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Abstract 10 
Atmospheric aerosols are an important element of Earth’s climate system, and have significant 11 
impacts on the environment and on human health. Global aerosol modeling has been 12 
increasingly used for operational forecasting and as support to decision making. For example, 13 
aerosol analyses and forecasts are routinely used to provide air quality information and alerts in 14 
both civilian and military applications. The growing demand for operational aerosol forecasting 15 
calls for additional observational data that can be assimilated into models to improve model 16 
accuracy and predictive skill. These factors have motivated the development, testing, and 17 
release of a new near real-time (NRT) level 2 (L2) aerosol product from the Multi-angle Imaging 18 
SpectroRadiometer (MISR) instrument on NASA’s Terra platform. The NRT product capitalizes 19 
on the unique attributes of the MISR aerosol retrieval approach and product contents, such as 20 
reliable aerosol optical depth as well as aerosol microphysical information. Several 21 
modifications are described that allow for rapid product generation within a three-hour window 22 
following acquisition of the satellite observations. Implications for the product quality and 23 
consistency are discussed as compared to the current operational L2 MISR aerosol product. 24 
Several ways of implementing additional use-specific retrieval screenings are also highlighted. 25 
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1. Introduction 29 
 30 
Atmospheric aerosols have for long been recognized to influence the climate, environment, and 31 
human health (e.g., IPCC, 2013; Lelieveld et al., 2015; Shindell et al., 2013; Turnock et al., 32 
2020). They also affect satellite remote sensing of important geophysical parameters such as 33 
ocean color (e.g., Frouin et al., 2019; Gordon, 1997) or greenhouse gas abundance (Butz et al., 34 
2009; Frankenberg et al., 2012; Houweling et al., 2005). Aerosol particles and their properties 35 
have been extensively studied in-situ and remotely: from the ground, in the air, and from space. 36 
These observational data vary in spatial and temporal coverage, but usually only offer 37 
snapshots of local conditions. Since atmospheric aerosols have a life cycle ranging from hours 38 
to days, numerical modeling of their emission, transport, and deposition has filled the coverage 39 
gaps and extended our understanding of their global impacts. This has given rise to a number of 40 
global aerosol reanalyses (Buchard et al., 2017; Gelaro et al., 2017; Inness et al., 2013, 2019; 41 
Lynch et al., 2016; Randles et al., 2017; Rienecker et al., 2011) that provide a long-range, 42 
gridded, and internally consistent outlook on aerosol burdens around the world. Furthermore, 43 
global aerosol modeling has been increasingly used for operational forecasting (e.g., Xian et al., 44 
2019) and as support to decision making, for example in air quality alerts and in non-civilian 45 
applications (Liu et al., 2007). 46 
 The growing demand for consistent gridded aerosol products has been driving 47 
development and steady improvement of numerical predictions. For example, the International 48 
Cooperation for Aerosol Prediction initiative was founded in 2010 (Benedetti et al., 2011; Reid et 49 
al., 2011), with one of its goals being the development of global multi-model aerosol forecasting 50 
ensemble for basic research and operational use (Xian et al., 2019). Still, models suffer from 51 
often poorly resolved aerosol emissions and sinks and can be affected by errors in the 52 
underlying meteorology. As a result, systematic and sampling-related biases in aerosol fields 53 
are often found between model simulations and satellite observations (e.g., Buchard et al., 54 
2015; Colarco et al., 2010; Lamarque et al., 2013; Zhang and Reid, 2009). An effective way to 55 
mitigate some of these problems is by assimilating aerosol observations into numerical models 56 
(e.g., Bocquet et al., 2015; Fu et al., 2017; Sekiyama et al., 2010; Di Tomaso et al., 2017; 57 
Werner et al., 2019; Zhang et al., 2008). Satellite observations of aerosol optical and 58 
microphysical properties are inseparable from these data assimilation activities as they offer the 59 
necessary data volume, near-global coverage, and frequent repeat cycle. However, an often-60 
considerable latency for generating science-quality “standard” satellite products (8 to 40 hours) 61 
renders them unsuitable for operational forecasting. This has led to the development of aerosol 62 
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products within the time frame required by modeling centers, usually three hours from satellite 63 
overpass. A number of near real-time (NRT) products has emerged. 64 
 One example of a platform that provides users with NRT satellite products and imagery 65 
is NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) project 66 
(https://earthdata.nasa.gov/earth-observation-data/near-real-time). A range of instruments 67 
deliver various Level 1 (L1) and Level 2 (L2) data products 68 
(https://earthdata.nasa.gov/collaborate/open-data-services-and-software/data-information-69 
policy/data-levels), including radiances, land surface properties, and atmospheric 70 
thermodynamics and composition within three hours from satellite observation. NRT aerosol 71 
products are currently available from the Moderate Resolution Imaging Spectroradiometer 72 
(MODIS), Ozone Monitoring Instrument (OMI), and Visible Infrared Imaging Radiometer Suite 73 
(VIIRS). NASA’s Multi-angle Imaging SpectroRadiometer (MISR) currently provides NRT 74 
radiance and cloud motion vector products. The purpose of this paper is to introduce a new 75 
MISR NRT L2 aerosol product available within LANCE. 76 
 This paper is organized as follows. Section 2 and 3 provide brief descriptions of the 77 
MISR instrument and the data processing sequence, respectively. Section 4 first outlines the 78 
cloud identification methods employed in the MISR aerosol algorithm and then describes 79 
algorithmic modifications introduced in the NRT processing. Adjustments to cloud and retrieval 80 
screening parameters and their implications are discussed. The global distributions of the NRT 81 
product and comparisons of total and fractional AODs with the standard aerosol product are 82 
presented in Section 5. Section 6 provides a summary. 83 

 84 
2. MISR instrument and aerosol data product 85 

 86 

The MISR instrument flies aboard the NASA Earth Observing System (EOS) Terra satellite, 87 
launched in December 1999 to a sun-synchronous descending polar orbit, at an orbital altitude 88 
of 705 km, an orbital period of 99 minutes, and an equatorial crossing time of 10:30 a.m. local 89 
time. MISR makes 14.56 orbits per day with a repetition cycle (revisit) of 16 days. The orbit 90 
tracks are georeferenced to a fixed set of 233 ground paths. With a cross-track swath of about 91 
380 km, total Earth coverage is obtained every 9 days at the equator and every 2 days at high 92 
latitudes. 93 
 MISR contains nine pushbroom cameras with viewing angles at the Earth’s surface 94 
ranging from 0° (nadir) to +/- 70.5° oriented along the direction of the flight track. A point on the 95 
ground is imaged by all nine cameras in approximately 7 minutes. The cameras make 96 
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observations of reflected solar radiance in four spectral bands, centered at 446 (blue), 558 98 
(green), 672 (red), and 866 (near-infrared) nm. The spatial resolution depends on the camera 99 
and wavelength. The red band has a full 275 m resolution in all cameras. The other three 100 
spectral channels are averaged onboard to a 1.1 km resolution in global-mode operation (Diner 101 
et al., 1998), with the exception of the nadir camera which preserves the full 275 m resolution in 102 
all spectral channels. See https://misr.jpl.nasa.gov/Mission/ for more details. 103 
 MISR employs two processing pathways for aerosol retrievals, one for observations over 104 
land (Martonchik et al., 2009), and another for dark water (DW) (Kalashnikova et al., 2013), 105 
which applies over deep oceans, seas, and lakes. Previous versions of the MISR aerosol 106 
product were extensively validated over the years (e.g., Kahn et al., 2010; Kahn and Gaitley, 107 
2015; Kalashnikova et al., 2013; Shi et al., 2014; Witek et al., 2013) showing high retrieval 108 
quality over land and ocean. 109 

The current operational version of the MISR aerosol product, designated as version 23 110 
(V23), was released publicly in June 2018. It introduced multiple algorithmic, data product, and 111 
data usability improvements (Garay et al., 2020; Witek et al., 2018a, 2018b). V23 provides 112 
aerosol information with a spatial resolution of 4.4 km x 4.4 km packaged in NetCDF-4 format. 113 
Initial validation efforts showed that V23 retrievals are more accurate than previous versions, 114 
with most pronounced improvements in the DW algorithm (Garay et al., 2020). V23 retrievals 115 
over oceans were extensively validated by Witek et al. (2019), indicating excellent agreement 116 
with ground-based observations. Other V23 Aerosol Optical Depth (AOD) evaluation efforts 117 
show similar results (e.g., Choi et al., 2019; Sayer et al., 2020; Si et al., 2020; Sogacheva et al., 118 
2020). A first regional insight into retrieved particle properties from the MISR V23 aerosol 119 
product shows that MISR generally captures the distinct spatial and temporal features of aerosol 120 
type in East Asia (Tao et al., 2020). Furthermore, V23 has greatly improved the quality of 121 
reported AOD uncertainties, which now realistically represent retrieval errors (Sayer et al., 2020; 122 
Witek et al., 2019). This is especially relevant as pixel-level retrieval uncertainties are very 123 
important for satellite data assimilation, which is being increasingly used in aerosol modeling 124 
studies (Lynch et al., 2016; Shi et al., 2011, 2013; Zhang and Reid, 2010). MISR data and 125 
related documentation can be obtained from: https://asdc.larc.nasa.gov/project/MISR. 126 

 127 
3. NRT latency and data description 128 

 129 
MISR currently provides several L1 and L2 near real-time (NRT) radiance and cloud motion 130 
vector products (https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-131 
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data/misr-nrt).  All MISR NRT processing is based on Level 0 data downlinked in observational 132 
sessions. These session-based files, representing portions of a single MISR orbit, usually cover 133 
between 10 to 50 minutes of observations, as compared to the full orbit period of 98.9 minutes. 134 
This session-based processing is necessary to allow for the fast product delivery required for 135 
NRT applications.  136 
 The new NRT L2 aerosol product file content, described in Data Product Specification 137 
(https://asdc.larc.nasa.gov/documents/misr/DPS_AEROSOL_NRT_V023.20210430.pdf), is 138 
equivalent to the standard aerosol product (Garay et al., 2020). The NRT L2 aerosol product file 139 
name convention is: 140 
MISR_AM1_AS_AEROSOL_T{yyyymmddHHMMSS}_P{ppp}_O{oooooo}_F13_0023.nc, where 141 
‘yyyy’, ‘mm’, and ‘dd’ are the year, month, and day, and ‘HH’, ‘MM’ and ‘SS’ are the hour, 142 
minute, and seconds, respectively. Furthermore, {ppp} is the three-digit path identifier (between 143 
001 and 233) and {oooooo} is the six-digit orbit number. The NRT L2 aerosol product files are 144 
available for download within three hours of acquisition at NASA’s Atmospheric Science Data 145 
Center (ASDC) (https://asdc.larc.nasa.gov/project/MISR). 146 
 For clarity, it is important to distinguish between the three different MISR L2 aerosol 147 
products: NRT, FIRSTLOOK, and standard aerosol (SA) product (see Figure 1). NRT is 148 
generated within a three-hour time interval after acquisition and uses the same ancillary inputs 149 
as FIRSTLOOK. These include the monthly gridded (1.0 degree) snow/ice mask and surface 150 
wind speed from the Terrestrial Atmospheric and Surface Climatology (TASC) database and the 151 
seasonal Radiometric Camera-by-camera Threshold Dataset (RCTD) (Diner et al., 1999a). Both 152 
NRT and FIRSTLOOK utilize TASC and RCTD datasets from the current month/season in the 153 
prior year. The FIRSTLOOK product is generated within two days from acquisition and includes 154 
cloud classification parameters obtained from the L1 and L2 cloud products. The SA product is 155 
available after final processing is performed on a seasonal basis and within three months past 156 
the end of the season, which results in a 3–6-month latency. The final processing utilizes the 157 
most recent snow/ice and wind speed data. 158 
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 159 
Figure 1 Schematic showing MISR aerosol product delivery timeline. Snow/ice mask and surface wind speed data are monthly 160 
averages. RCTD stands for Radiometric Camera-by-camera Threshold Dataset. MISR final production (SA) is processed on a 161 
seasonal cycle and is often delayed one to three months past the end of each season, which results in up to 6-month latency.  162 
 163 
4. Cloud screening in the NRT MISR aerosol product  164 

 165 
4.1. Cloud identification 166 
  167 
Identification of cloudy pixels is a critical element of all satellite aerosol remote sensing 168 
algorithms. MISR employs several cloud identification strategies which can be loosely split into 169 
two groups: the first group relies on cloud classifiers previously generated with MISR Level 2 170 
Cloud Detection and Classification algorithm (Diner et al., 1999b), and the second group 171 
includes build-in tests that are internal to the aerosol retrieval algorithm (Diner et al., 2008). 172 

 173 

4.1.1. Upstream cloud classifiers 174 

 175 
The operational MISR aerosol algorithm relies on a range of external input datasets that are 176 
either static—for example, a monthly wind speed climatology—or that need to be generated 177 
prior to aerosol retrievals in upstream processing. A notable example of such external inputs to 178 
the SA and FIRSTLOOK algorithms are cloud classification parameters obtained from the MISR 179 
L2 cloud product. An important implication of this dependency is that aerosol processing needs 180 
to wait for the cloud product to be generated, creating a time lag that is prohibitive for NRT 181 
applications. Typically, the L2 cloud product is generated within about 18 hours of overpass, 182 
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and the MISR L2 FIRSTLOOK aerosol processing is completed within about 2 days. In order to 183 
produce an L2 aerosol product within an about three-hour time frame, the algorithm needs to 184 
operate without the upstream cloud classifiers. 185 

Two specific L2 cloud classification parameters utilized in FIRSTLOOK and SA aerosol 186 
processing are the MISR Stereoscopically-Derived Cloud Mask (SDCM) and the Angular 187 
Signature Cloud Mask (ASCM) (Diner et al., 1999b; Girolamo and Davies, 1994). In addition to 188 
these L2 products, the Radiometric Camera-by-camera Cloud Mask (RCCM) (Diner et al., 189 
1999a; Girolamo and Davies, 1995) retrieved in L1B processing is also employed. All three 190 
parameters are reported at 1.1 km x 1.1 km resolution. It should be noted that RCCM also 191 
serves as an input to the algorithm that generates SDCM and ASCM, indicating that these 192 
parameters are not independent. 193 

In the FIRSTLOOK and SA algorithm, the RCCM, SDCM, and ASCM cloud masks are 194 
used together to determine whether a particular 1.1 km x 1.1 km subregion is clear or cloudy. 195 
The implication is that if any of the 9 MISR cameras is designated as cloudy in a subregion, this 196 
subregion is excluded from aerosol retrieval. The clear/cloudy decision logic depends on the 197 
underlying surface type, assigned into three categories: land, water, and snow/ice. Generally, a 198 
“clear” outcome is favored over the two most frequently used surface types, land and water, 199 
assigning a subregion as cloudy only if the RCCM and SDCM masks indicate a cloud. The logic 200 
is considerably more conservative over snow/ice surfaces due to difficulties in distinguishing 201 
clouds from the underlying bright features. Details of the cloud mask decision logic over different 202 
surface types can be found in Diner et al. (2008). 203 

Analyzing three months of V23 L2 SA product (March, April, May, 2020) indicates that 204 
the cloud masks along with the brightness test (see 4.1.2) lead to screening of about 50% of 205 
retrievals. As such, they have the largest impact on identifying and removing pixels where 206 
clouds might be present. These masks and decision pathways, however, have their deficiencies 207 
and additional checks were put in place to further decrease the frequency of cloud-208 
contaminated aerosol retrievals. 209 

 210 
4.1.2. Built-in cloud detection methods 211 

 212 
In addition to the cloud masks retrieved in the L1B processing (RCCM) and from the L2 Cloud 213 
Detection and Classification algorithm (SDCM, ASCM), the MISR aerosol retrieval algorithm 214 
relies on three internal tests to further identify cloudy pixels that might have escaped earlier 215 
detection. These are (1) the brightness test, (2) the angle-to-angle smoothness test, and (3) the 216 
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angle-to-angle correlation test. Details of these tests can be found in Diner et al. (2008) or Witek 218 
et al. (2013), but a short summary is provided here for completeness.  219 

The brightness test is employed to identify clouds that lacked sufficient texture to be 220 
picked up by SDCM. For each surface type a fixed threshold is adopted on measured 221 
bidirectional reflectance factors (BRFs), and when exceeded in all spectral bands for at least 222 
one camera, it renders a subregion unsuitable for aerosol retrieval. The thresholds are set to 223 
1.0, 0.5, and 0.5 for snow/ice, land, and water surfaces, respectively. The value of 1.0 means 224 
that the brightness test is effectively turned off over snow/ice. Furthermore, the brightness test 225 
does not override subregions that were identified as clear by RCCM.  226 

The angular smoothness test checks for unusually large variations in the measured 227 
equivalent reflectances as a function of camera angle, the premise being that in the absence of 228 
artifacts or subpixel clouds, the measured radiance should change smoothly from camera to 229 
camera. The test is achieved by fitting a polynomial to equivalent reflectances, separately for aft 230 
(+nadir) and forward (+nadir) cameras and each spectral band, and checking if the goodness of 231 
fit metric (definition in Diner et al., 2008) exceeds a threshold. If in at least one case the test 232 
fails, the subregion is eliminated. 233 

Finally, the angle-to-angle correlation test also investigates radiance smoothness and 234 
correlation between camera angles, which makes it conceptually similar to the angular 235 
smoothness test, but instead utilizes high-resolution information form the red spectral band. It 236 
uses 4 x 4 arrays of the 275m spatial resolution red band equivalent reflectances in each 1.1 km 237 
x 1.1 km subregion. The test then evaluates spatial variability within the 4 x 4 array for each 238 
camera and compares it to a variability within a camera-average template. Variances, 239 
covariances, and normalized cross-correlations are calculated (see Diner et al., (2008) for 240 
details). If the variability within a camera deviates considerably from the average, this camera 241 
might have sub-pixel clouds or other contaminants, and as a result the subregion is excluded 242 
from aerosol retrievals.  243 

In the three months of data analyzed in this study (March, April, May 2020), the relative 244 
occurrence of retrieval screening due the above-mentioned internal tests are about 4.0% and 245 
0.1% for the correlation and smoothness tests, respectively. These statistics come from 246 
analyzing the output field Aerosol_Retrieval_Screening_Flags and as such they do not 247 
represent the absolute rates of success of each individual test. That is because the tests are 248 
performed in a sequential order and if one of them fails, tests that are next in sequence are not 249 
performed. For SA product generation, the order is: upstream cloud mask described in 4.1.1, 250 
the brightness test, the correlation test, and the smoothness test. For example, the correlation 251 
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test is only performed on pixels that already passed the upstream cloud tests as well as the 252 
brightness test. Additionally, the brightness test does not have its own flag in the 253 
Aerosol_Retrieval_Screening_Flags output but is grouped together with the upstream cloud 254 
classifiers. 255 

 256 
4.2. Retrieval screening using regional cloud parameters 257 

 258 
Methods described in section 4.1 focus on identifying and excluding cloudy 1.1 km x 1.1 km 259 
subregions from the aerosol retrieval process. The retrieval region consists of 16 (4 x 4) 260 
subregions. These methods are highly effective at removing cloud-contaminated pixels, but 261 
since they rely on MISR visible wavelengths they might miss certain cloud signatures more 262 
easily detected in the infrared spectrum (e.g., Gao et al., 1993). For example, MODIS routinely 263 
uses its reflective and emissive infrared channels to detect optically thin cirrus clouds 264 
(Ackerman et al., 2010; Levy et al., 2013). As a result, MISR cloud detection methods 265 
occasionally fail, which leads to visible outliers in retrieved AODs (Witek et al., 2018b). For that 266 
reason, an additional set of screenings is applied in an effort to eliminate such unusually high 267 
AOD retrievals (Garay et al., 2020). Two of these additional methods look at overall cloudiness 268 
in the retrieval region (consisting of 4 x 4 subregions) as well as in a larger area consisting of 3 269 
x 3 regions (12 x 12 subregions). The Cloud Screening Parameter (CSP) represents the fraction 270 
of clear grid cells within a region, whereas Cloud Screening Parameter Neighbor 3x3 (CSP9) is 271 
similar to CSP but for the larger area. If CSP is below 0.7 and CSP9 below 0.5, the retrieval is 272 
not reported in the final product intended for most users. However, it is still included in the 273 
product’s AUXILIARY subcategory and annotated with the term “Raw” to indicate that the 274 
product has not undergone recommended quality screenings. 275 

 276 
4.3. Adjusting cloud screening thresholds 277 

 278 
4.3.1. Performance of the prototype NRT product 279 

 280 

This subsection presents results and analysis of prototype NRT aerosol retrievals. These are 281 
obtained prior to any threshold and screening adjustments included in the final version of the 282 
product. To differentiate between the final and the prototype NRT products, the latter is donated 283 
as NRTprot.  284 
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As mentioned in the previous section, the NRT processing cannot rely on the cloud 285 
masks generated in the L1 and L2 cloud products, namely the RCCM, SDCM, and ASCM. This 286 
implies that potentially less screening of cloudy subregions would be applied, increasing the 287 
probability of cloud contamination in aerosol retrievals. However, some of the burden of cloud 288 
identification is picked up by the built-in cloud tests described in section 4.1.2. The frequency of 289 
these tests identifying cloudy pixels increases in NRT processing in comparison to standard 290 
processing, in large part mitigating the negative consequences resulting from the lack of the 291 
upstream cloud masks. This is well evidenced by examining the normalized probability density 292 
functions (pdfs) of AOD from spring 2020 (Figure 2). The SA (red) and NRTprot (blue) lines are 293 
very similar, indicating that the built-in cloud tests substitute to a significant extent for the 294 
missing upstream cloud masks in generating the NRTprot product. The largest difference occurs 295 
in the high-AOD range, suggesting that NRTprot has more retrievals in this regime. The black 296 
dotted line shows a pdf of the NRTprot AOD retrievals that do not have a matching SA retrieval. 297 
This is labeled as “NRTprot gained” as it represents additional retrievals obtained in NRT 298 
processing due to the lack of external cloud masks. The “NRTprot gained” pdf is clearly shifted 299 
towards higher AODs, confirming that the NRTprot processing tends to retrieve higher AODs in 300 
places where SA is not available. 301 

 302 
Figure 2 (a) AOD normalized probability density functions from SA, prototype NRT, and prototype NRT retrievals that do not 303 
have a matching SA equivalent (labeled as NRTprot gained); (b) same as in (a) but for retrieved AOD uncertainties (UNC). Data 304 
statistics for AODs are provided in Table 1. 305 

Figure 3 shows pdfs of AOD but with retrievals separated between DW (Fig. 3a) and 306 
land (Fig. 3b). These pdfs indicate that the retrievals over oceans are the main source of 307 
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increased frequency of high-AODs in the NRTprot product. The pdfs over land are virtually 308 
unchanged, including a slightly flattened but still relatively comparable distribution of the “NRTprot 309 
gained” retrievals (Fig. 3b). The additional statistics of the data presented in Figs. 2 and 3, 310 
including the retrieval count, the mean AOD, and the geometric mean AOD, which is better 311 
suited for log-normal distributions of AOD (Sayer and Knobelspiesse, 2019), are provided in 312 
Table 1. Note that the number of NRTprot gained is not the same as the number of NRTprot minus 313 
SA. This is because some SA retrievals do not have their NRTprot equivalent, making the SA 314 
count larger than it would have been otherwise.  315 
 In the 3-month period analyzed in this study (March, April, May, 2020), the NRTprot 316 
processing leads to about 6.4% more retrievals than SA (see Table 1). 5.5 million NRTprot 317 
retrievals do not have a matching SA retrieval (NRT gained), and the majority of them (67%) are 318 
DW retrievals. The overall geometric means are almost identical in SA and NRTprot, although 319 
small variations in this statistic are seen in DW and land categories. The NRT gained have 320 
visibly higher mean and geometric mean values, the increase coming mainly from DW 321 
retrievals. These basic statistics warrant a further look at the NRTprot performance over DW. 322 

 323 
Figure 3 AOD pdfs for land (a) and DW (b) retrievals, respectively. Data statistics are provided in Table 1. 324 
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mean 0.168 0.169 0.171 0.111 0.115 0.146 0.240 0.243 0.224 

geomean 0.111 0.112 0.122 0.083 0.085 0.106 0.160 0.162 0.161 

Table 1 Additional statistics for the data presented in Figs. 2 and 3 (statistic for FIRSTLOOK not shown). NRT gained stands for 325 
the prototype NRT retrievals that do not have a matching SA equivalent; geomean stands for the geometric mean AOD. 326 
 327 
4.3.2. Sensitivity to CSP and CSP9 thresholds in DW retrievals 328 
 329 
One way to screen potentially cloud-contaminated high-AOD retrievals is to adjust thresholds on 330 
CSP and CSP9 parameters (Garay et al., 2020). This is furthermore justified by the fact that in 331 
the absence of RCCM, SDCM, and ASCM in NRTprot processing, fewer cloudy subregions are 332 
identified in a retrieval area and consequently CSP and CSP9 have by default lower values. 333 
This argument provides strong justification for investigating sensitivity to increased CSP and 334 
CSP9 thresholds in the NRTprot processing.  335 
 The SA product uses the thresholds of CSP=0.7 and CSP9=0.5 (Garay et al., 2020); 336 
when the values of CSP and CSP9 are below these thresholds in a retrieval region, the aerosol 337 
retrieval is removed from the data field recommended for users. Figure 4 and Table 2 show pdfs 338 
and AOD statistics for different thresholds of CSP and CSP9 parameters in the NRTprot product 339 
over dark water surfaces. There are only minor changes in the pdfs when the thresholds are 340 
increased, including in the high-AOD regime. The mean and geometric mean decrease 341 
gradually but slowly; even at the highest considered thresholds (0.85 for CSP and 0.75 for 342 
CSP9) these statistics are still above the SA values. At the same time the number of passing 343 
NRTprot retrievals decreases considerably faster, with almost 19% of retrievals lost when the 344 
highest thresholds are used. These results indicate that adjusting CSP and CSP9 thresholds is 345 
not an effective strategy to constraining NRTprot retrievals. 346 
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 347 
Figure 4 Prototype NRT AOD pdfs over dark water surfaces from spring 2020 obtained with different CSP and CSP9 cloud-348 
screening thresholds. Data statistics are provided in Table 2. 349 

N (×106) 30.7 30.1  
(-1.9%) 

28.4  
(-7.4%) 

27.7  
(-9.8%) 

25.9  
(-15.6%) 

24.9  
(-18.9%) 

SA 
27.6 

CSP ³0.7 ³0.73 ³0.76 ³0.79 ³0.82 ³0.85 

CSP9 ³0.5 ³0.55 ³0.6 ³0.65 ³0.7 ³0.75 

mean 0.1151 
± 0.1200 

0.1149 
± 0.1199 

0.1145 
± 0.1190 

0.1144 
± 0.1191 

0.1142  
± 0.1185 

0.1143  
± 0.1189 

0.1110  
± 0.1079 

geomean 0.0850 0.0847 0.0841 0.0839 0.0834 0.0832 0.0826 

Table 2 Additional statistics for the data presented in Fig. 4. Values for CSP and CSP9 indicate their corresponding thresholds for 350 
screening AOD retrievals. The arithmetic mean values are accompanied by their respective ± one standard deviations. 351 
 352 
4.3.3. Sensitivity to ARCI threshold in DW retrievals 353 

 354 
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V23 of the MISR aerosol product introduced a new parameter, called the aerosol retrieval 355 
confidence index (ARCI), that is used to screen high-AOD retrieval outliers caused by cloud 356 
contamination and other factors (Witek et al., 2018b). ARCI, defined only for DW retrievals, 357 
proved to be an efficient metric at filtering out potentially cloud-contaminated AOD retrievals. In 358 
standard processing, retrievals with ARCI < 0.15 are removed from the recommended user 359 
field, but are retained in the AUXILIARY group. The 0.15 threshold is well supported through 360 
statistical analysis (Witek et al., 2018b), although some erroneous AODs still pass this 361 
screening method, suggesting that increasing this threshold might be beneficial in NRT 362 
processing. 363 
 Figure 5 and Table 3 show pdfs and AOD statistics for different thresholds of ARCI in the 364 
NRTprot product. In this case the differences between ARCI thresholds are quite noticeable, 365 
especially in the high-AOD range of retrievals. Increasing the ARCI threshold to 0.2 leads to a 366 
loss of about 11% of NRTprot DW retrievals, but the resulting mean and geometric mean are 367 
lower than the SA values. At the same time, the absolute number of NRTprot DW retrievals (27.4 368 
million) is still comparable to the number of SA DW retrievals (27.6 million). The pdfs and the 369 
statistics suggest that increasing the NRTprot ARCI threshold from 0.15 to 0.18 leads to a 370 
product that has similar characteristics to SA. 371 
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 372 
Figure 5 Prototype NRT AOD pdfs from spring 2020 obtained with different ARCI thresholds. Data statistic are provided in Table 373 
3. 374 

N (×106) 30.7 30.0  
(-2.2%) 

29.4  
(-4.3%) 

28.7  
(-6.5%) 

28.0  
(-8.6%) 

27.4  
(-10.8%) 

SA 
27.6 

ARCI ³0.15 ³0.16 ³0.17 ³0.18 ³0.19 ³0.20 

mean 0.1151 
± 0.1200 

0.1137 
± 0.1157 

0.1124 
± 0.1122 

0.1112 
± 0.1094 

0.1100 
± 0.1070 

0.1090  
± 0.1051 

0.1110 
± 0.1079 

geomean 0.0850 0.0842 0.0835 0.0828 0.0821 0.0813 0.0826 

Table 3 Additional statistic for the data presented in Fig. 5. 375 
 376 
4.3.4. Recommendation for NRT processing 377 

 378 
The statistical analyses presented in the previous sections indicate that the lack of RCCM, 379 
SDCM, and ASCM in NRT processing has negative consequences on the product, especially by 380 
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allowing more, potentially cloud-contaminated, high-AOD DW retrievals to pass screening 381 
criteria. Adjusting build-in cloud screening thresholds on CSP and CSP9 brings only limited 382 
benefits at the cost of losing a considerable percentage of retrievals. However, the ARCI 383 
threshold adjustments result in much closer statistical correspondence between the NRTprot and 384 
standard AOD retrievals. For that reason, a revised ARCI threshold of 0.18 is implemented in 385 
NRT processing. Since the unscreened retrievals, as well as the ARCI parameter, are also 386 
provided in the AUXILIARY group of the product, users are encouraged to experiment with their 387 
own thresholds which might prove more beneficial in specific applications or geographic areas. 388 

 389 

4.4. Cloud/clear decision logic over snow/ice 390 

 391 
In section 4.1.1 the impact of upstream cloud classifiers in standard processing—namely the 392 
RCCM, SDCM, and ASCM—on the subregion’s cloud/clear designation was briefly described. 393 
The decision pathway depends on the underlying surface type, which can be either land, water, 394 
or snow/ice. Over land and water, the “cloud” outcome is only obtained when both RCCM and 395 
SDCM designate the subregion as cloudy. In the absence of RCCM and SDCM the default 396 
outcome is “clear”. Over snow/ice, however, the logic is more restrictive and favors the “cloudy” 397 
designation (Diner et al., 2008). Specifically, when the upstream cloud classifiers are not 398 
available, the subregion designation is set to “cloudy” by default. This has important implications 399 
on aerosol retrievals in areas where snow and ice occur seasonally.  400 
 The snow/ice surface mask, unlike land and water, is not static and changes every 401 
month. Furthermore, the snow/ice mask input to MISR aerosol processing has a 1.0-degree 402 
horizontal resolution, which is re-gridded to a 1.1 km resolution corresponding to the resolution 403 
of MISR subregion. In FIRSTLOOK processing, the snow/ice mask from the same month but in 404 
the previous year is used. The final SA processing is performed when the current year’s monthly 405 
snow/ice mask becomes available. The NRT processing, similarly to FIRSTLOOK, relies on the 406 
previous year’s snow/ice mask. Additionally, given the lack of upstream cloud classifiers, the 407 
snow/ice areas are designated as “cloudy” for aerosol retrieval purposes. This is well visualized 408 
in Figure 6 which shows the visible image and the corresponding maps of AOD and Aerosol 409 
Retrieval Screening Flag in the NRT processing. The dark blue color (index 5) denotes cloudy 410 
regions determined using the snow/ice cloud logic. The box-like nature of the excluded areas is 411 
associated with the coarse resolution of the snow/ice mask (1.0 degree). The previous year’s 412 
mask might also not be representative of the current conditions on the ground. It is worth noting 413 
that the FIRSTLOOK product often suffers from the same exclusion rules as NRT. This is 414 
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because of the strict clear/cloud logic over snow/ice surfaces which favors the cloudy outcome; 415 
in the case shown in Fig. 6 the AOD gaps in FIRSTLOOK (not shown) look very similar to the 416 
NRT product. 417 

 418 
Figure 6 Example of snow/ice masking in NRT AOD retrievals. (Left) Visible image of the retrieval area. (Center) Corresponding 419 
NRT AOD retrievals. (Right) NRT Aerosol Retrieval Screening Flag for the same area; the dark blue color denotes regions 420 
designated as cloudy.  421 

Several attempts have been made by the MISR science team to improve NRT aerosol 422 
retrievals in snow/ice covered areas. However, identifying and isolating snow-covered surfaces 423 
in the absence of upstream cloud classifiers proves very challenging. The quality of aerosol 424 
retrievals is often negatively affected in such conditions. For that reason, and in an attempt to 425 
eliminate as many NRT AOD outliers as possible, the current snow/ice logic is retained in the 426 
NRT aerosol processing. 427 
 428 
5. NRT and SA product comparisons 429 

 430 
5.1. Total AOD 431 

 432 

In this section, geographic distributions of MISR AOD retrievals from SA and NRT products are 433 
analyzed. The datasets encompass three months, March, April, and May of 2020. The NRT 434 
retrievals are screened with the revised ARCI threshold of 0.18 as suggested in section 4.3.4. 435 
The spatial overlap of the SA and NRT data is achieved using an intersect of the X_Dim and 436 
Y_Dim fields in the two data products.   437 

Deleted: differences438 

Deleted: AOD 439 
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Figure 7 shows the global distributions of geometric mean AOD from the (a) SA and (b) 440 
NRT products. The retrievals are gridded at 2-by-2-degree spatial resolution. Fig. 7c shows the 441 
AOD difference between the two products (NRT – SA).  442 

The largest AOD differences are seen in areas with climatologically high cloud cover, 443 
especially over the Southern Ocean, and over land in areas where potential snow cover could 444 
be an issue. Over the Southern Ocean the SA AODs are predominantly higher than the NRT 445 
AODs. This is due to the increased ARCI threshold in NRT (0.18 vs. 0.15 in SA) which brings in 446 
more aggressive screening of cloud-contaminated retrievals (Witek et al., 2018b). Over land, 447 
where the ARCI parameter is not available, the gridded NRT AODs tend to be higher than the 448 
SA AODs, which is in part related to the differences in snow/ice mask between the two 449 
products. Still, the AOD differences in Fig. 7c are rather small and reflect sampling issues rather 450 
than any systematic deficiencies in NRT processing. At the same time the lack of cloud 451 
classifiers in NRT does not adversely affect AOD distributions, which is consistent with the 452 
statistical analysis presented in section 4.2.3.  453 

 454 
Figure 7 (a) Global distribution of SA AOD geometric mean values across March, April, and May of 2020 on a 2-by-2-degree 455 
spatial resolution; (b) same as in (a) but for NRT AOD; and (c) AOD difference between SA and NRT. Grid points with less than 15 456 
retrievals are excluded. 457 

5.2. Retrieval yields 458 
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Figure 8 complements Fig. 7 by showing (a) the SA retrieval count distribution as well as (b) the 459 
retrieval count difference between the SA and NRT products. 460 

 461 
Figure 8 (a) Decimal logarithm of the retrieval count from the SA product in March, April, and May of 2020; (b) retrieval count 462 
difference between SA and NRT. Presented values are gridded at 2-by-2-degree spatial resolution and grid points with less than 463 
15 retrievals are excluded. 464 

The highest number of retrievals is found over the subtropical continents where the 465 
cloud cover is usually the smallest. Over the subtropical oceans in the Southern Hemisphere the 466 
NRT retrieval counts are typically higher than in SA, which results from the absence of upstream 467 
cloud classifiers in NRT processing and subsequently fewer subregions being excluded as 468 
cloudy. Note that this increase in retrieval count caused by the lack of cloud classifiers is not 469 
compensated by the increased ARCI threshold in NRT processing (ARCI³0.18), which always 470 

reduces the number of retrievals when compared to the default SA threshold (ARCI³0.15). The 471 
lack of hemispheric symmetry in this case is likely due to the seasonal variability (only months in 472 
northern spring are analyzed here). Over land the lack of upstream cloud classifiers also results 473 
in higher number of NRT retrievals in certain regions, but the surface type exclusion rules 474 
reverse this pattern, especially at higher latitudes. The conservative cloud logic over snow/ice 475 
surfaces in NRT processing often results in the lower number of NRT retrievals in the high 476 
latitudes of the northern hemisphere. 477 

A metric relevant to the potential use of the NRT product in data assimilation is the 478 
retrieval yield per model grid point. The retrieval yield can be measured as, for example, the 479 
number of 1º x 1º grid cells that have at least 15 valid satellite retrievals in them. From this 480 
perspective, the NRT product has a retrieval yield that is about 0.7% higher than the SA 481 
product, based on the three months of data analyzed in this study. 482 

 483 
5.3. Fractional AOD 484 
 485 
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MISR’s multi-angle retrieval approach enables characterization of aerosol optical and 486 
microphysical properties, such as fractional AODs associated with particle absorption, 487 
nonsphericity, and size (see e.g., Kahn and Gaitley, 2015). This attribute of the MISR SA 488 
product has been applied to many climate and air quality studies and inclusion of this capability 489 
in the NRT product would benefit data assimilation for numerical prediction of atmospheric 490 
aerosols (Benedetti et al., 2018). Consequently, this section provides preliminary statistical 491 
comparisons of the SA and NRT absorption AOD along with small-mode, large-mode, and 492 
nonspherical AOD. The results shown in Fig. 9 indicate that the probability density functions of 493 
these aerosol properties in the NRT product are statistically equivalent to the SA product. This 494 
assessment reaffirms the consistency of the NRT and SA products. Future studies will examine 495 
geographic and statistical differences and other particle properties in more detail. 496 

 497 
Figure 9 Normalized probability density functions for select MISR particle property retrievals in March, April, and May 2020. 498 
Solid lines represent SA retrievals and dashed represent NRT retrievals. (a) absorption AOD and small-mode AOD retrievals; (b) 499 
large-mode AOD and nonspherical AOD retrievals. The differences between the SA and NRT products are negligible. 500 
 501 
6. Summary 502 
  503 
The MISR V23 aerosol product, publicly available since mid-2018, is a high-resolution state-of-504 
the-art data product from NASA's Terra flagship mission. V23 AOD retrievals have remarkable 505 
accuracy compared against ground-based observations (Garay et al., 2020; Tao et al., 2020; 506 
Witek et al., 2019) and the product is more intuitive and easier to use than previous versions. 507 
The product is available within 2 days from satellite overpass as a FIRSTLOOK version, and 508 
within 3-to-6 months as a final science-quality SA version that employs the most up-to-date 509 
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ancillary datasets. In response to the needs of operational user communities, a new MISR L2 510 
NRT aerosol product has been developed with a 3-hour latency. 511 
 The new NRT algorithm does not depend on the upstream cloud classifiers that are 512 
generated in L1 and L2 cloud processing. The lack of cloud classifiers is in large part mitigated 513 
by the aerosol algorithm’s built-in cloud identification methods. Analysis of the prototype NRT 514 
product has shown an increased frequency of high-AOD retrievals, especially over oceans and 515 
in climatologically cloudy areas, likely due to an increase in cloud contamination. Adjusting the 516 
ARCI threshold in DW retrievals proves highly effective at eliminating some of these high-AOD 517 
outliers and improves the NRT product’s statistical agreement with the SA version. The new 518 
NRT aerosol product applies an ARCI threshold of 0.18 to mitigate cloud contamination in the 519 
absence of upstream cloud masks in NRT processing. The remaining differences in statistical 520 
and geographic distributions between the NRT and SA AODs, which includes information from 521 
the L2 cloud product, are small and largely confined to areas with high cloud cover.  522 
 The results of this study also serve as an example of the effects of screening threshold 523 
adjustments in MISR aerosol retrievals on AOD statistics and distributions. Researchers 524 
interested in particular applications and/or specific geographic regions are encouraged to 525 
experiment with their own threshold to achieve most optimal results. The NRT aerosol product 526 
contains both the recommended product contained within the main science directory 527 
“4.4_KM_PRODUCTS” that has the stricter ARCI threshold (ARCI³0.18), and the unscreened 528 
product without the additional cloud and ARCI filtering designed for more experienced users, 529 
located within the AUXILIARY group. 530 
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