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Abstract. Remote sensing of greenhouse gases (GHGs) in cities, where high GHG emissions are typically associated with 10 

heavy aerosol loading, is challenging due to retrieval uncertainties caused by imperfect characterization of scattering by 

aerosols. We investigate this problem by developing GFIT3, a full physics algorithm to retrieve GHGs (CO2 and CH4) by 

accounting for aerosol scattering effects in polluted urban atmospheres. In particular, the algorithm includes coarse- (including 

sea salt and dust) and fine- (including organic carbon, black carbon, and sulfate) mode aerosols in the radiative transfer model. 

The performance of GFIT3 is assessed using high spectral resolution observations over the Los Angeles (LA) megacity made 15 

by the California Laboratory for Atmospheric Remote Sensing–Fourier Transform Spectrometer (CLARS–FTS). CLARS–

FTS is located on Mt. Wilson, California, at 1.67 km a.s.l. overlooking the LA basin, and makes observations of reflected 

sunlight in the near-infrared spectral range. The first set of evaluations are performed by conducting retrieval experiments 

using synthetic spectra. We find that errors in the retrievals of column-averaged dry air mole fractions of CO2 (XCO2) and 

CH4 (XCH4) due to uncertainties in the aerosol optical properties and atmospheric a priori profiles are less than 1% on average. 20 

This indicates that atmospheric scattering does not induce a large bias in the retrievals when the aerosols are properly 

characterised. The methodology is then further evaluated by comparing GHG retrievals using GFIT3 with those obtained from 

the CLARS-GFIT algorithm (used for currently operational CLARS retrievals) that does not account for aerosol scattering. 

We find a significant correlation between retrieval bias and aerosol optical depth (AOD). Comparison of GFIT3 AOD retrievals 

with collocated ground-based observations from AERONET shows that the developed algorithm produces very accurate 25 

results, with biases in AOD estimates of about 0.02. Finally, we assess the uncertainty in the widely used tracer-tracer ratio 

method to obtain CH4 emissions based on CO2 emissions, and find that using the CH4/CO2 ratio effectively cancels out biases 

due to aerosol scattering. Overall, this study of applying GFIT3 to CLARS-FTS observations improves our understanding of 

the impact of aerosol scattering on the remote sensing of GHGs in polluted urban atmospheric environments. GHG retrievals 

from CLARS-FTS are potentially complementary to existing ground-based and space-borne observations to monitor 30 

anthropogenic GHG fluxes in megacities. 
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1 Introduction 

Remote sensing of greenhouse gases (GHGs) in cities provides abundant datasets for quantifying urban carbon sources and 

sinks, complementary to in situ ground-based measurements. However, large source regions such as megacities are also 

typically associated with heavy aerosol loading. Atmospheric aerosols modify the path of solar radiation and thereby introduce 35 

uncertainties in the retrieval of GHGs from reflected and scattered sunlight measurements. It has been suggested that imperfect 

characterization of aerosol optical and microphysical properties is a significant source of error for GHG retrievals (Butz et al., 

2009; O’Dell et al., 2011). Many different full physics retrieval algorithms, which explicitly account for atmospheric 

absorption and scattering, and surface reflection, in the radiative transfer (RT) forward modelling, have been developed for 

spaceborne instruments for retrieving column-averaged dry air mole fractions of atmospheric carbon dioxide (XCO2) and 40 

methane (XCH4). Examples of these instruments include Orbiting Carbon Observatory-2 (OCO-2; Boesch et al., 2011; O’Dell 

et al., 2018; Reuter et al., 2017), the Greenhouse gases Observing SATellte (GOSAT; Bril et al., 2007; Butz et al., 2011; 

Yoshida et al., 2013), and TanSat (Wang et al., 2020; Yang et al., 2020). Full physics algorithms for retrieving GHGs 

explicitly fit aerosol optical and microphysical properties in order to minimize biases induced by scattering. Although the GHG 

retrievals show good agreement with ground-based Total Carbon Column Observing Network (TCCON) results, the retrieved 45 

aerosol optical depth (AOD) values have large differences compared with collocated AErosol RObotic NETwork (AERONET) 

measurements (Nelson et al., 2016), probably due to limited information content for aerosols and interference from other 

factors. To minimize data uncertainty, many operational GHG retrieval algorithms filter out retrievals with optically thick 

aerosols. Observations from these spaceborne instruments are made in side scattering directions (scattering angles between 

~90 and 150 degrees), where aerosol scattering effects are greatly reduced compared to the forward scattering direction. 50 

However, for an observatory targeting urban GHGs from other vantage points, such as the California Laboratory for 

Atmospheric Remote Sensing – Fourier Transform Spectrometer (CLARS–FTS) (Fu et al., 2014), which is located on the top 

of Mt. Wilson overlooking the Los Angeles (LA) Basin, the measurements are made in both backscattering and forward 

scattering directions (Zeng et al., 2020a). There has been very little prior work investigating impacts of aerosol scattering on 

GHG retrievals for a wide range of viewing geometries. 55 

The main objective of this study is to demonstrate the performance of a full physics algorithm (hereafter referred to 

as GFIT3), which is an extension of the widely used GFIT model, to retrieve GHGs in polluted urban atmospheres from 

spectra of reflected solar radiation. GFIT is a state-of-the-art profile scaling algorithm to retrieve gas concentrations and related 

atmospheric and instrumental parameters from absorption spectra. It has been the primary retrieval algorithm for the TCCON 

network (Wunch et al., 2011), which has been the benchmark for validating satellite-based trace gas observations. GFIT has 60 

also been used to analyse spectra from the MkIV balloon interferometer (e.g., Sen et al., 1996) and ATMOS (e.g., Irion et al., 

2002), and is also a critical component of the currently operational CLARS-GFIT retrieval algorithm (Fu et al., 2014). GFIT2 

(Connor et al., 2016; Roche et al., 2021) is an upgraded version of GFIT that enables retrieval of vertical profiles of trace 

gases. While GFIT scales profiles based on optimal estimation, GFIT2 uses Bayesian optimal estimation theory (Rodgers, 
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2000) as the inverse method to retrieve GHGs at different altitudes. However, both GFIT and GFIT2 do not account for 65 

scattering from molecules and particulates in the atmosphere. Such contributions are negligible in the near-infrared domain 

for instruments that measure directly transmitted solar spectra, such as TCCON. However, for GHG retrievals based on 

reflected solar radiation measurements (e.g., CLARS-FTS, GOSAT, and OCO-2), the aerosol scattering effect is important 

and needs to be accurately modeled. GFIT3 is designed specifically for the purpose of retrieving GHGs in polluted atmospheres 

from reflected solar radiation observations. It includes an aerosol model and a fast RT model to simulate the aerosol scattering 70 

contributions. The technical details can be found in Section 3. 

In this study, we specifically focus on measuring GHGs in the LA megacity, which is one of the most polluted cities, 

and the second largest contributor to carbon emissions in the US, using observations from CLARS–FTS. We investigate the 

impacts of aerosol scattering on GHG retrievals using GFIT3 to jointly retrieve GHGs (CO2 and CH4) and AODs of coarse- 

and fine-mode aerosols. CLARS–FTS observes reflected sunlight in the near-infrared spectral range. CLARS–FTS 75 

observations provide a unique dataset to study the impact of aerosol scattering effect because of (1) the large viewing zenith 

angle (>80 degrees) and larger range of scattering angles compared to spaceborne instruments (Zeng et al. 2020a); and (2) the 

longer light path in the planetary boundary layer (PBL) that is a consequence of the large viewing zenith angle. While a longer 

light path increases the sensitivity of the measurements to anthropogenic emissions from LA, it also makes the measurements 

susceptible to light path change due to aerosol particles in the PBL (Zhang et al., 2017). As a result, any effects from aerosol 80 

scattering on GHG remote sensing become amplified for CLARS–FTS due to its observation geometry. It is therefore very 

important to have proper aerosol models with accurate optical properties, including phase function and single scattering albedo, 

in order to obtain accurate GHG retrievals. 

Another scientifically unique feature of CLARS–FTS, among instruments that measure surface reflected sunlight, is 

that it uses the O2 1D band at 1.27 µm instead of the O2 A band at 0.76 µm that is traditionally used by spaceborne instruments 85 

to constrain surface pressure and aerosols. Since the 1D band is closer to the CO2 and CH4 absorption bands around 1.6 µm, 

scattering effects in the GHG absorption bands are likely to be better constrained. Also, the spectroscopy of the 1D band is 

more accurately known than that of the A band. The 1D band was not selected by current spaceborne instruments because of 

contamination from airglow emitted by oxygen molecules in the upper atmosphere. Recently, Bertaux et al. (2020) showed 

that the airglow contribution can be distinguished and separated from the O2 absorption signal. Usage of the 1D band will be 90 

tested in the upcoming MicroCarb mission (Bertaux et al., 2020), the first such attempt for a spaceborne instrument. Since 

CLARS-FTS looks downwards toward the basin, the measured spectra are not affected by airglow, which originates in the 

upper atmosphere. Outcomes from this study will shed light on the merits of using the 1D band for GHG remote sensing. 

The paper is organized as follows. The CLARS–FTS instrument is introduced in Section 2. The GFIT3 retrieval 

algorithm is described in Section 3. In Section 4, we demonstrate retrieval experiments using synthetic spectra to evaluate 95 

GFIT3. Retrieval results for CLARS observations are presented in Section 5, followed by discussions and conclusions in 

Sections 6 and 7, respectively. 



4 
 

2 California Laboratory for Atmospheric Remote Sensing (CLARS) 

2.1 CLARS-FTS  

CLARS-FTS was designed and built at the Jet Propulsion Laboratory. It is optimized for reflected sunlight measurements with 100 

high spectral resolution in the near-infrared region (4,000–15,000 cm-1). CLARS–FTS uses a pointing system to target a set of 

predefined surface reflection targets (Fig. 1) in the LA basin, as well as a local diffuse reflector (Spectralon) for measurements 

of the free tropospheric background (Zeng et al., 2020b). In the Los Angeles Basin Survey (LABS) operating mode, the 

pointing system stares at each surface reflection target in the LA basin and records atmospheric absorption spectra using 

reflected sunlight as the light source. In the absence of aerosols, as shown in Fig. 1(a), sunlight travels through the PBL twice 105 

with a defined path: once on the way to the surface target and a second time from the surface target to CLARS–FTS. The 

resulting light path through the PBL is greater than 5 km (see Table 1 in Wong et al., 2015), which is several times longer 

than other commonly used viewing geometries, e.g., observing the direct solar beam from the surface, or measurement of 

surface-reflected sunlight from aircraft and spacecraft vantage points. In the presence of aerosols, the light path changes mainly 

due to aerosol scattering along the path from the basin to the mountain top. Examples of single and multiple scattering are 110 

demonstrated in Fig. 1(a). CLARS covers the whole basin every 1.5 to 2 hours. Depending on the season, the total number of 

observations within a single day ranges from 160 to 260, and the number of repeated scans of the whole basin is between five 

to eight times over the same timeframe. Additional details can be found in Fu et al. (2014). Fig. 1(b) shows examples of the 

observed radiance in the O2 absorption band centred at 7885 cm-1, the weak CO2 absorption band (hereafter referred to as 

WCO2) at 6220 cm-1, the CH4 absorption band at 6076 cm-1, and the strong CO2 absorption band (hereafter referred to as SCO2) 115 

at 4852 cm-1. The absolute radiance, which is needed to constrain the aerosol scattering and the surface reflectance, is derived 

by calibrating the raw spectral data of digital numbers. The calibration factor is derived by comparing the CLARS-FTS spectra 

with that of a collocated ASD Spectroradiometer. The signal to noise ratio (SNR) for the WCO2 and CH4 bands is about 

300±80; for the O2 and SCO2 bands, the SNR is about 100–150 depending on the surface target. 

2.2 Observation geometries 120 

Compared to low earth orbit satellites such as OCO-2/3, observations from CLARS–FTS have a larger range of aerosol 

scattering angles, mainly due to the diurnal and seasonal change of incident solar geometry (Zeng et al., 2020c). Fig. 2 shows 

the diurnal change of aerosol scattering angle for six selected surface reflection points. In the morning, the surface reflection 

points to the west (West Pasadena and Santa Monica) have large scattering angles that gradually change to smaller scattering 

angles in the late afternoon. The opposite pattern of change can be observed at reflection points to the east (Santa Fe dam and 125 

Rancho Cucamonga). At reflection points to the south (Santa Anita and Long Beach), the changes are smaller than at other 

targets. These changes are a result of the fixed viewing geometry for each surface reflection target but varying solar geometry. 

A detailed description of the angular scattering effect can be found in Zeng et al. (2020c). This large range of angles, from 

forward scattering (<90 degrees) to backward scattering (>90 degrees), means that a majority of the change in aerosol scattering 
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comes from angular variations. This also indicates that the aerosol scattering phase function is a key parameter that needs to 130 

be accurately modelled in order to obtain high fidelity RT calculations. 
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3 GFIT3: A full physics approach for retrieving XCO2 and XCH4 from CLARS–FTS observations 

GFIT3 incorporates the following four major components: (1) a pre-processing step using the CLARS-GFIT algorithm to 

generate gas absorption coefficients and other related parameters, as well as the O2 slant column density (SCD) for excluding 135 

cloudy and heavy aerosol loading soundings; (2) a forward RT model (RTM) to generate synthetic spectra in order to simulate 

observed CLARS–FTS spectra; (3) an inverse model based on optimal estimation to update the surface and atmospheric state 

vector to minimize the difference between model and observation; and (4) a post-processing screening step to filter out bad 

retrievals. The workflow chart is shown in Fig. 3. 

3.1 Pre-processing using CLARS-GFIT 140 

The objective of pre-processing is to identify measurements that are affected by clouds and/or heavy aerosol loading and to 

exclude them before the full physics retrieval. We employ CLARS–GFIT (Fu et al, 2014), which is a modified version of the 

GFIT program (version GGG2014), to retrieve O2 SCD using the same spectral bands and spectroscopic parameters used by 

TCCON. The recently released GGG2020 with major updates to the spectroscopic linelists will be incorporated into CLARS-

GFIT in the near future. Aerosol scattering is not considered in CLARS–GFIT; the ratio of retrieved O2 SCD to calculated O2 145 

SCD estimated from surface pressure reanalysis data (National Center for Environmental Prediction (NCEP) reanalysis in this 

study), denoted by O2 ratio, acts as a proxy (Zeng et al., 2020c). We filter out data with (1) O2 ratio less than 0.85 (low clouds 

and high aerosol loading) and larger than 1.02 (high clouds); (2) SNR less than 100; (3) solar zenith angle (SZA) larger than 

70 degrees; and (4) spectral fit error larger than one sigma above the mean of all the spectral fitting residuals. The gas 

absorption coefficients, a priori atmospheric profiles, and solar lines processed by CLARS-GFIT will also be used in the 150 

forward RTM of GFIT3. 

3.1.1 Calibrating O2 absorption cross section 

Analysis of the O2 ratio under different aerosol conditions reveals a systematic bias (about 2%) between the retrieved O2 SCD 

and that calculated using the NCEP reanalysis surface pressure, even in situations when the atmosphere is clear (Appendix 

Fig. A1). Such a bias in the 1D band has been reported by Washenfelder et al. (2006), who found that for the TCCON spectra, 155 

the retrieved column O2 is consistently 2.27 ± 0.25% higher than the dry pressure column estimated from the surface pressure. 

This bias in TCCON retrievals is consistent with values for CLARS–GFIT retrievals. A similar systematic bias was found by 

Butz et al. (2011) for the O2 A–band at 0.76 µm from satellite observations. These biases are most likely attributable to 

spectroscopic uncertainties. We adopt a simple method of scaling the absorption cross sections in the 1D band by a factor of 

1.02 to make our modelled radiances in the 1D band consistent with observations. 160 

3.2 Forward model 

3.2.1 Optical property-based principal component analysis RTM 
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RT models simulate the radiance based on inputs of the state vector and related model parameters. In theory, a sophisticated 

line-by-line RTM (e.g., LIDORT; Spurr et al., 2008) with a high number of computational quadrature angles (streams) is 

needed to accurately simulate the propagation of sunlight through the atmosphere. However, simulation of high resolution 165 

CLARS–FTS spectra that require resolving gas absorption lines with fine spectral sampling is computationally expensive. 

Instead, many fast RTMs (e.g., Butz et al., 2011; O’Dell et al., 2012; Somkuti et al., 2017) have been developed to speed up 

the radiance calculation without introducing large systematic errors in the trace gas retrieval. In this study, we adopt an optical 

property-based principal component analysis (O-PCA) RTM developed by Natraj et al. (2005, 2010) and improved by 

Kopparla et al. (2016, 2017). The O-PCA procedure was linearized and analytic Jacobians developed for the PCA-based 170 

radiation fields by Spurr et al. (2013). It has been shown to be fast and accurate for retrieving CO2 from satellite measurements 

(Somkuti et al., 2017). The O-PCA method first divides the spectral region into bins. Each bin is characterized by grouping 

certain optical properties (such as atmospheric layer trace gas optical depth values or single scattering albedos) that are similar 

within the bin. The selection for spectral binning is typically based on the division of (the logarithms of) the total-atmosphere 

gas optical depths into decadal intervals. We use 11 bins in this study. For each bin, PCA is implemented on a dataset that 175 

includes the extinction optical depth and single scattering albedo profiles, as well as the (wavelength-dependent) surface albedo 

and column optical depth for each aerosol type. High-accuracy line-by-line multiple scattering calculations (using LIDORT in 

this work) are then performed for profiles representing the bin mean and PCA-perturbed properties. For this analysis, we use 

32 streams for these calculations. The multiple scattering calculations are computationally expensive; reduction of the number 

of these calculations is the main reason for the speed-up afforded by O-PCA. O-PCA also performs a fast and low-accuracy 180 

line-by-line calculation of the radiances using the 2-Stream Exact Single Scattering (2S-ESS; Spurr and Natraj, 2011) model 

for every spectral point in the band. The 2S-ESS model computes both the single scattering contribution to the radiance and a 

two-stream approximation to the multiple scattering contribution. Finally, the total radiance field is obtained for every point 

in the bin by calculating a wavelength-dependent correction factor to adjust the 2S-ESS calculations. A detailed description of 

the O-PCA methodology can be found in Kopparla et al. (2017) and Spurr et al. (2013). Simulations (see Fig. 4) show that, 185 

while the accuracy of O-PCA depends on the aerosol loading, almost all of the spectral calculations have an error less than 

0.1%. The root mean square error (RMSE) is less than 0.01%. 
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3.2.2 State vector 

The state vector includes all variables that are to be retrieved by GFIT3 in order to fit the observed spectra. These variables 190 

are inputs to the forward RTM. Table 1 summarizes all the variables in the state vector and the values used for their 

uncertainties in their retrieval. 

Table I. Summary of variables in the state vector and their uncertainties. 

Variables # of variables A priori value A priori uncertainty Descriptions 

CO2 scale factor 1 1.0 0.05 a priori profile from 
CarbonTracker model 

CH4 scale factor 1 1.0 0.05 
a priori profile constructed 
from GFIT and ground 
observations 

H2O scale factor 1 1.0 0.40 a priori profile from NCEP 

Surface pressure 1 NCEP 2 hPa  

Surface albedo 4 Zeng et al., 
(2018) 0.10, 0.07, 0.07, 0.04 For the four bands: O2, 

WCO2, CH4, and SCO2 

Spectral continuum 5×4 0 0.01, 0.005, 0.002, 
0.0016, 0.001 

Zeroth to fourth orders of 
Legendre polynomial 

Frequency shift 4 0 0.1 For the four bands 

AOD coarse 1 0.02 0.02 Optical properties from 
GOCART 

AOD fine 1 0.01 0.02 Optical properties from 
GOCART 

Aerosol Layer Height 1 0.70 km 0.05 km Estimates from MiniMPL at 
Caltech 

Interference gas scale 
factors 2 (HDO, 13CO2) 1.0 0.4, 0.02 a priori profiles from GFIT 

 
(1) CO2 and CH4 profiles 195 

We follow the TCCON methodology and perform a retrieval that scales predefined vertical shapes of CO2 and CH4 to obtain 

XCO2 and XCH4. This is faster and simpler than a full profile retrieval that independently scales gas mixing ratios at different 

altitudes. The profile scaling method is also less sensitive to systematic errors related to the shape of the calculated spectral 

lines, such as ILS and spectroscopic line widths (Wunch et al., 2011). Although a profile retrieval is possible, there are not 

enough degrees of freedom in the measurement to fully resolve the gas profile. Therefore, the retrieval problem will be ill-200 

posed and under-determined if strong constraints are not imposed on the vertical profile. Sensitivity tests show that the profile 

scaling approach is efficient and that errors from possible bias in the profiles are small (Section 4). 
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To account for GHG enhancement in the LA PBL, we used CO2 simulations from the widely used CarbonTracker–

CO2 model (Peters et al., 2007), which is an assimilation model incorporating available observations. 3-hourly simulations 

are available from the CarbonTracker–CO2 model. Monthly averaged CO2 profiles are used as the a priori profiles in GFIT3 205 

(Fig. 5(a)). For CH4, since high resolution simulations are not available at city scale, we reconstruct the profiles based on 

CLARS-GFIT a priori. A constant PBL enhancement of 91 ppb, as estimated by Verhulst et al. (2017; Table 5) using the 

NASA megacity network, is added to the monthly averaged CH4 profiles, as shown in Fig. 5(b). Diurnal changes in the PBL 

enhancement are not considered in this analysis. 

(2) Surface albedo and aerosol properties 210 

The contributions to the observed radiance from surface reflectance and aerosol scattering are coupled. Similar to Zeng et al. 

(2018), we assume a Lambertian surface and calculate the a priori surface albedo by ratioing the measured radiance reflected 

from the surface target to that reflected by a Spectralon board beside the FTS. The Spectralon measurement represents the 

incident radiance before entering the PBL. For aerosols, we use AOD values from MERRAero reanalysis data (Rienecker et 

al., 2011) and associated optical properties from GOCART (Chin et al., 2002), which includes five aerosol types: sea salt, 215 

dust, organic carbon, black carbon, and sulfate. In light of the difficulty in resolving so many aerosol types from measurements, 

we separate the five aerosol types into two groups based on size: coarse-mode (sea salt and dust) and fine-mode (organic 

carbon, black carbon, and sulfate). While the sizes, extinction efficiency, and phase function of aerosols in the fine mode are 

similar, the black carbon has a much smaller single scattering albedo (SSA). For sea salt and dust aerosols, five differently-

sized bins are separately tracked in the MERRA model. The sea salt, black carbon, organic carbon, and sulfate are all 220 

hygroscopic. GFIT3 uses monthly average aerosol optical properties (extinction efficiency, SSA, and phase function) at four 

daytime hours (local times 7h,10h,13h,16h). The monthly averaged density fraction of aerosols is shown in Fig. 6. While the 

fine-mode aerosols show identical monthly variabilities, the coarse-mode particles show a clear seasonal cycle, with more sea 

salt in summer originating from the ocean and more dust in winter originating from the Mojave desert and transported to the 

LA basin. Fig. 7 shows the wavelength dependence of aerosol optical properties averaged over all months in 2013. Fine mode 225 

aerosols have a larger Angstrom exponent, and hence a greater wavelength dependence, than coarse-mode aerosols. To 

illustrate changes in phase function, the asymmetry factor (that quantifies the extent of forward scattering) is used. An 

asymmetry factor value of 0 represents isotropic scattering; the value increases to 1.0 as the phase function peak sharpens in 

the forward direction. 

In the retrieval algorithm, we retrieve AODs for the coarse and fine modes, in addition to the aerosol layer height 230 

(ALH; Table 1). The single scattering albedos (SSAs) and phase functions of the coarse and fine modes are prescribed and 

not retrieved. The effective SSA for the coarse mode is calculated as the mean of the SSA values (from the GOCART model) 

of sea salt and dust, weighted by their simulated AODs from MERRAero. The same approach is applied to fine-mode aerosols 

except using black carbon, organic carbon and sulfate. The effective phase functions can be calculated in a similar manner, 

except that the weighting is done by the scattering AOD. We do not consider the geometric thickness of the aerosol layer since 235 

it has a much smaller impact on the observed radiance compared to the total AOD (Zeng et al., 2019). Practically, in the 



10 
 

forward model, the aerosols are placed in two adjacent layers. The fractions of AODs in each layer are adjusted (with total 

AOD conserved) to change the effective ALH. Since both fine- and coarse-mode aerosols are relatively well mixed in the 

atmosphere, we assume that they have the same effective ALH. The a priori AODs are derived from monthly averaged 

AERONET observations at Caltech, and the a priori ALH from an aerosol profiling lidar (MiniMPL), also at Caltech (Zeng 240 

et al., 2018). For the retrievals, the a priori ALH is set to 0.7 km, representing an average from all available MiniMPL 

observations. 

(3) Surface pressure 

The a priori surface pressure is extracted from NCEP reanalysis data (Kalnay et al., 1996), which is used for GGG2014 

TCCON retrievals (Wunch et al., 2015). A comparison with ECMWF ERA5 reanalysis (Hersbach et al., 2020), which has a 245 

higher resolution, indicates that the two surface pressure datasets are highly correlated, with a standard deviation of the 

difference of about 2 hPa (Zeng et al., 2020b). In the GFIT3 retrieval, we assume this value as the uncertainty for surface 

pressure. 

 

3.2.3 Solar model 250 

To construct the high-resolution solar irradiance, we combine the solar continuum level estimated from the solar spectrum 

developed by Kurucz (2005) (http://kurucz.harvard.edu/sun/irradiance2008/) and the high resolution solar pseudo-

transmittance spectrum from GFIT (Toon, 2014; https://mark4sun.jpl.nasa.gov/toon/solar/solar_spectrum.html). The Kurucz 

spectrum was created from the solar spectrum measured by a high-resolution FTS at the Kitt Peak National Observatory. In 

the near infrared spectral regions of relevance to this work, Toon’s solar pseudo-transmittance spectrum is a combination of 255 

high-resolution spectra from balloon FTS, ground-based Kitt Peak and TCCON observations. A similar combination of Kurucz 

and Toon reference spectra was also used by GOSAT (Yoshida et al., 2013). The absolute solar irradiance is necessary to 

constrain aerosol scattering and surface reflectance. 

3.2.4 Jacobian 

The Jacobian matrix contains the first order derivative of the simulated radiance with respect to all state vector elements, and 260 

is a key variable in inverse modeling to fit the observed spectra by iteratively optimizing the state vector. This matrix has a 

dimensionality of m×n, where m refers to the number of measurement channels and n is the number of state vector elements. 

Fig. 8 illustrates a sample Jacobian matrix calculated by O-PCA. 

3.3 Inverse modeling 

3.3.1 Optimal estimation 265 

Mathematically, the measurement vector y, which is the observed CLARS–FTS radiance, is related to the state vector x, 

including O2, CO2, and CH4 SCDs, and other relevant geophysical parameters, through a forward model F and model parameter 

vector b: 
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𝒚 = 𝐅(𝒙, 𝒃) + 𝜺                                                                                 (1) 

Specifically, b is a set of input parameters for the forward model that are not retrieved, such as gas absorption coefficients and 270 

observing and solar geometries, while the state vector x is a set of parameters to be retrieved, such as trace gas columns, aerosol 

properties, and surface properties. The forward model F is a RT model (O-PCA in this study) that simulates the radiance based 

on input parameters b and x. ε is the error vector containing both the measurement noise and the forward model error. The 

goal of optimal estimation is to obtain the state vector with maximum a posteriori probability by minimizing the following 

cost function (Rodgers, 2000): 275 
 

𝐽(𝒙) = 𝜒! = [𝒚 − 𝐅(𝒙, 𝒃)]"𝐒𝜺$%[𝒚 − 𝐅(𝒙, 𝒃)] + (𝒙 − 𝒙&)"𝐒&$%(𝒙 − 𝒙&)                                   (2) 

where 𝒙& is the a priori state vector; 𝐒& is the a priori covariance matrix for the state vector; and 𝐒𝜺 is the measurement error 

covariance matrix. In this study, the measured radiance from the O2 1D, WCO2, CH4, and SCO2 absorption bands constitutes 

the measurement vector 𝐲. For the sake of simplicity, we assume that the measurement noise dominates and that there is no 280 

cross-correlation between different spectral channels, resulting in a diagonal 𝐒𝜺 matrix. In theory, the spectral error term ε 

includes the measurement noise, which can be characterized by the SNR, and uncertainty in the forward model. While it is 

reasonable to assume that the measurement noise dominates, the forward model error, including multiple components such as 

RTM uncertainty, errors in spectroscopic constants, and biases in prescribed aerosol optical properties, may not be negligible. 

These uncertainties propagate through the retrieval algorithm to the retrieved GHGs. Further investigation of the measurement 285 

error covariance matrix from post-retrieval analysis of spectral residual and goodness of fit is discussed in Section 6.3. 

To estimate forward model uncertainty related to RT approximations, we use the results from Fig. 4, representing 

spectral fitting error estimates between O-PCA and LIDORT. The RMSE is less than 0.01%, which is much smaller than the 

measurement noise. We therefore use the measurement noise to generate the matrix 𝐒𝜺. We adopt the Levenberg-Marquardt 

method (Levenberg, 1944; Marquardt, 1963; Rodgers, 2000) to obtain the optimal estimate of the state vector x that 290 

minimizes the cost function 𝐽(𝒙) through an iterative process: 

𝒙'(% = 𝒙' + [(1 + 𝛾)𝐒&$% +	𝐊'"𝐒𝜺$%𝐊']$%{𝐊'"𝐒)$%[𝒚 − 𝐅(𝒙' , 𝒃)] − 𝐒&$%[𝒙𝒊 − 𝒙&]}                               (3) 

where the subscript 𝑖 indicates the 𝑖th iteration; The parameter 𝛾 is chosen at every step to minimize the cost function. Initially 

it is set to be 10; 𝐊 is the Jacobian matrix, which is the first derivative of 𝑭(𝒙, 𝒃) with respect to 𝒙:  

𝐊' = 	𝜕𝐅(𝒙' , 𝒃)/𝜕𝒙'                                                                                (4) 295 

where each element in 𝐊' defines the sensitivity of the simulated radiance to the corresponding geophysical variable in the 

state vector. At each step, the parameter 𝛾 is updated based on the ratio 𝑅 (Fletcher, 1971): 

𝑅 = (𝜒'! − 𝜒'(%,,-./! )/(𝜒'! − 𝜒'(%,01-/2&3,! )                                                                (5) 

where 𝜒'(%,,-./!  refers to the cost function computed with the updated state vector 𝒙'(% in the forward model 𝐅'(% = 𝐅(𝒙'(%, 𝒃), 

while 𝜒'(%,01-/2&3,!  is computed using a linear approximation to the forward model 𝐅'(% = 𝐅' +𝐊' ∗ (𝒙'(% − 𝒙'). 𝑅 quantifies 300 

the impact of forward model nonlinearity on cost function reduction. If the linear approximation is perfect, then 𝑅 will be unity 
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since 𝜒'(%,,-./!  = 𝜒'(%,01-/2&3,! . The strategy for updating 𝑅 is as follows: if 𝑅 is greater than 0.75, then reduce 𝑅 by a factor of 

2; if R is less than 0.25, then increase 𝑅 by a factor of 10; otherwise, leave 𝑅 unchanged. Convergence is achieved when the 

change in the state vector is small compared to the a posteriori error: 

𝑑'! = (𝒙' − 𝒙'(%)"𝐒@$%(𝒙𝒊 − 𝒙'(%) ≪ 𝑛                                                                    (6) 305 

where 𝑛 is the number of state vector elements; 𝐒@$% is the a posteriori error covariance matrix for the estimated state vector 

𝒙C. At convergence, 𝐒@$% can be estimated as follows: 

𝐒@ = (𝐊"𝐒𝜺$%𝐊+ 𝐒&$%)$%                                                                                (7) 

where 𝐒@ includes the a posteriori uncertainties of all retrieved elements in the state vector and their correlations. 

 310 

3.3.2 Averaging kernel 

Similar to TCCON, we use the column averaging kernel calculated from our retrieval algorithm to quantify the altitude-

dependent sensitivity of the total column retrievals to changes in the vertical profile of partial column densities. Ideally, the 

column averaging kernel would be unity at all altitudes, meaning a unit change in partial column at any altitude would lead to 

the same amount of change in the total column. In practice, however, the column averaging kernel is not a perfect unity vector. 315 

To derive the column averaging kernel, we first calculate the full averaging kernel matrix (m×m): 

𝐀 = (𝐊"𝐒𝜺$%𝐊+	𝐒&$%)$%𝐊"𝐒)$𝟏𝐊                                                                          (8) 

where m is the number of atmospheric layers. Aij represents the derivative of the retrieved mixing ratio at level i with respect 

to the true mixing ratio at level j. The jth element of the column averaging kernel is given by: 

𝑎5 =	∑ 𝐴'5
∆7!
∆7"'                                                                                            (9) 320 

where ∆𝑝' is the pressure thickness at level i. 𝑎5 describes the change in the retrieved total column abundance with respect to 

a perturbation of the partial column at the jth atmospheric level. Fig. 9 shows examples of column averaging kernels for CO2 

and CH4 at different SZA values. Both spectral channels show similar shape and have higher averaging kernel values (close 

to 1) in the troposphere than in the stratosphere. For comparison of CLARS-FTS measurements with other datasets (such as 

satellite observations), the above averaging kernels and a priori profiles from CLARS-GFIT should be taken into account. 325 

Details about implementation of the averaging kernel correction can be found in Wunch et al. (2011). 

3.4 Post-processing 

After obtaining the SCDs for O2, CO2, and CH4, XCO2 and XCH4 can be calculated as follows: 

XCO! =
89#	;8<
9#	;8<

	× 	0.2095          (10) 

XCH= =
8>$	;8<
9#	;8<

	× 	0.2095          (11) 330 
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where the constant 0.2095 is the column-averaged dry-air mixing ratio of O2 in the atmosphere. In the post-processing, multiple 

filters are applied to ensure good retrieval quality. First, retrievals that fail to converge after 15 iterations according to the 

procedure outlined in Equation (6) are excluded. Second, the spectral fitting residual (RMSE) for each window should be 

smaller than 0.01 for all four bands. Third, outliers in retrieved state vector parameters, including O2, CO2, and CH4 SCDs, 

that have large impact on XCO2 and XCH4, are filtered. In this study, we define outliers as values that are more than three 335 

standard deviations away from the mean. For retrievals of CLARS–FTS observations from June 2013 to May 2014, about 80% 

of all pre-filtered observations pass the post-processing filters. 
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4. Inversion experiments based on synthetic spectra 

The goal of applying the GFIT3 algorithm to simulated synthetic spectra is to assess the performance of the algorithm in 340 

retrieving XCO2 and XCH4 and to quantify the impacts on the accuracy due to factors such as aerosol scattering, imperfect 

meteorological data, RTM errors, uncertainty in gas absorption, and instrument noise. In this study, we primarily concentrate 

on three potentially important error sources: imperfect characterization of aerosol scattering, assumptions about the vertical 

distributions of CO2 and CH4, and biases due to usage of the O-PCA RTM. 

We first generate synthetic spectra using LIDORT with high accuracy (32 streams) to reproduce the “true” spectra 345 

under three aerosol loading scenarios (total column AOD = 0.01, 0.05, and 0.1), which covers the AOD range for non-cloudy 

days based on AERONET-Caltech measurements (Appendix Fig. A2). Given that CLARS–FTS observes large air mass 

factors (more than eight times the vertical column) in the PBL because of the long slant column in the line of sight, the aerosol 

loading along the slant path is much higher than the column AOD. To simulate the synthetic spectra, we use 3-hourly aerosol 

composition data from MERRA aerosol reanalysis and other optical properties (SSA and phase function) from the GOCART 350 

model (Section 3.2.2). CO2 and CH4 vertical profiles are derived as described in Section 3.2.2. The hourly variability of CH4 

in the PBL is assumed to be the same as that of CO2 since they are co-emitted and follow a similar atmospheric mixing process. 

Surface albedos for the O2, WCO2, CH4, and SCO2 bands are estimated from CLARS–FTS observations. All other inputs are 

the same as the state vector described in Section 3.2.2. Measurement noise (which we assume to be white noise with a mean 

of 0 and a standard deviation of 1/SNR) is added to generate the synthetic spectra as a proxy for CLARS–FTS observations. 355 

We test the GFIT3 algorithm on the synthetic spectra for the three surface targets at Santa Anita, Santa Fe, and West Pasadena 

over a wide range of observing geometries encompassing four seasons (Jan, April, July, and October) and five hours from 

early morning to late afternoon (~8–9h, 10–11h, 12–13h, 14–15h, 16–17h). Since data in the early morning and late afternoon 

hours may not be available in winter, we select observations from the available day time data with a time step of at least one 

hour. In total, 60 different observation scenarios are selected. 360 

We conduct four retrieval tests on the synthetic spectra, as listed in Table 2. In Test 1, we assume perfect knowledge 

of aerosol composition and GHG profiles. The goal is to assess the capability of O-PCA and the inverse framework for 

retrieving XCO2 and XCH4. In Test 2, we use O-PCA, but with monthly average aerosol composition and GHG profiles. The 

goal is to investigate retrieval uncertainty due to assumptions about aerosols and GHG profiles, and RT calculation 

approximations. Test 3 is similar to Test 2, except that we use 3-hourly GHG profiles. The goal is to isolate the impact of 365 

uncertainty in aerosol composition. Test 4 is also similar to Test 2, except that we use 3-hourly aerosol composition. The goal 

is to isolate the impact of imperfect knowledge of GHG vertical distribution. For each observation scenario in these tests, we 

calculate the difference between the retrieved state vector and the “truth” that was used to generate the synthetic spectra. The 

retrieval error (in percentage) is defined as the ratio of the calculated difference to the “truth”. 

Fig. 10 shows results from Test 1. It is evident that all simulations have mean absolute error (MAE) less than 0.5%. 370 

The retrieval error, however, increases as AOD increases. In the haziest scenario (AOD = 0.1), the largest retrieval error is 
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around 1%. Results from Test 2 (Fig. 11) are broadly similar to those from Test 1. The errors are generally larger than those 

in Test 1 due to the bias in aerosol optical properties and atmospheric profiles. On average, the MAEs are less than 1%; the 

largest errors are greater than 2%. The bias in the retrieved AOD is smaller at larger AOD values because of the stronger 

aerosol scattering signal. Moreover, the bias in ALH is about -10% on average, indicating an average error less than 1 km. Fig. 375 

12 shows results from Tests 3 and 4. No clear correlation can be observed between bias in XCO2 and XCH4 retrievals and that 

in aerosol optical properties for either coarse- or fine-mode aerosols. This indicates that a combination of fine- and coarse-

mode aerosols is able to accurately capture the scattering effects. On the other hand, there is a clear correlation between bias 

in the trace gas columns and that in PBL enhancement (defined as the difference in PBL GHG mixing ratios between 3-hourly 

and monthly a priori atmospheric profiles). However, the MAE is still almost always less than 1%. 380 

Table 2. Synthetic experiments to assess the impact of RTM, aerosol composition, and GHG profiles on 
retrievals of XCO2 and XCH4 from CLARS-FTS observations. 

Experiment Aerosol 
composition 

Atmospheric 
profile 

RT model Objective 

Synthetic spectra 3-Hourly 3-Hourly LIDORT To create synthetic spectra 
Test 1: Noise free 

simulation 3-Hourly 3-Hourly O-PCA To investigate the error due to 
RTM approximations 

Test 2: Operational 
algorithm Monthly Monthly O-PCA To investigate the error due to 

the operational algorithm 

Test 3: Aerosol 
impact Monthly 3-Hourly O-PCA 

To investigate the error due to 
assumptions about aerosol 
composition 

Test 4: Vertical 
profile impact 3-Hourly Monthly O-PCA 

To investigate the error due to 
assumptions about vertical 
distribution of CO2 and CH4 

5. Retrieval results for CLARS–FTS observations 

We applied the GFIT3 retrieval algorithm to one-year of CLARS observations from June 2013 to May 2014. Over this period, 

CLARS–FTS spent a large portion of measurement time observing the Santa Anita, Santa Fe, and West Pasadena targets. 385 

Therefore, these three surface reflection points are our focus in this section. In total there are 36,170 observed spectra from 

CLARS–GFIT. After pre-processing, we obtain 12,911 spectra that pass the filters for processing by the GFIT3 algorithm. 

Most of the retrievals converge after less than 10 iterations. However, about 20% of the measurements fail to converge, and 

another 20% fail to pass the post-processing filters; these are discarded. Eventually, 7,733 spectra are available for further 

analysis. 390 

5.1 Residuals from spectral fitting 

Fig. 13 shows normalized residuals with respect to the continuum level from spectral fitting for the O2, WCO2, CH4, and SCO2 

bands. The RMSE values are less than 1%, and the majority of residuals are less than 0.5%. The SCO2 band shows a larger 
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residual compared to the other bands, partly due to imperfect spectroscopic data (Crisp et al. 2012), and partly due to the large 

aerosol scattering contribution, especially in the strong absorption lines (of which there are several due to the high spectral 395 

resolution of CLARS–FTS). It is instructive to compare these results with fitting residuals from CLARS-GFIT (Appendix 

Fig. A3), where aerosol scattering is neglected. It is evident that the residuals from GFIT3, especially in the SCO2 band, are 

significantly smaller. In the GFIT3 algorithm, the aerosols are primarily constrained by the O2 and the SCO2 bands. This is 

because a priori for atmospheric pressure are very accurate (~0.2% uncertainty) and O2 concentration well known, thereby 

resulting in the O2 absorption spectra providing strong constraints on the aerosol scattering effects. For the SCO2 band, since 400 

most of the absorption lines are saturated, any extra radiance in this spectral region is attributable to aerosol scattering. Ignoring 

aerosol scattering results in higher residuals, especially for the strong absorption lines (Appendix Fig. A3). Fitting residuals 

are significantly reduced using GFIT3. Results from this study suggest that the effects of scattering in the observed spectra can 

be accurately characterized by the aerosol models used in the GFIT3 algorithm. Not accounting for scattering leads to large 

spectral fitting residuals, and therefore large biases, in GHG retrievals. 405 

5.2 Comparison of retrieved AOD with AERONET and ALH with MiniMPL 

We compare the retrieved AOD with ground-based AERONET observations at Caltech. AERONET is a global ground-based 

aerosol monitoring network (Holben et al., 1998) that has been providing high-accuracy measurements of total AOD from the 

ultraviolet to the near infrared. The AERONET instrument at Caltech is located on the university campus in Pasadena, which 

is geographically close to the Santa Anita, Santa Fe, and West Pasadena surface targets. The AERONET-Caltech 410 

measurements cover the wavelength range from 340–1020 nm. To derive the AOD in the O2 1D band, we extrapolate from 

AERONET measurements using the Ångström exponent law (Seinfeld and Pandis, 2006). Fig. 14 shows that the retrieved 

AOD is in good agreement with AERONET-Caltech AOD, with RMSE values of about 0.02. The AERONET AOD 

uncertainty is on the order of 0.01–0.02 in the 0.34–0.87 µm spectral range (Eck et al., 1999); our estimated RMSE value of 

0.02 is therefore very close to the noise level. The difference is larger for higher AOD. This effect may be due to two reasons. 415 

First, GFIT3 retrievals have higher uncertainty at large AOD values because of the magnification of biases due to 

misrepresentation of aerosol optical properties. Second, CLARS-FTS and AERONET observe different parts of the atmosphere 

due to differences in their observing geometries. Considering the spatial heterogeneity of aerosol distribution, such difference 

between retrieved and observed AOD is expected. The retrieved ALH values agree closely with MiniMPL observations (Fig. 

15); however, they do not have significant correlation on a point-by-point basis (not shown). This suggests the difficulty in 420 

constraining ALH when it is jointly retrieved with GHGs. The signal from ALH may be interfered with by imperfect 

characterization of other factors that existing full physics algorithms cannot resolve. However, when ALH is retrieved 

independently using specifically targeted O2 absorption lines, high accuracy can be achieved (Zeng et al., 2019). This suggests 

the potential of a two-step procedure, as proposed in Zeng et al. (2020a), where the O2 absorption lines are used to provide 

strong constraints on AOD and ALH. The improved AOD and ALH estimates can then be used as inputs for the retrieval of 425 

GHGs. 



17 
 

5.3 Retrievals of XCO2 and XCH4 

Fig. 16 compares XCO2 and XCH4 retrievals from GFIT3 (after post-processing) and CLARS-GFIT. In general, when aerosols 

are not accounted for in the retrieval, as in CLARS-GFIT, XCO2 and XCH4 are overestimated (see discussion in Section 6.2). 

The bias can be up to about 10% for both XCO2 and XCH4. The scatter plots indicate that the differences in XCO2 and XCH4 430 

are significantly correlated with AOD. The correlation coefficients are higher for Santa Anita, probably because of the smaller 

changes in scattering angle (and therefore aerosol effects) compared to the other two surface targets. The XCO2 and XCH4 

differences are mostly 10–30 ppm and 50–150 ppb, respectively, for an AOD value of 0.05 in the 1D absorption band. Since 

CO2 and CH4 are retrieved at similar wavelengths, the biases in XCO2 and XCH4 retrievals due to aerosol scattering are 

expected to be comparable. The impact on the retrieved XCH4/XCO2 ratio in the presence of aerosols is further discussed in 435 

Section 6.1. Appendix Fig. A4 shows comparisons for all 28 surface targets based on available measurements from June 2013 

to May 2014. In comparison to the three sites close to the CLARS location (Santa Anita, Santa Fe, and West Pasadena), for 

sites that are further away, valid retrievals that pass the filters have lower AOD values. This is because of their longer slant 

paths in the PBL, leading to a larger scattering effect even under the same vertical aerosol loading. 

 440 
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6. Discussions 

6.1 Testing the assumption that the ratio between XCH4 and XCO2 is not affected by aerosol scattering 

The tracer-tracer ratio method to retrieve CH4 emissions based on CO2 emissions or CH4 concentration based on CO2 

concentration assumes that the CH4/CO2 ratio cancels out any systematic errors caused by aerosol scattering in the two bands 445 

(e.g., Frankenberg et al., 2005; Parker et al., 2011; Wong et al., 2015, 2016; He et al., 2019). However, the fact that the 

spectral regions do not exactly overlap and that the line intensities have different strengths may reduce the validity of this 

assumption. Since XCO2 and XCH4 are simultaneously retrieved from both GFIT3 and CLARS-GFIT, these retrievals serve 

as good datasets for testing the ratioing assumption. Fig. 17 shows a scatter plot between CLARS-GFIT XCH4/XCO2 ratios 

and those from GFIT3. No systematic bias is observed from this comparison, suggesting high accuracy of using the trace-450 

tracer ratio method to accurately estimate CH4 emissions using remote sensing measurements in the presence of aerosols. 

 

6.2 Impact of aerosol scattering on XCO2 and XCH4 retrievals regulated by surface reflectance 

The effects of aerosol scattering and surface reflectance on modifying the path of solar radiation, and thereby introducing 

biases in trace gas retrievals, are coupled. A darker surface means a relatively higher contribution from aerosol scattering that 455 

will shorten the expected light path. On the other hand, in the presence of a brighter surface, enhanced multiple scattering 

between the surface and the aerosols may lead to a longer light path. With a RTM, this coupling effect can be explicitly 

characterized. In general, in the presence of aerosols, XCO2 (or XCH4) will be overestimated if scattering is not accounted for, 

according to Equations 10 and 11. This is because there is larger bias (underestimation) in O2 SCD than in CO2 (or CH4) SCD, 

due to higher AOD at the O2 wavelength. According to MERRA reanalysis data, the AOD ratio between 1.6 µm and 1.27 µm 460 

is about 0.8. However, this is assuming that the surface reflectance is relatively unchanged between the two bands. In fact, the 

surface is usually darker in the 1.6 µm CO2 band than in the 1.27 µm O2 band. According to our estimates, the reflectance ratio 

between the two bands is about 0.5–0.8, depending on the composition of the target (soil, vegetation, buildings, etc.). As a 

result, the darker surface at 1.6 µm may compensate for the lower AOD and increase the relative aerosol scattering contribution. 

If the reflectance ratio is close to 1 (no spectral dependence), the XCO2 (or XCH4) bias will be primarily determined 465 

by the AOD ratio. Here we assume the aerosols are mostly non-absorbing or do not have strong spectral dependence of 

absorption. However, if the reflectance ratio is small (strong spectral dependence), the surface is much darker in the CO2 band 

than in the O2 band. In this case, it is possible for the surface darkening effect to be more dominant than the AOD effect in 

driving the bias (underestimation) of retrieved XCO2 (or XCH4). For example, the West Pasadena location is special in that it 

is close to a park, which has different land use types compared to the other surface targets. This target has a much lower 470 

reflectance ratio than other locations (Appendix Fig. A5), which may explain the underestimation by CLARS-GFIT compared 

to GFIT3 for this location, as seen in Fig. 14(c) and Appendix Fig. A4. 
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6.3 Post-retrieval analysis of fitting residual and goodness of fit 475 

The benefit of using the GFIT spectroscopy database is that it has been carefully evaluated based on highly accurate TCCON 

observations. To further investigate the errors in spectroscopy, an important contributor to the forward model error in Equation 

(1), we apply Principal Component Analysis (PCA) to the fitting residuals. This analysis method has been used by the OCO-

2/3 operational algorithm to correct for errors in CO2 spectroscopic parameters and the atmospheric state (O’Dell et al., 2018). 

The three principal components (PCs) with the largest variance are shown in Appendix Fig. A6. The features in these PCs are 480 

mostly related to spectroscopic uncertainties. These PCs might be related to line width, instrument effects, and the solar 

spectrum. For example, PC-3 from the WCO2 band appears to be correlated with absorption features that may be attributed to 

very small changes in the line width. However, this PC can only explain a few percent of the residual variance. Overall, there 

are no PCs that can explain more than 10% of the variance in the fitting residual. This is because the fitting residual itself is 

very close to random and without large systematic errors. We therefore believe that spectroscopic errors should not be a major 485 

issue here. 

The reduced 𝜒!, which is the 𝜒!  from Equation (2) divided by the total number of measurements and state vector 

elements, infers the goodness of fit and can be used to evaluate the error covariance matrix. Theoretically, if the error 

covariance matrix is properly implemented in the retrieval algorithm, the reduced 𝜒!  should be close to 1 after convergence, 

which means that the fitting residuals are consistent with the detector noise estimates. The histogram of reduced 𝜒!  from all 490 

converged retrievals (Appendix Fig. A7) indicates that most of the retrievals have a 𝜒!  close to 1 (83% having 𝜒! less than 

1.5). This indicates that the error covariance matrix used in the retrieval algorithm, which assumes that measurement noise is 

uncorrelated between different spectral channels, is realistic. It should be noted that inaccuracies in the spectroscopic input 

data and improperly modeled instrument effects may contribute to the small deviation of 𝜒! from unity. 

  495 
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7. Conclusions 

In this study, we developed GFIT3, a full physics algorithm to retrieve trace gases in the presence of aerosols, and demonstrated 

its performance by retrieving XCO2 and XCH4 from CLARS-FTS measurements. This algorithm simultaneously retrieves 

fine- and coarse-mode aerosol properties including AOD and ALH. Inverse experiments based on synthetic spectra indicate 

that the uncertainty in CLARS-FTS retrievals of XCO2 and XCH4 due to uncertainty in the RTM, aerosol scattering, and 500 

atmospheric profile, which constitute the three most important sources of error, is less than 1% (or less than ~4 ppm for XCO2 

and ~20 ppb for XCH4). The retrieval uncertainty for real CLARS-FTS observations is partly due to imperfect characterization 

of aerosol properties. Nonetheless, we find that the retrieved AOD has good agreement with AERONET measurements. 

Unfortunately, direct comparison of XGHGs with existing TCCON data at Caltech is not feasible. On one hand, CLARS-FTS 

cannot directly target the TCCON site at Caltech due to mountain ridges that block the line of sight. On the other, TCCON 505 

uses directly transmitted solar spectra to measure GHG columns, which have different geometries from CLARS observations; 

the spatial heterogeneity of GHG distributions between the incident and reflected solar paths in the boundary layer make the 

results difficult to compare. 

Future research will focus on developing a “divide and conquer” algorithm for retrieving aerosol properties and GHGs 

in order to further improve the accuracy of GHG retrievals. The basic idea is to use a two-step procedure. First, O2 absorption 510 

lines will be used to constrain the AOD and ALH based on a spectral sorting technique (Zeng et al., 2019). These values will 

then provide constraints for AOD and ALH (with uncertainty estimates) for the retrieval of GHGs. 
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33. Van Nuys Airport 

 

Figure 1. (a) Schematic figure of the CLARS observatory. The lines depict incident and reflected sunlight from an 
example surface reflection target. The LABS and SVO observation modes are illustrated. For the LABS mode, 700 
examples of contributions from single scattering (dotted-red) and multiple scattering (dotted-black) are also illustrated; 
(b) Examples of observed high resolution (0.06 cm-1) spectra for the O2 1D absorption band centered at 1.27µm (7885 
cm-1), the weak CO2 absorption band at 6220 cm-1, the CH4 absorption band at 6076 cm-1, and the strong CO2 absorption 
band at 4852 cm-1. These measurements were made on 28 September, 2013 over the Santa Anita Racetrack surface 
reflection point at local noon; (c) The 33 surface reflection points across the Los Angeles basin. The background image 705 
is adopted from © Google Earth. 
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Figure 2. Diurnal change of aerosol scattering angle for six selected surface reflection points, separated into two groups. 

Group 1 includes points #1 Santa Anita Racetrack, #2 West Pasadena, and #3 Santa Fe Dam that are close to CLARS-

FTS; group 2 includes #15 Santa Monica Mt., #17 Rancho Cucamonga, and #19 Long Beach that are further away. 710 

Hourly scenarios from June 20 and December 22 2013 are used to represent summer and winter solar geometries, 

respectively. 
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Figure 3. Workflow of GFIT3 for retrieving XCO2 and XCH4 from CLARS-FTS observations. There are four major 

components: (1) a pre-processing step to identify soundings free of clouds and heavy aerosol loading; (2) a forward 

RTM to generate synthetic spectra in order to simulate observed CLARS-FTS measurements; (3) an inverse model 730 

based on optimal estimation to update the surface and atmosphere states to minimize the difference between model and 

observation; and (4) a post-processing screening step to filter out bad retrievals.  
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Figure 4. Ratio of the difference (relative to the continuum value) between simulated radiances (using O-PCA) and 

high-accuracy computations (using LIDORT with 32 streams). These calculations are based on the 240 scenarios, with 735 

different observation geometries and atmospheric profiles, described in the inverse experiments in Section 4. Four 

EOFs are used for the O-PCA computations. Three different aerosol scenarios are considered, with AOD of 0.01, 0.05, 

and 0.1, respectively, in the 1.27 µm O2 1D band. The overall RMSEs are also indicated. 
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(a) (b) 

 

 740 

Figure 5. (a) CO2 vertical profiles are extracted from the CarbonTracker model over Los Angeles with 3-hourly 

temporal resolution. Monthly averaged profiles are used as a priori in GFIT3. (b) Monthly averaged CH4 vertical 

profiles are adopted from CLARS-GFIT. A constant PBL enhancement of 91 ppb, as estimated by Verhulst et al. (2017; 

Table 5) using the NASA Megacity network, is added. The hourly variability of CH4 in the PBL is assumed to be the 

same as that of CO2 since they are co-emitted and follow a similar atmospheric mixing process. 745 
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(a) 

 

(b) 

 

 

Figure 6. Aerosol composition from Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

reanalysis data for LA (local times 7h,10h,13h,16 h). (a) Monthly averaged density fraction of aerosols for dust and sea 

salt. The dry size bins for dust (DU01 to DU05) correspond to the radius limits (in microns) 0.1–1, 1–1.8, 1.8–3, 3–6, 750 

and 6–10, respectively. Similarly, for sea salt (SS01 to SS05), the corresponding values are 0.03–0.1, 0.1–0.5, 0.5–1.5, 

1.5–5, and 5–10, respectively; (b) Monthly averaged density fraction for hydrophilic black carbon (BC_PHI), 

hydrophobic black carbon (BC_PHO), hydrophilic organic carbon (BC_PHI), hydrophobic organic carbon 

(BC_PHO), and sulfate (SU). MERRA data below the CLARS-FTS elevation (1.67 km) are used. 
  755 
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Figure 7. Wavelength dependence of aerosol optical properties (averaged over a year) in the 1.27 um O2 1D absorption 

band, 1.61 µm weak CO2 absorption band, 1.65 µm CH4 absorption band, and 2.06 µm strong CO2 absorption band 

from the Georgia Institute of Technology–Goddard Global Ozone Chemistry Aerosol Radiation and Transport 

(GOCART) model. (left) mass extinction efficiency; (center) single scattering albedo; and (right) asymmetry factor for 760 

fine (blue) and coarse (red) modes. These aerosol optical properties are density weighted on a monthly basis for day 

time only (local times 7h, 10h, 13h, 16h). For aerosols that are hygroscopic (size dependent upon relative humidity), 

monthly average humidity is used. 
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 765 

Figure 8. Sample Jacobian values from O-PCA for representative state vector elements in the GFIT3 retrieval 

algorithm. This Jacobian matrix is based on observations over the Santa Anita surface reflection point on September 

28, 2013, with a solar zenith angle (SZA) of 36 degrees. The y-axis labels indicate the units of the Jacobian values. 
 

 770 

(a) CO2 

 

(b) CH4 

 
 

Figure 9. Examples of column averaging kernels for (a) CO2 and (b) CH4 with different SZA. These are from 

observations of the Santa Anita surface target on September 28, 2013. 
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 775 

 

 
 

Figure 10. Results for Test 1. Errors in retrieved XCO2 and XCH4 are quantified for simulations with three different 

values of AOD (0.01, 0.05, and 0.1). The errors arise mainly due to the bias caused by the O-PCA approximation 

compared to the exact atmospheric radiative transfer process. MAE represents the mean absolute error. 780 
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(a) XCO2 and XCH4 

 

(b) AOD 
 

 

(c) ALH 
 

 

 

Figure 11. Results for Test 2. Errors in retrieved (a) XCO2 and XCH4 for three different values of AOD (0.01, 0.05, and 

0.1); (b) AOD for the same scenarios as in (a); (c) ALH for all AOD scenarios. The errors have contributions from 

biases due to the O-PCA RTM and due to imperfect knowledge of aerosol optical properties and vertical distribution 785 

of atmospheric trace gases.  
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(a) Biases due to biases in SSA and g of coarse mode 
aerosol 

 

(b) Biases due to biases in SSA and g of fine mode 
aerosol 

 
(c) Bias due to biases in atmospheric profile 

 
 

Figure 12. Results for Test 3 (panels a and b), and Test 4 (panel c). (a) and (b) show XCO2 and XCH4 biases as a function 

of biases in SSA and g (asymmetry factor) of coarse- and fine-mode aerosol, respectively. (c) shows the same as a 

function of biases in PBL CO2 and CH4 enhancement. This bias is defined as the difference in PBL GHG mixing ratios 790 

between 3-hourly and monthly a priori atmospheric profiles. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

  
 

Figure 13. (a) Upper left: median fitting residual (black) and ±1-s range (grey) for the O2 band; Lower left: sample 

measured spectrum; Right: histogram of fitting residuals; (b), (c), and (d) are the same as (a) but for the weak CO2 

band, the CH4 band, and the strong CO2 band, respectively. 
 805 

 

 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
Normalized Residual

0

1

2

3

4

5

6

7

N
um

be
r o

f d
at

a

106

O2

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
Normalized Residual

0

0.5

1

1.5

2

2.5

N
um

be
r o

f d
at

a

106

Weak CO2

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
Normalized Residual

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
um

be
r o

f d
at

a

106

CH4

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
Normalized Residual

0

2

4

6

8

10

12

14

16
N

um
be

r o
f d

at
a

105

Strong CO2



40 
 

 
Figure 14. AOD comparison between measurements from the Caltech AERONET site and GFIT3 retrievals. The 

AERONET AOD at 1.27  µm is extrapolated from actual AERONET observations using the Angstrom exponent law. 810 

Histograms of the difference between AERONET and GFIT3 retrievals are also included. 

 

 

 
 

Figure 15. Comparison of effective ALH from the MiniMPL lidar instrument on the Caltech campus and GFIT3 815 

retrievals for the Santa Anita, Santa Fe, and West Pasadena surface targets. 
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(a) 

 
(b) 

             
(c) 

 
Figure 16. Comparison of (left) XCO2 and (right) XCH4 retrievals from GFIT3 and CLARS-GFIT for the (a) Santa 
Anita; (b) Santa Fe; and (c) West Pasadena surface reflection targets. The data points are color-coded by the retrieved 
AOD. The insets show scatter plots between retrieved AOD and the difference in XCO2 or XCH4 between GFIT3 and 820 
CLARS-GFIT. 
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Figure 17. Scatter plot of the XCH4/XCO2 ratio from GFIT3 and CLARS-GFIT. The 1:1 line is shown in black. The 

red line denotes the best fit using type II linear regression to fit the data. The equation for the regression fit is also 825 

shown. 
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Appendix Figures 
 

 830 

Figure A1. (left) Time series of O2 VMR Scale Factor (VSF) and (right) histogram of VSF. The VSF value (indicated 
by the dashed red line) of ~1.02 represents situations when the atmosphere is clear. See Section 3.1.1 for details. 
 

 

 835 
 
Figure A2. AOD in the 1.27 µm O2 absorption band estimated from AERONET observations (2010–2017). 
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Figure A3. Example of spectral fitting residuals from the CLARS-GFIT (red; ignoring aerosol scattering) and GFIT3 
(blue; accounting for aerosol scattering) algorithms for the O2, WCO2, CH4, and SCO2 spectral windows. The spectral 
fitting RMSEs are also indicated. This example is for an observation over the West Pasadena surface target on Sept. 
28, 2013 with a solar zenith angle of 65°. 845 
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Figure A4. Comparison of XCO2 retrievals from GFIT3 and CLARS-GFIT for all surface reflection targets. The data 
points are color-coded by the retrieved AOD.   
  850 



46 
 

 
Figure A5. Histogram of the ratio of reflectance between the WCO2 and O2 bands for all the surface targets. The 
reflectance values are obtained from GFIT3 retrievals. The number in red is the average ratio for the surface target. 
 
 855 
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(a) O2 

 

(b) WCO2 

 
(c) CH4 

 

(d) SCO2 

 
Figure A6. Mean radiance spectrum, and the three leading principal components (PCs), ranked by the 
variance explained by these PCs, obtained by applying Principal Component Analysis (PCA) on the fitting 
residuals, for the (a) O2, (b) WCO2, (c) CH4 and (d) SCO2 bands. The variance explained by each PC is also 
indicated. 
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Figure A7. Histogram of reduced 𝜒!from all converged retrievals in this study. 865 
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