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Abstract. Within the transpolar drifting expedition MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic

Climate), GNSS was used among other techniques to monitor variations in atmospheric water vapor. Based on 15 months

of continuously tracked GNSS data including GPS, GLONASS, and Galileo, epoch-wise coordinates and hourly zenith total

delays (ZTD) were determined using a kinematic precise point positioning (PPP) approach. The derived ZTD values agree

to 1.1±0.2 mm (RMS of the differences 10.2 mm) with the numerical weather data of ECMWF’s latest reanalysis, ERA5,5

computed for the derived ship’s locations. This level of agreement is also confirmed by comparing the on-board estimates

with ZTDs derived for terrestrial GNSS stations in Bremerhaven and Ny Ålesund and for the radio telescopes observing Very

Long Baseline Interferometry in Ny Ålesund. Preliminary estimates of integrated water vapor derived from frequently launched

radiosondes are used to assess the GNSS-derived integrated water vapor estimates. The overall difference of 0.08±0.04 kg m−2

(RMS of the differences 1.47 kg m−2) demonstrates a good agreement between GNSS and radiosonde data. Finally, the water10

vapor variations associated with two warm air intrusion events in April 2020 are assessed.

1 Introduction

Troposphere delays are generally regarded as one of the primary error sources in GNSS positioning and therefore get modeled

and estimated in the GNSS analysis process. By estimating these delays, it is possible to use GNSS for high-precise positioning

but also as a valuable tool to monitor the troposphere. Conventionally, the zenith total delay (ZTD) consists of two parts: the15

zenith hydrostatic delay (ZHD) and the zenith wet delay (ZWD). The zenith delays are connected to the individual satellite

observations and the associated slant delays by dedicated mapping functions and depend – apart from the air pressure-related

(hydrostatic) part – on the partial water vapor pressure and therefore on the water vapor in the lower atmosphere (Elgered

and Wickert, 2017). By estimating this wet part of the delay (i.e., the ZWD), GNSS observations allow to observe directly

the amount of atmospheric water wapor which is an active and most abundant component of the climate system (Alshawaf20

et al., 2018; Rinke et al., 2019). Atmospheric water vapor plays an essential role in today’s climate variations, accounts for
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60–70% of the greenhouse effect (Kiehl and Trenberth, 1997; Guerova et al., 2016), and is an important input parameter for

numerical weather models (NWM). In the generally dry Arctic, atmospheric moisture intrusions from lower latitudes affect

the snow and sea ice cover by increased longwave radiation (Woods and Caballero, 2016). The estimation of ZTDs and the

subsequent conversion into precipitable water vapor (PWV) or integrated water vapor (IWV) is done operationally for many25

hundred land-based GNSS-stations and is confirmed to agree with conventional meteorological observations (e.g., Gendt et al.,

2004; Shangguan et al., 2015; Steinke et al., 2015). According to Ning et al. (2016) the accuracy of GNSS-based IWV is at

a level of 1-2 kg m−2. However, with a few exceptions continuous and long-term GNSS-based water vapor time series over

oceans are not available but are highly important for climate investigations. In the past, several authors investigated shipborne

PWV retrieval and reported an agreement at the 2 mm level compared to radiosondes (Fujita et al., 2008) and at the 3 mm30

level compared to radiometer data (Rocken et al., 2005). Boniface et al. (2012) investigated the ability to determine mesoscale

moisture fields from shipborne GNSS data over four months. Wang et al. (2019) studied a 20-day ship cruise in the Fram Strait

and reported an agreement for the PWV of 1.1 mm compared to weather models and radiosondes. Based on the four-months

ship campaign, Shoji et al. (2017) reported the practical potential of kinematic precise point positioning (PPP) for water va-

por monitoring over oceans worldwide with particular challenges during high-humidity conditions. Based on the large-scale35

EUREC4A campaign, Bosser et al. (2020) presented IWV solutions derived from GNSS receivers on-board the research ves-

sels RV Atalante, RV Maria S. Merian, and RV Meteor. Overall, they reported a good agreement with biases of ±2 kg m−2

with respect to numerical weather models and terrestrial GNSS stations. For this study, we derived a 15 months zenith total

delay and water vapor time series between summer 2019 and autumn 2020 observed by a GNSS receiver installed on-board the

German research vessel RV Polarstern (Alfred Wegener Institute, 2017) as part of the Multidisciplinary drifting Observatory40

for the Study of Arctic Climate (MOSAiC) expedition.

The main objective of the MOSAiC expedition was to investigate the complex climate processes of the Central Arctic for

improving global climate models. RV Polarstern departed on September 20, 2019 in Tromsø, Norway and started the transpo-

lar drift on October 4 at 85◦ N, 137◦ E. Interrupted for around four weeks due to a supply trip to Svalbard in May and June45

2020, RV Polarstern ended the drift on August 9, 2020 at 79◦ N, 4◦ E. For the second part of the expedition, RV Polarstern

returned to the Central Arctic in mid of August 2020 to observe the sea ice in its onset and early freezing phase. RV Polarstern

finally returned to Bremerhaven on Oct. 12, 2020. The GNSS receiver was a continuously operational instrument within the

ship-based atmosphere monitoring system. It was provided by the GFZ German Research Centre for Geosciences with the

main motivation to derive water vapor variations continuously from ground and to allow a comparison for the radiosonde data.50

Following this introduction, the GNSS installation on RV Polarstern and data availability is discussed in Sect. 2. The pro-

cessing strategy applied in this study is summarized in Sect. 3 while Sect. 4 discusses the derived kinematic coordinates. In

Sect. 5, the ZTD solution is assessed with respect to ERA5-based ZTDs and ZTDs derived from land-based GNSS and VLBI

(Very Long Baseline Interferometry). Subsequently derived IWV values are discussed in Sect. 6 in comparison to preliminary55

radiosonde data. The paper closes with a summary and conclusions in Sect. 7.
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Figure 1. RV Polarstern’s observation deck in May 2020; the GFZ GNSS antenna is mounted at portside; courtesy Torsten Sachs (GFZ).
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Figure 2. Number of L1 observations (phase of first frequency) per day and satellite; observation types are L1X for Galileo (rows 1-25),

L1W for GPS (rows 26-57), L1P for GLONASS (rows 58-82) for GNSS receiver at RV Polarstern.
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2 GNSS installation and data availablility

The GNSS equipment was installed on July 4, 2019 shortly after the end of RV Polarstern’s previous expedition PS120 and

at the beginning of a nearly six-week shipyard period. Consequently, GNSS data have been recorded during the stay at Bre-

merhaven, the expedition PS121 (Fram Strait), and the entire MOSAiC expedition (PS122). For logistical reasons, the receiver60

was switched off on October 3, 2020 at a position very close to Ny Ålesund, Svalbard. Therefore, we have 15 months of high-

accuracy GNSS data which is very valuable for climate relevant studies.

Figure 1 shows GFZ’s GNSS equipment installed at the RV Polarstern’s observation deck. A JAV_GRANT-G3T antenna

without a choke-ring was used. To support reflectometry, the antenna was mounted on a cube-structure together with a side-65

looking antenna (Semmling et al., 2021). The receiver equipment (geodetic JAVAD_TR_G3TH receiver) was stored in a cabinet

mounted at the observation deck’s railings. As visible in Fig. 1, the antenna location is not perfect as being subject to shadowing

and strong multipath effects caused by the nearby radomes and the crow’s nest (i.e., the lookout point at the upper part of the

mast). Due to limited data bandwidth during the cruise data transfer in real-time was not possible. Data post-processing started

after the cruise at GFZ. The raw data were converted using the JPS2RIN converter software (version v.2.0.191). The derived70

RINEX files were spliced, sampled, and checked using gfzrnx (Nischan, 2016).

The considerable large number of received observations, represented in Fig. 2 in terms of L1 phase observations, is first of

all promising. With a sampling rate of 30 s, around 1000 L1 phase observations were tracked per satellite and day over the

complete time span of 15 months. Visible constellation specific patterns are expected as they are caused by the satellite orbit75

configurations, i.e., inclination, repeat cycle, and revolution period.

3 Processing strategy

The Bernese GNSS Software 5.2 (Dach et al., 2015) was used for the data processing, which was performed as kinematic

PPP (Zumberge et al., 1997) with epoch-wise estimated coordinates and hourly estimated zenith total delays among other

parameters. The kinematic approach is needed to account for the traveling periods, height variations due to tides and waves,80

and the drift phases which showed an average speed of 12 km per day (corresponding to 4 m within the observation interval

of 30 s). For validation purposes, the shipyard period in Bremerhaven (i.e., the dry dock period) was processed consistently in

kinematic mode. The resulting kinematic coordinates are studied in Sect. 4. Overall, 25 ZTD values are estimated per day to-

gether with 8640 kinematic coordinates, 2880 clock corrections, around 80 differential code biases, and around 280 ambiguities.

The piecewise-linear ZTD estimates are constrained relatively with 1 mm. Table 1 provides a summary of the modeling and85

parametrization strategy. According to the capabilities of the processing software, ambiguity fixing was not applied. A low

elevation cutoff angle of 3◦ was chosen to de-correlate ZTDs and coordinates. Larger cutoff angles were not tested related to

the receiver’s high latitude and the free horizon on the portside. An elevation-dependent observation weighting using cos2(z)

was applied with z as zenith angle.
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Table 1. Summary of estimation and processing strategy.

modeling and a-priori information

observations ionosphere free-linear combination formed by undifferenced GPS, GLONASS, and Galileo observations, sampled with 30s,

elevation cutoff 3◦, elevation-dependent weighting using cos2(z)

a priori products CODE MGEX orbits, clock corrections, Earth rotation parameters (Prange et al., 2020)

tropospheric correction hydrostatic delay computed based on VMF, mapped with VMF (Böhm et al., 2006), mean positions were used as input

ionospheric correction 1st order effect considered with ionosphere-free linear combination

GNSS phase center igs14_2129.atx (Rebischung and Schmid, 2016)

estimated parameters

kinematic coordinates pre-eliminated (i.e., removing the estimate from the normal equation system while keeping all information) every epoch and

back-substituted

troposphere 25 zenith delays per day; constrained relatively with 1 mm; mapped with VMF

receiver clock pre-eliminated every epoch

GNSS ambiguities estimated, without ambiguity fixing

differencial code biases per satellite

90

Some general processing indicators are highlighted in Fig. 3. On average, 40’000 to 60’000 ionosphere-free observations

remained after pre-cleaning for the daily processing, which is equivalent to 13–20 observations per epoch. As shown in the

middle panel of Fig. 3, singular epochs, i.e., epochs with fewer than four observations, occurred for a number of days, mainly

between December 2019 and March 2020. Due to the high latitude of the ship’s position, satellite observations with very low

elevations dominate during this period. Further signal delays are expected due to ice accumulation on the antenna and increased95

multipath effects caused by the surrounding instruments. The lower panel of Fig. 3 shows the MP1 multipath values derived

from the RINEX files using TEQC (Estey and Meertens, 1999). Due to the antenna surrounding, large multipath effects of

around 1.5 m occurred. According to Bosser et al. (2020) this value of 1.5 m is large compared to the multipath observed at RV

Atalante und RV Meteor (in both cases, the GNSS antenna was installed at the crow’s nest), but smaller than the multipath de-

rived for RV Maria S. Merian, where the GNSS antenna was placed also on the observation deck. Between January and March100

2020, the multipath increased by around 6 % compared to the previous three months. As visible in Fig. 3, a larger number of

singular epochs occurred also during the port departures on August 10, 2019 (Bremerhaven, 381 epochs) and September 20,

2019 (Tromsø, 495 epochs), interestingly this is not the case for the arrival in Tromsø. During the “refueling & personnel rota-

tion 4” (August 10-12, 2020) where the Akademik Tryoshnikov was moored alongside RV Polarstern, the multipath parameter

raised to values above 2 m, and the number of processed observations dropped below 30’000. The multipath strongly increased105

caused by additional reflections, especially as the Akademik Tryoshnikov moored at RV Polarstern’s port side. It can be noted,

that the MP1 values increased slightly during May 2020 which might be caused by additional equipment installed or stored at

the observation deck while RV Polarstern left the drift position. The number of singular epochs increased to 182, 216, and 129
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Figure 3. Number of phase observations per day used in the final adjustment (upper panel), number of singular epochs per day (i.e., epochs

with fewer than four observations, based on 30-sec sampling, middle panel), and daily TEQC-based multipath MP1 values (lower panel);

periods of harbor stays and re-supply are grey-shaded.

epochs for the three days. Overall, these pre-processing results demonstrate and ensure precise and reliable results.

110

The processing strategy described above was defined with the focus on the post-processing approach required by the limited

data bandwidth. However, a near-realtime processing which would allow a GNSS contribution to numerical weather prediction

would be of course advantageous if an associated data link would be available. The processing strategy described in Gendt

et al. (2004) could be applied in this case by estimating additionally kinematic coordinates. Consequently, ultra-rapid orbit

products would be required as well as other a priori ZHD models and mapping functions. The quality of the derived ZTDs are115

expected to be almost similar to the results shown in this study.

4 Assessment of kinematic coordinates

In general, kinematic coordinates have to be estimated for a shipborne GNSS receiver to account for the ship’s motion. Com-

pared to static coordinates, kinematic coordinates cannot be assessed easily due to missing repetitions of positions (unlike

the repeatability check for permanent stations) and the usual absence of any ground-truth information as for example, known120

marker coordinates. Therefore, the assessment of kinematic coordinates is possible only during specific periods.

One specific period was during the shipyard stay in Bremerhaven, where RV Polarstern spent nearly four weeks in the dry

dock and the antenna position could be assumed to be static and thus precisely assessed. Fig. 4 shows the coordinate variations
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Figure 4. Histogram of coordinate variations in North, East, and Up direction for the dry dock period of RV Polarstern (July 7 to August 3,

2019), a mean coordinate was subtracted; please note the different scales for horizontal and vertical components.

between July 7 and August 3, 2019 for North, East, and Up direction. For the horizontal components, 79 % and 83 % of the125

coordinates are within ±4 cm. A larger variation is expected for the height with 78 % of the coordinates being within ±8 cm.

The standard deviation of the derived horizontal coordinates is 4.8 and 5.7 cm for North and East, respectively. However, it has

to be noted that during the shipyard stay multipath increased while the number of observations decreased significantly (see Fig.

3). This is most probably related to additional obstacles and reflections due to construction work. A mean ellipsoidal height

of 61.49±0.01 m was determined. Using a geoid height of 39.58 m at Bremerhaven this corresponds to an antenna height of130

21.91 m during the dry dock phases.

The second period for a coordinate validation is the harbor stay in Tromsø, Norway. Without a ship motion the ocean tides can

be used as ground truth, thus, the correlation between observed height and tidal record provides a validation opportunity. Fig.

5 shows the GNSS-based height variations for September 12 to 20, 2019. A nearly perfect agreement compared to a close-by135

tidal record1 is visible with a correlation coefficient of 0.97 and a standard deviation of 20 cm. An empirically estimated height

difference of 22.2 m is subtracted from the GNSS positions.

Overall, kinematic coordinates for nearly 1.3 Mio. epochs were estimated from kinematic PPP. Whereas 0.5 % of all epochs

are singular (i.e., epochs with less than four satellites) and another 0.9 % are linearly interpolated but not estimated (see also140

Fig. 3) ensuring the high-quality of the data.

5 Assessment of zenith total delay

The derived ZTDs are analyzed and the results are presented in this section. The assessment and validation process includes

the comparison to numerical weather model data (Sect. 5.1), a comparison against ZTD derived for selected onshore GNSS

1Tide gauge data are taken from http://vannstand.no/en/sehavniva/Lokasjonsside/?cityid=9000020&city=Troms%C3%B8, assessed November 2020
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Figure 5. Estimated height coordinates during the stay at Tromsø (black); the Tromsø tide gauge record is plotted for comparison (grey), an

empirically estimated height difference of 22.2 m was subtracted from the GNSS positions; vertical red lines indicate RV Polarstern’s arrival

and departure times in Tromsø.

Table 2. List of restricted periods for which atmospheric measurements were not permitted.

Year Entry Exit Remark

A 2019 Sep 12 00:00 Sep 26 12:40 economic exclusive zones Norway and Russia

B 2020 Jun 03 20:36 Jun 08 20:00 territorial waters Svalbard

C 2020 Oct 02 04:00 Oct 02 20:00 territorial waters Svalbard

D 2020 Oct 03 03:15 Oct 04 17:00 territorial waters Svalbard

stations (Sect. 5.2), and to ZTD derived by VLBI at the radio telescopes in Ny Ålesund (Sect. 5.3). During the entire 457 days,145

10973 unique ZTD values are estimated, i.e., 24 per day, while the 25th is computed for the first epoch of the following

day. In accordance to the MOSAiC data guidelines and research agreements, water vapor results are restricted during (1)

the harbor stay in Tromsø, (2) the subsequent passage of the economic exclusive zone of Norway and Russia, and (3) all

periods within the territorial waters (12 nautical miles) around Svalbard. Table 2 summarizes the affected periods. Following

these restrictions, the number of investigated ZTDs reduces to 10’503. Due to singular epochs 54 ZTDs and due to intervals150

with linearly interpolated coordinates another 91 ZTDs (corresponding to 0.5 % and 0.8 % of all ZTDs) are excluded from

the following statistics. In addition, ZTDs estimated for intervals with fewer than 800 observations are excluded (192 epochs,

corresponding to 1.8 %). Overall, 10’166 GNSS-based ZTDs (96.8 %) are considered in the following comparisons. Related to

the applied constraint, the formal errors of the remaining ZTDs are relatively small with 99.6 % being below 4 mm.

5.1 ZTD time series and comparison to ERA5155

Figure 6 shows the ship track of RV Polarstern between August 2019 and October 2020. For clarity the figure is split into two

panels showing the time August 2019 to June 5, 2020 (left) and June 6 to October 3, 2020. The left panel shows the ZTD

variations during the Fram strait expedition and the transpolar drift until the “resupply & personnel rotation 3” in June 2020.

Very low ZTD values are observed especially during the polar night which lasted from mid October till mid of March. The
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Figure 6. Ship track with hourly ZTD values (color-coded according to the ZTD); the left panel shows the ZTD series for August 2019 to

June 05, 2020, the right panel shows the ZTDs for June 06 to October 03, 2019; selected time stamps are added; the red asterisk marks Ny

Ålesund.

right panel shows the ZTD during the second part of MOSAiC with another drift phase, reaching the North Pole, and crossing160

the Central Arctic in autumn 2020. Figure 7 presents the hourly ZTD time series derived for the entire period, including the

shipyard stay at Bremerhaven, the Fram Strait expedition PS121, and the MOSAiC expedition. According to the ZTD values,

three periods could be identified: (1) relatively wet phase (ZTD > 2500 mm over the entire day) during July to August of both

years (i.e., 2019 in Bremerhaven and 2020 in the Central Arctic), (2) periods with ZTD entirely below 2400 mm during the

transpolar drift until May 2020, and (3) periods with ZTD between 2300 and 2500 mm in the transition phases. For compari-165

son, 3-hourly ZTD values derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis 5

(ERA5) (Hersbach et al., 2020) are added to Fig. 7. The method described in Zus et al. (2012) is utilized to calculate the ZTDs

in the weather model analysis. As GNSS-based ZTD are not assimilated in ERA5 the associated ZTDs are an independent

data source. We used the regular horizontal grid of ERA5 (0.25 x 0.25◦) but limited the temporal resolution to three hours for

computational reasons. Consequently, differences between ERA5 and GNSS were computed consistently for the correspond-170

ing epochs only. Overall, a difference of 1.1±0.2 mm with an RMS of 10.2 mm could be found between the ship-based GNSS

and ERA5 ZTDs, showing that GNSS ZTDs are slightly larger than predicted by ERA5. For the much shorter Fram Strait

expedition of RV Lance in August and September 2016, Wang et al. (2019) reported a better agreement of overall 0.8 mm and

an RMS of 6.5 mm. For the MOSAiC dataset, we applied an outlier detection based on a 3.0-σ criteria (i.e., three times the

standard deviation). Overall, 8.4 % of the differences are excluded from determining the mean difference.175

9



2200

2300

2400

2500

2600

2700

Z
T

D
 [

m
m

]

J A S O N D J F M A M J J A S O

2019 2020

BHV PS121 A Leg 1 Leg 2 Leg 3 Leg 4 Leg 5B C

Figure 7. ZTD time series: hourly ZTD values (color-coded according to the ZTD, same scale as in Fig. 6) and 3-hourly ERA5-based ZTDs

(red line); the cruise parts are indicated by labels, restricted time periods are grey-shaded; horizontal black lines indicate periods for which

comparisons with terrestrial GNSS stations were possible.

2200

2300

2400

2500

2600

2700

E
R

A
5
 [
m

m
]

2200 2300 2400 2500 2600 2700

GNSS [mm]

Figure 8. Comparison of ZTD values from shipborne GNSS and ERA5.

Fig. 8 shows the direct comparison between the GNSS and the ERA5-based ZTD values. The correlation coefficient between

both time series reaches 0.97, which agrees very well with the 97.2 % correlation presented in Wang et al. (2019). Interestingly,

epochs where GNSS-based ZTDs are larger than the ERA5-based value occurred predominantly during summer months in

2019 and 2020.180
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5.2 Comparison to onshore GNSS

The assessment of ZTDs determined for the GNSS receiver on-board RV Polarstern with respect to ZTDs derived for onshore

GNSS receivers allows a second comparison option. A comparison between ship-based ZTD and land-based GNSS products

is in general possible for (1) harbor stays with a close-by GNSS station and (2) periods where the ship’s distance to a terrestrial

reference station does not exceed a few hundred kilometers under stable weather conditions. The first comparison approach185

can be applied for the shipyard stay in Bremerhaven (six weeks). Unfortunately, the harbor stay at Tromsø (one week) could

not be used for a comparison due to the data restrictions. The second approach is challenging given the remote character of

the MOSAiC expedition. However, during PS121, the re-supply trip at Svalbard and RV Polarstern’s return trip, the distance

between the GNSS tracking stations at Ny Ålesund, Svalbard and RV Polarstern was shorter than 200 km for several days.

The distance limit of 200 km was chosen following the conclusions given in Wang et al. (2019). The related ZTDs are thus190

compared to the onshore GNSS at Ny Ålesund. Reference ZTDs have been estimated within operational GNSS processing sys-

tem for meteorological applications, which is based on the GFZ Earth Parameter and Orbit determination System (EPOS.P8)

software (Gendt et al., 2004; Wickert et al., 2020).

For the shipyard stay in Bremerhaven, a reasonable mean difference of 1.5±0.4 mm and an RMS of 9.9 mm was estimated195

between ZTDs for RV Polarstern and the German SAPOS station 0994. This station is located approx. 2.6 km from RV Po-

larstern and around 20 m above the ground like the GNSS antenna height at Polarstern. Therefore, no height correction was

applied. Figure 9 shows the time series of derived ZTDs during the harbor and shipyard stay in Bremerhaven, including corre-

sponding ZTD estimates for the SAPOS station 0994, and the ERA5-based ZTD time series as additional reference. Overall, a

good agreement can be noted between the three ZTD solutions while the sparser sampling of the ERA5 ZTD solution is visible200

(i. e., 3h sampling for ERA5 compared to 1h for GNSS). During this time an RMS of 12.0 mm and an average of 0.4±0.7 mm

is observed for the differences to the ERA5-based ZTDs. More details are provided in Tab. 3.
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Table 3. Summary of differences with respect to GNSS and ERA5 (always computed as difference RV Polarstern − reference); ∆h horizontal

distance, ∆v vertical difference; number of used / all samples is given; TTW = territorial waters; units: mm.

Location Reference Period Offset RMS Samples Remarks

Bremerhaven 0994 2019 Jul 4 - Aug 10 1.5±0.4 9.9 708 / 807 ∆v not corrected

∆h = 2.6 km ERA5 2019 Jul 4 - Aug 10 0.4±0.7 12.0 277 / 287

Ny Ålesund NYA2 2019 Aug 13 - Sep 11 6.7±0.7 14.2 420 / 461 ∆v = 27 m corrected

up to ∆h = 200 km ERA5 2019 Aug 13 - Sep 11 6.9±0.9 13.5 216 / 232

NYA2 2020 Jun 2-3 & Jun 9 5.0±1.7 9.3 28 / 28 ∆v = 27 m corrected, outside TTW

ERA5 2020 Jun 2-3 & Jun 9 2.2±3.0 11.8 15 / 15

NYA2 2020 Oct 2 - 3 10.1±2.6 9.3 13 / 13 ∆v = 27 m corrected, outside TTW

ERA5 2020 Oct 2 - 3 -1.5±2.2 4.9 5 / 5

For Tromsø only an indirect comparison between the ERA5-based ZTD time series and the permanent GNSS station TRO1

is possible. TRO1 is a GNSS station provided via the International GNSS Service (IGS, Johnston et al., 2017) and is located205

approx. 3 km from RV Polarstern’s mooring and around 107 m above sea level. Consequently, these ZTDs were corrected for a

height differences of 85 m using a rough delay correction of 0.3 mm m−1 for the hydrostatic part. A difference of 1.0±0.8 mm

and an RMS of 6.1 mm reveals a good agreement for this comparison between GNSS and ERA5.

The comparison between the ZTDs derived for RV Polarstern and the GNSS station in Ny Ålesund, Svalbard is more chal-210

lenging due to the larger distances, the ship’s speed, and partly the performed ship operations. In addition, also the orographic

setting might be a source for differences between the RV Polarstern measurements on open water and the measurements at

the edge of a fjord surrounded by mountains in Ny Ålesund. The reference station (NYA2) is a GNSS station operated by

GFZ (Ramatschi et al., 2019) and observations and metadata are available within the IGS. Figure 10 shows Polarstern’s ZTD

series and the ERA5-based ZTD values. In addition, the geometrical distance between RV Polarstern and NYA2 is indicated215

by the red line. Whereas the observed good agreement between the on-board estimates and ERA5 is expected, the differences

regarding NYA2 are partly larger. Especially during the PS121 expedition (Fram Strait), time shifts between the ZTD series

can be observed for some periods, e.g., for August, 26–28. For these particular dates the PS121 expedition report mentions

a storm field close to Iceland affecting RV Polarstern with speeds of about 8 Bft (Metfies, 2020). During the re-supply stay

in June 2020, ZTDs are not permitted. However, less accurate ZTDs are expected for this period considering the drop in the220

processed phase observations (see Fig. 3) potentially caused by the logistic activities. For the arrival and departure periods the

agreement is within the expected range. For the third interval, again, a good agreement is visible for October 2 and 3, 2020 but

larger differences for the approaching period on October 1, 2020. While RV Polarstern approached Ny Ålesund closely with

distances to NYA2 below 2 km, the corresponding values are, however, restricted by the research agreement and cannot be used

for the comparison. The statistics are summarized in Tab. 3. Overall, offsets and RMS are below 10 and 14 mm, respectively.225

12



2250

2300

2350

2400

2450

2500

Z
T

D
 [

m
m

]

13 17 21 25 29 01 05 09

August September

05 09

June

01

0

200

400

600

800

1000

d
is

ta
n

c
e

 [
k
m

]

Figure 10. Hourly ZTD values (black) compared to ZTDs derived for the IGS station NYA2 (Ny Ålesund, Svalbard, blue) during August /

September 2019 (left), June 2020 (middle), and October 2020 (right) and to ZTDs derived from ERA5 (green) and VLBI stations NYALES20

and NYALE13S (orange); the distance between RV Polarstern and NYA2 is represented in red.

Comparing to Wang et al. (2019) and Bosser et al. (2020), larger variations are derived for RV Polarstern most probably caused

by the sub-optimal antenna position.

5.3 Comparison to VLBI

The geodetic fundamental site in Ny Ålesund also allows a comparison between the ZTDs determined for the GNSS antenna

on-board RV Polarstern and the ZTD observed by VLBI at the radio telescopes NYALES20 and NYALE13S2 for a completely230

external validation. Very Long Baseline Interferometry is an interferometric technique measuring the time delay between the

reception of signals transmitted by extragalactic radio sources at two or more antennas (Schuh and Behrend, 2012). Currently,

VLBI sessions with global networks are not performed continuously but scheduled in twice weekly 24h sessions and provided

within the International VLBI Service for Geodesy and Astrometry (IVS, Nothnagel et al., 2017). The high accuracy of VLBI-

based troposphere estimates has been reported for example by Heinkelmann et al. (2007) and Balidakis et al. (2018). In the235

time span August 11 till September 12, 2019 in total nine 24h sessions with NYALES20, during May 20 and June 15, 2020

seven sessions with NYALES20 or NYALE13S, and during September 20 and October 4, 2020 another five sessions with

NYALES20 were analyzed using PORT (Potsdam Open Source Radio Interferometry Tool). PORT is GFZ’s VLBI analysis

software and is based on VieVS (Vienna VLBI Software, Böhm et al., 2012, Nilsson et al., 2015). The derived VLBI-based

ZTDs are shown in orange in Fig. 10. First of all, it can be noted that the ZTDs of GNSS (NYA2) and VLBI agree well, which240

is expected due to the short horizontal distances between the stations3 and the highly accurate space techniques GNSS and

VLBI. Overall, a good agreement is visible also between the VLBI and the RV Polarstern ZTDs. However, a few VLBI-based

2active since Jan 8, 2020
3273 m for NYA2–NYALES20 and and 1539 m for NYA2–NYALE13S
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Table 4. Summary of differences with respect to VLBI (always computed as difference RV Polarstern − reference); number of used / all

samples is given; units: mm.

Location Reference Period Offset RMS Samples Remarks

Ny Ålesund NYALES20 2019 Aug 26 - Sep 11 9.3±2.2 16.5 54 / 66 ∆v = 33 m corrected

up to ∆h = 200 km NYALE13S 2020 Jun 2 - 9 3.0±2.5 12.7 25 / 25 ∆v = −1 m corrected, outside TTW

NYALES20 2020 Oct 2 - 3 13.6±4.6 12.2 7 / 7 ∆v = 33 m corrected, outside TTW

ZTDs differ significantly in August 2019, while also the GNSS ZTDs showed some larger differences for these days as reported

above. For June and October 2020, there were VLBI sessions each while RV Polarstern was close to Svalbard. However, during

these periods RV Polarstern was mainly within the territorial waters around Svalbard in which ZTDs are restricted. In June,245

one session with NYALES20 is within the restricted period, while a comparison is allowed for a session with NYALE13S. For

this session an offset of 3.0 mm and an RMS of 12.7 mm is determined over 25 ZTD differences. For October a comparison is

possible as well, however, only for a short period of seven hours. Similar to the comparison against onshore GNSS, offsets and

RMS values are below 16 mm. The statistical values are summarized in Tab. 4.

6 Assessment of integrated water vapor250

This section discusses integrated water vapor values derived from the ZTD on-board RV Polarstern. The conversion between

ZTD and IWV was performed applying Eq. 2 described in Bevis et al. (1994). The zenith wet delay was computed by subtract-

ing the hydrostatic delay provided by ERA5 from the estimated ZTD values. The weighted mean temperature of the atmosphere

Tm was calculated from the ERA5 data using Eq. A18 given in Davis et al. (1985). To derive hourly IWV the 3-hourly ERA5

data are linearly interpolated.255

From board RV Polarstern, Vaisala RS41 radiosondes were launched every six hours during the entire MOSAiC expedi-

tion, and moreover every three hours for periods of specific interest. Based on the relative humidity data in the preliminary

radiosonde dataset (Maturilli et al., 2021), vertically resolved specific humidity profiles were calculated applying Hyland and

Wexler (1983) and integrated over the atmospheric column to retrieve IWV. Measurements for which the radiosondes did not260

reach a height of at least 10’000 m are excluded in the following (0.9 %).

Figure 11 shows the comparison between the GNSS-based IWV and the radiosonde observations. Overall an agreement of

0.08±0.04 kg m−2 with an RMS of 1.47 kg m−2 can be found together with a correlation coefficient of 0.97 between both

datasets. In this comparison, 2.6 % of the overall 1495 difference, i.e., those exceeding 5 kg m−2, are excluded. Comparable265

values are reported by Shoji et al. (2017) for a comparison between radiosonde-based PWV and GNSS in the Northern Pacific.

Bosser et al. (2020) reported slightly larger IWV biases with respect to ERA5 but similar variations with 2.2 and 2.7 kg m−2
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Figure 11. Comparison of IWV derived from GNSS and radiosondes; differences >5 kg m−2 are shown in gray (2.6 % of in total 1495

differences).

for RV Atalante and RV Meteor, respectively. The majority of the absolute IWV values is below 5 kg m−2 as visible in Fig.

11. This result could be expected as driven by the low air temperatures, the amount of atmospheric water vapor was very low

during large parts of the transpolar drift. Consequently, IWV values observed by GNSS and radiosondes are below 5 kg m−2270

from mid of October 2019 till end of April 2020 with only a few exceptions. One example for such rapid moisture increase oc-

curred in April 2020 associated with two warm air intrusion events on April 16 and 19. According to Magnusson et al. (2020),

the warm air was pushed to the northeast in front of a low pressure trough over Scandinavia in the first event. In contrast, the

second event was driven by warm air transported northward on the western side of a high pressure ridge that developed over

Scandinavia. Both events on April 16 and 19 are well visible in the IWV time series shown in Fig. 12. For both events, the air275

temperature increased rapidly from around -20◦C to nearly 0◦C. Simultaneously the IWV observed by GNSS increased from

below 5 kg m−2 to 8 and 13 kg m−2 for the two events. For both events, a nearly perfect agreement between GNSS-derived and

radiosonde-based IWVs is visible.

7 Conclusions

The MOSAiC expedition offered a unique opportunity to study polar environmental conditions during one full annual cycle.280

Besides other techniques, an on-board GNSS receiver allowed to monitor the variations of atmospheric water vapor above RV

Polarstern. Based on 15 months of continuously tracked GNSS data, a kinematic PPP approach including GPS, GLONASS,

and Galileo was used to determine epoch-wise coordinates and hourly zenith total delays. By assessing the GNSS data itself,

a reliable number of observations was found, however, disturbed by multipath effects due to sub-optimal antenna location.
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Figure 12. GNSS-based IWV: hourly values (grey) and daily averaged (black); Radiosonde-based IWV (orange stars); air temperature from

ERA5 (red)

.

With a few exceptions, the kinematic coordinates are well determined over the entire time span. For the static shipyard stay the285

variations of the kinematic coordinates were within 5 cm for the horizontal and within 10 cm for the vertical component. The

comparison of the GNSS-based ZTDs against ZTD derived from the ERA5 model shows a good agreement with an offset of

1.1±0.2 mm and an RMS of 10.2 mm over the entire period and a strong correlation of 0.97. Due to the remote character of the

MOSAiC expedition the comparison to terrestrial GNSS receivers was more challenging. For the harbor stay in Bremerhaven

we derived an offset of 1.5±0.4 mm and a variation of around one centimeter. Comparing ZTDs over up to 200 km against290

the IGS station NYA2, larger biases of up to 10 mm and standard deviations up to 14 mm were noted and confirmed by

comparing to ZTDs measured at the VLBI radio telescopes in Ny Ålesund. Thanks to frequent radiosonde measurements

during the MOSAiC expedition a detailed comparison between GNSS-based IWV and radiosonde measurements was possible.

The overall difference of 0.08±0.04 kg m−2 and the RMS of 1.47 kg m−2 show a good agreement of both techniques which is

also visible during two warm air intrusions in April 2020. Overall, GNSS receivers on-board ships allow a cost-efficient and295

continuously monitoring of atmospheric water vapor over the oceans.

Data availability. GNSS RINEX data and derived ZTD and IWV values are available at Männel et al. (2021) and Männel and Zus (2021),

respectively.
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