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Abstract. A new compact static wind imaging interferometer, called the Birefringent Doppler Wind imaging INterferometer 

(BIDWIN), has been developed for the purpose of observing upper atmospheric winds using suitably isolated airglow emis-

sions. The instrument combines a field widened birefringent delay plate placed between two crossed Wollaston prisms with 

an imaging system, waveplates and polarizers to produce four fixed 90-degree phase stepped images of the interference fringes 15 

conjugate to the scene of interest. A four-point algorithm is used to extract line of sight Doppler wind measurements across 

the image of the scene. The arrangement provides a similar throughput to that of a field widened Michelson interferometer; 

however, the interferometric component of BIDWIN is smaller, simpler to assemble and less complicated to operate. Conse-

quently, the instrument provides a compact, lightweight, and robust alternative that can be constructed and operated with lower 

cost. In this paper, the instrument concept is presented and the design and optimization of a prototype version of the instrument 20 

is discussed. Characterization of the lab prototype is presented, and the performance of the instrument is examined by applying 

the instrument to measure a low velocity two-dimensional Doppler wind field with a high precision (5 m/s) in the lab. 

1 Introduction 

Upper atmospheric motions in the mesosphere and lower thermosphere (MLT) region are dominated by large scale tides, 

planetary waves, as well as large-scale and small-scale gravity waves. Indeed, measurements from space-borne platforms were 25 

critical to showing that these waves drive the large-scale circulation in the middle atmosphere (Ern et al., 2016; Geller et al., 

2013); however, the processes that govern energy dissipation and interaction remain incompletely understood (Fritts et al., 

2016). The MLT region is coupled to the upper atmosphere by wave processes that influence the neutral wind field and sub-

sequently impact ionospheric dynamics. Therefore, understanding this coupling and the mechanisms that influence the dissi-

pation of energy associated with small-scale variability requires the simultaneous spatial sampling of several components of 30 

the dynamical fields at resolutions and uncertainties that allow these processes to be resolved. 
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Passive measurements of Earth’s naturally emitted airglow have been used for several decades to remotely measure upper 

atmospheric motions. Geophysical variability in the region due to the presence of gravity waves and other motions (tides, 

planetary waves etc.), perturbs the airglow layer, resulting in variations in the line of sight (LOS) Doppler wind and irradiance 

field (Hines and Tarasick, 1987, 1993). This paper describes the development of a new type of instrument designed to detect 35 

these variations. The instrument, called, the BIrefringent Doppler Wind imaging INterferometer (BIDWIN), is a compact high-

resolution, large throughput interferometer constructed with no moving parts. 

Several other interferometric techniques have been developed over the past 50 years for the purpose of detecting upper 

atmospheric motions using airglow emissions. These instruments have provided valuable insights regarding the dynamics 

occurring in the region. For example, field widened Michelson interferometers, such as the wide-angle Michelson Doppler 40 

imaging interferometer (WAMDII) (Shepherd et al., 1985), the Wind Imaging Interferometer (WINDII) which flew on 

NASA’s Upper Atmosphere Research Satellite (UARS) satellite from 1991 to 2005 (Shepherd, 2002; Shepherd et al., 2012), 

the mesospheric imaging Michelson interferometer (MIMI) in which a fixed sectored mirror was implemented (Babcock, 

2006), as well as the ground based Michelson Interferometer for Airglow Dynamics Imaging (MIADI) (Langille et al., 2013b) 

and the E-Region Wind Interferometer (ERWIN) (Gault et al., 1996a; Kristoffersen et al., 2013) have been implemented to 45 

measure upper atmospheric motions using airglow emissions. The Fabry-Perot interferometer and Doppler Asymmetric Spatial 

Heterodyne (DASH) interferometer have also been implemented to measure upper atmospheric winds (Hays et al., 1993; 

Killeen et al., 1999; Anderson et al., 2012; Aruliah et al., 2010; Shiokawa et al., 2012; Englert et al., 2007; Harlander et al., 

2010). 

Making advancements to the field of interferometric wind measurements requires the development of instruments that 50 

achieve a similar or better accuracy to what is currently possible but with a higher spatial and temporal resolutions using a 

more robust and less complicated instrument. The core component of the BIDWIN instrument is the field widened birefringent 

interferometer (Langille et al., 2013a, 2020) placed between two crossed Wollaston prisms. This configuration produces four 

images of the scene conjugate to the interference fringes at the detector (see Fig. 3). Appropriate placement of waveplates and 

polarizers in the system produce four 90-degree phase stepped images of the interference fringes. The samples are processed 55 

using fringe analysis algorithms like those used in Doppler Michelson Interferometry (DMI) to extract LOS winds. A similar 

birefringent interferometer has been implemented to measure the high-speed motion of plasma in the H1-Heliac at the Aus-

tralian National University (ANU) (Howard, 2006). However, the capacity of the system to measure low velocity wind fields 

(with a precision on the order of < 5 m/s) was not investigated.  

The primary advantage of this technique over state-of-the-art field widened Michelson, Fabry-Perot and DASH instruments 60 

is the mass, volume, and minimal complexity in the construction. The interferometer component described in this paper, a 

birefringent delay plate, has an approximate volume of 10 cm x 5cm x 5 cm, a mass of ~ 1 kg and can be assembled using 

tools that are available in most optical labs. On the other hand, assembly of the current state of the art instruments requires 

extreme skill and has only been mastered by a handful of companies, as well as academic and national laboratories. The 
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BIDWIN concept has been developed in collaboration with industry to realize a simple-to-construct instrument capable of 65 

performing observations of upper atmospheric winds using low intensity airglow emissions.   

 The paper is organized as follows. First, we present the overall requirements, which guide the design of a general high 

resolution two-beam interferometer capable of wind measurements with precisions < 5 m/s. These requirements form the basic 

specifications that drive the design of the BIDWIN instrument. Second, we present the BIDWIN measurement principles and 

highlight the sensitivity of the technique in comparison to the field widened Michelson interferometer. Third, the design and 70 

optimization of the instrument is presented and the overall sensitivity to wind measurements is examined using simulated 

ground-based measurements. Fourth, the implementation, characterization and testing of the instrument is presented. Finally, 

we examine the performance of the design by performing measurements of low velocity winds produced in the lab. 

2 Science requirements 

2.1 Airglow emissions 75 

The Earth’s airglow is naturally emitted in the ultra-violet visible and near-visible spectral regions. The choice of airglow 

emission lines that can serve as useful tracers for Doppler wind measurements is rather limited. However, measurements have 

been made both from the ground and from satellite and several similar instruments are being considered for future ground 

stations and space missions. Some of these instruments and missions are summarized in Table 1. The list is not exhaustive but 

is a good summary of the airglow emissions that have been used, or are planned to be used, in wind measurements. All these 80 

instruments are wide-field Michelson interferometers except for CLIO (Wang et al., 1993), HRDI (Hays et al., 1993) and TIDI 

(Killeen et al., 1999), which are Fabry-Perot interferometers and MIGHTI which is a Doppler Asymmetric Spatial Heterodyne 

Spectrometer (DASH) (Englert et al., 2007). The emissions consist of O1S (oxygen green line, 557.7 nm), O1D (oxygen red 

line, 630.0 nm), various bands of the Meinel OH system and the 1Σ and 1∆ band systems of O2. The O+ lines observed by 

WINDII yielded little useful data, though there might be potential there for more work. 85 

Limb-viewing satellite instruments such as MIGHTI (Englert et al., 2017), WINDII (Shepherd et al., 1993), HRDI, and 

TIDI can generate altitude profiles of the wind and can provide high spatial sampling and global coverage. Both nightime and 

daytime measurements are possible from a satellite; however, this is not true of measurements made from the ground. Ground-

based measurements can only assign a wind to an assumed typical altitude region for the emission being observed and such 

measurements are only possible at night. If a satellite instrument is properly baffled to protect the optics from scattered sunlight, 90 

observations are possible during both day and night. The oxygen emissions (O and O2) are generally brighter during daytime 

than night-time. 

Characteristics of the different lines are given in Table 2 for satellite measurements and in Table 3 for ground-based meas-

urements. The O2Σ(0,0) and O2
1∆(0,0) bands are too strongly self-absorbed to be useful for ground-based measurements. The 

values in Table 2 for O1S and O2
1∆ are from Ward et al. (2001), who refer back to (Gault et al., 1996b) for O1S and to (Thomas 95 

et al., 1984) and (Howell et al., 1990) for O2
1∆. All the lines listed in Table 2 apart from the molecular oxygen lines provide 
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similar signal levels; however, the sensitivity of the wind measurements made with a two-beam interferometer is also depend-

ent on the line shape, as well as the maximum optical path difference of the interferometer. Therefore, we briefly examine the 

general principle of wind measurements with a two-beam interferometer and examine the sensitivity of wind measurements 

made using the lines listed in Table 2. 100 

 

Table 1. Projects measuring Earth’s upper atmospheric winds remotely using Doppler shifts of airglow emissions. 

Project name Comments Emissions observed References 

WINDII UARS1 satellite, launched 1991 O1S, O1D, OH(8,3), O+, O2 Σ(0,0) Shepherd et al. (1993) 

Shepherd et al. (2012) 

HRDI UARS satellite, launched 1991 O2
1Σ (A, B and γ bands) Hays et al. (1993) 

ERWIN Ground, Resolute/Eureka O1S, OH(6,2), O2
1Σ(0,1) Kristoffersen et al. (2013) 

TIDI TIMED3 satellite O1S, O2
1Σ(0,0) Killeen et al. (2006) 

CLIO Ground, Resolute O1S, O1D, OH(7,3) Fisher et al. (2000) 

MICADO Ground, OHP2, France O1S, O1D Thuillier and Herse (1991) 

EPIS Ground, Spitzbergen, Svalbard O1S, O1D Thuillier et al. (2005) 

Waves Satellite proposal, not selected O1S, O1D, O2
1∆ (0,0) Ward et al. (2001) 

MIADI Ground, UNB4 O1S, O1D, OH(6,2), OH(7,3), O2
1Σ(0,1) Langille et al. (2016) 

WaMI Studies for satellite proposal, UNB O1S, OH(8,5), O2
1∆ (0,0) Ward et al. (2001) 

DynAMO Studies for Mars mission proposal, UNB O2
1∆ (0,0) Ward et al. (2002) 

MIGHTI ICON satellite O1S, O1D Englert et al. (2017) 

1 Upper Atmosphere Research Satellite (NASA). 

2 Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. 

3 Observatoire de Haute-Provence. 105 

4 University of New Brunswick. 

2.2 Wind measurements using a two-beam interferometer 

Measurement of Doppler shifts in spectrally isolated airglow emissions using two beam interferometers is achieved by sam-

pling the interference pattern produced with an interferometer at several phase steps spanning a full fringe around some large 

fixed effective path difference. The general measurement process, retrieval algorithms and analytic expressions for the sensi-110 

tivity of such measurements is described in detail by Kristoffersen et al. (2021). The instrument discussed in this paper samples 

the interferogram at roughly 90 degrees phase steps. In this case, the intensity of the observed signal can be written as 

𝐼𝑖 = 𝐼0[1 + 𝑈𝑉 cos(Φ + φ𝑖)] (1) 

where I0 is the mean intensity, U is the instrument visibility, V is the line visibility and φi is the ith phase step. Motion of the 

source along the line of sight with velocity w results in a slight phase shift in the interferogram given by 115 

δΦ =
2πD

cλ
w (2) 
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where λ is the target wavelength, D is the effective path difference and c is the speed of light. The signal S at the detector is 

given by 

S =
106

4π
E0AΩτηt (3) 
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Table 2. Emissions for Earth satellite (limb) observations. 

Emission Wavelength (nm) 
Typical emission  

temp. (K) 
Day/ Night 

Tangent  

height (km) 

Limb  

intensity (KR) 

O1S (green line) 557.7 

1000 D 

200 

150 

100 

20 

55 

90 

200 N 
110 

95 

1.2 

6.5 

O1D (red line) 630.0 1000 
D 

N 

250 

250 

30 

5 

O2
1Σ 763.2 200 

D 

N 

94 

94 

200 

20 

OH (6,2) P1(3) 834.1 200 N 85 15 

OH (7,3) P1(3) 892.2 200 N 85 22 

O2
1∆ (0,0) 

1264 (strong) 250 D 
80 

65 

640 

2700 

1278 (weak) 250 D 
50 

45 

2300 

3000 

1264 200 N 85 80 
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Table 3. Emissions for ground based (night) observations. 

Emission Wavelength (nm) Typical emission temp. (K) Line zenith intensity (R) 

O1S (green line) 558 200 250 

O1D (red line) 630 1000 100 

O2
1Σ (0,1) 866 200 25 

OH (6,2) P1(3) 843 200 220 

OH (7,3) P1(3) 892 200 320 
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 130 

where 𝐸0 is the average emission rate in Rayleighs, 𝐴 is the collecting area (cm2),  Ω is the solid angle (sr) at the location of 𝐴 , 

𝜏 is the transmittance,  𝜂 is the quantum efficiency of the detector and  𝑡  is the integration time (s). The product 𝐴Ω, called the 

étendue, is determined by the geometry of the optics. To achieve as large a signal as possible, the instrument should be designed 

so the product 𝐴Ω is as large as possible, within whatever restrictions exist.  

Expressions for the uncertainty in the wind measurement were originally developed for the Michelson by Ward (1988) and 135 

by Rochon (2001). Ward tested the expression against a computer model that added noise to the signal levels using a gaussian 

random number generator. General expressions for the sensitivity of Doppler wind measurements are presented by Kristof-

fersen et al. (2021). In the ideal case, where four samples are obtained with 90-degree phase steps the expression for the 

standard deviation, σw, of the wind measurement is 

σw =
cλ

2√2π(SNR)UVD
 (4) 140 

In Eq. (4), the line visibility is related to the source parameters and the effective path difference of the interferometer as 

V = e−QTD2
, where for the O1D emission at 630 nm, Q = 2.87 × 10−5(cm-2K-1). The calculation of Q for several other species 

is presented by Shepherd (2002).  The instrument visibility is maximized by using crystals with high optical quality and is 

assumed to be U ~ 0.99. 

 145 

Figure 1. Normalized uncertainty plotted against D (0 to 10cm) for several emissions. The O1S emission is shown in green for three tem-

peratures in (a). 

For a selected emission, assuming a fixed emission rate and temperature, an optimum path difference exists for the meas-

urement of wind. In Eq. (4), as D increases, V decreases and the graph of 𝜎𝑤 vs. D passes through a minimum. Fig. 1 shows 

plots of the "normalized uncertainty", i.e., the standard deviation of the wind measurement for SNR = 1, plotted as a function 150 

of D. The curves for O2 have minima beyond D = 10 cm. Three curves are shown for O1S, corresponding to three temperatures. 

T = 200 K is typical for the MLT region and 1000 K and 2000 K correspond to the middle thermosphere. Fig. 2 has the same 

curves as Fig. 1 but shows the D = 0 to 2.5 cm region in more detail.  
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The ideal design of a general two-beam Doppler interferometer is optimized to have an effective path difference near the 

minima for a particular emission line. However, in some cases, such as for the instrument discussed in this paper, the physical 155 

size of the available components limits the effective optical path difference that can be achieved with the device. For BIDWIN, 

it is shown that the loss in sensitivity associated with this less than ideal effective path difference is compensated by the high 

SNR that can be achieved from the large throughput that is possible.  

 

Figure 2. Normalized uncertainty plotted against D (0 to 2.5cm) for several emissions. The O1S emission is shown in green for three tem-160 
peratures in (a). 

3 The birefringent imaging Doppler wind interferometer (BIDWIN) 

The optical layout of BIDWIN is depicted in Fig. 3, where the input is collimated light from the scene of interest. This light is 

incident on the first Wollaston prism, the aperture of which defines the entrance aperture of the optical system. The Wollaston 

splits the incoming radiation into two orthogonally polarized beams (vertical and horizontal). The objective lens located di-165 

rectly following the Wollaston forms orthogonally polarized images of the scene in the top frame and bottom frames of the 

split field polarizer conjugate to the field stop location. The polarization axes of the two sectors of the split field polarizer are 

oriented along the y and x axes corresponding to the orientation of the orthogonal polarizations produced by the Wollaston 

prisms. A quarter waveplate is attached to the bottom sector directly behind the polarizer with its optical axis oriented at 45∘ 

to the x axis. Therefore, the light exiting from the top sector is linearly polarized while the bottom sector is circularly polarized. 170 

An image of the field stop is passed through the field widened delay plate as collimated light by the collimating lens. The delay 

plate introduces an optical path difference between the beams where the direction through the plate is mapped to position in 

the scene. The second Wollaston prism is positioned behind the field widened delay plate and is rotated 90∘ relative to the first 

Wollaston prism. After passage through this prism, the beam is split horizontally and is orthogonally polarized. The light 

exiting the Wollaston is collected by the imaging system which forms a four-quadrant image of the fringes of equal inclination 175 

where each quadrant contains an identical image of the scene. As derived theoretically in the next few paragraphs, the four 

interference fringe images are phase stepped by  π/2  as idealized in Fig. 3.   
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Figure 3. The prototype BIDWIN optical layout and simulated interference fringes at the detector. 180 

 

The field widened delay plate is constructed from two crossed equal length uniaxial birefringent crystal slabs cut with the 

optical axis in the plane of the clear aperture with a half waveplate placed between them. The optical axis of the first slab is 

oriented at 45∘ to the x axis and the second slab is 135∘ to the x axis. The half waveplate is oriented with its optical axis along 

the y axis to ensure the polarization of the light incident on the second slab and the exiting light from the first slab are symmetric 185 

about the y axis. The optical path difference between the extraordinary and ordinary rays through the crystal depends on the 

incident angle θ as well as the azimuth ϕ of the incident light. In the case that the two slabs and the half waveplate are perfectly 

aligned, the optical path difference across the field of view is given to fourth order by Title and Rosenberg (1979) 

Δ(θ, ϕ) ≈ Δ0 [1 −
1

4no
2 (

ne−no

ne
) sin2(θ) +

sin4(θ)

8no
4 +

1

8no
4 (

ne−no

ne
) sin4(θ)sin2(2ϕ)] (5) 

where Δ0 = l(ne − no), and l is the total length of the two slabs. For most birefringent materials, the third term on the right-190 

hand side is extremely small and the azimuthal dependence is negligible. In this case, the device is field-widened, and the 

optical path difference varies slowly with incident angle. This configuration is extremely sensitive to misalignments or mis-

matches between the components and design errors. Exploring these sensitivities has been carried out using a Jones matrix 

framework that neglects Fresnel effects and Fabry Perot fringes but considers birefringent splitting and unwanted coupling 

between e and o waves at the interfaces (Langille et al., 2020).  In section 4, we use this framework to examine the field of 195 

view sensitivity of the optimized design and compare modelled results to lab measurements. Here we use the Jones matrix 

approach to present the measurement principle. 

The incident light of the airglow can be regarded as unpolarized. Therefore, it is split into two orthogonally polarized beams 

by the first Wollaston prism. As a result, the top beam at the split field polarizer is vertically polarized and can be represented 

by the Jones vector 𝐄𝐭 = 1/√2 [
0
1

], while the bottom beam is horizontally polarized and can be represented by the Jones vector 200 

𝐄𝐛 = 1/√2 [
1
0

]. For a perfectly aligned split field polarizer, the Jones matrix of the top polarizer is 𝐉𝐭 = [
0 0
0 1

], while the 
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Jones matrix of the bottom polarizer is 𝐉𝐛 = [
1 0
0 0

]. The Jones matrix of the attached quarter waveplate behind the bottom 

polarizer with a 45∘ optical axis to the x axis is 𝐉𝐪 = 1/√2 [
1 𝑖
𝑖 1

]. The second Wollaston prism works as two polarizers when 

it splits the incident light into two beams deviate to the right (+x axis) and left (-x axis) respectively, and can be represented 

using two Jones matrices given by 𝐉𝐫 = [
0 0
0 1

] and 𝐉𝐥 = [
1 0
0 0

], respectively. The Jones matrix of the delay plate is repre-205 

sented by Jf. Applying the combined Jones matrices to the incident electric field produces output electric fields of the four 

frames at the CCD detector location given by 

E1 = Jr ⋅ Jf ⋅ Jt ⋅ Et (6) 

E2 = Jl ⋅ Jf ⋅ Jt ⋅ Et (7) 

E3 = Jl ⋅ Jf ⋅ Jq ⋅ Jb ⋅ Eb (8) 210 

E4 = Jr ⋅ Jf ⋅ Jq ⋅ Jb ⋅ Eb (9) 

In the case of perfect alignment, the Jones matrix Jf varies little with azimuthal angle ϕ of the incident light through the field 

widened delay plates. To simplify the matrix Jf and obtain characteristic expressions for the intensity in each quadrant, we 

assume the incident plane lies along x axis and that the incident angles are small. Substituting into Eq. (6) to (9) and then 

calculating the average intensity for each beam, the samples in each frame are given by: 215 

I1 =
1

4
[1 + cos(Φ1)] (10) 

𝐼2 =
1

4
[1 + cos(Φ2 + 𝜋)] (11) 

𝐼3 =
1

4
[1 + cos (Φ3 +

𝜋

2
)] (12) 

𝐼4 =
1

4
[1 + cos (Φ4 +

3𝜋

2
)] (13) 

where Φi(i = 1,2,3,4) is the background phase in each quadrant determined from Eq. (5). For each incident angle θ and azi-220 

muth ϕ, Φi has a different value in the four frames and varies across the field of view resulting in a variation of the phase steps 

across the scene. In practice, the transmission and the instrument visibility will also vary across the image in each quadrant. If 

we assume the relative intensities and the instrument visibilities in various measurements are fixed, for a single point, the 

intensity Ii
j
 of the ith step (frame) in the jth measurement can be modeled as 

Ii
j

= KiI0
j [1 + UiV

j cos(Φj + φi)] (14) 225 

where I0
j
 is the mean intensity, and Vj is the line visibility. In practice, the thermal drift of the optical path difference due to 

the dependence of the birefringence on temperature as well as variations in length due to thermal expansion and contraction 
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of the components will introduce a time varying phase shift not shown in Eq.14.  A slight phase shift [Eq.2] associated with a 

Doppler shift in a moving source can be extracted from the samples using general fringe analysis algorithms if the relative 

intensities Ki , instrument visibilities Ui,  phase steps φi (i = 1,2,3,4) and the thermal drift are known. Therefore, these pa-230 

rameters must be carefully calibrated.  This is achieved by performing measurements of light from a calibration source emitting 

a spectral line close to that of the target emission. Observations of the calibration source must be performed frequently enough 

to track the thermal drift.   

   While a full analysis of stray light is outside the scope of this work, another important feature of the BIDWIN approach is 

that each quadrant images the same field. Therefore, the background or scattered light from the field will be unmodulated and 235 

appear as a constant offset for the corresponding bins in each quadrant. In this case, the fringe phase will not be affected.   

 

Table 4. Primary science requirements for the BIDWIN prototype instrument 

Parameter Requirement 

Target emission O1(D) at 630 nm, 100 Rayleigh 

Uncertainty  < ± 5 m/s 

4 Prototype instrument design 

4.1 Overview 240 

The prototype BIDWIN instrument has been developed for lab performance evaluation and ground-based field testing. Due to 

the chromatic dispersion of the waveplates in the system, the instrument can only be optimized for operation at a single wave-

length. Another important constraint on the design is the acceptable range of possible effective path differences for a compact 

field widened birefringent delay plate. This is determined by two factors. First, the magnitude of the birefringence and the 

availability of large format high quality crystals limits the fixed path difference to the range, 0 to 2 cm. Second, the overall 245 

sensitivity of the device to the measurement of Doppler winds is optimized when the normalized wind uncertainty reaches a 

minimum as shown in Fig. 1 and Fig. 2. From these Figures, we see that only the O1S and O1D emissions have normalized 

uncertainty minima below D = 5 cm.  Both emissions have similar emission rates when observed from the ground; however, 

the O1S emission at 557 nm corresponds to a layer from 95 km – 110 km, whereas the O1D emission corresponds to a layer 

between 150 km to 300 km. In addition, the dynamical motions in the upper layer result in LOS Doppler winds that are on the 250 

order of a few 100 m/s, whereas, typical motions in the lower layer result in LOS Doppler winds on the order of 10 m/s. 

The prototype version of the instrument is optimized to target the O1D emission at 630 nm. Measurements with uncertainties 

better than ±5 m/s are needed to advance our scientific understanding of neutral motions at these heights. Representative 

emission rates observed at the ground from the O1D emission varies through the course of a day and has a seasonal dependence. 

However, typical emission rates are expected to be near 100 R for ground-based observations. Optimization of the instrument 255 

for 630 nm also allows for lab testing and characterization work to be performed using a stabilized He-Ne laser emitting 632.8 
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nm. This is ideal since it provides a high signal to noise ratio, stabilized source with a fixed polarization. The overall require-

ments that are used to optimize the prototype design are listed in Table 4. 

4.2 Interferometer design 

The primary practical considerations driving the interferometer design are the effective path difference, the SNR and the re-260 

sulting sensitivity for the measurement of Doppler winds. Several additional criteria were also used to constrain the design of 

the field widened birefringent delay plate. These include the cost, availability and workability of large format high quality 

birefringent crystals, the magnitude of birefringence and the thermal stability of the design.  LiNBO3, YVO4 and CaCO3 were 

investigated. YVO4 and CaCO3 achieve a larger path difference compared to Lithium Niobate due to their larger birefringence; 

however, large aperture YVO4 crystals are difficult to obtain, and CaCO3 is extremely difficult to work with in practice due to 265 

its softness. On the other hand, large format LiNBO3 crystals are readily available allowing for a large throughput device to be 

constructed. All these crystals have strong thermal sensitivities, on the order several fringes per degree Celsius change in 

temperature, resulting in associated wind variation of ~ 103 m/s to ~ 105 m/s. Therefore, the thermal drift of the instrument 

must be carefully tracked by making periodic measurements of a calibration source and the interferometer must be placed in a 

thermally controlled enclosure for the field implementation. Thermally compensated designs are also possible (Hale and Day, 270 

1988) and are under consideration; however, this aspect is not considered for the design presented in this paper. 

 

Table 5. Specifications of the Lithium Niobate slabs used to construct the field-widened birefringent delay plate. 

Parameter Specification 

Individual LiNBO3 slab dimensions (lxwxh)  4 cm ×  5 cm ×  5 cm  

Optical axis angle 45∘  

Clear aperture 30 mm 

Coating MgF2 

Refractive index (632 nm) ne = 2.2028, no = 2.2866  

Thermal expansion coefficient α = 15 × 10−6/∘C  

Birefringence (B) ne − no ≈ −0.0838  

dB/dT 3.96 × 10−5/∘C 

Surface flatness λ/8 (over 25.4mm) 

Scratch/Dig 40/20 

Parallelism 30” 

Design wavelength  632.8 nm 

Half-wave plate Zero-order birefringent polymer 

Half-wave assembly thickness 1.05 cm thick 

Effective optical path difference D = 0.67 nm (at 632 nm) 

Maximum throughput 𝐴Ω = 0.215 cm2sr 
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Instrument visibility ~ 0.9 

 

The specifications for the BIDWIN prototype interferometer are shown in Table 5. The interferometer is constructed from 275 

two equal length slabs of LiNBO3 that have dimensions 4 cm ×  5 cm ×  5 cm.  The manufacturer guaranteed the optical 

quality (surface flatness, scratch dig etc.) across a clear aperture of 30 mm centered on the optical axis of the slabs. The true 

zero order half-wave plate utilized in the system is a 25.4 mm clear aperture element constructed from a birefringent polymer 

cemented between two slabs of BK7 manufactured by Meadowlark optics. The thickness of the half-wave plate element, 

including the mounting, is ~1.05 cm. It is optimized for operation at 632.8 nm and has a thermal dependence of the retardance 280 

of ∼0.15nm/∘C and an angular sensitivity of < 1% ± 5∘. The effective path difference of the interferometer is D = 0.67 cm. 

The maximum throughput that can be obtained with the device is fixed by the geometry of a solid block of glass as shown 

in Fig. 4. The figure shows an incident ray passing through a simple rectangular slab of birefringent material.  To achieve as 

large a signal as possible, the instrument should be designed so the product AΩ is as large as possible, within whatever re-

strictions exist. The usual way to send light through an interferometer is to place a telescope in front that defines the field of 285 

view and passes a well-defined collimated beam through the interferometer with an image of the entrance aperture located at 

the center of the device. 

 

Figure 4. The rectangle represents the interferometer, of thickness t. A ray enters near the edge at incident angle im and reaches midway at 

distance r above the axis. R is the available radius at both ends of the interferometer. The thickness is shown as air equivalent, t/n, where n 290 
is the refractive index. 

Assuming a square field of view and a circular entrance aperture, the product 𝐴Ω, called the étendue, is given by 

AΩ = (πr2) [𝑡𝑎𝑛−1 (
𝑅−𝑟

𝑡/2𝑛
)]

2

 (15) 

where R and r are the clear extent of the slab and the radius of the image of the aperture respectively. The maximum 𝐴Ω is 

achieved when the image of the entrance aperture midway through the interferometer is half the diameter of the available area 295 

at the ends of the interferometer. Considering the full length of the assembly (t = 9.05 cm), substituting R = 15 mm into Eq.15 

and assuming n ~ 2.2 gives a maximum possible throughput of 0.216 cm2sr. This corresponds to a maximum off axis angle 

through the clear aperture of roughly 20.03 degrees. To mitigate the potential for clipping the housing, we limit this to 20 
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degrees, resulting in a solid angle of the square field of view of 0.122 steradians and a corresponding throughput of 𝐴Ω = 0.215 

cm2sr for the field widened element.   300 

 

 

Figure 5. The assembled LiNBO3 field widened delay plate (a), optical path variation with incident angle (b), and (c) is a simulated four-

quadrant image assuming the configuration discussed in Section 3. 

 305 

A picture of the assembled prototype is shown in Fig. 5(a). The fully assembled element is roughly 10 cm in length including 

the mounting. The optical path variation as a function of incident angle for the device is shown in Fig. 5(b). The extent of the 

field widening is clear – less than 3.5 fringes enter the field of view with incident angles of 20 degrees. As an example, the 

simulated interference image produced using this device as the delay plate in the in the BIDWIN optical system assuming a 

range of off axis angles of 10 degrees is shown in Fig. 5(c). In this simulation, the detector is taken to have 250 × 250 bins 310 

and ideal polarization selection by the Wollaston prisms is assumed. 

    The phase variation across the image of the scene and the associated quadrature between the samples in the image is shown 

in Fig. 6(a)-(c). The upper left panel shows the phase across the top quadrant and the upper right panel shows the phase 

variation across the bottom quadrant. The associated phase quadrature is shown in the bottom left panel. Note that there are 

several “strips” across the image that have zero phase quadrature.  The four-point algorithm cannot be applied to these samples 315 

which results in enhanced wind errors within these regions. The expected wind uncertainty calculated using Eq.4 is shown in 

Fig. 6(e) as a function of the SNR.  Here we observe that an SNR > 700 is required to achieve wind precisions of < 5 m/s. 

Therefore, we examined the sensitivity across these strips by performing Monte Carlo simulations assuming Poisson noise and 

an SNR = 700. Large wind errors are observed in the zero quadrature regions as shown in Fig. 6(d). This effect is enhanced as 

the field of view is increased; therefore, care must be taken to properly identify and characterize these regions during data 320 

processing. However, the presence of these zero quadrature regions also provides an opportunity to simultaneously sample the 

intensity at several positions in the scene. The potential application of this feature for a potential limb viewing satellite version 

of the instrument is presented in Section 6. 
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 325 

 

 

Figure 6. The expected phase variation in the top (a) and bottom (b) quadrants of the BIDWIN instrument and the phase quadrature between 

samples (c) assuming a 10-degree field of view. The expected wind uncertainty (d) and (e) assuming the instrument characteristics listed in 

Table 5 and the signal characteristics listed in Table 4 and Table 2. 330 

 

As a simple example, we estimate the expected SNR from Eq.3 as SNR~√𝑆 and determine the integration time that would be 

required to achieve wind precisions < 5 m/s using the prototype. For this example, we assume ground-based observations and 

take 𝐸𝑜 = 100 𝑅. We also substitute realistic instrument parameters 𝜏~0.1, 𝜂~0.9, 𝐴Ω = 0.215 cm2sr and assume that the 

field is sampled into 100 bins. Furthermore, we make the conservative estimate that roughly 25% of the field may lie within 335 

the zero quadrature regions that are unusable for wind measurements.  In this case, an integration time of 425 seconds would 

be required to achieve an SNR ~ 700 (and a wind precision of < 5 m/s). This integration time is too long to be useful; therefore, 

the current prototype cannot be used for ground-based imaging of the wind field. However, in the case of single point wind 

measurements, an SNR ~ 700 can be reached with an integration time of 4.25 seconds which is much more practicable. Note 

that if one obtained crystal with high quality across the full 5 cm aperture then the maximum throughput can be significantly 340 

increased. In fact, crystals as large as 12 cm x 100 mm x 100 mm are readily available, which would allow a device with a 

throughput more than 4 times that of the prototype to be realized.  In this case, the imaging aspect will also be feasible; 

however, the cost of manufacturing the slabs also increases and the larger crystals must be accommodated by larger imaging 

optics. The design of a proposed field instrument is discussed further in Section 6. 

 345 
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4.3 The imaging system 

The side view ray trace through the BIDWIN optical system is shown in Fig.7. As discussed in the previous section, the 

throughput of an ideal system is limited by the maximum throughput that can be provided by the delay plate. However, in the 

case of the breadboard instrument it was the size and availability of large format Wollaston prisms that limited the maximum 

throughput. The prisms utilized in the breadboard system are constructed from two YVO4 wedges. The wedges are designed 350 

to provide a split angle of ~ 9.29∘ (at 632.8 nm) between the two orthogonal polarizations exiting the Wollaston. The objective 

lens is designed to accept an input field of view of 4 degrees square and the 10 mm diameter pupil of the prism located directly 

in front of the objective lens defines the entrance aperture of the optical system. 

The objective lens was optimized such that the output beam is approximately telecentric which minimizes the incident angle 

at the waveplate/split field polarizer location. This is done to reduce the impact of the incomplete polarization selection of off 355 

axis rays at the polarizer and slight shifts in the retardance of the quarter waveplate due to the angular dependence of the 

retardance. The collimating lens is designed to pass a collimated image of the field stop through the field-widened birefringent 

delay plate. The collimating lens also forms an image of the entrance aperture midway between the birefringent delay plate.  

The imaging lens is optimized to correct for aberrations and focus the collimated beams onto the detector. All the lenses are 

spherical and are constructed from BK7 and have been anti-reflection coated for visible wavelengths. 360 

 

Figure 7. The BIDWIN optical design (Side view ray trace). 

A comparison between the interference fringes simulated using Zemax optical design software (upper panels) and the ob-

served fringes (lower panels) in the lab is shown in Fig. 8. Three examples are shown. The first example ((a) and (d)) shows 
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the case of ideal alignment between the components. We observe less than one fringe in the field of view and the images are 365 

phase stepped in 90-degree increments. Because of the breadth of the fringe, its form in the lower panels is more difficult to 

see. The shape of the field stop that is located near the split field polarizer is observed in the lower panel and the edges of the 

split field polarizer can also be seen.  In the second example, the back crystal has been rotated by 10 degrees. This misalignment 

introduces high contrast hyperbolic fringes as well as a set of low amplitude parasitic fringes. The parasitic fringes are the 

result of misalignment relative to the halfwave plate and are removed in the third example by rotating the halfwave plate by 5 370 

degrees. All three cases agree extremely well with the simulated fringes and serve to demonstrate the sensitivity to misalign-

ment as well as the overall imaging quality of the optical system. 

 

Figure 8. Comparison between the simulated (upper panels) and observed (lower panels) interference fringes for the case of perfect align-

ment (a, d), a 10-degree misalignment between the Lithium Niobate slabs (b, e) and the same as in (b, e) with the half-wave plate rotated by 375 
5 degrees to eliminate the low amplitude parasitic fringes. 
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Figure 9. Schematic of the system used to produce a predicable gradient in the LOS wind field within the field of view of the instrument in 

the lab. 

5 Lab Performance 380 

5.1 Setup 

The BIDWIN prototype instrument was assembled at the Atmospheric and Space Physics Lab at the University of New Bruns-

wick. The system used to produce a predictable gradient in the LOS wind field within the field of view of the instrument is 

shown in Fig. 9. Light incident from a He-Ne laser is diffused and passed through a beam splitter to illuminate a retro-reflective 

disk that was oriented at an angle of 45∘ to the optical axis. The disk was attached to a chopper and controller system with 385 

which the rotation rate of the wheel was accurately controlled. Light retro reflected from the disk is reflected by the beam 

splitter and collimated before being collected by the BIDWIN entrance optics. Light emitted from the He-Ne laser is only 

partially polarized with a narrow range of polarizations near some specific angle of polarization close to the direction of the y 

axis. Therefore, a polarizer oriented at 45∘ to x axis was placed in front of the system to ensure the two beams split by the first 

Wollaston prism are equal in intensity. This polarizer is not required when observing the unpolarized airglow. An Apogee U47 390 

CCD with a resolution of 256 × 256 on 2 × 2 binning is used for imaging. The imaging optics part of the lab prototype was 

configured slightly different from Fig. 3. A folding mirror and lens are used to reimage the primary interference fringe image 

to ensure the four frames match the size of the CCD that was available for lab testing. In addition, the field of view of the 

optical system, set by an intermediate stop in the wind wheel system, is a 4 degrees circle instead of a square field of view. 
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5.2 Characterization and calibration 395 

The calibration of the fringe parameters as discussed in Section 2 can be achieved by scanning the wavelength of a suitably 

isolated spectral emission line, scanning fringes through temperature variations (i.e. using the thermal dependence of the glass 

properties to change the path) or by rotating the field widened delay plates (Gault et al., 2001) and sampling the interference 

pattern at each step. In our experiment, scanning the wavelength of the frequency stabilized 632.8nm He-Ne laser was not 

possible, so we utilized the strong thermal dependence of the Lithium Niobate slabs to scan the optical path. 400 

Because of the thermal sensitivity of the field widened delay plates, a scan in the optical path of almost two fringes can be 

performed by letting the system respond to the variation of the lab temperature over roughly 30 minutes as shown in Fig. 10. 

It is obvious that the frequency of the cosine curve is changing during the scan, suggesting that the variation of the lab tem-

perature is not linear. The LMS algorithm initially developed by Ward (1988) and refined by Kristoffersen (2019); Kristof-

fersen et al. (2021) to simultaneously determine both the phase steps associated with sampling a fringe and the fringe param-405 

eters of the emission can be applied. In this case, the instrument fringe parameters from every bin in each quadrant must be 

characterized before standard fringe analysis techniques can be used. This characterization includes determining the relative 

phases of the four bins viewing the same segment of the scene, the φi, the instrument visibility, Ui and the relative responsivity, 

Ki. An elegant way of visualizing this process is through Lissajous mapping (Yan et al., 2021). The measured intensities of 

two quadrants during a thermal scan of BIDWIN are used to fill the 2π phase space of a fringe and in a least-mean square 410 

sense determine the ellipse associated with this measurement set. Using the parameters of the ellipse, 𝐾𝑖, 𝑈𝑖 and 𝜑𝑖 can then 

be calculated. Applying this algorithm to all the points in the field of view, we can acquire two-dimensional images of the 

calibrated fringe parameters: 𝐾𝑖, 𝑈𝑖 and 𝜑𝑖. The fringe parameters obtained using this approach are shown in Fig.11. 

 

Figure 10. The intensities of the centre points measured by thermally scanning of BIDWIN. 415 
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Figure 11. The calibrated parameters over the field of view of BIDWIN. (a) relative intensities 𝑲𝒊; (b) instrument visibilities 𝑼𝒊; (c) phases 

𝝋𝒊 relative to the first quadrant. 

Before applying these calibration parameters to the observations, the phase order of four quadrants must also be determined. 

Ideally, the steps should be in 90∘ increments.  According to the Jones matrix model, the phase steps come from the four 420 

combinations of polarizers and waveplate. Therefore, we can match those combinations with the four quadrants on the detector 

by observing the intensities of the four quadrants after removing the field widened delay plates. After the phase order deter-

mination, it was found that the quadrant of the first phase step is the left bottom one because of the added folding mirror and 

lens in the imaging system. Flat field images were also obtained using this configuration by placing a polarizer oriented at 45∘ 

at the position of the field widened delay plates.  425 

Figure 11 shows the results of the 𝐾𝑖, 𝑈𝑖 and 𝜑𝑖 calibration. In Fig. 11(a), the relative intensities of the top quadrants are 

slightly higher than the bottom quadrants. Besides the misalignment of the optical train, a possible source of this variation is 

the angular error of the polarizer in front of the system, which should be oriented at exactly 45∘ to ensure the two split light 

beams from the first Wollaston prism are equal. The instrument visibilities are mainly affected by features of the Lithium 

Niobate plates, such as the surface flatness and uniformity. As is shown in Fig. 11(b), unlike the scanning mirror but similar 430 

to the segmented mirror Michelson interferometers, the visibilities of the four quadrant samples exhibit strong differences. It 

is obvious that the top and bottom light beams propagate through different parts of the crystal and result in different visibilities. 

In our experiment, we found that the visibilities of the four quadrants varied upon translation of the Lithium Niobate plates 

perpendicular to normal incidence. This suggests some spatial path variations that are larger (or smaller) for different regions 

of the crystal surface. For the lab measurements this leads to a less than ideal instrument visibility that is smaller than the 435 

expected (U~ 0.5 rather than 0.9). This was partially compensated by reducing the aperture area to increase the instrument 

visibility to ~0.7 as shown in Figure 11 (b).  From Eq.3 and Eq.4, these adjustments demand a proportional increase in the 

SNR that is required to achieve wind precisions of < 5 m/s. The field implementation that is discussed in Section 6 will be 

manufactured with better surface quality to achieve U~0.9.    

The calibrated phases shown in Fig. 11(c) are the phase differences of the four quadrants relative to the first one (lower left 440 

quadrant which necessarily will have a relative phase of zero). The phase differences between the two horizontally spilt quad-

rants of top and bottom should be exactly 180∘. However, the phase differences between the top and bottom quadrants vary 
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across the field of view. This is because the upper and lower beams separated by the first Wollaston prism form identical 

images of the scene within the top and bottom quadrants of the split field polarizer. The field from the top and bottom quadrants 

is then passed as collimated light through the field widened delay plates - mapping direction through the plate to position on 445 

the field stop. Therefore, the phase in the upper quadrant is mapped to position (and associated direction through the plate) in 

the top portion and the phase in the lower quadrant is mapped to position in the bottom quadrant. The resulting phase steps 

between the upper and lower neighbouring quadrants have a vertical distribution in the field of view and the sin(|φ1 − φ2|) 

is shown in Fig. 12(a).  

The ideal phase step for the four-point algorithm generally used for fringe sampling is 90∘ (Shepherd, 2002), relative phase 450 

steps deviate increasingly from this ideal with increasing incident angle (field of view). This results in larger uncertainties in 

the retrieved Doppler shifts as discussed in Section 4 (see (Kristoffersen et al., 2021) for a detailed discussion of the effect 

variations in phase steps have on fringe parameter determinations). The simulated uncertainty distribution for the current con-

figuration was simulated using the calibrated  𝐾𝑖, 𝑈𝑖 and 𝜑𝑖 using a Monte Carlo method. In the simulation, shot noise was 

added to the signal with a SNR of 1000. The result is shown in Fig. 12(b). Observe that bins close to the top and bottom edge 455 

have greater uncertainties. Therefore, the region of the field of view that can be used to achieve a wind precision less than 5m/s 

is only slightly restricted here. 

 

Figure 12. The sine value of the phase steps between 𝛗𝟏 and 𝛗𝟐 and the simulated standard deviation using calibrated parameters. (a) the 

𝐬𝐢𝐧(|𝛗𝟏 − 𝛗𝟐|) distribution in the field of view; (b) simulated standard deviation in retrieved wind. 460 

5.3 Lab wind measurements 

Two sets of wind measurements were conducted in the lab to examine the performance of the BIDWIN system. The first 

experiment is a single point wind measurement. This involved observing a specific point on the wind wheel and rotating the 

wheel at different rates so that a series of velocities were observed. This experiment tested the Doppler shift measuring capac-

ities of BIDWIN without including the imaging capability. The second experiment is a two-dimensional wind measurement 465 

which was performed by imaging an area of the wind wheel when it is rotating at a certain specified frequency. 
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Figure 13. Thermal drift of BIDWIN over 200 seconds interval using He-Ne laser as the source. 

To make a wind measurement, phase measurements of the rotating wheel and stationary wheel are required. The phase 

measurements with the stationary wheel provide the zero-wind background phase. Wind measurements are determined from 470 

the phase difference between this phase and the phase of the rotating wheel. Without a good thermal enclosure, frequent 

measurement of this background phase is essential for these experiments because the system is highly sensitive to temperature 

(the thermal drift corresponds to roughly 1.25 m/s per second in the experiment, see Fig. 13). This drift can dominate the wind 

determinations unless carefully monitored and calibrated. In our experiment, we removed this phase by linear fitting. The 

measurement sequence for Doppler wind measurement is similar to the measurement approach for MIADI, in which the zero-475 

wind image was taken after each wind measurement (Langille et al., 2013b). The time of each wind measurement was recorded, 

and the background phase of that moment could be interpolated. 

 

Figure 14. Measured wind velocity for single point measurements is plotted versus the wind wheel velocity. 

For the single point experiment, the distance from the wheel center to the center point of the narrow field of view was 4 cm. 480 

Phase determinations were made using the 30-pixel by 30-pixel region illuminated on the CCD, resulting in an irradiance SNR 

of ~ 1000. The frequency of wheel rotation was adjusted incrementally from 10 Hz to 120 Hz in steps of 10 Hz to provide a 
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range of line-of-sight speeds to evaluate the wind determination. The wind velocity measured using BIDWIN is plotted versus 

the wind wheel velocity determined from the rotation rate in Fig. 14. The straight blue line is the expected velocity. The red 

circles are the average measured velocity of nine measurements and the error bars are the standard deviations. The average 485 

standard deviation of the twelve points is 4.53 m/s, which confirms that upper atmospheric Doppler wind measurements with 

precision of 5 m/s are feasible using this technique if high SNR is achievable. 

The imaging capability was examined by illuminating a 2 cm diameter circular area centered 4 cm from the center of the 

retro-reflecting disk. The position of each pixel relative to the center of the wind wheel was determined by imaging a grid scale 

printed on a circular transparent plastic sheet which had a same size as the disk. Six measurement sets were taken using a 490 

rotation frequency of 105 Hz. The exposure time was adjusted to get a SNR of 1000 by averaging neighbouring pixels. Because 

all bins in the wind field are measured simultaneously, there is no thermal drift across the field of view; therefore, the thermal 

drift calibration for one point can be applied to the whole field while removing the background phase. The expected wind field 

is shown in Fig. 15(a) and the average of the six BIDWIN Doppler wind field measurements is shown in Fig. 15(b). The 

velocity gradients of the two wind images are consistent in shape and in magnitude. Some spatial variability is observed that 495 

does not track the gradient; however, it is possible that this is associated with contamination from light scattered from the disk 

that is not perfectly retro-reflected due to spatial variations across the disk.   

 

 

Figure 15. The expected and measured two-dimensional wind field across the wind wheel. (a) expected wind field; (b) measured wind field. 500 
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Figure 16. The difference between the expected and measured wind field is shown in (a) and the velocity standard deviation of the measured 

wind field across the field of view is shown in (b). 

The difference between the expected and measured wind field is shown in Fig. 16(a). Across most of the field of view, the 

difference between the two fields is less than 2 m/s. As anticipated, the errors in the top and bottom edges are much larger 505 

because the phase steps move away from quadrature. The velocity standard deviation of the measured wind field is shown in 

Fig. 16(b). It is consistent with the simulated standard deviation image shown in Fig. 12(b). The usable field of view is only 

slightly restricted by regions near the top and bottom edges where the wind error rapidly increases as the phase steps deviate 

significantly from quadrature. The system achieves a precision of better than 5m/s across a large portion of the field of view. 

This standard deviation is slightly higher than that predicted using the Monte Carlo simulations. There are some possible 510 

error sources such as the impact of uncertainties in the calibrated instrument parameters, the stability of the laser, the residual 

errors of the thermal drift calibration and the presence of scattered laser light from the beamsplitter. The analysis of these error 

sources was not performed for this study and will be undertaken in the future. 

6 Discussion 

The optical configuration of the breadboard prototype described in this paper has been used for lab testing, characterization, 515 

and performance evaluation.  Single point wind measurements and two-dimensional wind measurements have been performed 

in the lab to examine the feasibility of the technique for the measurement of upper atmospheric winds. This work has also 

facilitated the identification of the primary practical issues that must be carefully considered to implement this instrument in 

the field. These include the following: 

1) The sensitivity of the instrument to the field of view, misalignment of and mismatches in birefringent components. 520 

2) The loss of quadrature across regions of the image which results in increased wind uncertainties within these regions. 

3) Thermal sensitivity of the field widened birefringent interferometer. 
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4) Availability of high-quality large format Wollaston prisms and uniaxial birefringent slabs. 

The impact of misalignments and mismatches was briefly discussed in Section 4. As shown in Fig. 8, as the field of view is 

increased, horizontal strips across the image are introduced that exhibit zero quadrature. Rotational misalignment between the 525 

Lithium Niobate slabs introduces hyperbolic fringes which changes the shape and increases the number and size of these zero 

quadrature regions. Additionally, misalignment or manufacturing errors in the halfwave plate introduce parasitic fringes due 

to unequal coupling between the e and o waves in the interferometer. The overall impact of these sensitivities and the loss of 

quadrature between frames on the wind measurements must be investigated. This includes evaluating their effect on the accu-

racy of the calibrated fringe parameters, which also affect the precision of the wind measurements. A Jones matrix framework 530 

has been developed that allows these sensitivities to be examined by accurately simulating the interference fringes observed 

with the instrument (Langille et al., 2020). This framework was used in the design presented in Section 4 and provides a 

pragmatic and efficient means to evaluate and implement further refinements to the design and measurement approach. 

In the case where the loss of quadrature within certain bands is present, we envision arranging a limb viewing satellite 

instrument such these bands are projected perpendicular to the horizon. In this case, there is only a loss of wind information 535 

over a small range horizontal bins at each tangent altitude. While these regions cannot provide wind information, they will 

provide simultaneous intensity profiles along the vertical dimension that can be combined to retrieve the vertical distribution 

of the volume emission rate.   

The current BIDWIN configuration exhibits a strong thermal dependence that is dominated by the change in birefringence 

with temperature. This issue was managed for the lab measurements by using short integration times, sampling the non-rotating 540 

wheel between measurements, and interpolating the thermal drift between measurements. This effect would need to be care-

fully managed in the case of a practical field instrument where longer integration times are required, by implementing thermal 

compensation and active thermal control. In this case, the thermal drift will be tracked (and then corrected) by observing a 

calibration source. This could be done periodically between scene measurements by observing a calibration source emitting a 

spectral line close to that of the target emission. Or it could be done simultaneously by observing a calibration source emitting 545 

a spectral line different from that of the target emission that is separated into a second channel by placing a dichroic filter in 

the exit optics.   It may also be possible to partially thermally compensate the field widened birefringent interferometer by 

combining appropriately selected and oriented slabs so that the temperature dependence of the two composite slabs are oppo-

sitely signed (Hale and Day, 1988). The design of the field calibration system and a thermally compensated field widened 

birefringent interferometer requires careful and rigorous consideration that is outside the scope of the current work.  550 

The final consideration relates to the availability of large format high quality Wollaston prisms and Lithium Niobate slabs. 

For the prototype design, the size of the Wollaston prisms rather than the field widened birefringent delay plate limited the 

throughput, and as a result, much smaller than the maximum that is possible given the physical size of the delay plate. To 

realize the full capability of this design, a practical field instrument will need to utilize this larger throughput by acquiring 

custom large format prisms. Given the availability of large format crystals, a realistic field widened birefringent interferometer 555 

can be constructed with effective path difference in the 0 to 2cm range with diameters on the order of 100 mm. Therefore, 



25 

 

instruments capable of achieving a throughput on the order of ~ 1 cm2sr are feasible. Comparison of the effectiveness of a field 

widened birefringent interferometer relative to a field widened Michelson interferometer for the measurement of Doppler 

winds can be undertaken with respect to the primary instrument design parameters: A, Ω and D.  

For this comparison we assume that both instruments are observing the same emission lines using the same integration time 560 

and that the wind precision is dominated by photon noise.  By combining Eq. (3) and Eq. (4) the wind uncertainty as a function 

of the source characteristics and the instrumental parameters is: 

σw =
cλ

2√2πUVD√106

4π
I0tηAΩτc

 (16) 

The comparison is further simplified by assuming the instrumental parameters t, I0, η and U are the same. Since the visibil-

ity, V = e−QTD2
,  is a function of D and T it must also be included in the comparison. The instruments’ relative wind-measuring 565 

precision, E, evaluated with respect to throughput, path difference and the line visibility V, is: 

E =
λ

VD√AΩτc
 (17) 

In evaluating AΩ, the size of one field of view is used with the corresponding collecting area. Therefore, in the cases where 

four copies of the image are formed, such as for the instrument discussed in this paper, it is at the expense of the intensity level 

in each of the four copies. We account for this effect here by multiplying the transmission coefficient of those instrument by 570 

0.25. Table 6 lists the values of E for several Michelson interferometers, both built and proposed, and for the birefringent 

interferometer discussed in this paper, for four representative airglow emissions. For the birefringent interferometer we also 

make the conservative estimate that 25% of the samples will exhibit zero quadrature and will be unusable for wind measure-

ments.  According to this analysis, the prototype LiNbO3 birefringent interferometer has a wind measurement error that is 

comparable to but still larger than that of several current field widened Michelson interferometers.  Therefore, as shown in 575 

Section 4.2, the prototype instrument could only be used for single point ground-based instruments where all samples in the 

image are averaged to increase the SNR.  

However, a practical field instrument that is equally matched to the field widened Michelson interferometer can be achieved 

by utilizing slightly larger and longer crystals to increase the path difference to D = 1 cm and increase the usable aperture area 

by a factor of at least 4. It is possible because the diameter of a LiNbO3 crystal can reach 100mm. Substituting these optimized 580 

instrument parameters (D = 1 cm, UV ~ 0.9) into Eq.4 we find that an SNR > 480 is required to achieve a wind precision < 5 

m/s.  In the case of ground-based measurements of the O1D emission at 630 nm, and assuming that the field is sampled into a 

10x10 image and that 25% of the image exhibits zero quadrature (see Section 4.2), we substitute  𝐸𝑜~100 𝑅, 𝜏~0.1, 𝜂~0.9, 

𝐴Ω = 0.86 cm2sr/100 into Eq.3 and we find that an SNR > 480 can be achieved for each spatial sample in ~ 50 seconds.  For a 

limb imaging instrument, where the signal levels are much higher (𝐸𝑜~30 𝑘𝑅), this SNR can be achieved with 100x100 spatial 585 

samples, in roughly 16.6 seconds. Therefore, a wind precision of < 5 m/s is feasible with the proposed field instrument using 

practicable spatial and temporal sampling. This high precision is a result of the large throughput provided by the large format 
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LiNbO3 crystals. Utilizing the large throughput provided by the birefringent interferometer requires that the other optics sur-

rounding the interferometer are designed to accommodate it.  This aspect will be examined in future work. 

Table 6. Relative wind precision (E) evaluations for Michelson and birefringent interferometers (BI). 590 

Instrument 𝐴Ω (cm2sr) D (cm) 𝜏𝑐   

E (10-5 cm-2sr-1/2) 

O1S (200 K) O1D (1000 K) OH(6,2) (200 K) O2
1∆ (200 K) 

WaMI 0.12 5.9 0.25*0.5 10.0 23.6 13.0 18.0 

DynAMO 0.040 9 0.5 7.9 / / 10.5 

MIADI 0.091 7.45 0.5 5.3 19.5 6.3 8.3 

WINDII 
0.48 (N) 

4.46 0.5 
3.0 5.1 4.1 / 

0.053 (D) 8.9 15.3 12.3 / 

Lab: LiNbO3 (BI) 0.215*0.75 0.67 0.25*1.0 41.6 47.4 62.8 94.0 

Field: LiNbO3 (BI) 0.86*0.75 1 0.25*1.0 14.0 16.1 21.0 31.5 

7 Conclusions 

This paper presented the concept, design and performance testing of a compact static birefringent interferometer called BID-

WIN. The overall measurement principle, as well as the optical system and interferometer configuration was described. The 

design and implementation of the lab prototype was presented, and the instrument parameters were carefully characterized and 

calibrated. The expected wind precision and the limitation of the field of view has been analysed and the performance of the 595 

design was evaluated. The feasibility of measuring upper atmospheric winds with precision of 5m/s using BIDWIN was vali-

dated by performing single point wind and two-dimensional wind field observation in the lab. The practical limitations asso-

ciated with the design of a large throughput BIDWIN instrument capable of field measurements was discussed. Further study 

is needed to take full advantage of the technique; specifically, the ability to accommodate large aperture optical components 

and to implement thermal compensation. The overall performance of the prototype demonstrates the feasibility of the technique 600 

for the measurement of upper atmospheric winds. 
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