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Abstract. Remote sensing of greenhouse gases (GHGs) in
cities, where high GHG emissions are typically associated
with heavy aerosol loading, is challenging due to retrieval un-
certainties caused by the imperfect characterization of scat-
tering by aerosols. We investigate this problem by develop-5

ing GFIT3, a full physics algorithm to retrieve GHGs (CO2
and CH4) by accounting for aerosol scattering effects in
polluted urban atmospheres. In particular, the algorithm in-
cludes coarse- (including sea salt and dust) and fine- (in-
cluding organic carbon, black carbon, and sulfate) mode10

aerosols in the radiative transfer model. The performance
of GFIT3 is assessed using high-spectral-resolution observa-
tions over the Los Angeles (LA) megacity made by the Cal-
ifornia Laboratory for Atmospheric Remote Sensing Fourier
transform spectrometer (CLARS-FTS). CLARS-FTS is lo-15

cated on Mt. Wilson, California, at 1.67 km a.s.l. overlook-
ing the LA Basin, and it makes observations of reflected sun-
light in the near-infrared spectral range. The first set of eval-
uations are performed by conducting retrieval experiments
using synthetic spectra. We find that errors in the retrievals20

of column-averaged dry air mole fractions of CO2 (XCO2)
and CH4 (XCH4) due to uncertainties in the aerosol optical
properties and atmospheric a priori profiles are less than 1 %
on average. This indicates that atmospheric scattering does
not induce a large bias in the retrievals when the aerosols25

are properly characterized. The methodology is then further
evaluated by comparing GHG retrievals using GFIT3 with
those obtained from the CLARS-GFIT algorithm (used for
currently operational CLARS retrievals) that does not ac-

count for aerosol scattering. We find a significant correla- 30

tion between retrieval bias and aerosol optical depth (AOD).
A comparison of GFIT3 AOD retrievals with collocated
ground-based observations from AErosol RObotic NETwork
(AERONET) shows that the developed algorithm produces
very accurate results, with biases in AOD estimates of about 35

0.02. Finally, we assess the uncertainty in the widely used
tracer–tracer ratio method to obtain CH4 emissions based on
CO2 emissions and find that using the CH4/CO2 ratio ef-
fectively cancels out biases due to aerosol scattering. Over-
all, this study of applying GFIT3 to CLARS-FTS observa- 40

tions improves our understanding of the impact of aerosol
scattering on the remote sensing of GHGs in polluted urban
atmospheric environments. GHG retrievals from CLARS-
FTS are potentially complementary to existing ground-based
and spaceborne observations to monitor anthropogenic GHG 45

fluxes in megacities.

1 Introduction

Remote sensing of greenhouse gases (GHGs) in cities pro-
vides abundant datasets for quantifying urban carbon sources
and sinks, complementary to in situ ground-based mea- 50

surements. However, large source regions such as megaci-
ties are also typically associated with heavy aerosol load-
ing. Atmospheric aerosols modify the path of solar radia-
tion and thereby introduce uncertainties in the retrieval of
GHGs from reflected and scattered sunlight measurements. 55
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2 Z.-C. Zeng et al.: GFIT3 for remote sensing of greenhouse gases

It has been suggested that the imperfect characterization
of aerosol optical and microphysical properties is a signif-
icant source of error for GHG retrievals (Butz et al., 2009;
O’Dell et al., 2011). Many different full physics retrieval al-
gorithms, which explicitly account for atmospheric absorp-5

tion and scattering and surface reflection in the radiative
transfer (RT) forward modeling, have been developed for
spaceborne instruments for retrieving column-averaged dry
air mole fractions of atmospheric carbon dioxide (XCO2)
and methane (XCH4). Examples of these instruments in-10

clude Orbiting Carbon Observatory-2 (OCO-2; Boesch et al.,
2011; O’Dell et al., 2018; Reuter et al., 2017), the Green-
house gases Observing SATellite (GOSAT; Bril et al., 2012;
Butz et al., 2011; Yoshida et al., 2013), and TanSat (Wang
et al., 2020; Yang et al., 2020). Full physics algorithms for15

retrieving GHGs explicitly fit aerosol optical and microphys-
ical properties in order to minimize biases induced by scat-
tering. Although the GHG retrievals show good agreement
with ground-based Total Carbon Column Observing Net-
work (TCCON) results, the retrieved aerosol optical depth20

(AOD) values have large differences compared with col-
located AErosol RObotic NETwork (AERONET) measure-
ments (Nelson et al., 2016) probably due to limited infor-
mation content for aerosols and interference from other fac-
tors. To minimize data uncertainty, many operational GHG25

retrieval algorithms filter out retrievals with optically thick
aerosols. Observations from these spaceborne instruments
are made in side scattering directions (scattering angles be-
tween ∼ 90 and 150◦), where aerosol scattering effects are
greatly reduced compared to the forward scattering direction.30

However, for an observatory targeting urban GHGs from
other vantage points, such as the California Laboratory for
Atmospheric Remote Sensing Fourier transform spectrome-
ter (CLARS-FTS) (Fu et al., 2014), which is located on the
top of Mt. Wilson overlooking the Los Angeles (LA) Basin,35

the measurements are made in both backscattering and for-
ward scattering directions (Zeng et al., 2020a). There has
been very little prior work investigating impacts of aerosol
scattering on GHG retrievals for a wide range of viewing ge-
ometries.40

The main objective of this study is to demonstrate the per-
formance of a full physics algorithm (hereafter referred to
as GFIT3), which is an extension of the widely used GFIT
model, to retrieve GHGs in polluted urban atmospheres from
spectra of reflected solar radiation. GFIT is a state-of-the-45

art profile scaling algorithm to retrieve gas concentrations
and related atmospheric and instrumental parameters from
absorption spectra. It has been the primary retrieval algo-
rithm for the TCCON network (Wunch et al., 2011), which
has been the benchmark for validating satellite-based trace50

gas observations. GFIT has also been used to analyze spec-
tra from the MkIV balloon interferometer (e.g., Sen et al.,
1996) and ATMOS (e.g., Irion et al., 2002) and is also a crit-
ical component of the currently operational CLARS-GFIT
retrieval algorithm (Fu et al., 2014). GFIT2 (Connor et al.,55

2016; Roche et al., 2021) is an upgraded version of GFIT that
enables the retrieval of vertical profiles of trace gases. While
GFIT scales profiles based on optimal estimation, GFIT2
uses Bayesian optimal estimation theory (Rodgers, 2000) as
the inverse method to retrieve GHGs at different altitudes. 60

However, both GFIT and GFIT2 do not account for scat-
tering from molecules and particulates in the atmosphere.
Such contributions are negligible in the near-infrared domain
for instruments that measure directly transmitted solar spec-
tra, such as TCCON. However, for GHG retrievals based on 65

reflected solar radiation measurements (e.g., CLARS-FTS,
GOSAT, and OCO-2), the aerosol scattering effect is impor-
tant and needs to be accurately modeled. GFIT3 is designed
specifically for the purpose of retrieving GHGs in polluted
atmospheres from reflected solar radiation observations. It 70

includes an aerosol model and a fast RT model to simulate
the aerosol scattering contributions. The technical details can
be found in Sect. 3.

In this study, we specifically focus on measuring GHGs
in the LA megacity, which is one of the most polluted cities 75

and the second largest contributor to carbon emissions in the
US, using observations from CLARS-FTS. We investigate
the impacts of aerosol scattering on GHG retrievals using
GFIT3 to jointly retrieve GHGs (CO2 and CH4) and AODs
of coarse- and fine-mode aerosols. CLARS-FTS observes re- 80

flected sunlight in the near-infrared spectral range. CLARS-
FTS observations provide a unique dataset to study the im-
pact of aerosol scattering effect because of (1) the large view-
ing zenith angle (> 80◦) and larger range of scattering an-
gles compared to spaceborne instruments (Zeng et al., 2020a) 85

and (2) the longer light path in the planetary boundary layer
(PBL) that is a consequence of the large viewing zenith an-
gle. While a longer light path increases the sensitivity of the
measurements to anthropogenic emissions from LA, it also
makes the measurements susceptible to light path change due 90

to aerosol particles in the PBL (Zhang et al., 2017). As a
result, any effects from aerosol scattering on GHG remote
sensing become amplified for CLARS-FTS due to its obser-
vation geometry. It is therefore very important to have proper
aerosol models with accurate optical properties, including 95

phase function and single scattering albedo (SSA), in order
to obtain accurate GHG retrievals.

Another scientifically unique feature of CLARS-FTS,
among instruments that measure surface-reflected sunlight,
is that it uses the O2

11 band at 1.27 µm instead of the 100

O2 A band at 0.76 µm that is traditionally used by space-
borne instruments to constrain surface pressure and aerosols.
Since the 11 band is closer to the CO2 and CH4 absorption
bands around 1.6 µm, scattering effects in the GHG absorp-
tion bands are likely to be better constrained. Also, the spec- 105

troscopy of the 11 band is more accurately known than that
of the A band. The 11 band was not selected by current
spaceborne instruments because of contamination from air-
glow emitted by oxygen molecules in the upper atmosphere.
Recently, Bertaux et al. (2020) showed that the airglow con- 110
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tribution can be distinguished and separated from the O2 ab-
sorption signal. Usage of the 11 band will be tested in the
upcoming MicroCarb mission (Bertaux et al., 2020), the first
such attempt for a spaceborne instrument. Since CLARS-
FTS looks downwards toward the basin, the measured spec-5

tra are not affected by airglow, which originates in the upper
atmosphere. Outcomes from this study will shed light on the
merits of using the 11 band for GHG remote sensing.

The paper is organized as follows. The CLARS-FTS in-
strument is introduced in Sect. 2. The GFIT3 retrieval al-10

gorithm is described in Sect. 3. In Sect. 4, we demon-
strate retrieval experiments using synthetic spectra to eval-
uate GFIT3. Retrieval results for CLARS observations are
presented in Sect. 5, followed by discussions and conclusions
in Sects. 6 and 7, respectively.15

2 California Laboratory for Atmospheric Remote
Sensing (CLARS)

2.1 CLARS-FTS

CLARS-FTS was designed and built at the Jet Propulsion
Laboratory. It is optimized for reflected sunlight measure-20

ments with high spectral resolution in the near-infrared re-
gion (4000–15 000 cm−1). CLARS-FTS uses a pointing sys-
tem to target a set of predefined surface reflection targets
(Fig. 1) in the LA Basin, as well as a local diffuse reflec-
tor (Spectralon) for measurements of the free tropospheric25

background (Zeng et al., 2020b). In the Los Angeles Basin
Survey (LABS) operating mode, the pointing system stares
at each surface reflection target in the LA Basin and records
atmospheric absorption spectra using reflected sunlight as the
light source. In the absence of aerosols, as shown in Fig. 1a,30

sunlight travels through the PBL twice with a defined path:
once on the way to the surface target and a second time
from the surface target to CLARS-FTS. The resulting light
path through the PBL is greater than 5 km (see Table 1 in
Wong et al., 2015), which is several times longer than other35

commonly used viewing geometries, e.g., observing the di-
rect solar beam from the surface, or measurement of surface-
reflected sunlight from aircraft and spacecraft vantage points.
In the presence of aerosols, the light path changes mainly
due to aerosol scattering along the path from the basin to the40

mountain top. Examples of single and multiple scattering are
demonstrated in Fig. 1a. CLARS covers the whole basin ev-
ery 1.5 to 2 h. Depending on the season, the total number of
observations within a single day ranges from 160 to 260, and
the number of repeated scans of the whole basin is between45

five to eight times over the same timeframe. Additional de-
tails can be found in Fu et al. (2014). Figure 1b shows exam-
ples of the observed radiance in the O2 absorption band cen-
tered at 7885 cm−1, the weak CO2 absorption band (hereafter
referred to as WCO2) at 6220 cm−1, the CH4 absorption band50

at 6076 cm−1, and the strong CO2 absorption band (hereafter

referred to as SCO2) at 4852 cm−1. The absolute radiance,
which is needed to constrain the aerosol scattering and the
surface reflectance, is derived by calibrating the raw spectral
data of digital numbers. The calibration factor is derived by 55

comparing the CLARS-FTS spectra with that of a collocated
ASD spectroradiometer. The signal-to-noise ratio (SNR) for
the WCO2 and CH4 bands is about 300± 80; for the O2 and
SCO2 bands, the SNR is about 100–150 depending on the
surface target. 60

2.2 Observation geometries

Compared to low earth orbiting satellites such as OCO-
2/3, observations from CLARS-FTS have a larger range of
aerosol scattering angles mainly due to the diurnal and sea-
sonal change in incident solar geometry (Zeng et al., 2020c). 65

Figure 2 shows the diurnal change in aerosol scattering an-
gle for six selected surface reflection points. In the morn-
ing, the surface reflection points to the west (West Pasadena
and Santa Monica) have large scattering angles that gradu-
ally change to smaller scattering angles in the late afternoon. 70

The opposite pattern of change can be observed at reflection
points to the east (Santa Fe dam and Rancho Cucamonga). At
reflection points to the south (Santa Anita and Long Beach),
the changes are smaller than at other targets. These changes
are a result of the fixed viewing geometry for each surface re- 75

flection target but varying solar geometry. A detailed descrip-
tion of the angular scattering effect can be found in Zeng et
al. (2020c). This large range of angles, from forward scatter-
ing (< 90◦) to backward scattering (> 90◦), means that a ma-
jority of the change in aerosol scattering comes from angu- 80

lar variations. This also indicates that the aerosol scattering
phase function is a key parameter that needs to be accurately
modeled in order to obtain high-fidelity RT calculations.

3 GFIT3: a full physics approach for retrieving XCO2
and XCH4 from CLARS-FTS observations 85

GFIT3 incorporates the following four major components:
(1) a pre-processing step using the CLARS-GFIT algorithm
to generate gas absorption coefficients and other related pa-
rameters, as well as the O2 slant column density (SCD) for
excluding cloudy and heavy aerosol loading soundings; (2) a 90

forward RT model (RTM) to generate synthetic spectra in or-
der to simulate observed CLARS-FTS spectra; (3) an inverse
model based on optimal estimation to update the surface and
atmospheric state vector to minimize the difference between
model and observation; and (4) a post-processing screening 95

step to filter out bad retrievals. The workflow chart is shown
in Fig. 3.

3.1 Pre-processing using CLARS-GFIT

The objective of pre-processing is to identify measurements
that are affected by clouds and/or heavy aerosol loading and 100

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–25, 2021



4 Z.-C. Zeng et al.: GFIT3 for remote sensing of greenhouse gases

Figure 1. (a) Schematic figure of the CLARS observatory. The lines depict incident and reflected sunlight from an example surface reflection
target. The LABS and Spectralon viewing observation (SVO) modes are illustrated. For the LABS mode, examples of contributions from
single scattering (dotted red) and multiple scattering (dotted black) are also illustrated. (b) Examples of observed high-resolution (0.06 cm−1)
spectra for the O2

11 absorption band centered at 1.27 µm (7885 cm−1), the weak CO2 absorption band at 6220 cm−1, the CH4 absorption
band at 6076 cm−1, and the strong CO2 absorption band at 4852 cm−1. These measurements were made on 28 September 2013 over the Santa
Anita Racetrack surface reflection point at local noon. (c) The 33 surface reflection points across the Los Angeles Basin. The background
image is adopted from © Google Earth.

to exclude them before the full physics retrieval. We employ
CLARS-GFIT (Fu et al., 2014), which is a modified ver-
sion of the GFIT program (version GGG2014), to retrieve
O2 SCD using the same spectral bands and spectroscopic pa-
rameters used by TCCON. The recently released GGG20205

with major updates to the spectroscopic line lists will be in-
corporated into CLARS-GFIT in the near future. Aerosol
scattering is not considered in CLARS-GFIT; the ratio of re-
trieved O2 SCD to calculated O2 SCD estimated from sur-
face pressure reanalysis data (National Center for Environ-10

mental Prediction (NCEP) reanalysis in this study), denoted
by O2 ratio, acts as a proxy (Zeng et al., 2020c). We filter out
data with (1) a O2 ratio less than 0.85 (low clouds and high
aerosol loading) and larger than 1.02 (high clouds); (2) SNR
less than 100; (3) solar zenith angle (SZA) larger than 70◦;15

and (4) spectral fit error larger than 1σ above the mean of

all the spectral fitting residuals. The gas absorption coeffi-
cients, a priori atmospheric profiles, and solar lines processed
by CLARS-GFIT will also be used in the forward RTM of
GFIT3. 20

3.1.1 Calibrating O2 absorption cross section

Analysis of the O2 ratio under different aerosol conditions
reveals a systematic bias (about 2 %) between the retrieved
O2 SCD and that calculated using the NCEP reanalysis sur-
face pressure even in situations when the atmosphere is clear 25

(Appendix Fig. A1). Such a bias in the 11 band has been
reported by Washenfelder et al. (2006), who found that for
the TCCON spectra, the retrieved column O2 is consistently
2.27%± 0.25% higher than the dry pressure column esti-
mated from the surface pressure. This bias in TCCON re- 30

trievals is consistent with values for CLARS-GFIT retrievals.
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Figure 2. Diurnal change in aerosol scattering angle for six selected surface reflection points, separated into two groups. Group 1 includes
points #1 Santa Anita Racetrack, #2 West Pasadena, and #3 Santa Fe Dam that are close to CLARS-FTS; group 2 includes #15 Santa Monica
Mt., #17 Rancho Cucamonga, and #19 Long Beach that are further away. Hourly scenarios from 20 June and 22 December 2013 are used to
represent summer and winter solar geometries, respectively.

Figure 3. Workflow of GFIT3 for retrieving XCO2 and XCH4 from
CLARS-FTS observations. There are four major components: (1) a
pre-processing step to identify soundings free of clouds and heavy
aerosol loading; (2) a forward RTM to generate synthetic spectra
in order to simulate observed CLARS-FTS measurements; (3) an
inverse model based on optimal estimation to update the surface
and atmosphere states to minimize the difference between model
and observation; and (4) a post-processing screening step to filter
out bad retrievals.

A similar systematic bias was found by Butz et al. (2011)
for the O2 A band at 0.76 µm from satellite observations.
These biases are most likely attributable to spectroscopic un-
certainties. We adopt a simple method of scaling the absorp-
tion cross sections in the 11 band by a factor of 1.02 to make5

our modeled radiances in the 11 band consistent with obser-
vations.

3.2 Forward model

3.2.1 Optical-property-based principal component
analysis RTM 10

RT models simulate the radiance based on inputs of the state
vector and related model parameters. In theory, a sophisti-
cated line-by-line RTM (e.g., LIDORT; Spurr, 2008) with a
high number of computational quadrature angles (streams)
is needed to accurately simulate the propagation of sun- 15

light through the atmosphere. However, simulation of high-
resolution CLARS-FTS spectra that require resolving gas ab-
sorption lines with fine spectral sampling is computation-
ally expensive. Instead, many fast RTMs (e.g., Butz et al.,
2011; O’Dell et al., 2012; Somkuti et al., 2017) have been 20

developed to speed up the radiance calculation without in-
troducing large systematic errors in the trace gas retrieval. In
this study, we adopt an optical-property-based principal com-
ponent analysis (O-PCA) RTM developed by Natraj et al.
(2005, 2010) and improved by Kopparla et al. (2016, 2017). 25

The O-PCA procedure was linearized and analytic Jacobians
developed for the PCA-based radiation fields by Spurr et al.
(2013). It has been shown to be fast and accurate for retriev-
ing CO2 from satellite measurements (Somkuti et al., 2017).
The O-PCA method first divides the spectral region into bins. 30

Each bin is characterized by grouping certain optical proper-
ties (such as atmospheric layer trace gas optical depth val-
ues or single scattering albedos) that are similar within the
bin. The selection for spectral binning is typically based on
the division of (the logarithms of) the total-atmosphere gas 35

optical depths into decadal intervals. We use 11 bins in this
study. For each bin, PCA is implemented on a dataset that
includes the extinction optical depth and single scattering
albedo profiles, as well as the (wavelength-dependent) sur-
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face albedo and column optical depth for each aerosol type.
High-accuracy line-by-line multiple scattering calculations
(using LIDORT in this work) are then performed for pro-
files representing the bin mean and PCA-perturbed proper-
ties. For this analysis, we use 32 streams for these calcula-5

tions. The multiple scattering calculations are computation-
ally expensive; the reduction of the number of these calcula-
tions is the main reason for the speed-up afforded by O-PCA.
O-PCA also performs a fast and low-accuracy line-by-line
calculation of the radiances using the two-stream exact sin-10

gle scattering (2S-ESS; Spurr and Natraj, 2011) model for
every spectral point in the band. The 2S-ESS model com-
putes both the single scattering contribution to the radiance
and a two-stream approximation to the multiple scattering
contribution. Finally, the total radiance field is obtained for15

every point in the bin by calculating a wavelength-dependent
correction factor to adjust the 2S-ESS calculations. A de-
tailed description of the O-PCA methodology can be found
in Kopparla et al. (2017) and Spurr et al. (2013). Simulations
(see Fig. 4) show that, while the accuracy of O-PCA depends20

on the aerosol loading, almost all of the spectral calculations
have an error of less than 0.1 %. The root mean square error
(RMSE) is less than 0.01 %.

3.2.2 State vector

The state vector includes all variables that are to be retrieved25

by GFIT3 in order to fit the observed spectra. These vari-
ables are inputs to the forward RTM. Table 1 summarizes all
the variables in the state vector and the values used for their
uncertainties in the retrieval.

(1) CO2 and CH4 profiles30

We follow the TCCON methodology and perform a retrieval
that scales predefined vertical shapes of CO2 and CH4 to ob-
tain XCO2 and XCH4. This is faster and simpler than a full
profile retrieval that independently scales gas mixing ratios
at different altitudes. The profile scaling method is also less35

sensitive to systematic errors related to the shape of the cal-
culated spectral lines, such as instrumental line shape and
spectroscopic line widths (Wunch et al., 2011). Although a
profile retrieval is possible, there are not enough degrees of
freedom in the measurement to fully resolve the gas profile.40

Therefore, the retrieval problem will be ill-posed and under-
determined if strong constraints are not imposed on the ver-
tical profile. Sensitivity tests show that the profile scaling ap-
proach is efficient and that errors from possible bias in the
profiles are small (Sect. 4).45

To account for GHG enhancement in the LA PBL, we used
CO2 simulations from the widely used CarbonTracker CO2
model (Peters et al., 2007), which is an assimilation model
incorporating available observations. The 3-hourly simula-
tions are available from the CarbonTracker CO2 model.50

Monthly averaged CO2 profiles are used as the a priori pro-

files in GFIT3 (Fig. 5a). For CH4, since high-resolution sim-
ulations are not available at city scale, we reconstruct the
profiles based on CLARS-GFIT a priori. A constant PBL
enhancement of 91 ppb (parts per billion), as estimated by 55

Verhulst et al. (2017; Table 5) using the NASA megacity
network, is added to the monthly averaged CH4 profiles, as
shown in Fig. 5b. Diurnal changes in the PBL enhancement
are not considered in this analysis.

(2) Surface albedo and aerosol properties 60

The contributions to the observed radiance from surface re-
flectance and aerosol scattering are coupled. Similar to Zeng
et al. (2018), we assume a Lambertian surface and calculate
the a priori surface albedo by ratioing the measured radiance
reflected from the surface target by that reflected by a Spec- 65

tralon board beside the FTS. The Spectralon measurement
represents the incident radiance before entering the PBL.
For aerosols, we use AOD values from Modern Era Ret-
rospective analysis for Research and Applications Aerosol
Reanalysis (MERRAero) data (Rienecker et al., 2011) and 70

associated optical properties from the Georgia Institute of
Technology–Goddard Global Ozone Chemistry Aerosol Ra-
diation and Transport (GOCART; Chin et al., 2002) model,
which includes five aerosol types: sea salt, dust, organic car-
bon, black carbon, and sulfate. In light of the difficulty in re- 75

solving so many aerosol types from measurements, we sep-
arate the five aerosol types into two groups based on size:
coarse-mode (sea salt and dust) and fine-mode (organic car-
bon, black carbon, and sulfate). While the sizes, extinction
efficiency, and phase function of aerosols in the fine mode 80

are similar, the black carbon has a much smaller single scat-
tering albedo (SSA). For sea salt and dust aerosols, five dif-
ferently sized bins are separately tracked in the Modern-
Era Retrospective analysis for Research and Applications
(MERRA) model. The sea salt, black carbon, organic carbon, 85

and sulfate are all hygroscopic. GFIT3 uses monthly average
aerosol optical properties (extinction efficiency, SSA, and
phase function) at four daytime hours (07:00, 10:00, 13:00,
16:00 LT). The monthly averaged density fraction of aerosols
is shown in Fig. 6. While the fine-mode aerosols show iden- 90

tical monthly variabilities, the coarse-mode particles show a
clear seasonal cycle, with more sea salt in summer originat-
ing from the ocean and more dust in winter originating from
the Mojave desert and transported to the LA Basin. Figure 7
shows the wavelength dependence of aerosol optical proper- 95

ties averaged over all months in 2013. Fine-mode aerosols
have a larger Ångström exponent, and hence a greater wave-
length dependence, than coarse-mode aerosols. To illustrate
changes in phase function, the asymmetry factor (that quan-
tifies the extent of forward scattering) is used. An asymme- 100

try factor value of 0 represents isotropic scattering; the value
increases to 1.0 as the phase function peak sharpens in the
forward direction.
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Figure 4. Ratio of the difference (relative to the continuum value) between simulated radiances (using O-PCA) and high-accuracy com-
putations (using LIDORT with 32 streams). These calculations are based on the 240 scenarios, with different observation geometries and
atmospheric profiles, described in the inverse experiments in Sect. 4. Four empirical orthogonal functions are used for the O-PCA compu-
tations. Three different aerosol scenarios are considered, with AOD values of 0.01, 0.05, and 0.1 in the 1.27 µm O2

11 band. The overall
RMSEs are also indicated.

Table 1. Summary of variables in the state vector and their uncertainties.

Variables No. of variables A priori value A priori uncertainty Descriptions

CO2 scale factor 1 1.0 0.05 A priori profile from CarbonTracker model
CH4 scale factor 1 1.0 0.05 A priori profile constructed from GFIT and

ground observations
H2O scale factor 1 1.0 0.40 A priori profile from NCEP
Surface pressure 1 NCEP 2 hPa
Surface albedo 4 Zeng et al. (2018) 0.10, 0.07, 0.07, 0.04 For the four bands: O2, WCO2, CH4,

and SCO2
Spectral continuum 5× 4 0 0.01, 0.005, 0.002, Zeroth to fourth orders of Legendre

0.0016, 0.001 polynomial
Frequency shift 4 0 0.1 For the four bands
AOD coarse 1 0.02 0.02 Optical properties from GOCART
AOD fine 1 0.01 0.02 Optical properties from GOCART
Aerosol layer height 1 0.70 km 0.05 km Estimates from MiniMPL at Caltech
Interference gas scale 2 (HDO, 13CO2) 1.0 0.4, 0.02 A priori profiles from GFIT
factors

In the retrieval algorithm, we retrieve AODs for the coarse
and fine modes, in addition to the aerosol layer height (ALH;
Table 1). The single scattering albedos (SSAs) and phase
functions of the coarse and fine modes are prescribed and
not retrieved. The effective SSA for the coarse mode is cal-5

culated as the mean of the SSA values (from the GOCART

model) of sea salt and dust, weighted by their simulated
AODs from MERRAero. The same approach is applied to
fine-mode aerosols except using black carbon, organic car-
bon, and sulfate. The effective phase functions can be calcu- 10

lated in a similar manner, except that the weighting is done by
the scattering AOD. We do not consider the geometric thick-

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–25, 2021
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Figure 5. (a) CO2 vertical profiles are extracted from the CarbonTracker model over Los Angeles with 3-hourly temporal resolution. Monthly
averaged profiles are used as a priori profiles in GFIT3. (b) Monthly averaged CH4 vertical profiles are adopted from CLARS-GFIT. A
constant PBL enhancement of 91 ppb, as estimated by Verhulst et al. (2017; Table 5) using the NASA Megacity network, is added. The
hourly variability in CH4 in the PBL is assumed to be the same as that of CO2 since they are co-emitted and follow a similar atmospheric
mixing process.

Figure 6. Aerosol composition from Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data for LA
(07:00, 10.00, 13:00, 16:00 LT). (a) Monthly averaged density fraction of aerosols for dust and sea salt. The dry size bins for dust (DU01
to DU05) correspond to the radius limits (in microns) 0.1–1, 1–1.8, 1.8–3, 3–6, and 6–10, respectively. Similarly, for sea salt (SS01 to
SS05), the corresponding values are 0.03–0.1, 0.1–0.5, 0.5–1.5, 1.5–5, and 5–10, respectively. (b) Monthly averaged density fraction for
hydrophilic black carbon (BC_PHI), hydrophobic black carbon (BC_PHO), hydrophilic organic carbon (BC_PHI), hydrophobic organic
carbon (BC_PHO), and sulfate (SU). MERRA data below the CLARS-FTS elevation (1.67 km) are used.

ness of the aerosol layer since it has a much smaller impact
on the observed radiance compared to the total AOD (Zeng et
al., 2019). Practically, in the forward model, the aerosols are
placed in two adjacent layers. The fractions of AODs in each
layer are adjusted (with total AOD conserved) to change the5

effective ALH. Since both fine- and coarse-mode aerosols are
relatively well mixed in the atmosphere, we assume that they
have the same effective ALH. The a priori AODs are derived
from monthly averaged AERONET observations at Caltech
and the a priori ALH from an aerosol profiling lidar (Min-10

iMPL), also at Caltech (Zeng et al., 2018). For the retrievals,
the a priori ALH is set to 0.7 km, representing an average
from all available MiniMPL observations.

(3) Surface pressure

The a priori surface pressure is extracted from NCEP reanal- 15

ysis data (Kalnay et al., 1996), which is used for GGG2014
TCCON retrievals (Wunch et al., 2015). A comparison with
ECMWF ERA5 reanalysis (Hersbach et al., 2020), which
has a higher resolution, indicates that the two surface pres-
sure datasets are highly correlated, with a standard deviation 20

of the difference of about 2 hPa (Zeng et al., 2020b). In the
GFIT3 retrieval, we assume this value as the uncertainty for
surface pressure.

Atmos. Meas. Tech., 14, 1–25, 2021 https://doi.org/10.5194/amt-14-1-2021



Z.-C. Zeng et al.: GFIT3 for remote sensing of greenhouse gases 9

Figure 7. Wavelength dependence of aerosol optical properties (averaged over a year) in the 1.27 µm O2
11 absorption band, 1.61 µm weak

CO2 absorption band, 1.65 µm CH4 absorption band, and 2.06 µm strong CO2 absorption band from the Georgia Institute of Technology–
Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. (a) Mass extinction efficiency, (b) single scattering
albedo, and (c) asymmetry factor for fine (blue) and coarse (red) modes. These aerosol optical properties are density weighted on a monthly
basis for daytime only (07:00, 10:00, 13:00, 16:00 LT). For aerosols that are hygroscopic (size dependent upon relative humidity), monthly
average humidity is used.

3.2.3 Solar model

To construct the high-resolution solar irradiance, we combine
the solar continuum level estimated from the solar spectrum
developed by Kurucz (2005) (http://kurucz.harvard.edu/sun/
irradiance2008/, last access: 20 September 2021) and the5

high-resolution solar pseudo-transmittance spectrum from
GFIT (Toon, 2014; https://mark4sun.jpl.nasa.gov/toon/solar/
solar_spectrum.html, last access: 20 September 2021). The
Kurucz spectrum was created from the solar spectrum mea-
sured by a high-resolution FTS at the Kitt Peak National Ob-10

servatory. In the near-infrared spectral regions of relevance
to this work, Toon’s solar pseudo-transmittance spectrum is
a combination of high-resolution spectra from balloon FTS,
ground-based Kitt Peak, and TCCON observations. A sim-
ilar combination of Kurucz and Toon reference spectra was15

also used by GOSAT (Yoshida et al., 2013). The absolute so-
lar irradiance is necessary to constrain aerosol scattering and
surface reflectance.

3.2.4 Jacobian

The Jacobian matrix contains the first order derivative of the20

simulated radiance with respect to all state vector elements
and is a key variable in inverse modeling to fit the observed
spectra by iteratively optimizing the state vector. This matrix
has a dimensionality of m×n, where m refers to the number
of measurement channels and n is the number of state vec-25

tor elements. Figure 8 illustrates a sample Jacobian matrix
calculated by O-PCA.

3.3 Inverse modeling

3.3.1 Optimal estimation

Mathematically, the measurement vector y, which is the ob- 30

served CLARS-FTS radiance, is related to the state vector x,
including O2, CO2, and CH4 SCDs and other relevant geo-
physical parameters, through a forward model F and model
parameter vector b.

y = F(x,b)+ ε (1) 35

Specifically, b is a set of input parameters for the forward
model that are not retrieved, such as gas absorption coeffi-
cients and observing and solar geometries, while the state
vector x is a set of parameters to be retrieved, such as trace
gas columns, aerosol properties, and surface properties. The 40

forward model F is an RT model (O-PCA in this study) that
simulates the radiance based on input parameters b and x.
ε is the error vector containing both the measurement noise
and the forward model error. The goal of optimal estimation
is to obtain the state vector with maximum a posteriori prob- 45

ability by minimizing the following cost function (Rodgers,
2000):

J (x)= χ2
= [y−F(x,b)]T S−1

ε [y−F(x,b)]

+ (x− xa)
T S−1

a (x− xa), (2)

where xa is the a priori state vector, Sa is the a priori co- 50

variance matrix for the state vector, and Sε is the measure-
ment error covariance matrix. In this study, the measured ra-
diance from the O2

11, WCO2, CH4, and SCO2 absorption
bands constitutes the measurement vector y. For the sake of
simplicity, we assume that the measurement noise dominates 55

and that there is no cross-correlation between different spec-
tral channels, resulting in a diagonal Sε matrix. In theory, the
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Figure 8. Sample Jacobian values from O-PCA for representative state vector elements in the GFIT3 retrieval algorithm. This Jacobian
matrix is based on observations over the Santa Anita surface reflection point on 28 September 2013, with a solar zenith angle (SZA) of 36◦.
The y-axis labels indicate the units of the Jacobian values.

spectral error term ε includes the measurement noise, which
can be characterized by the SNR, and uncertainty in the for-
ward model. While it is reasonable to assume that the mea-
surement noise dominates, the forward model error, includ-
ing multiple components such as RTM uncertainty, errors5

in spectroscopic constants, and biases in prescribed aerosol
optical properties, may not be negligible. These uncertain-
ties propagate through the retrieval algorithm to the retrieved
GHGs. Further investigation of the measurement error co-
variance matrix from post-retrieval analysis of spectral resid-10

ual and goodness of fit is discussed in Sect. 6.3.
To estimate forward model uncertainty related to RT ap-

proximations, we use the results from Fig. 4, represent-
ing spectral fitting error estimates between O-PCA and LI-
DORT. The RMSE is less than 0.01 %, which is much15

smaller than the measurement noise. We therefore use the
measurement noise to generate the matrix Sε. We adopt
the Levenberg–Marquardt method (Levenberg, 1944; Mar-
quardt, 1963; Rodgers, 2000) to obtain the optimal estimate
of the state vector x that minimizes the cost function J (x)20

through an iterative process:

xi+1 = xi +
[
(1+ γ )S−1

a +KT
i S−1

ε Ki

]−1

×
{
KT
i S−1

ε [y−F(xi,b)] −S−1
a [xi − xa]

}
, (3)

where the subscript i indicates the ith iteration, and the pa-
rameter γ is chosen at every step to minimize the cost func- 25

tion. Initially it is set to be 10. K is the Jacobian matrix,
which is the first derivative of F(x,b) with respect to x:

Ki =
∂F(xi,b)
∂xi

, (4)

where each element in Ki defines the sensitivity of the simu-
lated radiance to the corresponding geophysical variable in 30

the state vector. At each step, the parameter γ is updated
based on the ratio R (Fletcher, 1971):

R =
χ2
i −χ

2
i+1,true

χ2
i −χ

2
i+1,forecast

, (5)

where χ2
i+1,true refers to the cost function computed with

the updated state vector xi+1 in the forward model Fi+1 = 35
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F(xi+1,b), while χ2
i+1,forecast is computed using a linear ap-

proximation to the forward model Fi+1 = Fi +Ki · (xi+1−

xi).R quantifies the impact of forward model nonlinearity on
cost function reduction. If the linear approximation is perfect,
then R will be unity since χ2

i+1,true = χ
2
i+1,forecast. The strat-5

egy for updating R is as follows: if R is greater than 0.75,
then reduce R by a factor of 2; if R is less than 0.25, then
increase R by a factor of 10; otherwise, leave R unchanged.
Convergence is achieved when the change in the state vector,
d i TS1 , is small compared to the a posteriori error:10

d2
i = (xi − xi+1)

T Ŝ−1(xi − xi+1)� n, (6)

where n is the number of state vector elements, and Ŝ−1 TS2

is the a posteriori error covariance matrix for the estimated
state vector x̂. At convergence, Ŝ−1 TS3 can be estimated as
follows:15

Ŝ=
(
KT S−1

ε K+S−1
a
)−1

, (7)

where Ŝ includes the a posteriori uncertainties of all retrieved
elements in the state vector and their correlations.

3.3.2 Averaging kernel

Similar to TCCON, we use the column averaging ker-20

nel calculated from our retrieval algorithm to quantify the
altitude-dependent sensitivity of the total column retrievals
to changes in the vertical profile of partial column densities.
Ideally, the column averaging kernel would be unity at all
altitudes, meaning a unit change in partial column at any al-25

titude would lead to the same amount of change in the total
column. In practice, however, the column averaging kernel
is not a perfect unit vector. To derive the column averag-
ing kernel, we first calculate the full averaging kernel matrix
(m×m):30

A=
(
KT S−1

ε K+S−1
a
)−1KT S−1

ε K, (8)

where m is the number of atmospheric layers. Aij represents
the derivative of the retrieved mixing ratio at level i with re-
spect to the true mixing ratio at level j . The j th element of
the column averaging kernel is given by35

aj =
∑
i

Aij
1pi

1pj
, (9)

where 1pi is the pressure thickness at level i, and aj de-
scribes the change in the retrieved total column abundance
with respect to a perturbation of the partial column at the
j th atmospheric level. Figure 9 shows examples of column40

averaging kernels for CO2 and CH4 at different SZA val-
ues. Both spectral channels show a similar shape and have
higher averaging kernel values (close to 1) in the troposphere
than in the stratosphere. For a comparison of CLARS-FTS
measurements with other datasets (such as satellite observa-45

tions), the above averaging kernels and a priori profiles from

CLARS-GFIT should be taken into account. Details about
implementation of the averaging kernel correction can be
found in Wunch et al. (2011).

3.4 Post-processing 50

After obtaining the SCDs for O2, CO2, and CH4, XCO2 and
XCH4 can be calculated as follows:

XCO2 =
CO2 SCD
O2 SCD

× 0.2095, (10)

XCH4 =
CH4 SCD
O2 SCD

× 0.2095, (11)

where the constant 0.2095 is the column-averaged dry-air 55

mixing ratio of O2 in the atmosphere. In the post-processing,
multiple filters are applied to ensure good retrieval quality.
First, retrievals that fail to converge after 15 iterations ac-
cording to the procedure outlined in Eq. (6) are excluded.
Second, the spectral fitting residual (RMSE) for each win- 60

dow should be smaller than 0.01 for all four bands. Third,
outliers in retrieved state vector parameters, including O2,
CO2, and CH4 SCDs, which have a large impact on XCO2
and XCH4, are filtered. In this study, we define outliers as
values that are more than 3 standard deviations away from 65

the mean. For retrievals of CLARS-FTS observations from
June 2013 to May 2014, about 80 % of all pre-filtered obser-
vations pass the post-processing filters.

4 Inversion experiments based on synthetic spectra

The goal of applying the GFIT3 algorithm to simulated syn- 70

thetic spectra is to assess the performance of the algorithm
in retrieving XCO2 and XCH4 and to quantify the impacts
on the accuracy due to factors such as aerosol scattering, im-
perfect meteorological data, RTM errors, uncertainty in gas
absorption, and instrument noise. In this study, we primar- 75

ily concentrate on three potentially important error sources:
imperfect characterization of aerosol scattering, assumptions
about the vertical distributions of CO2 and CH4, and biases
due to usage of the O-PCA RTM.

We first generate synthetic spectra using LIDORT with 80

high accuracy (32 streams) to reproduce the “true” spectra
under three aerosol loading scenarios (total column AOD=
0.01, 0.05, and 0.1), which covers the AOD range for non-
cloudy days based on Caltech AERONET measurements
(Appendix Fig. A2). Given that CLARS-FTS observes large 85

air mass factors (more than 8 times the vertical column) in
the PBL because of the long slant column in the line of sight,
the aerosol loading along the slant path is much higher than
the column AOD. To simulate the synthetic spectra, we use
3-hourly aerosol composition data from MERRA aerosol re- 90

analysis and other optical properties (SSA and phase func-
tion) from the GOCART model (Sect. 3.2.2). CO2 and CH4
vertical profiles are derived as described in Sect. 3.2.2. The
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12 Z.-C. Zeng et al.: GFIT3 for remote sensing of greenhouse gases

Figure 9. Examples of column averaging kernels for (a) CO2 and (b) CH4 with different SZAs. These are from observations of the Santa
Anita surface target on 28 September 2013.

hourly variability in CH4 in the PBL is assumed to be the
same as that in CO2 since they are co-emitted and follow
a similar atmospheric mixing process. Surface albedos for
the O2, WCO2, CH4, and SCO2 bands are estimated from
CLARS-FTS observations. All other inputs are the same as5

the state vector described in Sect. 3.2.2. Measurement noise
(which we assume to be white noise with a mean of 0 and a
standard deviation of 1/SNR) is added to generate the syn-
thetic spectra as a proxy for CLARS-FTS observations. We
test the GFIT3 algorithm on the synthetic spectra for the three10

surface targets at Santa Anita, Santa Fe, and West Pasadena
over a wide range of observing geometries encompassing
four seasons (January, April, July, and October) and 5 hTS4

from early morning to late afternoon (∼ 08:00–09:00, 10:00–
11:00, 12:00–13:00, 14:00–15:00, 16:00–17:00). Since data15

in the early morning and late afternoon hours may not be
available in winter, we select observations from the available
daytime data with a time step of at least 1 hCE1 . In total, 60
different observation scenarios are selected.

We conduct four retrieval tests on the synthetic spectra, as20

listed in Table 2. In Test 1, we assume perfect knowledge of
aerosol composition and GHG profiles. The goal is to assess
the capability of O-PCA and the inverse framework for re-
trieving XCO2 and XCH4. In Test 2, we use O-PCA but with
monthly average aerosol composition and GHG profiles. The25

goal is to investigate retrieval uncertainty due to assumptions
about aerosols and GHG profiles, as well as RT calculation
approximations. Test 3 is similar to Test 2, except that we use
3-hourly GHG profiles. The goal is to isolate the impact of
uncertainty in aerosol composition. Test 4 is also similar to30

Test 2, except that we use 3-hourly aerosol composition. The
goal is to isolate the impact of imperfect knowledge of GHG
vertical distribution. For each observation scenario in these
tests, we calculate the difference between the retrieved state
vector and the “truth” that was used to generate the synthetic35

spectra. The retrieval error (in percentage) is defined as the
ratio of the calculated difference to the “truth”.

Figure 10 shows results from Test 1. It is evident that all
simulations have a mean absolute error (MAE) of less than

0.5 %. The retrieval error, however, increases as AOD in- 40

creases. In the haziest scenario (AOD= 0.1), the largest re-
trieval error is around 1 %. Results from Test 2 (Fig. 11) are
broadly similar to those from Test 1. The errors are generally
larger than those in Test 1 due to the bias in aerosol optical
properties and atmospheric profiles. On average, the MAEs 45

are less than 1 %; the largest errors are greater than 2 %. The
bias in the retrieved AOD is smaller at larger AOD values
because of the stronger aerosol scattering signal. Moreover,
the bias in ALH is about −10 % on average, indicating an
average error of less than 1 km. Figure 12 shows results from 50

tests 3 and 4. No clear correlation can be observed between
bias in XCO2 and XCH4 retrievals and that in aerosol optical
properties for either coarse- or fine-mode aerosols. This indi-
cates that a combination of fine- and coarse-mode aerosols is
able to accurately capture the scattering effects. On the other 55

hand, there is a clear correlation between bias in the trace
gas columns and that in PBL enhancement (defined as the
difference in PBL GHG mixing ratios between 3-hourly and
monthly a priori atmospheric profiles). However, the MAE is
still almost always less than 1 %. 60

5 Retrieval results for CLARS-FTS observations

We applied the GFIT3 retrieval algorithm to 1 year of
CLARS observations from June 2013 to May 2014. Over
this period, CLARS-FTS spent a large portion of measure-
ment time observing the Santa Anita, Santa Fe, and West 65

Pasadena targets. Therefore, these three surface reflection
points are our focus in this section. In total there are 36 170
observed spectra from CLARS-GFIT. After pre-processing,
we obtain 12 911 spectra that pass the filters for processing
by the GFIT3 algorithm. Most of the retrievals converge af- 70

ter less than 10 iterations. However, about 20 % of the mea-
surements fail to converge, and another 20 % fail to pass the
post-processing filters; these are discarded. Eventually, 7733
spectra are available for further analysis.
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Table 2. Synthetic experiments to assess the impact of RTM, aerosol composition, and GHG profiles on retrievals of XCO2 and XCH4 from
CLARS-FTS observations.

Experiment Aerosol Atmospheric RT model Objective
composition profile

Synthetic spectra 3-hourly 3-hourly LIDORT To create synthetic spectra
Test 1: noise free simulation 3-hourly 3-hourly O-PCA To investigate the error due to RTM approximations
Test 2: operational algorithm Monthly Monthly O-PCA To investigate the error due to the operational algorithm
Test 3: aerosol impact Monthly 3-hourly O-PCA To investigate the error due to assumptions about

aerosol composition
Test 4: vertical profile impact 3-hourly Monthly O-PCA To investigate the error due to assumptions about verti-

cal distribution of CO2 and CH4

Figure 10. Results for Test 1. Errors in retrieved XCO2 and XCH4
are quantified for simulations with three different values of AOD
(0.01, 0.05, and 0.1). The errors arise mainly due to the bias caused
by the O-PCA approximation compared to the exact atmospheric
radiative transfer process. MAE represents the mean absolute error.

5.1 Residuals from spectral fitting

Figure 13 shows normalized residuals with respect to the
continuum level from spectral fitting for the O2, WCO2,
CH4, and SCO2 bands. The RMSE values are less than 1 %,
and the majority of residuals are less than 0.5 %. The SCO25

band shows a larger residual compared to the other bands,
partly due to imperfect spectroscopic data (Crisp et al., 2012)
and partly due to the large aerosol scattering contribution,
especially in the strong absorption lines (of which there
are several due to the high spectral resolution of CLARS-10

FTS). It is instructive to compare these results with fitting
residuals from CLARS-GFIT (Appendix Fig. A3), in which
aerosol scattering is neglected. It is evident that the residuals

from GFIT3, especially in the SCO2 band, are significantly
smaller. In the GFIT3 algorithm, the aerosols are primarily 15

constrained by the O2 and the SCO2 bands. This is because a
priori atmospheric pressure is very accurate (∼ 0.2 % uncer-
tainty) and O2 concentration well known, thereby resulting in
the O2 absorption spectra providing strong constraints on the
aerosol scattering effects. For the SCO2 band, since most of 20

the absorption lines are saturated, any extra radiance in this
spectral region is attributable to aerosol scattering. Ignoring
aerosol scattering results in higher residuals, especially for
the strong absorption lines (Appendix Fig. A3). Fitting resid-
uals are significantly reduced using GFIT3. Results from this 25

study suggest that the effects of scattering in the observed
spectra can be accurately characterized by the aerosol models
used in the GFIT3 algorithm. Not accounting for scattering
leads to large spectral fitting residuals, and therefore large
biases, in GHG retrievals. 30

5.2 Comparison of retrieved AOD with AERONET
and ALH with MiniMPL

We compare the retrieved AOD with ground-based
AERONET observations at Caltech. AERONET is a global
ground-based aerosol monitoring network (Holben et al., 35

1998) that has been providing high-accuracy measurements
of total AOD from the ultraviolet to the near infrared. The
AERONET instrument at Caltech is located on the univer-
sity campus in Pasadena, which is geographically close to
the Santa Anita, Santa Fe, and West Pasadena surface targets. 40

The Caltech AERONET measurements cover the wavelength
range from 340 to 1020 nm. To derive the AOD in the O2
11 band, we extrapolate from AERONET measurements us-
ing the Ångström exponent law (Seinfeld and Pandis, 2006).
Figure 14 shows that the retrieved AOD is in good agree- 45

ment with Caltech AERONET AOD, with RMSE values of
about 0.02. The AERONET AOD uncertainty is on the order
of 0.01–0.02 in the 0.34–0.87 µm spectral range (Eck et al.,
1999); our estimated RMSE value of 0.02 is therefore very
close to the noise level. The difference is larger for higher 50

AOD values. This effect may be due to two reasons. First,
GFIT3 retrievals have higher uncertainty at large AOD values

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–25, 2021
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Figure 11. Results for Test 2. Errors in retrieved (a) XCO2 and XCH4 for three different values of AOD (0.01, 0.05, and 0.1), (b) AOD for
the same scenarios as in (a), and (c) ALH for all AOD scenarios. The errors have contributions from biases due to the O-PCA RTM and due
to the imperfect knowledge of aerosol optical properties and vertical distribution of atmospheric trace gases.

because of the magnification of biases due to the misrepre-
sentation of aerosol optical properties. Second, CLARS-FTS
and AERONET observe different parts of the atmosphere due
to differences in their observing geometries. Considering the
spatial heterogeneity of aerosol distribution, such a differ-5

ence between retrieved and observed AOD is expected. The
retrieved ALH values agree closely with MiniMPL observa-
tions (Fig. 15); however, they do not have significant corre-
lation on a point-by-point basis (not shown). This suggests
the difficulty in constraining ALH when it is jointly retrieved10

with GHGs. The signal from ALH may be interfered with by
the imperfect characterization of other factors that existing
full physics algorithms cannot resolve. However, when ALH
is retrieved independently using specifically targeted O2 ab-
sorption lines, high accuracy can be achieved (Zeng et al.,15

2019). This suggests the potential of a two-step procedure,
as proposed in Zeng et al. (2020a), in which the O2 absorp-
tion lines are used to provide strong constraints on AOD and
ALH. The improved AOD and ALH estimates can then be
used as inputs for the retrieval of GHGs.20

5.3 Retrievals of XCO2 and XCH4

Figure 16 compares XCO2 and XCH4 retrievals from GFIT3
(after post-processing) and CLARS-GFIT. In general, when
aerosols are not accounted for in the retrieval, as in CLARS-
GFIT, XCO2 and XCH4 are overestimated (see discussion in25

Sect. 6.2). The bias can be up to about 10 % for both XCO2
and XCH4. The scatter plots indicate that the differences in

XCO2 and XCH4 are significantly correlated with AOD. The
correlation coefficients are higher for Santa Anita probably
because of the smaller changes in scattering angle (and there- 30

fore aerosol effects) compared to the other two surface tar-
gets. The XCO2 and XCH4 differences are in the range of
10–30 ppm (parts per million) and 50–150 ppb, respectively,
for an AOD value of 0.05 in the 11 absorption band. Since
CO2 and CH4 are retrieved at similar wavelengths, the bi- 35

ases in XCO2 and XCH4 retrievals due to aerosol scattering
are expected to be comparable. The impact on the retrieved
XCH4/XCO2 ratio in the presence of aerosols is further dis-
cussed in Sect. 6.1. Appendix Fig. A4 shows comparisons
for all 28 surface targets based on available measurements 40

from June 2013 to May 2014. In comparison to the three
sites close to the CLARS location (Santa Anita, Santa Fe,
and West Pasadena), for sites that are further away, valid re-
trievals that pass the filters have lower AOD values. This is
because of their longer slant paths in the PBL, leading to a 45

larger scattering effect even under the same vertical aerosol
loading.

6 Discussions

6.1 Testing the assumption that the ratio between
XCH4 and XCO2 is not affected by aerosol 50

scattering

The tracer–tracer ratio method to retrieve CH4 emissions
based on CO2 emissions or CH4 concentration based on CO2
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Figure 12. Results for Test 3 (a and b) and Test 4 (c). Panels (a) and (b) show XCO2 and XCH4 biases as a function of biases in SSA and
g (asymmetry factor) of coarse- and fine-mode aerosol, respectively. Panel (c) shows the same as a function of biases in PBL CO2 and CH4
enhancement. This bias is defined as the difference in PBL GHG mixing ratios between 3-hourly and monthly a priori atmospheric profiles.

concentration assumes that the CH4/CO2 ratio cancels out
any systematic errors caused by aerosol scattering in the two
bands (e.g., Frankenberg et al., 2005; Parker et al., 2011;
Wong et al., 2015, 2016; He et al., 2019). However, the fact
that the spectral regions do not exactly overlap and that the5

line intensities have different strengths may reduce the valid-
ity of this assumption. Since XCO2 and XCH4 are simulta-
neously retrieved from both GFIT3 and CLARS-GFIT, these
retrievals serve as good datasets for testing the ratioing as-
sumption. Figure 17 shows a scatter plot between CLARS-10

GFIT XCH4/XCO2 ratios and those from GFIT3. No sys-
tematic bias is observed from this comparison, suggesting the
high accuracy of using the tracer–tracer ratio method to ac-
curately estimate CH4 emissions using remote sensing mea-
surements in the presence of aerosols.15

6.2 Impact of aerosol scattering on XCO2 and XCH4
retrievals regulated by surface reflectance

The effects of aerosol scattering and surface reflectance on
modifying the path of solar radiation, and thereby introduc-
ing biases in trace gas retrievals, are coupled. A darker sur- 20

face means a relatively higher contribution from aerosol scat-
tering that will shorten the expected light path. On the other
hand, in the presence of a brighter surface, enhanced multi-
ple scattering between the surface and the aerosols may lead
to a longer light path. With an RTM, this coupling effect 25

can be explicitly characterized. In general, in the presence
of aerosols, XCO2 (or XCH4) will be overestimated if scat-
tering is not accounted for, according to Eqs. (10) and (11).
This is because there is larger bias (underestimation) in O2
SCD than in CO2 (or CH4) SCD due to higher AOD at the 30

O2 wavelength. According to MERRA reanalysis data, the
AOD ratio between 1.6 and 1.27 µm is about 0.8. However,
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Figure 13. (a) Upper left: median fitting residual (black) and ±1σ range (grey) for the O2 band. Lower left: sample measured spectrum.
Right: histogram of fitting residuals. Panels (b–d) are the same as (a) but for the weak CO2 band, the CH4 band, and the strong CO2 band,
respectively.
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Figure 14. AOD comparison between measurements from the Caltech AERONET site and GFIT3 retrievals. The AERONET AOD at 1.27 µm
is extrapolated from actual AERONET observations using the Ångström exponent law. Histograms of the difference between AERONET
and GFIT3 retrievals are also included.

Figure 15. Comparison of effective ALH from the MiniMPL lidar instrument on the Caltech campus and GFIT3 retrievals for the Santa
Anita, Santa Fe, and West Pasadena surface targets.

this is assuming that the surface reflectance is relatively un-
changed between the two bands. In fact, the surface is usually
darker in the 1.6 µm CO2 band than in the 1.27 µm O2 band.
According to our estimates, the reflectance ratio between the
two bands is about 0.5–0.8, depending on the composition of5

the target (soil, vegetation, buildings, etc.). As a result, the
darker surface at 1.6 µm may compensate for the lower AOD
and increase the relative aerosol scattering contribution.

If the reflectance ratio is close to 1 (no spectral depen-
dence), the XCO2 (or XCH4) bias will be primarily deter-10

mined by the AOD ratio. Here we assume the aerosols are
mostly non-absorbing or do not have a strong spectral depen-
dence of absorption. However, if the reflectance ratio is small
(strong spectral dependence), the surface is much darker in
the CO2 band than in the O2 band. In this case, it is possible15

for the surface darkening effect to be more dominant than the
AOD effect in driving the bias (underestimation) of retrieved
XCO2 (or XCH4). For example, the West Pasadena location
is special in that it is close to a park, which has different land

use types compared to the other surface targets. This target 20

has a much lower reflectance ratio than other locations (Ap-
pendix Fig. A5), which may explain the underestimation by
CLARS-GFIT compared to GFIT3 for this location, as seen
in Figs. 14c and A4.

6.3 Post-retrieval analysis of fitting residual and 25

goodness of fit

The benefit of using the GFIT spectroscopy database is that
it has been carefully evaluated based on highly accurate TC-
CON observations. To further investigate the errors in spec-
troscopy, an important contributor to the forward model er- 30

ror in Eq. (1), we apply principal component analysis (PCA)
to the fitting residuals. This analysis method has been used
by the OCO-2/3 operational algorithm to correct for errors
in CO2 spectroscopic parameters and the atmospheric state
(O’Dell et al., 2018). The three principal components (PCs) 35

with the largest variance are shown in Appendix Fig. A6. The
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Figure 16. Comparison of (left) XCO2 and (right) XCH4 retrievals from GFIT3 and CLARS-GFIT for the (a) Santa Anita, (b) Santa Fe, and
(c) West Pasadena surface reflection targets. The data points are color-coded by the retrieved AOD. The insets show scatter plots between
retrieved AOD and the difference in XCO2 or XCH4 between GFIT3 and CLARS-GFIT.

features in these PCs are mostly related to spectroscopic un-
certainties. These PCs might be related to line width, instru-
ment effects, and the solar spectrum. For example, PC-3 from
the WCO2 band appears to be correlated with absorption fea-
tures that may be attributed to very small changes in the line5

width. However, this PC can only explain a few percent of the
residual variance. Overall, there are no PCs that can explain
more than 10 % of the variance in the fitting residual. This

is because the fitting residual itself is very close to random
and without large systematic errors. We therefore believe that 10

spectroscopic errors should not be a major issue here.
The reduced χ2, which is the χ2 from Eq. (2) divided by

the total number of measurements and state vector elements,
infers the goodness of fit and can be used to evaluate the error
covariance matrix. Theoretically, if the error covariance ma- 15

trix is properly implemented in the retrieval algorithm, the

Atmos. Meas. Tech., 14, 1–25, 2021 https://doi.org/10.5194/amt-14-1-2021



Z.-C. Zeng et al.: GFIT3 for remote sensing of greenhouse gases 19

Figure 17. Scatter plot of the XCH4/XCO2 ratio from GFIT3 and
CLARS-GFIT. The 1 : 1 line is shown in black. The red line denotes
the best fit using type II linear regression to fit the data. The equation
for the regression fit is also shown.

reduced χ2 should be close to 1 after convergence, which
means that the fitting residuals are consistent with the detec-
tor noise estimates. The histogram of reduced χ2 from all
converged retrievals (Appendix Fig. A7) indicates that most
of the retrievals have a χ2 close to 1 (83 % having χ2 less5

than 1.5). This indicates that the error covariance matrix used
in the retrieval algorithm, which assumes that measurement
noise is uncorrelated between different spectral channels, is
realistic. It should be noted that inaccuracies in the spectro-
scopic input data and improperly modeled instrument effects10

may contribute to the small deviation of χ2 from unity.

7 Conclusions

In this study, we developed GFIT3, a full physics algo-
rithm to retrieve trace gases in the presence of aerosols, and
demonstrated its performance by retrieving XCO2 and XCH415

from CLARS-FTS measurements. This algorithm simultane-
ously retrieves fine- and coarse-mode aerosol properties in-
cluding AOD and ALH. Inverse experiments based on syn-
thetic spectra indicate that the uncertainty in CLARS-FTS
retrievals of XCO2 and XCH4 due to uncertainty in the RTM,20

aerosol scattering, and atmospheric profile, which constitute
the three most important sources of error, is less than 1 % (or
less than ∼ 4 ppm for XCO2 and ∼ 20 ppb for XCH4). The
retrieval uncertainty for real CLARS-FTS observations is
partly due to the imperfect characterization of aerosol prop-25

erties. Nonetheless, we find that the retrieved AOD has good
agreement with AERONET measurements. Unfortunately,
direct comparison of XCO2 and XCH4 with existing TC-
CON data at Caltech is not feasible. On one hand, CLARS-
FTS cannot directly target the TCCON site at Caltech due to30

mountain ridges that block the line of sight. On the other, TC-
CON uses directly transmitted solar spectra to measure GHG
columns, which have different geometries from CLARS ob-
servations; the spatial heterogeneity of GHG distributions be-
tween the incident and reflected solar paths in the boundary 35

layer make the results difficult to compare.
Future research will focus on developing a “divide and

conquer” algorithm for retrieving aerosol properties and
GHGs in order to further improve the accuracy of GHG re-
trievals. The basic idea is to use a two-step procedure. First, 40

O2 absorption lines will be used to constrain the AOD and
ALH based on a spectral sorting technique (Zeng et al.,
2019). These values will then provide constraints for AOD
and ALH (with uncertainty estimates) for the retrieval of
GHGs. 45
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Appendix A

Figure A1. (a) Time series of O2 volume mixing ratio (VMR) scale factor (VSF) and (b) histogram of VSF. The VSF value (indicated by
the dashed red line) of ∼ 1.02 represents situations when the atmosphere is clear. See Sect. 3.1.1 for details.

Figure A2. AOD in the 1.27 µm O2 absorption band estimated from AERONET observations (2010–2017).

Figure A3. Example of spectral fitting residuals from the CLARS-GFIT (red; ignoring aerosol scattering) and GFIT3 (blue; accounting for
aerosol scattering) algorithms for the O2, WCO2, CH4, and SCO2 spectral windows. The spectral fitting RMSEs are also indicated. This
example is for an observation over the West Pasadena surface target on 28 September 2013 with a solar zenith angle of 65◦.
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Figure A4. Comparison of XCO2 retrievals from GFIT3 and CLARS-GFIT for all surface reflection targets. The data points are color-coded
by the retrieved AOD.

Figure A5. Histogram of the ratio of reflectance between the WCO2 and O2 bands for all the surface targets. The reflectance values are
obtained from GFIT3 retrievals. The number in red is the average ratio for the surface target.
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Figure A6. Mean radiance spectrum and the three leading PCs ranked by the variance explained by these PCs, obtained by applying PCA on
the fitting residuals, for the (a) O2, (b) WCO2, (c) CH4, and (d) SCO2 bands. The variance explained by each PC is also indicated.

Figure A7. Histogram of reduced χ2 from all converged retrievals in this study.
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Code and data availability. CLARS-FTS data are available from
https://data.caltech.edu/records/1948 (last access: 21 Septem-
ber 2021) or https://doi.org/10.22002/D1.1948 (Zeng, 2021), and
part of the CLARS data is also available from the NASA
Megacities Project at https://megacities.jpl.nasa.gov (Sander and5

Pongetti, 2020). The MiniMPL data are available from the NASA
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(Ware et al., 2020). AERONET data for the Caltech site are
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Remarks from the language copy-editor

CE1 Similar to the previous comment, this should use the abbreviated SI-unit with a numeral. In this case, an alternative is
not appropriate, and the meaning is clear.

Remarks from the typesetter

TS1 Please note that the font of d has been adjusted to denote a vector.
TS2 According to our standards, changes like this must first be approved by the editor, as data have already been reviewed,
discussed and approved. Please provide a detailed explanation for those changes that can be forwarded to the editor. Please
note that this entire process will be available online after publication. Upon approval, we will make the appropriate changes.
Thank you for your understanding.
TS3 Please see previous remark.
TS4 Please note that it is our standard to abbreviate SI-accepted units in combination with numbers. Also, for units, including
time units, our house standard is to use numerals. An alternative is “and five hour-long segments”.
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