) 193 

was used to evaluate cloud contamination along with a chi-square test 194 

𝜒2 = ∑
(𝑦𝑠𝑖𝑚−𝑦𝑜𝑏𝑠)2

𝑦𝑛𝑜𝑖𝑠𝑒
2                                                                                                                                                                   (4) 195 

where 𝑦𝑠𝑖𝑚, 𝑦𝑜𝑏𝑠, and 𝑦𝑛𝑜𝑖𝑠𝑒  represent the model fitting spectrum, observation spectrum, and spectrum noise, respectively. 196 

𝑃𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙  is the apparent surface pressure obtained from O2-A band surface pressure retrieval, assuming a single scattering 197 

atmosphere. 𝑃𝐸𝐶𝑀𝑊𝐹  is the ECMWF interim (0.75° × 0.75°) surface pressure. A “cloud-free” measurement was required to 198 

simultaneously satisfy an SPD of less than 20 hPa and a 𝜒2 value of less than 80. Here, post-screening was applied to filter 199 

out “bad” retrievals; this screening process involved the following steps: (1) SIF retrievals with reduced 𝜒2 (𝜒𝑟𝑒𝑑
2 ) values 200 

ranging from 0.7 to 1.3 were considered “good” fitting, (2) continuum level radiance outside the range of 15 ~ 200 W m−2 201 

μm−1 sr−1 was screened out to avoid scenes too bright or too dark, and (3) soundings with the SZA higher than 60° were also 202 

filtered out. 203 

2.4 IAPCAS versus IMAP-DOAS OCO-2 SIF Retrieval 204 

Before applied to TanSat retrievals, we tested the IAPCAS/SIF algorithm on the OCO-2 L1B data first 205 

(OCO2_L1B_Science.8r) and then compared the retrieval results with the OCO-2 L2 Lite SIF product (OCO2_Level 206 

2_Lite_SIF.8r) retrieved by the Iterative Maximum A Posteriori-Differential Optical Absorption Spectroscopy (IMAP-207 

DOAS) algorithm (Frankenberg, 2014b). The Lite product provides the SIF value for each sounding on a daily basis and 208 

hence the SIF comparison could be performed on the sounding scale for each month. 209 
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Table 1 displays the relationship of OCO-2 SIF values between the IAPCAS/SIF and IMAP-DOAS at 757 nm micro-210 

window for each month. Overall, the two SIF products were in good agreement. The linear fitting of the two SIF products 211 

suggests that they are highly correlated, as indicated by the strong linear relationship with R2 mostly larger than 0.85 and the 212 

root mean square error (RMSE) of about 0.2 W m−2 μm−1 sr−1. Good consistency between the two SIF products implies the 213 

reliability of the IAPCAS/SIF algorithm; thus, it was further applied to TanSat SIF retrieval. However, there was still a small 214 

bias in the comparisons, which was due, most likely, to the impact of differences in the bias correction method, retrieval 215 

algorithm, and fitting window. 216 

Table 1: Summary of the relationship between the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for 217 

Satellite Remote Sensing (IAPCAS) OCO-2 and Iterative Maximum A Posteriori-Differential Optical Absorption Spectroscopy 218 

(IMAP-DOAS) OCO-2 solar-induced chlorophyll fluorescence (SIF) products at 757nm micro-window. 219 

month Number of soundings Slope Intercept R2 RMSE/ W m−2 μm−1 sr−1 

2017/03 1097277 0.85 0.034 0.86 0.18 

2017/04 1119464 0.86 0.045 0.87 0.19 

2017/05 1054235 0.88 0.041 0.88 0.19 

2017/06 1014848 0.91 0.032 0.90 0.19 

2017/07 965309 0.92 0.011 0.91 0.19 

2017/09 211219 0.88 0.005 0.81 0.23 

2017/10 473359 0.88 0.031 0.88 0.17 

2017/11 579009 0.87 0.022 0.85 0.19 

2017/12 645134 0.87 0.020 0.88 0.16 

2018/01 788655 0.87 0.019 0.88 0.17 

2018/02* 629995 0.86 0.024 0.87 0.18 

* Due to the lack of OCO-2 measurements in August 2017, the comparison is only performed for 11 months. 220 

3 Results and Discussion 221 

3.1 Comparison between TanSat and OCO-2 SIF Measurements 222 

The comparison between TanSat and OCO-2 SIF Measurements is a useful and powerful method for further verification of 223 

the IAPCAS/SIF algorithm. The reason for adopting OCO-2 data is that OCO-2 and TanSat have similar observation modes, 224 

including scanning method, transit time, spatial resolution, spectral resolution, and spectral range. The similarities mean that 225 

the SIF product from the two satellite missions can be directly compared. Directly comparing OCO-2 and TanSat SIF 226 

measurements could provide information on joint data application at the sounding scale for further studies. However, an 227 

identical sounding overlap barely exists because the two satellites often have different nadir tracks on the ground, which is 228 

induced by the different temporal and spatial intervals of the two satellite missions. Fortunately, the ground tracks of the two 229 

satellites were relatively close from April 17 to April 23, 2017. A couple of overlapping orbits were found in the 230 

measurements obtained from Africa with the orbit number of 1733 from TanSat and 14890a from OCO-2 (Figure 3). In the 231 
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comparison, the OCO2_Level 2_Lite_SIF.8r product was used to present the SIF emission over the study area. These 232 

overlapping measurements encompassed multiple land cover types, in which the SIF varied within an acceptable time 233 

difference (<5 min).  234 

Overall, measurements from the two satellites indicated SIF variation with land cover type. The SIF emission over evergreen 235 

broadleaf forests was larger than that over savannas, and grasslands exhibited the lowest SIF emission in April (Figure  3a,b). 236 

The mean SIF emission over evergreen broadleaf forests was approximately 0.9-1.1 W m−2 μm−1 sr−1, whereas those over 237 

savannas and grasslands were 0.5-0.7 W m−2 μm−1 sr−1 and less than 0.1 W m−2 μm−1 sr−1, respectively (Figure 3c,d). 238 

Furthermore, we also found a significant difference in the SIF emission intensity over tropical savannas, which was observed 239 

by both satellites (Figure 3c,d).  240 

 241 

 242 
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 243 

Figure 3: Overlapping orbits of TanSat and OCO-2 on April 19, 2017 over Africa displayed in Google Earth, (a) the SIF 244 
measurements from both the two satellites and (b) the footprint land cover type were compared. Compared to OCO-2, TanSat has 245 
a wider swath width. A zoom-in view over savannas shows variations in the SIF signal measured by (c) OCO-2 and (d) TanSat. 246 
The land surface image shown in Google earth is provided by Landsat/Copernicus team. Following the International Geosphere-247 
Biosphere Programme classification scheme, the vertical legend on the bottom right corner depicts the land cover type that occurs 248 
in the study area.  The middle horizontal color bar represents the intensity of the SIF radiance. (e) Small-area SIF comparison 249 
between OCO-2 and TanSat; each data point represents the mean SIF of a degree in latitude (colors) along the track. The marker 250 
legend that is shown on the bottom right of the plot indicates the dominant land cover (defined as the majority land cover type of 251 
each sounding) in each small area. There are six land cover types including evergreen broadleaf forest (EBF), open shrubland 252 
(OSL), woody savanna (WSAV), savanna (SAV), grassland (GRA), and barren land (BL). The red dashed line represents the 253 
linear fit between the two SIF products with statistics shown in the upper left of the plot. The gray line indicates a 1:1 relationship 254 
for reference.  255 
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 256 

Because the footprint sizes of the two satellites are different, it is difficult to make a direct footprint-to-footprint comparison. 257 

Therefore, we made the comparison between the two satellite measurements based on a small area average. Each small area 258 

spans a degree in latitude and continues along the track. The small area-averaged SIF comparison is shown in Figure 3e. The 259 

results indicate good agreement, with an R2 of 0.94 and an RMSE of 0.096 W m−2 μm−1 sr−1. Additional ground-based SIF 260 

measurement setups (Guanter et al., 2007; Liu et al., 2019; van der Tol et al., 2016; Yang et al., 2015a; Yu et al., 2019) 261 

should allow for direct evaluation of satellite retrieval accuracy in the future. 262 

 263 

 264 

Figure 4: Global TanSat SIF (left, a-d), differences between TanSat and IAPCAS OCO-2 SIF values (middle, e-h), and the grid-265 
cell retrieval uncertainty estimated from TanSat (right, i-l) at 1° × 1° spatial resolution. The maps in each row represent a 266 
Northern Hemisphere season, i.e., spring (MAM), summer (JJA), fall (SON), and winter (DJF).  267 

 268 
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Figure 4 shows the global SIF comparison between IAPCAS/SIF retrieved OCO-2 and TanSat; this comparison is only 269 

performed at 1° × 1° spatial resolution. In general, the difference in SIF globally is mostly less than 0.3 W m−2 μm−1 sr−1 for 270 

all seasons, and on average, the smallest difference appears in fall. There are regional biases observed in North Africa, South 271 

Africa, South America, and Europe in all seasons except fall. This is mainly caused by the differences in instrument 272 

performance between TanSat and OCO-2, such as the Instrument Respond Function and the Signal-to-Noise. The instrument 273 

performance difference is represented by the different structural characteristics of the bias curves. The bias correction 274 

compensates for most of the bias caused by instrument performance; however, small biases could remain. Furthermore, the 275 

hundreds of kilometers of distance between the OCO-2 and TanSat footprints, for example, over different vegetation regions, 276 

will also cause some measurement discrepancies. The global distribution of the two satellites was also compared with the 277 

official OCO-2 SIF data on the global scale, the results show that the difference between the retrieved SIF maps and the 278 

official map is less than 0.2 W m−2 μm−1 sr−1, indicating that the retrieved SIF data from OCO-2 and TanSat both have good 279 

SIF characterization capabilities on a global scale. The uncertainty σ  of each sounding was estimated to validate SIF 280 

reliability and is provided in the product. σ is derived from the retrieval error covariance matrix, 𝑆𝑒 = (𝐾𝑇𝑆0
−1𝐾)−1, where 𝐾 281 

is the Jacobian matrix from the forward model fitting and 𝑆0 is the measurement error covariance matrix that is calculated 282 

from the instrument spectrum noise. In general, σ ranges from 0.1 to 0.6 W m−2 μm−1 sr−1 for both TanSat and OCO-2 283 

measurements in the 757 nm fitting window, which is of a similar magnitude and data range as those of previous studies (Du 284 

et al., 2018; Frankenberg et al., 2014a). Meanwhile, the standard error of the mean SIF in each grid σ𝑚𝑒𝑎𝑠 was estimated to 285 

represent the gridded retrieval error and natural variability, which is calculated from TanSat SIF values with σ𝑚𝑒𝑎𝑠 =
σ𝑠𝑡𝑑

√𝑛
 286 

and σ𝑠𝑡𝑑 = √
∑ (𝑆𝐼𝐹𝑖−𝑆𝐼𝐹̅̅ ̅̅ ̅)2𝑛

𝑖=1

𝑛
, where σ𝑠𝑡𝑑  represents the standard deviation of the grid cell with 𝑛 soundings,  𝑆𝐼𝐹𝑖 is the 287 

retrieved SIF values of each sounding, and 𝑆𝐼𝐹̅̅ ̅̅ ̅ is the mean SIF value for all measurements in the grid. As depicted in the 288 

right column of Figure 4, the σ𝑚𝑒𝑎𝑠  of each grid cell is much lower than the precision of a single sounding. The σ𝑚𝑒𝑎𝑠 for 289 

South America is larger than that for any other region on the globe (Figure 4i-l). This is similar to that of OCO-2 SIF 290 

retrieval and caused by fewer effective measurements due to the South Atlantic Anomaly (Sun et al., 2018). The difference 291 

in SIF emission values between the two satellites indicates that the collaborative usage of two satellite SIF products still 292 

requires analysis of the impact of instrument differences, although the two satellite SIF products share the same 293 

spatiotemporal pattern on a global scale. 294 

3.2 SIF Global Distribution and Temporal Variation 295 

The SIF emission intensity reflects the growth status of vegetation due to its correlation with photosynthetic efficiency; 296 

hence, the overall global vegetation status can be represented by global SIF maps for each season. TanSat SIF over a whole 297 

year’s cycle, from March 2017 to February 2018, is represented seasonally as a 1° × 1° grid spatially. The seasonal variation 298 
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in SIF emission is clear in the Northern Hemisphere, i.e., it is enhanced from spring to summer and then decreases (Sun et al., 299 

2018).  300 

In general, the SIF emission varied with latitude and the vegetation-covered areas near the equator maintained a continuous 301 

SIF emission throughout the year. Large SIF emissions in the Northern Hemisphere, above 1.5 W m−2 μm−1 sr−1, mostly from 302 

the eastern U.S., southeast of China, and southern Asia in summer, were due to the large areas of cropland. There was also 303 

an obvious SIF emission of 1-1.2 W m−2 μm−1 sr−1 observed over Central Europe and northeastern China during the summer. 304 

In these regions, croplands and deciduous forests contribute to SIF emissions. In the Southern Hemisphere, the strongest SIF 305 

emission occurred in the Amazon, with a level of approximately 1-2 W m−2 μm−1 sr−1 in DJF (Northern Hemisphere winter), 306 

where there is an evergreen broadleaf rainforest. Africa, which is covered by evergreen broadleaf rainforests and woody 307 

savannas, had an average SIF value of 0.7-1.5 W m−2 μm−1 sr−1 during the year. 308 

The SIF-GPP relationship over different vegetation types was also investigated by comparing the annual mean satellite SIF 309 

measurements with the FLUXCOM GPP (Jung et al., 2020; Tramontana et al., 2016) dataset in a 1° × 1° grid over the globe. 310 

The FLUXCOM GPP dataset used in the study comprises monthly global gridded flux products with remote sensing and 311 

meteorological/climate forcing (RS+METEO) setups, which are derived from mean seasonal cycles according to MODIS 312 

data and daily meteorological information (Jung et al., 2020; Tramontana et al., 2016). In the correlation analysis, the high 313 

spatial resolution (0.5°× 0.5°) of the FLUXCOM GPP was first resampled to 1°× 1° to keep the same temporal-spatial scale 314 

of SIF and GPP data. The satellite-measured SIF is an instantaneous emission signal that varies with incident solar radiance 315 

within the day. To reduce the differences caused by the observation time and SZA at different latitudes, we applied a daily 316 

adjustment factor to convert the instantaneous SIF emission into a daily mean SIF (Du et al., 2018; Frankenberg et al., 2011b; 317 

Sun et al., 2018). The daily adjustment factor d is calculated as follows:  318 

 𝑑 =
∫ 𝑐𝑜𝑠 (𝑆𝑍𝐴(𝑡))∙𝑑𝑡

𝑡=𝑡0+12ℎ
𝑡=𝑡0−12ℎ

𝑐𝑜𝑠 (𝑆𝑍𝐴(𝑡0))
                                                                                                                                                        (5) 319 

where 𝑡0 is the observation time in fractional days and 𝑆𝑍𝐴(𝑡) is a function of latitude, longitude, and time for calculating 320 

the SZA of the measurements. The annual averaged SIF is calculated from the daily mean SIF. To evaluate the relationship 321 

between SIF and GPP on the periodic scale of vegetation growth status, annually-averaged data were used in the regression 322 

fitting analysis. 323 
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 324 

Figure 5: Relationship between annual mean SIF and FLUXCOM gross primary production (GPP) from March 2017 to February 325 
2018. Blue and red dots represent OCO-2 and TanSat SIF grids, respectively. Fitted lines and statistics for OCO-2 and TanSat are 326 
shown in each plot. 327 

Figure 5 shows the linear fits for six vegetation types, including needle leaf forest, evergreen broadleaf forest, shrubland, 328 

savanna, grassland, and cropland. Recent studies have shown a strong linear correlation between SIF and GPP. The TanSat 329 

SIF and the OCO-2 official SIF data were used to estimate the SIF-GPP correlation. To make a direct comparison of the 330 

relationship between SIF and GPP among various vegetation types, we used non-offset linear fitting to indicate the 331 

correlation between satellite SIF and FLUXCOM GPP. For savanna and cropland, there were strong relationships between 332 

the mean SIF and GPP with an R-value above 0.84. The fitting results show that the SIF products of the two satellites have 333 

similar capabilities in characterizing GPP, especially for the evergreen broadleaf forest, savanna, and cropland, with slopes 334 

of approximately 21, 18, and 13, respectively. For shrubland and grassland, the slope of OCO-2 SIF with GPP is higher than 335 

that of TanSat and has a worse correlation. For forests, OCO-2 SIF presents a better correlation with GPP, especially in the 336 

needle leaf forest. As a whole, for the same vegetation type, the SIF-GPP correlations for the two satellites are rather similar, 337 

indicating that the two satellite SIF products have similar capabilities in characterizing GPP. It shows the strong feasibility of 338 

the comprehensive application of different satellite SIF products. For different vegetation types, the SIF-GPP correlations 339 

were significantly different, indicating the different ability of SIF to characterize GPP of different vegetation. It represents 340 

that vegetation type is a key factor in determining the SIF-GPP relationship. The markedly different fitting slopes across 341 

various biomes suggest that the application of SIF in GPP estimation needs more detailed analysis although the evidence of 342 

the strong linear relationship between them.  343 
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4 Conclusions 344 

In this paper, we introduced the retrieval algorithm IAPCAS/SIF and its application in TanSat and OCO-2 measurements. 345 

One-year (March 2017-February 2018) TanSat SIF data was introduced and compared with OCO-2 measurements in this 346 

study. The TanSat and OCO-2 SIF products based on the IAPCAS/SIF algorithm are available on the Cooperation on the 347 

Analysis of carbon SAtellites data (CASA) website, www.chinageoss.org/tansat. Comparisons between TanSat and OCO-2 348 

measurements directly, using a case study, and indirectly, with global 1°×1° grid data, showed consistency between the two 349 

satellite missions, indicating that the coordinated usage of the two data products is possible in future studies. The correlation 350 

analysis between SIF and GPP further verified the feasibility of the comprehensive application of SIF products from 351 

different satellite missions. Meanwhile, it should be noticed that the difference in the ability of satellite SIF products to 352 

characterize different vegetation types in data applications. With increasing satellites becoming available for SIF 353 

observations, space-based SIF observations have recently expanded in range to provide broad spatiotemporal coverage. The 354 

next-generation Chinese carbon monitoring satellite (TanSat-2) is now in the preliminary design phase, which is designed to 355 

be a constellation of six satellites to measure different kinds of greenhouse gases and trace gases in a more efficient way, 356 

including CO2，CH4, CO, NOx, as well as SIF. SIF measurements from TanSat-2 will provide global data products over 357 

broader coverage areas with less noise. The improvement in the spatiotemporal resolution of SIF data will benefit GPP 358 

predictions based on the numerous studies of the linear relationship between SIF and GPP. In future work, the measurement 359 

accuracy should be validated directly using ground-based measurements to ensure data quality.   360 
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