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Abstract 12 
Atmospheric aerosols are an important element of Earth’s climate system, and have significant 13 
impacts on the environment and on human health. Global aerosol modeling has been 14 
increasingly used for operational forecasting and as support to decision making. For example, 15 
aerosol analyses and forecasts are routinely used to provide air quality information and alerts in 16 
both civilian and military applications. The growing demand for operational aerosol forecasting 17 
calls for additional observational data that can be assimilated into models to improve model 18 
accuracy and predictive skill. These factors have motivated the development, testing, and 19 
release of a new near real-time (NRT) level 2 (L2) aerosol product from the Multi-angle Imaging 20 
SpectroRadiometer (MISR) instrument on NASA’s Terra platform. The NRT product capitalizes 21 
on the unique attributes of the MISR aerosol retrieval approach and product contents, such as 22 
reliable aerosol optical depth as well as aerosol microphysical information. Several 23 
modifications are described that allow for rapid product generation within a three-hour window 24 
following acquisition of the satellite observations. Implications for the product quality and 25 
consistency are discussed as compared to the current operational L2 MISR aerosol product. 26 
Several ways of implementing additional use-specific retrieval screenings are also highlighted. 27 
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1. Introduction 31 
 32 
Atmospheric aerosols have for long been recognized to influence the climate, environment, and 33 
human health (e.g., IPCC, 2013; Lelieveld et al., 2015; Shindell et al., 2013; Turnock et al., 34 
2020). They also affect satellite remote sensing of important geophysical parameters such as 35 
ocean color (e.g., Frouin et al., 2019; Gordon, 1997) or greenhouse gas abundance (Butz et al., 36 
2009; Frankenberg et al., 2012; Houweling et al., 2005). Aerosol particles and their properties 37 
have been extensively studied in-situ and remotely: from the ground, in the air, and from space. 38 
These observational data vary in spatial and temporal coverage, but usually only offer 39 
snapshots of local conditions. Since atmospheric aerosols have a life cycle ranging from hours 40 
to days, numerical modeling of their emission, transport, and deposition has filled the coverage 41 
gaps and extended our understanding of their global impacts. This has given rise to a number of 42 
global aerosol reanalyses (Buchard et al., 2017; Gelaro et al., 2017; Inness et al., 2013, 2019; 43 
Lynch et al., 2016; Randles et al., 2017; Rienecker et al., 2011) that provide a long-range, 44 
gridded, and internally consistent outlook on aerosol burdens around the world. Furthermore, 45 
global aerosol modeling has been increasingly used for operational forecasting (e.g., Xian et al., 46 
2019) and as support to decision making, for example in air quality alerts and in non-civilian 47 
applications (Liu et al., 2007). 48 
 The growing demand for consistent gridded aerosol products has been driving 49 
development and steady improvement of numerical predictions. For example, the International 50 
Cooperation for Aerosol Prediction initiative was founded in 2010 (Benedetti et al., 2011; Reid et 51 
al., 2011), with one of its goals being the development of global multi-model aerosol forecasting 52 
ensemble for basic research and operational use (Xian et al., 2019). Still, models suffer from 53 
often poorly resolved aerosol emissions and sinks and can be affected by errors in the 54 
underlying meteorology. As a result, systematic and sampling-related biases in aerosol fields 55 
are often found between model simulations and satellite observations (e.g., Buchard et al., 56 
2015; Colarco et al., 2010; Lamarque et al., 2013; Zhang and Reid, 2009). An effective way to 57 
mitigate some of these problems is by assimilating aerosol observations into numerical models 58 
(e.g., Bocquet et al., 2015; Fu et al., 2017; Sekiyama et al., 2010; Di Tomaso et al., 2017; 59 
Werner et al., 2019; Zhang et al., 2008). Satellite observations of aerosol optical and 60 
microphysical properties are inseparable from these data assimilation activities as they offer the 61 
necessary data volume, near-global coverage, and frequent repeat cycle. However, an often-62 
considerable latency for generating science-quality “standard” satellite products (8 to 40 hours) 63 
renders them unsuitable for operational forecasting. This has led to the development of aerosol 64 
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products within the time frame required by modeling centers, usually three hours from satellite 65 
overpass. A number of near real-time (NRT) products has emerged. 66 
 One example of a platform that provides users with NRT satellite products and imagery 67 
is NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) project 68 
(https://earthdata.nasa.gov/earth-observation-data/near-real-time). A range of instruments 69 
deliver various Level 1 (L1) and Level 2 (L2) data products 70 
(https://earthdata.nasa.gov/collaborate/open-data-services-and-software/data-information-71 
policy/data-levels), including radiances, land surface properties, and atmospheric 72 
thermodynamics and composition within three hours from satellite observation. NRT aerosol 73 
products are currently available from the Moderate Resolution Imaging Spectroradiometer 74 
(MODIS), Ozone Monitoring Instrument (OMI), and Visible Infrared Imaging Radiometer Suite 75 
(VIIRS). NASA’s Multi-angle Imaging SpectroRadiometer (MISR) currently provides NRT 76 
radiance and cloud motion vector products. The purpose of this paper is to introduce a new 77 
MISR NRT L2 aerosol product available within LANCE. 78 
 This paper is organized as follows. Section 2 and 3 provide brief descriptions of the 79 
MISR instrument and the data processing sequence, respectively. Section 4 first outlines the 80 
cloud identification methods employed in the MISR aerosol algorithm and then describes 81 
algorithmic modifications introduced in the NRT processing. Adjustments to cloud and retrieval 82 
screening parameters and their implications are discussed. The global distributions of the NRT 83 
product and comparisons of total and fractional AODs with the standard aerosol product are 84 
presented in Section 5. Section 6 provides a summary. 85 

 86 
2. MISR instrument and aerosol data product 87 

 88 

The MISR instrument flies aboard the NASA Earth Observing System (EOS) Terra satellite, 89 
launched in December 1999 to a sun-synchronous descending polar orbit, at an orbital altitude 90 
of 705 km, an orbital period of 99 minutes, and an equatorial crossing time of 10:30 a.m. local 91 
time. MISR makes 14.56 orbits per day with a repetition cycle (revisit) of 16 days. The orbit 92 
tracks are georeferenced to a fixed set of 233 ground paths. With a cross-track swath of about 93 
380 km, total Earth coverage is obtained every 9 days at the equator and every 2 days at high 94 
latitudes. 95 
 MISR contains nine pushbroom cameras with viewing angles at the Earth’s surface 96 
ranging from 0° (nadir) to +/- 70.5° oriented along the direction of the flight track. A point on the 97 
ground is imaged by all nine cameras in approximately 7 minutes. The cameras make 98 
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observations of reflected solar radiance in four spectral bands, centered at 446 (blue), 558 99 
(green), 672 (red), and 866 (near-infrared) nm. The spatial resolution depends on the camera 100 
and wavelength. The red band has a full 275 m resolution in all cameras. The other three 101 
spectral channels are averaged onboard to a 1.1 km resolution in global-mode operation (Diner 102 
et al., 1998), with the exception of the nadir camera which preserves the full 275 m resolution in 103 
all spectral channels. See https://misr.jpl.nasa.gov/Mission/ for more details. 104 
 MISR employs two processing pathways for aerosol retrievals, one for observations over 105 
land (Martonchik et al., 2009), and another for dark water (DW) (Kalashnikova et al., 2013), 106 
which applies over deep oceans, seas, and lakes. Previous versions of the MISR aerosol 107 
product were extensively validated over the years (e.g., Kahn et al., 2010; Kahn and Gaitley, 108 
2015; Kalashnikova et al., 2013; Shi et al., 2014; Witek et al., 2013) showing high retrieval 109 
quality over land and ocean. 110 

The current operational version of the MISR aerosol product, designated as version 23 111 
(V23), was released publicly in June 2018. It introduced multiple algorithmic, data product, and 112 
data usability improvements (Garay et al., 2020; Witek et al., 2018a, 2018b). V23 provides 113 
aerosol information with a spatial resolution of 4.4 km x 4.4 km packaged in NetCDF-4 format. 114 
Initial validation efforts showed that V23 retrievals are more accurate than previous versions, 115 
with most pronounced improvements in the DW algorithm (Garay et al., 2020). V23 retrievals 116 
over oceans were extensively validated by Witek et al. (2019), indicating excellent agreement 117 
with ground-based observations. Other V23 Aerosol Optical Depth (AOD) evaluation efforts 118 
show similar results (e.g., Choi et al., 2019; Sayer et al., 2020; Si et al., 2020; Sogacheva et al., 119 
2020). A first regional insight into retrieved particle properties from the MISR V23 aerosol 120 
product shows that MISR generally captures the distinct spatial and temporal features of aerosol 121 
type in East Asia (Tao et al., 2020). Furthermore, V23 has greatly improved the quality of 122 
reported AOD uncertainties, which now realistically represent retrieval errors (Sayer et al., 2020; 123 
Witek et al., 2019). This is especially relevant as pixel-level retrieval uncertainties are very 124 
important for satellite data assimilation, which is being increasingly used in aerosol modeling 125 
studies (Lynch et al., 2016; Shi et al., 2011, 2013; Zhang and Reid, 2010). MISR data and 126 
related documentation can be obtained from: https://asdc.larc.nasa.gov/project/MISR. 127 

 128 
3. NRT latency and data description 129 

 130 
MISR currently provides several L1 and L2 near real-time (NRT) radiance and cloud motion 131 
vector products (https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-132 
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data/misr-nrt).  All MISR NRT processing is based on Level 0 data downlinked in observational 133 
sessions. These session-based files, representing portions of a single MISR orbit, usually cover 134 
between 10 to 50 minutes of observations, as compared to the full orbit period of 98.9 minutes. 135 
This session-based processing is necessary to allow for the fast product delivery required for 136 
NRT applications.  137 
 The new NRT L2 aerosol product file content, described in Data Product Specification 138 
(https://asdc.larc.nasa.gov/documents/misr/DPS_AEROSOL_NRT_V023.20210430.pdf), is 139 
equivalent to the standard aerosol product (Garay et al., 2020). The NRT L2 aerosol product file 140 
name convention is: 141 
MISR_AM1_AS_AEROSOL_T{yyyymmddHHMMSS}_P{ppp}_O{oooooo}_F13_0023.nc, where 142 
‘yyyy’, ‘mm’, and ‘dd’ are the year, month, and day, and ‘HH’, ‘MM’ and ‘SS’ are the hour, 143 
minute, and seconds, respectively. Furthermore, {ppp} is the three-digit path identifier (between 144 
001 and 233) and {oooooo} is the six-digit orbit number. The NRT L2 aerosol product files are 145 
available for download within three hours of acquisition at NASA’s Atmospheric Science Data 146 
Center (ASDC) (https://asdc.larc.nasa.gov/project/MISR). 147 
 For clarity, it is important to distinguish between the three different MISR L2 aerosol 148 
products: NRT, FIRSTLOOK, and standard aerosol (SA) product (see Figure 1). NRT is 149 
generated within a three-hour time interval after acquisition and uses the same ancillary inputs 150 
as FIRSTLOOK. These include the monthly gridded (1.0 degree) snow/ice mask and surface 151 
wind speed from the Terrestrial Atmospheric and Surface Climatology (TASC) database and the 152 
seasonal Radiometric Camera-by-camera Threshold Dataset (RCTD) (Diner et al., 1999a). Both 153 
NRT and FIRSTLOOK utilize TASC and RCTD datasets from the current month/season in the 154 
prior year. The FIRSTLOOK product is generated within two days from acquisition and includes 155 
cloud classification parameters obtained from the L1 and L2 cloud products. The SA product is 156 
available after final processing is performed on a seasonal basis and within three months past 157 
the end of the season, which results in a 3–6-month latency. The final processing utilizes the 158 
most recent snow/ice and wind speed data. 159 
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 160 
Figure 1 Schematic showing MISR aerosol product delivery timeline. Snow/ice mask and surface wind speed data are monthly 161 
averages. RCTD stands for Radiometric Camera-by-camera Threshold Dataset. MISR final production (SA) is processed on a 162 
seasonal cycle and is often delayed one to three months past the end of each season, which results in up to 6-month latency.  163 
 164 
4. Cloud screening in the NRT MISR aerosol product  165 

 166 
4.1. Cloud identification 167 
  168 
Identification of cloudy pixels is a critical element of all satellite aerosol remote sensing 169 
algorithms. MISR employs several cloud identification strategies which can be loosely split into 170 
two groups: the first group relies on cloud classifiers previously generated with MISR Level 2 171 
Cloud Detection and Classification algorithm (Diner et al., 1999b), and the second group 172 
includes build-in tests that are internal to the aerosol retrieval algorithm (Diner et al., 2008). 173 

 174 

4.1.1. Upstream cloud classifiers 175 

 176 
The operational MISR aerosol algorithm relies on a range of external input datasets that are 177 
either static—for example, a monthly wind speed climatology—or that need to be generated 178 
prior to aerosol retrievals in upstream processing. A notable example of such external inputs to 179 
the SA and FIRSTLOOK algorithms are cloud classification parameters obtained from the MISR 180 
L2 cloud product. An important implication of this dependency is that aerosol processing needs 181 
to wait for the cloud product to be generated, creating a time lag that is prohibitive for NRT 182 
applications. Typically, the L2 cloud product is generated within about 18 hours of overpass, 183 
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and the MISR L2 FIRSTLOOK aerosol processing is completed within about 2 days. In order to 184 
produce an L2 aerosol product within an about three-hour time frame, the algorithm needs to 185 
operate without the upstream cloud classifiers. 186 

Two specific L2 cloud classification parameters utilized in FIRSTLOOK and SA aerosol 187 
processing are the MISR Stereoscopically-Derived Cloud Mask (SDCM) and the Angular 188 
Signature Cloud Mask (ASCM) (Diner et al., 1999b; Girolamo and Davies, 1994). In addition to 189 
these L2 products, the Radiometric Camera-by-camera Cloud Mask (RCCM) (Diner et al., 190 
1999a; Girolamo and Davies, 1995) retrieved in L1B processing is also employed. All three 191 
parameters are reported at 1.1 km x 1.1 km resolution. It should be noted that RCCM also 192 
serves as an input to the algorithm that generates SDCM and ASCM, indicating that these 193 
parameters are not independent. 194 

In the FIRSTLOOK and SA algorithm, the RCCM, SDCM, and ASCM cloud masks are 195 
used together to determine whether a particular 1.1 km x 1.1 km subregion is clear or cloudy. 196 
The implication is that if any of the 9 MISR cameras is designated as cloudy in a subregion, this 197 
subregion is excluded from aerosol retrieval. The clear/cloudy decision logic depends on the 198 
underlying surface type, assigned into three categories: land, water, and snow/ice. Generally, a 199 
“clear” outcome is favored over the two most frequently used surface types, land and water, 200 
assigning a subregion as cloudy only if the RCCM and SDCM masks indicate a cloud. The logic 201 
is considerably more conservative over snow/ice surfaces due to difficulties in distinguishing 202 
clouds from the underlying bright features. Details of the cloud mask decision logic over different 203 
surface types can be found in Diner et al. (2008). 204 

Analyzing three months of V23 L2 SA product (March, April, May, 2020) indicates that 205 
the cloud masks along with the brightness test (see 4.1.2) lead to screening of about 50% of 206 
retrievals. As such, they have the largest impact on identifying and removing pixels where 207 
clouds might be present. These masks and decision pathways, however, have their deficiencies 208 
and additional checks were put in place to further decrease the frequency of cloud-209 
contaminated aerosol retrievals. 210 

 211 
4.1.2. Built-in cloud detection methods 212 

 213 
In addition to the cloud masks retrieved in the L1B processing (RCCM) and from the L2 Cloud 214 
Detection and Classification algorithm (SDCM, ASCM), the MISR aerosol retrieval algorithm 215 
relies on three internal tests to further identify cloudy pixels that might have escaped earlier 216 
detection. These are (1) the brightness test, (2) the angle-to-angle smoothness test, and (3) the 217 
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angle-to-angle correlation test. Details of these tests can be found in Martonchik et al. (2002) or 218 
Diner et al. (2008), but a short summary is provided here for completeness.  219 

The brightness test is employed to identify clouds that lacked sufficient texture to be 220 
picked up by SDCM. For each surface type a fixed threshold is adopted on measured 221 
bidirectional reflectance factors (BRFs), and when exceeded in all spectral bands for at least 222 
one camera, it renders a subregion unsuitable for aerosol retrieval. The thresholds are set to 223 
1.0, 0.5, and 0.5 for snow/ice, land, and water surfaces, respectively. The value of 1.0 means 224 
that the brightness test is effectively turned off over snow/ice. Furthermore, the brightness test 225 
does not override subregions that were identified as clear by RCCM.  226 

The angular smoothness test checks for unusually large variations in the measured 227 
equivalent reflectances as a function of camera angle, the premise being that in the absence of 228 
artifacts or subpixel clouds, the measured radiance should change smoothly from camera to 229 
camera. The test is achieved by fitting a polynomial to equivalent reflectances, separately for aft 230 
(+nadir) and forward (+nadir) cameras and each spectral band, and checking if the goodness of 231 
fit metric (definition in Diner et al., 2008) exceeds a threshold. If in at least one case the test 232 
fails, the subregion is eliminated. 233 

Finally, the angle-to-angle correlation test also investigates radiance smoothness and 234 
correlation between camera angles, which makes it conceptually similar to the angular 235 
smoothness test, but instead utilizes high-resolution information from the red spectral band. It 236 
uses 4 x 4 arrays of the 275m spatial resolution red band equivalent reflectances in each 1.1 km 237 
x 1.1 km subregion. The test then evaluates spatial variability within the 4 x 4 array for each 238 
camera and compares it to a variability within a camera-average template. Variances, 239 
covariances, and normalized cross-correlations are calculated (see Diner et al., (2008) for 240 
details). If the variability within a camera deviates considerably from the average, this camera 241 
might have sub-pixel clouds or other contaminants, and as a result the subregion is excluded 242 
from aerosol retrievals.  243 

In the three months of data analyzed in this study (March, April, May 2020), the relative 244 
occurrence of retrieval screening due the above-mentioned internal tests are about 4.0% and 245 
0.1% for the correlation and smoothness tests, respectively. These statistics come from 246 
analyzing the output field Aerosol_Retrieval_Screening_Flags and as such they do not 247 
represent the absolute rates of success of each individual test. That is because the tests are 248 
performed sequentially, and if one fails, subsequent tests are not performed. For SA product 249 
generation, the order is: upstream cloud mask described in 4.1.1, the brightness test, the 250 
correlation test, and the smoothness test. For example, the correlation test is only performed on 251 
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pixels that already passed the upstream cloud tests as well as the brightness test. Additionally, 252 
the brightness test does not have its own flag in the Aerosol_Retrieval_Screening_Flags output 253 
but is grouped together with the upstream cloud classifiers. 254 

 255 
4.2. Retrieval screening using regional cloud parameters 256 

 257 

Methods described in section 4.1 focus on identifying and excluding cloudy 1.1 km x 1.1 km 258 
subregions from the aerosol retrieval process. The retrieval region consists of 16 (4 x 4) 259 
subregions. These methods are highly effective at removing cloud-contaminated pixels, but 260 
since they rely on MISR visible wavelengths they might miss certain cloud signatures more 261 
easily detected in the infrared spectrum (e.g., Gao et al., 1993). For example, MODIS routinely 262 
uses its reflective and emissive infrared channels to detect optically thin cirrus clouds 263 
(Ackerman et al., 2010; Levy et al., 2013). As a result, MISR cloud detection methods 264 
occasionally fail, which leads to visible outliers in retrieved AODs (Witek et al., 2018b). For that 265 
reason, an additional set of screenings is applied in an effort to eliminate such unusually high 266 
AOD retrievals (Garay et al., 2020). Two of these additional methods look at overall cloudiness 267 
in the retrieval region (consisting of 4 x 4 subregions) as well as in a larger area consisting of 3 268 
x 3 regions (12 x 12 subregions). The Cloud Screening Parameter (CSP) represents the fraction 269 
of clear grid cells within a region, whereas Cloud Screening Parameter Neighbor 3x3 (CSP9) is 270 
similar to CSP but for the larger area. If CSP is below 0.7 and CSP9 below 0.5, the retrieval is 271 
not reported in the final product intended for most users. However, it is still included in the 272 
product’s AUXILIARY subcategory and annotated with the term “Raw” to indicate that the 273 
product has not passed the recommended quality screenings. 274 

 275 
4.3. Adjusting cloud screening thresholds 276 

 277 
4.3.1. Performance of the prototype NRT product 278 

 279 
This subsection presents results and analysis of prototype NRT aerosol retrievals. These are 280 
obtained prior to any threshold and screening adjustments included in the final version of the 281 
product. To differentiate between the final and the prototype NRT products, the latter is donated 282 
as NRTprot.  283 

As mentioned in the previous section, the NRT processing cannot rely on the cloud 284 
masks generated in the L1 and L2 cloud products, namely the RCCM, SDCM, and ASCM. This 285 
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implies that potentially less screening of cloudy subregions would be applied, increasing the 286 
probability of cloud contamination in aerosol retrievals. However, some of the burden of cloud 287 
identification is picked up by the built-in cloud tests described in section 4.1.2. The frequency of 288 
these tests identifying cloudy pixels increases in NRT processing in comparison to standard 289 
processing, in large part mitigating the negative consequences resulting from the lack of the 290 
upstream cloud masks. This is well evidenced by examining the normalized probability density 291 
functions (pdfs) of AOD from spring 2020 (Figure 2). The SA (red) and NRTprot (blue) lines are 292 
very similar, indicating that the built-in cloud tests substitute to a significant extent for the 293 
missing upstream cloud masks in generating the NRTprot product. The largest difference occurs 294 
in the high-AOD range, suggesting that NRTprot has more retrievals in this regime. The black 295 
dotted line shows a pdf of the NRTprot AOD retrievals that do not have a matching SA retrieval. 296 
This is labeled as “NRTprot gained” as it represents additional retrievals obtained in NRT 297 
processing due to the lack of external cloud masks. The “NRTprot gained” pdf is clearly shifted 298 
towards higher AODs, confirming that the NRTprot processing tends to retrieve higher AODs in 299 
places where SA is not available. 300 

 301 
Figure 2 (a) AOD normalized probability density functions from SA, prototype NRT, and prototype NRT retrievals that do not 302 
have a matching SA equivalent (labeled as NRTprot gained); (b) same as in (a) but for retrieved AOD uncertainties (UNC). Data 303 
statistics for AODs are provided in Table 1. 304 

Figure 3 shows pdfs of AOD but with retrievals separated between DW (Fig. 3a) and 305 
land (Fig. 3b). These pdfs indicate that the retrievals over oceans are the main source of 306 
increased frequency of high-AODs in the NRTprot product. The pdfs over land are virtually 307 
unchanged, including a slightly flattened but still relatively comparable distribution of the “NRTprot 308 
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gained” retrievals (Fig. 3b). The additional statistics of the data presented in Figs. 2 and 3, 309 
including the retrieval count, the mean AOD, and the geometric mean AOD, which is better 310 
suited for log-normal distributions of AOD (Sayer and Knobelspiesse, 2019), are provided in 311 
Table 1. Note that the number of NRTprot gained is not the same as the number of NRTprot minus 312 
SA. This is because some SA retrievals do not have their NRTprot equivalent, making the SA 313 
count larger than it would have been otherwise.  314 
 In the 3-month period analyzed in this study (March, April, May, 2020), the NRTprot 315 
processing leads to about 6.4% more retrievals than SA (see Table 1). 5.5 million NRTprot 316 
retrievals do not have a matching SA retrieval (NRT gained), and the majority of them (67%) are 317 
DW retrievals. The overall geometric means are almost identical in SA and NRTprot, although 318 
small variations in this statistic are seen in DW and land categories. The NRT gained have 319 
visibly higher arithmetic and geometric mean values, the increase coming mainly from DW 320 
retrievals. These basic statistics warrant a further look at the NRTprot performance over DW. 321 

 322 
Figure 3 AOD pdfs for land (a) and DW (b) retrievals, respectively. Data statistics are provided in Table 1. 323 
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geomean 0.111 0.112 0.122 0.083 0.085 0.106 0.160 0.162 0.161 

Table 1 Additional statistics for the data presented in Figs. 2 and 3 (statistic for FIRSTLOOK not shown). NRT gained stands for 324 
the prototype NRT retrievals that do not have a matching SA equivalent; geomean stands for the geometric mean AOD. 325 
 326 
4.3.2. Sensitivity to CSP and CSP9 thresholds in DW retrievals 327 
 328 
One way to screen potentially cloud-contaminated high-AOD retrievals is to adjust thresholds on 329 
CSP and CSP9 parameters (Garay et al., 2020). This is furthermore justified by the fact that in 330 
the absence of RCCM, SDCM, and ASCM in NRTprot processing, fewer cloudy subregions are 331 
identified in a retrieval area and consequently CSP and CSP9 have by default lower values. 332 
This argument provides strong justification for investigating sensitivity to increased CSP and 333 
CSP9 thresholds in the NRTprot processing.  334 
 The SA product uses the thresholds of CSP=0.7 and CSP9=0.5 (Garay et al., 2020); 335 
when the values of CSP and CSP9 are below these thresholds in a retrieval region, the aerosol 336 
retrieval is removed from the data field recommended for users. Figure 4 and Table 2 show pdfs 337 
and AOD statistics for different thresholds of CSP and CSP9 parameters in the NRTprot product 338 
over dark water surfaces. There are only minor changes in the pdfs when the thresholds are 339 
increased, including in the high-AOD regime. The arithmetic and geometric mean values 340 
decrease slowly; even at the highest considered thresholds (0.85 for CSP and 0.75 for CSP9) 341 
these statistics are still above the SA values. At the same time the number of passing NRTprot 342 
retrievals decreases considerably faster, with almost 19% of retrievals lost when the highest 343 
thresholds are used. These results indicate that adjusting CSP and CSP9 thresholds is not an 344 
effective strategy to constraining NRTprot retrievals. 345 
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 346 
Figure 4 Prototype NRT AOD pdfs over dark water surfaces from spring 2020 obtained with different CSP and CSP9 cloud-347 
screening thresholds. Data statistics are provided in Table 2. 348 

N (×106) 30.7 30.1  
(-1.9%) 

28.4  
(-7.4%) 

27.7  
(-9.8%) 

25.9  
(-15.6%) 

24.9  
(-18.9%) 

SA 
27.6 

CSP ³0.7 ³0.73 ³0.76 ³0.79 ³0.82 ³0.85 

CSP9 ³0.5 ³0.55 ³0.6 ³0.65 ³0.7 ³0.75 

mean 0.1151 
± 0.1200 

0.1149 
± 0.1199 

0.1145 
± 0.1190 

0.1144 
± 0.1191 

0.1142  
± 0.1185 

0.1143  
± 0.1189 

0.1110  
± 0.1079 

geomean 0.0850 0.0847 0.0841 0.0839 0.0834 0.0832 0.0826 

Table 2 Additional statistics for the data presented in Fig. 4. Values for CSP and CSP9 indicate their corresponding thresholds for 349 
screening AOD retrievals. The arithmetic mean values are accompanied by their respective ± one standard deviations. 350 
 351 
4.3.3. Sensitivity to ARCI threshold in DW retrievals 352 

 353 
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V23 of the MISR aerosol product introduced a new parameter, called the aerosol retrieval 354 
confidence index (ARCI), that is used to screen high-AOD retrieval outliers caused by cloud 355 
contamination and other factors (Witek et al., 2018b). ARCI, defined only for DW retrievals, 356 
proved to be an efficient metric at filtering out potentially cloud-contaminated AOD retrievals. In 357 
standard processing, retrievals with ARCI < 0.15 are removed from the recommended user 358 
field, but are retained in the AUXILIARY group. The 0.15 threshold is well supported through 359 
statistical analysis (Witek et al., 2018b), although some erroneous results still pass this 360 
screening method, suggesting that increasing this threshold might be beneficial in NRT 361 
processing. 362 
 Figure 5 and Table 3 show pdfs and AOD statistics for different thresholds of ARCI in the 363 
NRTprot product. In this case the differences between ARCI thresholds are quite noticeable, 364 
especially in the high-AOD range of retrievals. Increasing the ARCI threshold to 0.2 leads to a 365 
loss of about 11% of NRTprot DW retrievals, but the resulting arithmetic and geometric mean 366 
values are lower than the SA values. At the same time, the absolute number of NRTprot DW 367 
retrievals (27.4 million) is still comparable to the number of SA DW retrievals (27.6 million). The 368 
pdfs and the statistics suggest that increasing the NRTprot ARCI threshold from 0.15 to 0.18 369 
leads to a product that has similar characteristics to SA. 370 
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 371 
Figure 5 Prototype NRT AOD pdfs from spring 2020 obtained with different ARCI thresholds. Data statistic are provided in Table 372 
3. 373 

N (×106) 30.7 30.0  
(-2.2%) 

29.4  
(-4.3%) 

28.7  
(-6.5%) 

28.0  
(-8.6%) 

27.4  
(-10.8%) 

SA 
27.6 

ARCI ³0.15 ³0.16 ³0.17 ³0.18 ³0.19 ³0.20 

mean 0.1151 
± 0.1200 

0.1137 
± 0.1157 

0.1124 
± 0.1122 

0.1112 
± 0.1094 

0.1100 
± 0.1070 

0.1090  
± 0.1051 

0.1110 
± 0.1079 

geomean 0.0850 0.0842 0.0835 0.0828 0.0821 0.0813 0.0826 

Table 3 Additional statistic for the data presented in Fig. 5. 374 
 375 
4.3.4. Recommendation for NRT processing 376 

 377 
The statistical analyses presented in the previous sections indicate that the lack of RCCM, 378 
SDCM, and ASCM in NRT processing has negative consequences on the product, especially by 379 
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allowing more, potentially cloud-contaminated, high-AOD DW retrievals to pass screening 380 
criteria. Adjusting build-in cloud screening thresholds on CSP and CSP9 brings only limited 381 
benefits at the cost of losing a considerable percentage of retrievals. However, the ARCI 382 
threshold adjustments result in much closer statistical correspondence between the NRTprot and 383 
standard AOD retrievals. For that reason, a revised ARCI threshold of 0.18 is implemented in 384 
NRT processing. Since the unscreened retrievals, as well as the ARCI parameter, are also 385 
provided in the AUXILIARY group of the product, users are encouraged to experiment with their 386 
own thresholds which might prove more beneficial in specific applications or geographic areas. 387 

 388 

4.4. Cloud/clear decision logic over snow/ice 389 

 390 
In section 4.1.1 the impact of upstream cloud classifiers in standard processing—namely the 391 
RCCM, SDCM, and ASCM—on the subregion’s cloud/clear designation was briefly described. 392 
The decision pathway depends on the underlying surface type, which can be either land, water, 393 
or snow/ice. Over land and water, the “cloud” outcome is only obtained when both RCCM and 394 
SDCM designate the subregion as cloudy. In the absence of RCCM and SDCM the default 395 
outcome is “clear”. Over snow/ice, however, the logic is more restrictive and favors the “cloudy” 396 
designation (Diner et al., 2008). Specifically, when the upstream cloud classifiers are not 397 
available, the subregion designation is set to “cloudy” by default. This has important implications 398 
on aerosol retrievals in areas where snow and ice occur seasonally.  399 
 The snow/ice surface mask, unlike land and water, is not static and changes every 400 
month. Furthermore, the snow/ice mask input to MISR aerosol processing has a 1.0-degree 401 
horizontal resolution, which is re-gridded to a 1.1 km resolution corresponding to the resolution 402 
of MISR subregion. In FIRSTLOOK processing, the snow/ice mask from the same month but in 403 
the previous year is used. The final SA processing is performed when the current year’s monthly 404 
snow/ice mask becomes available. The NRT processing, similarly to FIRSTLOOK, relies on the 405 
previous year’s snow/ice mask. Additionally, given the lack of upstream cloud classifiers, the 406 
snow/ice areas are designated as “cloudy” for aerosol retrieval purposes. This is well visualized 407 
in Figure 6 which shows the visible image and the corresponding maps of AOD and Aerosol 408 
Retrieval Screening Flag in the NRT processing. The dark blue color (index 5) denotes cloudy 409 
regions determined using the snow/ice cloud logic. The box-like nature of the excluded areas is 410 
associated with the coarse resolution of the snow/ice mask (1.0 degree). The previous year’s 411 
mask might also not be representative of the current conditions on the ground. It is worth noting 412 
that the FIRSTLOOK product often suffers from the same exclusion rules as NRT. This is 413 
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because of the strict clear/cloud logic over snow/ice surfaces which favors the cloudy outcome; 414 
in the case shown in Fig. 6 the AOD gaps in FIRSTLOOK (not shown) look very similar to the 415 
NRT product. 416 

 417 
Figure 6 Example of snow/ice masking in NRT AOD retrievals. (Left) Visible image of the retrieval area. (Center) Corresponding 418 
NRT AOD retrievals. (Right) NRT Aerosol Retrieval Screening Flag for the same area; the dark blue color denotes regions 419 
designated as cloudy.  420 

Several attempts have been made by the MISR science team to improve NRT aerosol 421 
retrievals in snow/ice covered areas. However, identifying and isolating snow-covered surfaces 422 
in the absence of upstream cloud classifiers proves very challenging. The quality of aerosol 423 
retrievals is often negatively affected in such conditions. For that reason, and in an attempt to 424 
eliminate as many NRT AOD outliers as possible, the current snow/ice logic is retained in the 425 
NRT aerosol processing. 426 
 427 
5. NRT and SA product comparisons 428 

 429 
5.1. Total AOD 430 

 431 

In this section, geographic distributions of MISR AOD retrievals from SA and NRT products are 432 
analyzed. The datasets encompass three months, March, April, and May of 2020. The NRT 433 
retrievals are screened with the revised ARCI threshold of 0.18 as suggested in section 4.3.4. 434 
The spatial overlap of the SA and NRT data is achieved using an intersect of the X_Dim and 435 
Y_Dim fields in the two data products.   436 
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Figure 7 shows the global distributions of geometric mean AOD from the (a) SA and (b) 437 
NRT products. The retrievals are gridded at 2-by-2-degree spatial resolution. Fig. 7c shows the 438 
AOD difference between the two products (NRT – SA).  439 

The largest AOD differences are seen in areas with climatologically high cloud cover, 440 
especially over the Southern Ocean, and over land in areas where potential snow cover could 441 
be an issue. Over the Southern Ocean the SA AODs are predominantly higher than the NRT 442 
AODs. This is due to the increased ARCI threshold in NRT (0.18 vs. 0.15 in SA) which brings in 443 
more aggressive screening of cloud-contaminated retrievals (Witek et al., 2018b). Over land, 444 
where the ARCI parameter is not available, the gridded NRT AODs tend to be higher than the 445 
SA AODs, which is in part related to the differences in snow/ice mask between the two 446 
products. Still, the AOD differences in Fig. 7c are rather small and reflect sampling issues rather 447 
than any systematic deficiencies in NRT processing. At the same time the lack of cloud 448 
classifiers in NRT does not adversely affect AOD distributions, which is consistent with the 449 
statistical analysis presented in section 4.2.3.  450 

 451 
Figure 7 (a) Global distribution of SA AOD geometric mean values across March, April, and May of 2020 on a 2-by-2-degree 452 
spatial resolution; (b) same as in (a) but for NRT AOD; and (c) AOD difference between SA and NRT. Grid points with less than 15 453 
retrievals are excluded. 454 

5.2. Retrieval yields 455 
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Figure 8 complements Fig. 7 by showing (a) the SA retrieval count distribution as well as (b) the 456 
retrieval count difference between the SA and NRT products. 457 

 458 
Figure 8 (a) Decimal logarithm of the retrieval count from the SA product in March, April, and May of 2020; (b) retrieval count 459 
difference between SA and NRT. Presented values are gridded at 2-by-2-degree spatial resolution and grid points with less than 460 
15 retrievals are excluded. 461 

The highest number of retrievals is found over the subtropical continents where the 462 
cloud cover is usually the smallest. Over the subtropical oceans in the Southern Hemisphere the 463 
NRT retrieval counts are typically higher than in SA, which results from the absence of upstream 464 
cloud classifiers in NRT processing and subsequently fewer subregions being excluded as 465 
cloudy. Note that this increase in retrieval count caused by the lack of cloud classifiers is not 466 
compensated by the increased ARCI threshold in NRT processing (ARCI³0.18), which always 467 

reduces the number of retrievals when compared to the default SA threshold (ARCI³0.15). The 468 
lack of hemispheric symmetry in this case is likely due to the seasonal variability (only months in 469 
northern spring are analyzed here). Over land the lack of upstream cloud classifiers also results 470 
in higher number of NRT retrievals in certain regions, but the surface type exclusion rules 471 
reverse this pattern, especially at higher latitudes. The conservative cloud logic over snow/ice 472 
surfaces in NRT processing often results in the lower number of NRT retrievals in the high 473 
latitudes of the northern hemisphere. 474 

A metric relevant to the potential use of the NRT product in data assimilation is the 475 
retrieval yield per model grid point. The retrieval yield can be measured as, for example, the 476 
number of 1º x 1º grid cells that have at least 15 valid satellite retrievals in them. From this 477 
perspective, the NRT product has a retrieval yield that is about 0.7% higher than the SA 478 
product, based on the three months of data analyzed in this study. 479 

 480 
5.3. Fractional AOD 481 
 482 
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MISR’s multi-angle retrieval approach enables characterization of aerosol optical and 483 
microphysical properties, such as fractional AODs associated with particle absorption, 484 
nonsphericity, and size (see e.g., Kahn and Gaitley, 2015). This attribute of the MISR SA 485 
product has been applied to many climate and air quality studies and inclusion of this capability 486 
in the NRT product would benefit data assimilation for numerical prediction of atmospheric 487 
aerosols (Benedetti et al., 2018). Consequently, this section provides preliminary statistical 488 
comparisons of the SA and NRT absorption AOD along with small-mode, large-mode, and 489 
nonspherical AOD. The results shown in Fig. 9 indicate that the probability density functions of 490 
these aerosol properties in the NRT product are statistically equivalent to the SA product. This 491 
assessment reaffirms the consistency of the NRT and SA products. Future studies will examine 492 
geographic and statistical differences and other particle properties in more detail. 493 

 494 
Figure 9 Normalized probability density functions for select MISR particle property retrievals in March, April, and May 2020. 495 
Solid lines represent SA retrievals and dashed represent NRT retrievals. (a) absorption AOD and small-mode AOD retrievals; (b) 496 
large-mode AOD and nonspherical AOD retrievals. The differences between the SA and NRT products are negligible. 497 
 498 
6. Summary 499 
  500 
The MISR V23 aerosol product, publicly available since mid-2018, is a high-resolution state-of-501 
the-art data product from NASA's Terra flagship mission. V23 AOD retrievals have remarkable 502 
accuracy compared against ground-based observations (Garay et al., 2020; Tao et al., 2020; 503 
Witek et al., 2019) and the product is more intuitive and easier to use than previous versions. 504 
The product is available within 2 days from satellite overpass as a FIRSTLOOK version, and 505 
within 3-to-6 months as a final science-quality SA version that employs the most up-to-date 506 
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ancillary datasets. In response to the needs of operational user communities, a new MISR L2 507 
NRT aerosol product has been developed with a 3-hour latency. 508 
 The new NRT algorithm does not depend on the upstream cloud classifiers that are 509 
generated in L1 and L2 cloud processing. The lack of cloud classifiers is in large part mitigated 510 
by the aerosol algorithm’s built-in cloud identification methods. Analysis of the prototype NRT 511 
product has shown an increased frequency of high-AOD retrievals, especially over oceans and 512 
in climatologically cloudy areas, likely due to an increase in cloud contamination. Adjusting the 513 
ARCI threshold in DW retrievals proves highly effective at eliminating some of these high-AOD 514 
outliers and improves the NRT product’s statistical agreement with the SA version. The new 515 
NRT aerosol product applies an ARCI threshold of 0.18 to mitigate cloud contamination in the 516 
absence of upstream cloud masks in NRT processing. The remaining differences in statistical 517 
and geographic distributions between the NRT and SA AODs, which includes information from 518 
the L2 cloud product, are small and largely confined to areas with high cloud cover.   519 
 The results of this study also serve as an example of the effects of screening threshold 520 
adjustments in MISR aerosol retrievals on AOD statistics and distributions. Researchers 521 
interested in particular applications and/or specific geographic regions are encouraged to 522 
experiment with their own threshold to achieve most optimal results. The NRT aerosol product 523 
contains both the recommended product contained within the main science directory 524 
“4.4_KM_PRODUCTS” that has the stricter ARCI threshold (ARCI³0.18), and the unscreened 525 
product without the additional cloud and ARCI filtering designed for more experienced users, 526 
located within the AUXILIARY group. 527 
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