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Abstract. TS1The observing system design of multidis-
ciplinary field measurements involves a variety of consid-
erations on logistics, safety, and science objectives. Typi-
cally, this is done based on investigator intuition and de-
signs of prior field measurements. However, there is po-
tential for considerable increases in efficiency, safety, and
scientific success by integrating numerical simulations in
the design process. Here, we present a novel numerical
simulation–environmental response function (NS–ERF) ap-
proach to observing system simulation experiments that aids
surface–atmosphere synthesis at the interface of mesoscale
and microscale meteorology. In a case study we demon-
strate application of the NS–ERF approach to optimize the
Chequamegon Heterogeneous Ecosystem Energy-balance
Study Enabled by a High-density Extensive Array of Detec-
tors 2019 (CHEESEHEAD19).

During CHEESEHEAD19 pre-field simulation experi-
ments, we considered the placement of 20 eddy covariance
flux towers, operations for 72 h of low-altitude flux aircraft
measurements, and integration of various remote sensing
data products. A 2 h high-resolution large eddy simulation
created a cloud-free virtual atmosphere for surface and me-
teorological conditions characteristic of the field campaign

domain and period. To explore two specific design hypothe-
ses we super-sampled this virtual atmosphere as observed by
13 different yet simultaneous observing system designs con-
sisting of virtual ground, airborne, and satellite observations.
We then analyzed these virtual observations through ERFs
to yield an optimal aircraft flight strategy for augmenting
a stratified random flux tower network in combination with
satellite retrievals.

We demonstrate how the novel NS–ERF approach dou-
bled CHEESEHEAD19’s potential to explore energy balance
closure and spatial patterning science objectives while sub-
stantially simplifying logistics. Owing to its modular exten-
sibility, NS–ERF lends itself to optimizing observing system
designs also for natural climate solutions, emission inven-
tory validation, urban air quality, industry leak detection, and
multi-species applications, among other use cases.
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1 Introduction

High-quality field data are the backbone of surface–
atmosphere research. However, there are inevitable trade-offs
in any field measurement among cost, logistics, safety, and
our ability to address science objectives. Most of the time,
these trade-offs are evaluated in a heuristic or haphazard ap-
proach, or at least with limited consideration of all possi-
ble options. Nevertheless, redundancy, experience, and good
fortune usually save most field measurement observing sys-
tem designs (OSDs) from failure. Inspired by observing sys-
tem simulation experiments (OSSEs) in the Earth system sci-
ences (Masutani et al., 2010; Atlas et al., 2015; Hoffman and
Atlas, 2016) we contemplated whether this process could be
improved. In particular, we note modern advances in con-
ducting virtual experiments within high-resolution numerical
simulations (NSs) of atmospheric turbulence (e.g., Steinfeld
et al., 2007). We envisioned that such NSs could yield OSSEs
that help increase the information gain per funding invest-
ment, more effectively address field measurement objectives,
and minimize problems that arise from safety, logistics, and
cost.

Here, we derive a novel approach to OSSEs that aids
surface–atmosphere synthesis at the interface of mesoscale
and microscale meteorology. We then apply it to prepar-
ing field campaign resources for the Chequamegon Het-
erogeneous Ecosystem Energy-balance Study Enabled by a
High-density Extensive Array of Detectors 2019 (CHEESE-
HEAD19; Butterworth et al., 2021). At the time of this study,
the CHEESEHEAD19 field measurement campaign was to
be conducted in northern Wisconsin, United States of Amer-
ica, from June to October of 2019, with the overarching sci-
ence objective of examining how the atmospheric boundary
layer (ABL) responds to spatial heterogeneity in the surface–
atmospheric exchanges of heat and water. Further science
objectives were to test whether resulting mesoscale atmo-
spheric processes relate to the lack of energy balance closure
frequently observed by eddy covariance (EC) towers. Lastly,
CHEESEHEAD19 sought to apply advanced analytics over
a multiscale set of observations to yield scale-aware, energy-
balanced data products that help improve model representa-
tion of subgrid processes. To that end, we wanted to harness
the complementarity among various in situ and remote sens-
ing measurement systems.

However, the joint utility of these measurement systems
for addressing the science objectives was not well character-
ized prior to the field campaign. Moreover, their joint utility
is highly sensitive to the OSD including placement of the
measurements and the resulting information overlap in space
and time (Fig. 1). Consequently, CHEESEHEAD19 informa-
tion gain hinged on our ability to merge information among
the perspectives of ground-based, airborne, and spaceborne
measurements, as well as numerical models. Plentiful data
that are insufficiently connected to infer meaning create the
risk of data deluge rather than the next interdisciplinary

breakthrough. While advances in post-field data assimilation
aim to rectify limited and variable information overlap sta-
tistically (Williams et al., 2009), only the careful OSD of
the field measurements themselves can treat their root cause.
We thus sought an approach that empowers making CE1 in-
formed OSD choices for surface–atmosphere field measure-
ments in advance of the experiment.

Simulation experiments involve asking what would hap-
pen in an imaginary scenario and trying to understand
whether the predicted outcome is compatible with existing
theory. This form of inquiry is not an invention of mod-
ern science, but can be traced back at least to the em-
pirical thought experiments of ancient Greek philosophers
(Palmerino, 2018; Brown and Fehige, 2019). Famously, Al-
bert Einstein employed thought experiments for his theo-
retical generalizations, including in his works on special
and general relativity (Norton, 1991). With the rise of NSs
came the opportunity to increase the complexity and detail
of thought experiments, such as how to design meteorologi-
cal field measurements (e.g., Eddy, 1974; Cortina and Calaf,
2017; Gehrke et al., 2019). More frequently, however, these
NSs were reserved for applications in which real-world tests
would have been impractical or impossible (e.g., Wiens et
al., 2003). These NSs centered on prescribing and propa-
gating a priori knowledge, i.e., creating “data from knowl-
edge”. As a result, the findings often remained subject to
strong methodological assumptions that could not necessar-
ily be met by real-world applications. More recently, the ad-
vent of data-intensive scientific discovery promises to offset
some of these limitations by providing computational facili-
ties that aid the inference of “knowledge from data”, includ-
ing from artificial intelligence (Hey et al., 2009; Reichstein et
al., 2019). We believe that ours is the first work that explic-
itly complements these two paradigms of scientific knowl-
edge creation for deriving surface–atmosphere OSDs at the
interface of mesoscale and microscale meteorology.

Previous studies employed data-intensive scientific dis-
covery for post-field OSD assessments (e.g., Montanari et
al., 2012; Koffi et al., 2013; Loescher et al., 2014; Kumar
et al., 2016; Chu et al., 2017; Mahecha et al., 2017; Vil-
larreal et al., 2019). In comparison, one innovation of the
approach presented here is that it provides design informa-
tion prior to deploying resources in the field. To achieve this,
we expanded on recent studies of atmospheric turbulence in
NSs (Sühring et al., 2018; Xu et al., 2020). Specifically, we
computationally simulated virtual observations over a cloud-
free CHEESEHEAD19 domain in decameter and sub-second
resolution for 2 h of surface and meteorological conditions
characteristic of the field campaign domain and period. This
“data from knowledge” idea feeds into a framework for data-
intensive scientific discovery based on physics-guided envi-
ronmental response functions (ERFs; Metzger et al., 2013a;
Xu et al., 2017, 2018; Metzger, 2018). The resulting ex-
plicitness promises unprecedented realism and process infer-
ence in comparison to existing pre-field OSSEs that leverage
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Figure 1. Space–time scope diagram for a surface–atmosphere synthesis observing system at the interface of mesoscale and microscale
meteorology. The observing system consists of a hierarchy of ground-based (Ground), airborne (Air), and spaceborne (Space) measurements,
shown in relation to two principal approaches for scaling to an information continuum: pre-field observing system design and post-field data
assimilation into Earth system models. Modified after Metzger (2018).

“knowledge from data” principles (Hargrove and Hoffman,
2004; Keller et al., 2008; Zhang and Pu, 2010; Sulkava et
al., 2011; Kaminski et al., 2012; Lauvaux et al., 2012; Lu-
cas et al., 2015; Ziehn et al., 2016; Park and Kim, 2020). In
the following, we derive this NS–ERF OSSE approach (in
short “NS–ERF” hereafter) using the case study of designing
CHEESEHEAD19 airborne flux measurements as a maiden
application example. It should be noted that NS–ERF is ap-
plicable to field measurements in general, and large-scale de-
ployments or even an aircraft operation component are by no
means a requirement, which we explore further with substi-
tution examples.

Airborne EC measurements have the particular benefit that
they permit surface–atmosphere fluxes to be spatially re-
solved over a range of scales, from small, tower-sized flux
footprints up to landscape scale. Thus, they build an impor-
tant bridge among the differing scales of ground-based and
spaceborne measurements (Fig. 1). Moreover, these kinds
of measurements have the particular advantage that they
can capture dispersive fluxes resulting from mesoscale at-
mospheric processes. Dispersive fluxes refer to the trans-
port of scalar quantities by standing eddies or spatially or-
ganized time-invariant convection cells (e.g., Raupach and
Shaw, 1982), which we hypothesize to be a main reason
for the long-standing energy balance closure problem of
tower-based eddy covariance measurements (Margairaz et
al., 2020; Mauder et al., 2020). In comparison to other
ground-based and spaceborne measurements, aircraft can be
deployed quite flexibly in space and time. They thus pro-
vide a key to maximizing the joint information gain of har-
nessing complementarity among various in situ and remote

sensing measurement systems. However, airborne field cam-
paigns are also very costly and cannot be conducted continu-
ously. Therefore, thorough planning of the flight strategy is of
great importance. Previous large-scale field campaigns with
similar airborne flux measurement objectives include the
First ISLSCP (International Satellite Land Surface Climatol-
ogy Project) Field Experiment (FIFE; Sellers et al., 1988),
the Boreal Ecosystem–Atmosphere Study (BOREAS; Sell-
ers et al., 1995), the Northern Hemisphere Climate Processes
Land-Surface Experiment (NOPEX; Halldin et al., 1999), the
Lindenberg Inhomogeneous Terrain – Fluxes between At-
mosphere and Surface: a Long-term Study (LITFASS-98;
Beyrich et al., 2002) and LITFASS-2003 (Beyrich and Men-
gelkamp, 2006), MAtter fluxes in Grasslands of Inner Mon-
golia as influenced by stocking rate (MAGIM; Butterbach-
Bahl et al., 2011), ScaleX (Wolf et al., 2017), and oth-
ers. In these campaigns the flight strategies were mostly
based on experience and expert knowledge. Considerations
included random and systematic errors (Lenschow et al.,
1994) as well as the source area (or “footprint”; Schuepp
et al., 1990; Kaharabata et al., 1997), sometimes supported
by analyzing land cover maps using Geographic Information
Systems (Metzger et al., 2013a). However, measurement er-
rors and source areas not only depend on the flight track it-
self but also vary with atmospheric conditions, such as sta-
bility, wind speed, and wind direction. Moreover, focusing
solely on measurement errors can be misleading in relation
to heterogeneity-induced signals and result in flawed conclu-
sions (Sühring and Raasch, 2013).

The aim of this paper is to derive the theoretical back-
ground of NS–ERF and to demonstrate its application to the
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CHEESEHEAD19 OSD with a focus on the EC flight strat-
egy. Specifically, in the following sections we test the study
hypothesis that CHEESEHEAD19 information gain is sen-
sitive to NS–ERF optimization. Two accompanying design
hypotheses relate this sensitivity to the choice of flight pat-
terns and flight sequences. Section 2 introduces CHEESE-
HEAD19 and NS–ERF. Section 3 presents the NS–ERF re-
sults beginning with NS (Sect. 3.1) and ERF (Sect. 3.2)
specifics, then evaluates the design hypotheses for each can-
didate OSD (Sect. 3.3) and provides CHEESEHEAD19 field
campaign resources (Sect. 3.4). Section 4 discusses these
NS–ERF results in light of the CHEESEHEAD19 OSD
(Sect. 4.1), possible benefits for coordinated environmental
observations in general (Sect. 4.2), and remaining challenges
and future work (Sect. 4.3). Section 5 then summarizes our
findings and provides an outlook.

2 Materials and methods

In the following we introduce CHEESEHEAD19 (Sect. 2.1)
with a particular eye on general setup and science objec-
tives, which then inform the case study realization of in-
dividual NS–ERF modules (Sect. 2.2). These include us-
ing high-resolution large eddy simulation (LES) for NS,
combining virtual flux tower, aircraft, and satellite measure-
ments in ERF, and deriving a set of NS–ERF optimality
criteria that correspond to CHEESEHEAD19 science ob-
jectives. Section 2.3 further expands on this by introducing
CHEESEHEAD19-specific airborne design hypotheses and
candidate OSDs, and Sect. 2.4 and 2.5 detail the LES and
ERF setups for this case study, respectively.

2.1 CHEESEHEAD19

The CHEESEHEAD19 study (Butterworth et al., 2021) in-
cluded a 4-month field measurement campaign to investi-
gate how land surface heterogeneity influences energy bal-
ance closure. The energy balance closure problem refers to
the situation, common in EC measurements, whereby down-
ward energy from radiation and ground heat flux exceeds
the measured upward energy from sensible and latent heat
fluxes (Foken et al., 2011; Mauder et al., 2020). Previous
studies have indicated that heterogeneity is related to the en-
ergy balance closure (Stoy et al., 2013; Xu et al., 2016). The
CHEESEHEAD19 project proposed to evaluate the hypoth-
esis that mesoscale atmospheric features, driven by surface
heterogeneity, are an important mechanism contributing to
energy balance non-closure (Mauder et al., 2007b; Foken et
al., 2011; Charuchittipan et al., 2014; Gao et al., 2016).

Due to a persistent mismatch between the scales of ob-
servations and models, the spatial and temporal scaling of
surface fluxes is essential for evaluating theories on what
happens within the subgrid of atmospheric models and how
those feed back onto larger-scale dynamics. Therefore, an ad-

ditional science objective of the project was to use the unique
multiscale set of observations to improve model representa-
tion of subgrid processes and to assess the performance of
ERFs for estimating the “flux in a box” from the domain vol-
ume (Metzger, 2018; Xu et al., 2018).

The field measurement campaign was to be CE2 conducted
within a 10×10 km domain of heterogeneous forest in north-
ern Wisconsin, USA. It included patches of homogenous and
mixed forests of evergreen, hardwood, and softwood decid-
uous trees, as well as grasses, wetlands, streams, and lakes
with a characteristic surface length scale of 411± 88 m (Xu
et al., 2017). The domain was relatively flat, ranging from
455 m a.s.l. in the southwest to 500 m a.s.l. in the northeast.
Previous years’ data from the study area showed that the
summer months are characterized by light surface winds
(typically < 5ms−1) coming predominately from the west-
ern hemisphere (180–360◦) and daytime ABL heights rang-
ing from 0.5 to 2.5 km above ground (mean of 1.5 km).

To measure fluxes (momentum, sensible heat, latent heat,
CO2) across the domain, 20 above-canopy EC towers were
proposed to be deployed over a range of vegetation types
(Fig. 2). They would measure all components of the en-
ergy balance, including net radiation, sensible and latent heat
fluxes, and ground heat flux. The majority of the towers were
expected to be instrumented at 3–32 m above ground, equal-
ing 3–15 m above the canopy depending on land cover. The
exception would be the tall tower at the center of the domain,
which is an existing AmeriFlux supersite (US-PFa; Desai,
2021) that has been measuring fluxes at 30, 122, and 396 m
above ground for the past 26 years (1995–2020; Desai et al.,
2015).

The project also proposed to deploy a suite of remote sens-
ing instruments (lidar, radar, sodar, ceilometers, interferom-
eters) for measuring the mesoscale atmospheric environment
(profiles of wind, H2O, temperature, aerosols, ABL height).
Aircraft and spaceborne remote sensing would be used to
map surface characteristics that will be used for data-driven
scaling methods. This would include airborne hyperspectral
imaging of the land surface properties. Additionally, a land
surface temperature product was planned to be developed
for the domain from a multi-sensor fusion of in situ thermal
drone and infrared camera imagery: ECOSTRESS, Landsat,
VIIRS, and/or GOES (Desai et al., 2021).

Aircraft measurements were planned to link the differ-
ing scales of ground-based and spaceborne observations over
the domain. Airborne EC fluxes (momentum, sensible heat,
latent heat, CO2) were measured with the University of
Wyoming King Air (UWKA) during 24 research flights. The
UWKA also deployed an upward-pointing cloud lidar for es-
timating ABL height and a downward-pointing Raman li-
dar for providing a three-dimensional representation of air
temperature and water vapor over the domain (Wu et al.,
2016). During each research flight the UWKA flew along
11 flight tracks spaced 2 km apart from each other (Fig. 2).
For a given flight track the UWKA first flew outbound at

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Atmos. Meas. Tech., 14, 1–26, 2021 https://doi.org/10.5194/amt-14-1-2021



S. Metzger et al.: Novel approach to observing system simulation experiments 5

Figure 2. Set of candidate locations for EC towers, ABL measurements, and UWKA candidate flight tracks (west–east pattern) with respect
to the 10× 10 km CHEESEHEAD19 study domain (black box; image © Google Earth). For a given flight track the UWKA would first fly
outbound at 400 m above ground (red arrows) and return at 100 m above ground (blue arrows).

400 m above ground (Fig. 2 red arrows) with an emphasis
on the lidar ABL observations. This arrangement also al-
lowed the crew to visually ensure flight safety for the imme-
diate return at 100 m above ground (Fig. 2 blue arrows) with
an emphasis on the EC surface flux observations. Owing to
the CHEESEHEAD19 science objectives we will focus on
the 100 m EC surface flux flights in the following sections.
A more complete description of the instruments deployed
during CHEESEHEAD19 can be found in Butterworth et
al. (2021).

2.2 NS–ERF observing system simulation experiments

Virtual atmospheres emulated in NSs provide a con-
trolled environment uniquely suited to disentangle surface–
atmosphere feedbacks (e.g., Avissar and Schmidt, 1998;
Kanda et al., 2004; Sühring et al., 2018; Margairaz et al.,
2020; Xu et al., 2020). Our work on NS–ERF extends upon
such previous applications by simulating and analyzing can-
didate OSDs for real-world measurements in such virtual at-
mospheres. NS–ERF employs value engineering principles
(e.g., Park, 1998; Younker, 2003; Tohidi, 2011) to maxi-
mize the information gain on real-world measurement in-
vestments for addressing science objectives across traditional
disciplinary boundaries. So long as we consider a single dis-
cipline, existing parameterizations often provide sufficient
constraints to ensure meeting basic assumptions. For exam-
ple, consider determining the height of an EC flux tower mea-
surement as a function of roughness sublayer effects (e.g.,
Munger et al., 2012; Foken, 2017), atmospheric blending
(e.g., Mason, 1988; Mahrt, 1996), and target source area
(e.g., Schmid, 1997; Chen et al., 2011). However, CHEESE-
HEAD19 relies on harnessing complementarity across dis-
ciplines, including ground-based, airborne, and spaceborne
measurements. These measurements operate on principally
different space scales and timescales (Fig. 1) so that informa-

tion gain hinges on our ability to join information not only
across disciplines, but also across scales. For example, the
spatial context of each measurement is a function of its hor-
izontal and vertical placement, thus providing a mechanism
to maximize information overlap. Yet, optimizing each mea-
surement’s utility for joint scientific inquiry is beyond the
scope of discipline-specific parameterizations. Here, we pro-
pose the extensible NS–ERF approach that explicitly simu-
lates the joint information gain in response to different can-
didate OSDs for addressing user-defined design hypotheses.

Specifically, the NS–ERF approach consists of three sets
of elements that interact with each other: definition elements
(Fig. 3a), realization elements (Fig. 3b), and a benchmarking
element (Fig. 3c). The NS–ERF sequence commences with
the definition elements in Fig. 3a by defining the application
objectives (i) and deriving design hypotheses (ii), OSDs (iii),
and optimality criteria (iv) from them. The sequence contin-
ues to the realization elements (Fig. 3b); numerical simula-
tions (v) create virtual measurements (vi) whose information
contents are combined in a scale-aware manner using ERFs
(vii). In the benchmarking element (Fig. 3c) the information
gain (viii) is determined as a function of how well the ERF
results (vii) for different OSDs (iii) fulfill the optimality cri-
teria (iv). This serves as an appraisal of the design hypothesis
(ii) and ultimately of the suitability of different OSDs (iii) for
the application objectives (i).

In the following case study, we apply NS–ERF to derive an
airborne EC flux flight strategy that augments a network of
EC flux towers for optimally addressing CHEESEHEAD19
science objectives: relating surface–atmosphere feedbacks
over a 10×10 km study domain to energy balance closure and
space–time scaling (Sect. 2.1). A preconceived network of
20 continuously operating EC flux towers forms CHEESE-
HEAD19’s backbone for addressing these science objectives
(Fig. 2). Tower placement within the study domain followed

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–26, 2021
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Figure 3. Visual glossary of the numerical simulation–environmental response function (NS–ERF) approach to observing system simulation
experiments (OSSEs), consisting of three sets of elements: (a) definition elements, (b) realization elements, and (c) a benchmarking element.
The text in Sect. 2.2 provides a detailed description of the interactions among individual NS–ERF elements.

a stratified random pattern, taking into account practical con-
siderations including distance to road, suitable gaps in trees
for a tower, and USFS-owned land. Individual towers were
an average of 1.4 km from their nearest neighboring tower
and an average of 3.5 km from the tall tower. The case study
focuses on a strategy for airborne EC flux measurements
because (i) they are central to linking the different scales
of ground-based and spaceborne observations (Fig. 1), (ii)
their flexibility provides an accessible mechanism to maxi-
mize joint information gain, and (iii) their flight safety and
cost warrant careful planning. Notwithstanding, NS–ERF is
broadly extensible beyond optimizing airborne EC flux mea-
surements for large-scale field experiments, and at the end of
this section we explore an adaptation to tower-EC-only natu-
ral climate solutions projects.

The application of NS–ERF to the CHEESEHEAD19 air-
borne design case study can be summarized as (i) generat-
ing virtual measurements, here in LES, (ii) joining infor-
mation across disciplines and measurements in ERFs, and
(iii) benchmarking candidate OSDs (Fig. 4). To obtain vir-
tual measurements ahead of the actual field measurement
campaign, we used LES to create a virtual atmosphere over
the CHEESEHEAD19 domain for meteorological conditions
characteristic of the measurement period (Fig. 4a). We then
super-sampled this virtual atmosphere as it would be ob-
served by 13 different yet simultaneous candidate OSDs
over the duration of 2 h. Section 2.3 and 2.4 detail the spe-
cific implementation. ERFs then augment expensive and thus
sparse response observations (e.g., fluxes from tower and
airborne EC) with inexpensive, abundant biophysical driver
observations (e.g., from meteorological stations and satel-
lites; Fig. 4b). High-rate time–frequency decomposition and
source area modeling facilitate mathematically rigorous data
overlays among these response and driver observations at the
minute and decameter scale. Machine learning then extracts a

driver-response process model from the resulting space- and
time-aligned dataset. Ultimately, this driver-response process
model complements the properties of response and driver ob-
servations in a response data product. In the present example,
the response data products are decameter-scale sensible heat
flux maps projected explicitly in space and time across the
study domain. This is accomplished by executing the driver-
response process model as a function of the driver inputs for
each grid cell. Section 2.5 provides specific implementation
details. Each candidate OSD resulted in a separate set of vir-
tual observations that we independently processed through
the ERFs. Finally, we benchmarked each candidate OSD by
comparing the flux maps that ERF reconstructed from the
virtual observations alone (Fig. 4c) to the original LES sur-
face flux forcings (Fig. 4a). To judge the ability to reproduce
the LES reference we used three optimality criteria (CR) di-
rectly related to the CHEESEHEAD19 science objectives,
each ranging 0 %–100 %.

– CR1 is flux map spatial coverage, i.e., the percentage of
grid cells across the study domain that ERF was able to
reconstruct within the range of the virtual driver mea-
surements (Sect. 2.5).

– CR2 is the energy balance ratio:

EBR=
〈FH,ERF〉+ 〈FLE,ERF〉

〈FH,LES〉+ 〈FLE,LES〉
, (1)

with angle brackets indicating the horizontal average
over all (reconstructed) grid cells over the study domain
in the case of LES (ERF); FH and FLE indicate the sen-
sible and latent heat flux, respectively. The numerator in
Eq. (1) varies according to the different OSDs, and the
denominator does not vary.

Atmos. Meas. Tech., 14, 1–26, 2021 https://doi.org/10.5194/amt-14-1-2021



S. Metzger et al.: Novel approach to observing system simulation experiments 7

Figure 4. (a) To simulate different candidate OSDs ahead of the actual field measurement campaign, we used LES to obtain observations in
virtual atmospheres over the CHEESEHEAD19 domain. (b) Environmental-response-function-related LES tower and airborne eddy covari-
ance flux response observations at very high space–time resolution compared to LES ground-based, airborne, and spaceborne meteorological
as well as surface driver observations. We used the extracted relationships to reconstruct fluxes explicitly across the study domain. (c) We
then benchmarked the different OSD candidates against their ability to reproduce the LES reference in the form of flux grids that ERF
reconstructed from the virtual observations alone. White grid cells denote areas outside the range of the virtual measurements, which let
us directly estimate how well we sampled the domain for upscaling. Sections 2.2 and 2.5 provide additional details. Modified after Butter-
worth et al. (2021), copyright (2020), with permission from the American Meteorological Society to reuse under the CC BY 4.0 license
(https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-NS-ERF/cc-by-4.0, last access: 29 September 2021).

– CR3 is spatial patterning from pointwise Pearson cor-
relation between the ERF-reconstructed flux maps and
the corresponding LES forcings.

We then used the arithmetic mean and standard devia-
tion to aggregate CR1–CR3 across flight patterns, flight se-
quences, and ultimately among themselves into a single score
that directly corresponds to CHEESEHEAD19 science ob-
jectives (Sect. 3.3). It should be noted that the optimality cri-
teria can be modularly adjusted for a range of applications.
For example, NS–ERF OSSE could be applied to a natural
climate solution project with tower-only (no airborne) EC
measurements and the objectives to determine tower height,
number, and location for economic implementation. In this
case the single score could be a cost–benefit ratio consist-
ing of optimality criteria from gridded carbon flux space–
time coverage, carbon reduction potential relative to mar-
ket price, and uncertainty. Proxies for photosynthetically ac-
tive radiation, vertical gradients of CO2, temperature and
moisture, and relative measurement height in the ABL from
satellites and station networks could provide the correspond-
ing biophysical drivers (Xu et al., 2017). One should fur-
ther distinguish the fact that the present OSSE study ex-

amines the potential to improve the information gain of the
CHEESEHEAD19 airborne measurements through design
choices. This is different from the scientific return of the ac-
tual CHEESEHEAD19 field campaign, which will become
apparent in years to come as analysis and publication of the
field data progress.

2.3 Design hypotheses and candidate observing system
designs

We used NS–ERF to determine the sensitivity of the opti-
mality criteria in Sect. 2.2 in response to two specific de-
sign hypotheses. These design hypotheses define the trade
space between CHEESEHEAD19 science objectives, flight
time constraints, and straightforward flight operation. With
regard to flight patterns, we hypothesize that (H1) it is critical
for airborne EC to measure perpendicular to the prevailing
wind (e.g., Petty, 2021). And with regard to flight sequences,
we hypothesize that (H2) within the flight time of a single
research flight, it is more informative to fly a finely spaced
pattern once compared to repeating a coarsely spaced pattern
multiple times. To explore H1 and H2 we created candidate
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OSDs in an LES (Sect. 2.4), consisting of a virtual EC flux
tower network in combination with virtual airborne EC flight
patterns and sequences.

The virtual EC tower network formed the backbone of
each candidate OSD, and its horizontal distribution corre-
sponded to the CHEESEHEAD19 stratified random grid pat-
tern. A total of 19 virtual towers performed EC time series
measurements at 49 m above ground, i.e., 26± 13 m higher
compared to the real towers. The virtual AmeriFlux supersite
tower at the center of the study domain measured at 49, 112,
and 371 m above ground, i.e., −6± 17 m lower compared to
the real tower. These choices were a compromise among re-
alism, bounding LES computational expense (10 m vertical
resolution), and keeping the LES subgrid fluxes acceptably
small (< 1 %) as suggested by Schröter et al. (2000), which
will not be captured by the virtual EC flux computation. We
analyzed 2 h of data for each of the 22 virtual tower-level
combinations, or 44 h in total.

The virtual aircraft conducted EC space series measure-
ments along grid flight patterns at 100 m above ground, iden-
tical to the measurement height proposed for the real aircraft.
The grid consisted of 11 flight tracks each 25 km long, in-
cluding six parallel flight tracks 2 km horizontally spaced
from each other and five diagonal flight tracks in between
(Fig. 2, blue arrows). To create the dataset for assessing H1
we formed the virtual flight patterns by letting multiple air-
craft fly simultaneous grids along four different azimuth an-
gles of the parallel tracks: east–west (E–W), north–south (N–
S), southwest–northeast (SW–NE), and south–southwest–
north–northeast (SSW–NNE). Here, the term flight pattern
refers to a set of georeferenced waypoints. To assess H2 we
further considered three permutations of the flight sequence,
i.e. the order in which the waypoints of a given pattern are
flown. (i) Alternating refers to flying a parallel track, then the
downwind diagonal track, then the downwind parallel track,
and so forth. (ii) Outbound refers to first completing all par-
allel tracks in downwind order, then flying back to the first
parallel track and completing all diagonal tracks in down-
wind order. (iii) Return refers to first completing all parallel
tracks in downwind order and then completing all diagonal
tracks in upwind (return) order. To summarize, the virtual air-
borne EC dataset consisted of 3 flight sequences × 4 flight
patterns × 11 flight tracks, or a total of 132 analyzed flight
tracks spanning 3300 km of virtual airborne EC data.

Based on this super-sample we evaluated 13 candidate
OSDs. Applying NS–ERF to 44 h of data from the virtual
EC tower network alone provided the baseline OSD. Com-
bining data from the virtual EC tower network with one of
the 3 flight sequences × 4 flight patterns = 12 airborne EC
combinations provided 12 alternative OSDs. Each of the al-
ternative OSDs consisted of 44 h of site virtual tower EC
data and 11 flight tracks× 25km= 275km virtual airborne
EC data. This configuration allows us to evaluate the change
in the optimality criteria (Sect. 2.2) for each of the 12 joint
tower and aircraft alternative OSDs relative to the tower-only

baseline OSD. To summarize, the tower-only OSD yields a
fixed baseline value for each of the spatial coverage, energy
balance, and spatial patterning optimality criteria, and the al-
ternative OSDs aim to maximally improve upon these base-
line values by testing different flight strategies.

2.4 Large eddy simulations

We used the Parallelized LES Model (PALM) (Maronga et
al., 2015, 2020) revision 4007 to simulate the atmosphere
over the CHEESEHEAD19 domain. PALM solves the non-
hydrostatic incompressible Boussinesq-approximated equa-
tions. We used the turbulent kinetic energy scheme of Dear-
dorff (1980) for the subgrid model, a fifth-order scheme
(Wicker and Skamarock, 2002) to discretize the advection
terms, and a third-order Runge–Kutta scheme by Williamson
(1980) for the time integration.

The aim of the simulation was to optimize OSDs for the
upcoming field measurement campaign, meaning that the
surface and atmospheric conditions were unknown. Hence,
we simulated a single meteorological setting for a day with
a well-developed summertime continental ABL on 12 Au-
gust 2011, which is a typical situation for that region during
the scheduled field measurement period. We considered the
model surface to be flat, and as surface forcing we prescribed
time-dependent, heterogeneous sensible and latent heat flux
grids that Metzger et al. (2013b) have previously determined
for this day. In an intermediary step we downscaled the orig-
inal heat flux grids from 100 to 25 m horizontal grid spac-
ing and from 1 h to LES time step, and we filled data gaps
with the horizontally averaged flux. This approach provides
a straightforward surface flux benchmark for evaluating NS–
ERF results and forgoes the extensive data requirements of
a coupled land surface model that would be difficult to ful-
fill prior to the actual field measurements. We then applied
Monin–Obukhov similarity theory locally between the sur-
face and the first vertical grid level as a surface boundary
condition for the momentum equations. During the pre-field
stage, information on forest size and patch distribution was
insufficient to use a plant-canopy model for reliably describ-
ing momentum drag. Hence, we set a horizontally homoge-
neous roughness length of 2.0 m in the simulations because
significant parts of the measurement site and its surround-
ings consist of forests. We then applied cyclic conditions at
the lateral boundaries and provided initial vertical profiles of
the horizontal wind components, potential temperature, and
water vapor mixing ratio from nearby radiosonde observa-
tions (Green Bay Observations, station ID 72645; ∼ 100 km
to the southeast of the study domain). We assumed the ob-
served westerly wind within the free atmosphere to be in
geostrophic equilibrium and steady state, and we thus pre-
scribed vertically constant profiles of the geostrophic wind
components. For safety reasons the real-world flights were
to take place on mostly cloud-free days, so clouds were not
simulated.
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With this setup, we simulated a 30× 30× 3 km domain
in the x, y, and z direction, respectively, centered over the
10×10 km CHEESEHEAD19 domain. The grid spacing was
25 m in the horizontal direction and 10 m in the vertical direc-
tion. The simulation ran for 5 h (07:00–12:00 CST), the first
3 h of which were model spin-up time (07:00–10:00 CST).
During the final 2 h (10:00–12:00 CST) we took virtual tower
and aircraft measurements. At each virtual EC tower loca-
tion, a virtual sensor sampled time series of potential tem-
perature, mixing ratio, and vertical wind at the LES time step
of 0.4 s. For each aircraft measurement, a similar virtual sen-
sor moved along a predefined flight track at a ground speed
of 82 ms−1.

2.5 Environmental response functions

ERF employs time–frequency decomposition, source area
modeling, and machine learning to join the information con-
tained in multiscale environmental observations explicitly
in space, time, and function (Metzger et al., 2013a). Com-
pared to block averaging in traditional EC, spectral averag-
ing in ERF facilitates orders-of-magnitude higher resolution
of the resulting fluxes, here 1 min and 100 m vs. traditionally
30 min and ∼ 10 km for tower and aircraft fluxes, respec-
tively. This permits modeling the surface source area sepa-
rately for each 1 min and 100 m flux response observation,
thus further improving relatability to surface driver variabil-
ity. For each 1 min and 100 m interval, the individual flux re-
sponse observation is then stored alongside coinciding mete-
orological driver observations and source-area-averaged sur-
face driver observations in a space- and time-aligned dataset.
It is this high-resolution dataset that provides the necessary
space–time matching and sample size to facilitate robust ma-
chine learning and subsequent flux map projection. Here we
used ERF to reproduce the LES surface flux forcing from
virtual EC towers, EC aircraft, and remote sensing observa-
tions (e.g., Xu et al., 2017; Serafimovich et al., 2018). These
flux maps comply with observational assumptions that are
not typically met from EC measurements alone, such as in-
corporation of mesoscale flows and spatial representativeness
for the 10× 10km CHEESEHEAD19 target domain (Met-
zger, 2018; Xu et al., 2018, 2020).

ERF commenced with the high-rate time–frequency de-
composed computation of the sensible and latent heat flux
responses in the atmosphere. This step is based on the Mor-
let wavelet, while assuming constant ambient pressure in the
LES. Spectral averaging over the wavelet cross-scalograms
facilitated high temporal (tower: 1 min) and spatial (aircraft:
100 m) resolution of the resulting fluxes (Mauder et al.,
2007a). To ensure that tower and aircraft fluxes are compa-
rable in their inclusion of longwave mesoscale flows we ap-
plied a joint rectangular cutoff. The aircraft data limited the
longwave transport scales, with the 25 km flight tracks equat-
ing to a maximum transport scale of ∼ 17 km expressible by
the wavelet cross-scalograms. We then applied Taylor’s hy-

pothesis (Taylor, 1915) with an average wind speed of 3–
5 ms−1 to derive a corresponding tower cutoff scale of∼ 1 h.
We time-matched the sensible and latent heat flux responses
with the virtual observations of meteorological drivers con-
sisting of potential temperature, water vapor dry mole frac-
tion from mixing ratio, and relative measurement height in
the ABL calculated from the potential temperature profile.

Next, we used source area modeling (Kljun et al., 2004;
Metzger et al., 2012) to quantify the source area contribu-
tions to each 1 min tower and 100 m aircraft flux observation.
The source area weights provided a linkage between the sen-
sible and latent heat flux responses in the atmosphere and
their spatially resolved drivers at the LES surface (available
energy as a proxy for net radiation) as well as in the first ver-
tical LES layer (near-surface temperature and moisture as a
proxy for remote sensing observations). While near-surface
temperature and moisture retain much of the horizontal spa-
tial patterning, their amplitudes are reduced compared to ac-
tual surface temperature and moisture. This is exacerbated
by the source area averaging applied here, and the combined
effects on amplitude are evident, e.g., in Fig. 11. For sim-
plicity, we used averages over the 2 h observation period for
all spatially resolved drivers. The results are space- and time-
aligned datasets consisting of the sensible and latent heat flux
responses and their meteorological drivers in the LES atmo-
sphere, as well as their spatially resolved drivers near the
LES surface. The space–time-aligned dataset for the baseline
OSD (tower-only) thus consisted of 22 virtual tower-level
combinations with 2 h of data each at 1 min output resolu-
tion, resulting in 2640 observations. The space–time-aligned
dataset for each of the 12 alternative OSDs (tower + aircraft)
additionally consisted of 11 flight tracks with 25 km data
each at 100 m output resolution, resulting in 2750 observa-
tions. It should be noted that this is the first application of
ERF to combine flux response information across platforms,
here flux tower and flux aircraft.

We then used boosted regression tree (BRT) machine
learning to mine the information contained in the space–
time-aligned datasets. The results were individual ERF pro-
cess models for each OSD, separately for the sensible and
latent heat flux responses as a function of their meteorologi-
cal and surface drivers. Overall, we built the driver-response
model structure in accordance with first principles: an en-
ergy source, from which fluxes result in accordance to Fick’s
law of (turbulent) diffusion along temperature and water va-
por gradients, modulated with distance from the exchange
surface. For example, we expressed the sensible heat flux re-
sponse as a space–time function of the vertical temperature
gradient. BRT then solved for the turbulent diffusion coeffi-
cient as a space–time function of available energy, modulated
by vertical flux divergence and the vertical humidity gradient.

In the final step we projected the space–time explicit
heat flux response maps to the median relative measurement
height of the 49 m towers (0.16 of the ABL height). This is
accomplished by providing the full complement of space–
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time explicit drivers to the ERF process model. Specifically,
we provided the spatially distributed near-surface tempera-
ture and moisture fields, the 2 h space–time median available
energy across the 30×30 km domain, and the 2 h median me-
teorological drivers across all 20 virtual towers measuring
at 49 m. This essentially equates to substituting the spatial
information in the source areas with the distributed spatial
information on near-surface temperature and moisture fields
akin to remote sensing. While it would have been possible
to resolve the meteorological drivers temporally and hence
also the resulting heat flux maps, we used the 2 h aggregates
to streamline the overall analysis. We also limited the ERF
projection to interpolate but not extrapolate outputs, i.e. to
only populate grid cells with driver combinations in the range
of the virtual measurements. By doing so, the resulting data
coverage lets us directly estimate how well we sampled the
domain for upscaling. In total, we trained and projected 78
ERF process models consisting of two heat fluxes – sensible
and latent heat – and 13 OSDs with three replicates each to
constrain BRT tolerances.

3 Results

3.1 LES virtual experiments

As described in Sect. 2.4, the LES was forced using pre-
existing surface sensible and latent heat fluxes across the do-
main. Figure 5 shows the prescribed surface sensible and la-
tent heat fluxes at different points in time, which we used
as lower boundary condition for the LES. The hourly input
fluxes were interpolated in time to the LES time step. Surface
heterogeneities with distinct patches in the surface sensible
and latent heat flux are visible at multiple scales that vary in
time and among the latent and sensible fluxes as well. Dis-
tinct surface heterogeneity patches are maintained over the
entire simulation period, representing particular landscape
patterns across the CHEESEHEAD19 domain.

Figure 6 shows the domain average initial and time-
dependent vertical profiles of potential temperature, water
vapor mixing ratio, and wind speed. These explain the vir-
tual setup and provide an overview of the ABL structure:
the model was initialized with the early morning profiles of
potential temperature and mixing ratio, then left to develop
its own equilibrium for this design case. The profile of po-
tential temperature indicates a vertically well-mixed ABL,
which heats up during the course of the day. Due to the
strong capping inversion the ABL grows only slowly and
reaches a height of about 400 m around noon, which is rel-
atively low for a summertime convective ABL and further
discussed in Sect. 4.1. The mixing ratio within the ABL also
increases during the simulation due to the surface latent heat
flux and due to entrainment of moist air from the above-lying
free atmosphere, which exhibits higher values of mixing ratio
than in the ABL. The profiles of the wind components indi-

cate northwesterly winds within the ABL during the morning
hours, turning to westerlies later. Westerlies during the actual
virtual measurement duration period from late morning un-
til noon are required to investigate the candidate OSDs from
Sect. 2.3.

Figure 7 shows a horizontal cross section of the instanta-
neous and time-averaged vertical wind component at a height
of 100 m during the virtual measurement period at 11:00.
Instantaneous updrafts and downdrafts ranging from −2 to
3 ms−1 can be observed. The updrafts and downdrafts indi-
cate elongated structures aligned with the mean wind direc-
tion at this height level. Even though the spatial organization
of these structures is not strictly stationary in time due to the
slightly changing wind direction (see Fig. 6), they can still be
observed in the temporal average.

Figure 8 shows vertical profiles of the domain-averaged
sensible and latent heat flux. Both flux profiles display a sim-
ilar shape, linearly decreasing with height and reaching a
minimum at the ABL top. These negative heat fluxes indi-
cate entrainment of warm and moist air from the inversion
into the ABL. This is supported also by Fig. 6, where the
inversion layer exhibits a higher mixing ratio compared to
the ABL. Figure 8 further shows that the subgrid-scale fluxes
contribute less than 1 %–2 % to the total vertical transport at
the measurement levels. This indicates that the vertical trans-
port of heat and moisture is well resolved at these levels.

3.2 ERF retrievals

To create a space- and time-aligned dataset (Fig. 4b), ERF
first calculates wavelet-decomposed EC fluxes directly from
the high-frequency raw data. This facilitates inclusion of
longer transporting scales compared to traditional EC, as
well as unprecedented spatial and temporal resolution of the
resulting fluxes (Fig. 9).

Next, ERF relates the time- and space-resolved EC flux
responses in the atmosphere to biophysical drivers at the sur-
face (Fig. 10), such as near-surface temperature and near-
surface moisture. In the present application near-surface tem-
perature and near-surface moisture are taken from cross sec-
tions at the vertical LES level closest to the surface. In real-
world ERF applications, these are substituted with space-
borne and airborne remote sensing data products or reanal-
ysis data (e.g., Serafimovich et al., 2018). This facilitates
mathematically rigorous data overlays among response and
driver observations at the minute and decameter scale. The
result is a space–time-aligned dataset for each virtual EC
tower and for each virtual EC flight track. Both the tower and
airborne EC datasets comprise the same variables in identical
units and were processed to ensure cross-platform compati-
bility and avoid biases (Sect. 2.5). This allows combining the
virtual tower EC results and corresponding virtual airborne
EC results into a single space–time-aligned dataset for each
of the 12 alternativeTS2 OSDs.
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Figure 5. Time sequence of (a–c) the spatially heterogeneous surface sensible heat flux and (d–f) latent heat flux prescribed as LES lower
boundary conditions. Superimposed red dots indicate candidate EC tower locations, alongside UWKA candidate flight tracks (west–east
pattern).

Figure 6. LES domain-averaged vertical profiles of (a) potential temperature, (b) water vapor mixing ratio, and (c) horizontal wind velocities
at different simulation times.

The ERF machine learning component then extracts a
driver-response process model from each of the combined
space- and time-aligned datasets. Here, we trained a total of
78 machine learning models. These consisted of 13 candi-
date OSDs × 2 fluxes (sensible and latent heat) × 3 repli-

cates (to quantify stochastic uncertainty in the response data
products). Figure 11 shows example driver-response surfaces
for sensible and latent heat flux as a function of their prin-
cipal drivers, energy input, near-surface temperature, and
near-surface moisture. This exemplifies in reduced dimen-
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Figure 7. LES x–y cross section of (a) instantaneous and (b) 30 min time-averaged vertical velocity at a height of 100 m at 11:00 CST
simulation time.

Figure 8. Domain-averaged vertical flux profiles of (a) sensible heat and (b) latent heat at 11:00 CST simulation time. The solid lines show
the total simulated fluxes, consisting of resolved fluxes (dashed lines) and subgrid parameterized fluxes (dotted lines).

sionality how the turbulent diffusion coefficient connects
the drivers to the flux response within the physics-guided
ERF model structure. In Fig. 11a the sensible heat flux in-
creases primarily with near-surface temperature and secon-
darily with energy input. The relationship reaches a plateau
around 290.3 K, which deviates from a one-dimensional,
monotonic, and linear gradient–flux relationship, indicative
of additional feedback processes. Conversely, in Fig. 11b the
latent heat flux increases primarily with energy input and sec-
ondarily with near-surface moisture, with monotonic and ap-
proximately linear relationships across the range of drivers.

Ultimately, the physics-guided ERF driver-response pro-
cess model complements the properties of response and
driver observations in a response data product. In the present
example the response data products are decameter-resolution

sensible heat flux maps projected explicitly in space and time
across the study domain (Fig. 12). We projected the flux
maps for the tower-only space–time-aligned dataset (base-
line OSD; Fig. 12a) and then separately for each of the 12
joint tower and aircraft space–time-aligned datasets (alterna-
tive OSDs; Fig. 12c). Now the flux maps that ERF recon-
structed from the virtual measurements alone can be com-
pared to the original LES surface flux forcings (Fig. 12b).

3.3 Evaluation of design hypotheses

The ERF-derived flux maps alongside the LES surface forc-
ing in Fig. 12 allow us to assess the design hypotheses
(Sect. 2.3) as a function of the different candidate OSDs. For
this purpose, we evaluated the change in the optimality cri-
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Figure 9. Space-resolved sensible heat flux from high-rate space-scale decomposition of virtual airborne measurements.

Figure 10. Source area modeling (30 %, 60 %, 90 % contour lines) relates observations across platforms and representations by determining
the surface sources of the time- and space-resolved EC fluxes, here superimposed over the LES sensible heat flux surface forcing. (a)
Virtual AmeriFlux supersite tower at the center of the study domain at a measurement height of 112 m. (b) Virtual UWKA flight track at a
measurement height of 100 m.

teria (Sect. 2.2) for each of the 12 joint tower and aircraft
alternative OSDs relative to the tower-only baseline OSD. In
the following (Tables 1–3) we performed all aggregations us-
ing arithmetic mean and standard deviation operators. In all
cases the aggregations include two fluxes (sensible and la-
tent heat) with three machine learning replicates each, plus
additional aggregation as specified.

In response to the first design hypothesis, H1, we address
the question of how critical it is for airborne EC to mea-
sure perpendicular to the prevailing wind. Table 1 shows
the results for each optimality criterion as a function of
the aircraft track angle on the mean wind direction, aggre-
gated over all three flight sequences. We can see that track
angles in the range of 90± 45◦ on the mean wind direc-
tion yield limited improvement in spatial coverage (23.3%±
1.8 %–25.6%± 0.1 %) compared to wind-parallel patterns
(0◦; 20.9%±1.9 %). However, within the same range of track
angles the improvement in energy balance ratio and spatial
patterning approximately double to octuple (Table 1, italic
font).

The improvement in spatial patterning when adding
wind-parallel flights to the tower network is limited to

13.7%±9.2 % compared to 18.3%±15.2%–34.6%±3.3 %
for adding flights with a 45–90◦ aircraft track angle on the
mean wind. Irrespective of the track angle, the observations
along a flight track are never entirely independent from each
other due to along- and cross-wind dispersion. For wind-
parallel flights, Fig. 13a indicates a high degree of source
area overlap and thus self-correlation among the observa-
tions, resulting from strong along-wind dispersion along the
flight track. In contrast, Fig. 13b shows fewer overlapping
source areas along the flight track of wind-perpendicular
flights, with the comparatively weaker cross-wind dispersion
now controlling the overlap. The latter strategy results in ob-
servations that capture more independent samples and spa-
tial variability. Thus, the dominating mode of atmospheric
dispersion with respect to the aircraft track angle helps to ex-
plain the differences in the spatial patterning optimality crite-
rion. For our study setup we reach a critical overlap resulting
from the combined effects of along- and cross-wind disper-
sion at track angles shallower than 90±45◦ on the mean wind
direction.

Furthermore, at the virtual aircraft flight height of 100 m
the time-averaged vertical wind cross section in Fig. 7b
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Figure 11. Example ERF surfaces. (a) Sensible heat flux as a function of source-area-averaged energy input and near-surface temperature
(NST from the first vertical LES layer; Sect. 2.5). (b) Latent heat flux as a function of source-area-averaged energy input and near-surface
moisture (NSM from the first vertical LES layer; Sect. 2.5). For this visualization, all other drivers are kept at their median value.

Figure 12. Example ERF data products: sensible heat flux maps independently derived for (a) the tower-only space–time-aligned dataset and
(c) for the joint tower and aircraft space–time-aligned dataset, alongside (b) the LES reference surface flux field.

shows organized structures that are elongated in the mean
wind direction. These organized structures are among the
most promising leads to explain the frequently observed non-
closure of the energy balance, in particular from tower EC
measurements (Mauder et al., 2020). These structures con-
sist of more spatially expansive though weaker subsidence
zones and more spatially limited though stronger convec-
tion zones (Lenschow and Stankov, 1986; Moeng and Ro-
tunno, 1990; Etling and Brown, 1993; Kanda et al., 2004;
Petty, 2021). So, when applied to aircraft EC measurements,
wind-parallel flights are more likely to occur along the subsi-
dence zones than along the convection zones. This helps ex-
plain why adding wind-parallel flights to the tower network
yields only a limited improvement of the energy balance ra-
tio criterion (1.7%±1.4 %). Conversely, wind-perpendicular
flights trend toward observing combinations of subsidence

and convection zones that approximately balance the atmo-
spheric conservation of mass and energy. This explains the
eightfold improvement (12.8%± 3.1 %) when adding wind-
perpendicular flights to the tower network compared to wind-
parallel flights. Between these two extreme cases, adding
the flights with 45 and 60◦ track angles to the tower net-
work still yields an approximately fourfold improvement
(6.4%±4.7 %–6.4%±5.3 %) over the wind-parallel flights.

Next, we address the design hypothesis, H2, i.e., whether
it is more informative to fly a finely spaced pattern once or to
fly a coarsely spaced pattern multiple times. Table 2 shows
that the spatial coverage and energy balance ratio criteria are
not particularly sensitive to the flight sequence. One excep-
tion is the particularly high and consistent improvement in
the spatial patterning performance criterion of the alternat-
ing sequence (29.1%± 5.4 %; Table 2, italic font). It is the
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Table 1. Percent improvement of the joint tower and aircraft EC alternative OSDs relative to the tower-EC-only baseline OSD, aggregated
over all three flight sequences. The results are shown as a function of the optimality criterion (rows) and aircraft flying the grid pattern in
various track angles on the mean wind direction (columns). Bold font highlights marked improvements that are further discussed in the text.

Optimality criterion All angles 0◦ 45◦ 60◦ 90◦

Spatial coverage 23.6%± 2.2 % 20.9%± 1.9 % 24.7%± 0.8 % 23.3%± 1.8 % 25.6%± 0.1 %
Energy balance ratio 6.8%± 5.3 % 1.7%± 1.4 % 6.4%±5.3% 6.4 %±4.7 % 12.8%±3.1%
Spatial patterning 23.2%± 11.7 % 13.7%± 9.2 % 34.6%±3.3% 26.2 %±6.8 % 18.3 %±15.2%

Figure 13. Example virtual flight tracks and their 30 %, 60 %, and 90 % source area contours superimposed over the LES sensible heat
flux surface forcing (Wm−2). (a) Wind-parallel flights sample source areas that are elongated along the flight track, leading to considerable
overlap. (b) Wind-perpendicular flights sample less overlapping source areas along the flight track and thus capture more independent samples
and spatial variability.

only sequence that “carpets” the CHEESEHEAD19 domain
wall to wall at fine time and space increments. All other se-
quences progress in coarser increments, such as first com-
pleting all parallel flight tracks and then revisiting the inter-
spersed diagonal flight tracks. In the context of the 2 km hor-
izontally spaced parallel flight tracks, Xu et al. (2017) report
a 411± 88 m characteristic surface length scale of landscape
elements in the CHEESEHEAD19 domain. The finer incre-
ments of the parallel–diagonal alternating sequence let ERF
relate drivers and responses closer to the characteristic sur-
face length scale and thus to reproduce the spatial patterning.

To summarize, flight patterns with a track angle in the
range of 90± 45◦ on the mean wind direction yielded ap-
proximately double the performance improvement of wind-
parallel patterns. This finding is irrespective of the flight se-
quence but most consistent for the alternating flight sequence
(21.6%±11.5 %–22.6%±9.4 %; Table 3, italic font). Com-
pared to the worst-case combination of wind-parallel flight
patterns with the outbound flight sequence (9.6%± 11.1 %
improvement) this equates to doubling the information gain.

3.4 Field campaign resources

Flying the grid pattern in the alternating sequence provided
the best and most consistent results, while also being the

most straightforward sequence for operational implementa-
tion. Further, to satisfy the 90± 45◦ track angle on the mean
wind condition we derived three rotationally symmetric sets
of waypoints at 60◦ increments (Fig. 14). Flying the num-
bered waypoint in ascending order results in three alternat-
ing flight sequences: SE1, SW1TS3 , and WE1 with 330◦, 30◦,
and 90◦ azimuth of the parallel tracks, respectively. Owing to
rotational symmetry, flying the numbered waypoints in de-
scending order results in three additional alternating flight
sequences: SE2, SW2TS4 , and WE2 with 150◦, 210◦, and
270◦ azimuth of the parallel tracks, respectively. Reversing
the waypoint order allows the aircraft to progress through
the flight tracks in downwind order for any given mean wind
direction. This aims to reduce the space–time ambiguity re-
sulting from airborne EC observing different surface condi-
tions over hundreds of kilometers, while at the same time
the diurnal cycle progresses over the course of several hours.
Lastly, to avoid the town and airfield of Park Falls, WI, im-
mediately west of the CHEESEHEAD19 domain, we shifted
the WE1/WE2 set of waypoints 5 km to the east (Fig. 14c).

To support daily flight planning we distilled the six al-
ternating flight sequences into a flight planning wind rose
(Fig. 15). There we implemented the track angle condition
by superimposing over a wind rose the wind sector aligned
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Table 2. Percent improvement of the joint tower and aircraft EC alternative OSDs relative to the tower-EC-only baseline OSD, aggregated
over all four aircraft track angles on the mean wind direction. The results are shown as a function of the optimality criterion (rows) and
aircraft flying the grid pattern in various sequences (columns). The bold font highlights a marked improvement that is further discussed in
the text.

Optimality criterion All sequences Alternating Outbound Return

Spatial coverage 23.6%± 2.2 % 23.0%± 3.0 % 23.5%± 1.8 % 24.4%± 1.9 %
Energy balance ratio 6.8%± 5.3 % 7.9%± 5.3 % 6.0%± 6.6 % 6.6%± 5.4 %
Spatial patterning 23.2%± 11.7 % 29.1 %±5.4 % 14.9%± 15.7 % 25.6%± 9.0 %

Table 3. Percent improvement of the joint tower and aircraft EC alternative OSDs relative to the tower-EC-only baseline OSD, aggregated
into a single score over all optimality criteria. The results are shown as a function of aircraft flying the grid pattern in various sequences
(rows) and track angles on the mean wind direction (columns). Bold font highlights marked improvements that are further discussed in the
text.

Flight sequence All angles 0◦ 45◦ 60◦ 90◦

All sequences 17.9%± 10.8 % 11.6%± 8.8 % 19.9%± 12.2 % 16.9%± 10.0 % 18.5%± 9.6 %
Alternating 20.0%± 10.2 % 13.3%± 11.4 % 22.6%±9.4% 21.6 %±11.5% 22.4 %±11.7%
Outbound 14.8%± 11.6 % 9.6%± 11.1 % 21.3%± 15.9 % 13.8%± 11.2 % 14.5%± 11.9 %
Return 18.9%± 10.7 % 13.4%± 10.3 % 21.8%± 17.7 % 20.5%± 10.2 % 19.8%± 6.2 %

90± 45◦ to the parallel tracks of each of the six alternat-
ing flight sequences. This allows determining the appropriate
flight sequence as a function of the forecasted mean wind di-
rection. For example, if experiencing southerlies (180◦) the
most suitable flight sequence is WE2. Owing to rotational
symmetry, the wind sector for each flight sequence over-
laps with each of its two neighbors by 30◦. This provides
a margin for accommodating changing synoptic conditions.
For example, if experiencing south-southwesterlies (210◦) in
the morning the WE2 and SE1TS5 flight sequences would
be equally suitable. If, however, the mean direction is fore-
casted to shift to westerlies (270◦) in the course of the day
the SE1TS6 flight sequence simplifies flight operation by sat-
isfying the 90± 45◦ track angle on the mean wind condition
with a single flight sequence for a given day.

4 Discussion

Upon deriving the NS–ERF framework, we identified an
optimal OSD for the CHEESEHEAD19 case study that
promises to more than double information gain. Here we ini-
tially discuss how these numerical gains relate to improving
our potential for addressing CHEESEHEAD19 science ob-
jectives and their limitations. We then examine how the re-
sulting field campaign resources improved flight operation
and crew safety by an order of magnitude. Lastly, we reflect
on our findings in light of existing design approaches, pro-
vide general recommendations for future OSDs, and discuss
remaining challenges and future work.

4.1 Optimizing the CHEESEHEAD19 observing
system design

NS–ERF used three optimality criteria (Sect. 2.2; CR1 spa-
tial coverage, CR2 energy balance ratio, CR3 spatial pat-
terning) that we tailored to represent CHEESEHEAD19’s
science objectives numerically. Furthermore, we identified
two specific design hypotheses that we postulate the science
objectives, and hence optimality criteria, to be sensitive to
(Sect. 2.3; H1 track angle on the mean wind, H2 fine vs.
coarse flight sequence). CHEESEHEAD19’s first science ob-
jective, O1, is to show that higher surface heterogeneity pro-
motes energy transport in atmospheric mesoscale eddies. Our
potential to address this science objective increases with the
truthful reproduction of CR1 surface flux spatial coverage
and CR3 spatial patterning. NS–ERF allowed us to assess
changes in these criteria resulting from the different OSDs
by comparing ERF flux map reproductions to the original
LES surface flux forcing. We found that CR1 spatial cover-
age is largely insensitive to H1 track angle on the mean wind
(Table 1) and H2 fine vs. coarse flight sequence (Table 2).
Conversely, CR3 spatial patterning proved to be highly sen-
sitive to H1 track angle on the mean wind. Track angles in the
range of 90± 45◦ on the mean wind yielded double to triple
improvements over wind-parallel flights (Table 1). Similarly,
we showed that CR3 spatial patterning is sensitive to H2 fine
vs. coarse flight sequence (Table 2). The finely spaced “al-
ternating” sequence yielded the highest and most consistent
spatial patterning improvements of about 50 % over the other
flight sequences.

CHEESEHEAD19’s second science objective, O2, aims to
account for energy transport in mesoscale eddies and deter-
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Figure 14. Three sets of waypoints define three distinct flight patterns, named after the relative location of their first two waypoints: (a) south-
west (SW), (b) southeast CE3 (SE), and (c) west–east (WE). Flying the numbered waypoints either in ascending order (SW1, SE1, WE1) or
descending order (SW2, SE2, WE2) resulted in six distinct flight sequences that maximize data coverage under different wind conditions.
Map credit: James Mineau, University of Wisconsin–Madison.

Figure 15. Flight planning wind rose to choose the appropriate
flight sequence as a function of the forecasted mean wind direc-
tion. Owing to rotational symmetry, the wind sector for each flight
sequence overlaps each of its two neighbors by 30◦. This provides
a margin for accommodating changing synoptic conditions.TS7

mine the “true” surface energy balance to improve model
representation of subgrid processes. As such, our potential
to address this science objective hinges on improved closure
of the CR2 energy balance ratio, which proved to be highly
sensitive to the H1 track angle on the mean wind. Here, track
angles in the range of 90± 45◦ on the mean wind yielded
quadruple to octuple improvements over wind-parallel flights
(Table 1). On the other hand, the CR2 energy balance ratio
was comparatively insensitive to H2 fine vs. coarse flight se-
quence (Table 2).

Finally, CHEESEHEAD19’s third science objective, O3,
aims to demonstrate that ERF yields representative fluxes
at model grid scale regardless of mesoscale eddies. ERF’s
potential to reproduce the surface flux is thus directly re-
lated to the combination of all criteria discussed above: CR1
spatial coverage, CR2 energy balance ratio, and CR3 spa-
tial patterning. From aggregating over all optimality criteria
into a single score, we demonstrated that overall improve-
ment is highly sensitive to H1 track angle on the mean wind,
as also shown by Petty (2021). Flight patterns with a track
angle in the range of 90± 45◦ on the mean wind yielded ap-
proximately double the performance improvement of wind-
parallel patterns (Table 3). This finding is less sensitive to
H2 fine vs. coarse flight sequence, though it is most consis-
tent for the finely spaced alternating sequence. Overall, this
combination doubles the information gain compared to the
worst-case combination of wind-parallel flight patterns with
the outbound flight sequence. Consequently, the study hy-
pothesis that the CHEESEHEAD19 information gain is sen-
sitive to NS–ERF optimization can be accepted. On the other
hand, the design hypothesis H1 that it is critical for airborne
EC to measure perpendicular to the prevailing wind should
be rejected, as up to ±45◦ tolerance yielded comparable re-
sults for the CHEESEHEAD19 science objectives. Lastly,
the design hypothesis H2 that it is more informative to fly
a finely spaced pattern should be accepted, with most consis-
tent results for the finely spaced alternating sequence.

The field measurement campaign resources (Sect. 3.4) en-
capsulate these findings into only three sets of waypoints
and six alternating flight sequences incremented at 60◦ az-
imuth. These provide a balance between scientific fidelity
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and flight crew safety. On the one hand, the small number
of waypoints and flight sequences is sufficient to maximize
the CHEESEHEAD19 information gain by enabling adher-
ence to the 90± 45◦ track angle on the mean wind condition
at all times. Furthermore, the 60◦ incrementation in combina-
tion with the±45◦ tolerance on perpendicularity to the mean
wind provides 30◦ overlap among flight sequences to support
decision-making during nonstationary synoptic conditions.
On the other hand, the parsimonious number of only six flight
sequences and the even smaller number of three sets of way-
points simplify flight planning and navigation. In combina-
tion with entirely avoiding the town and airfield of Park Falls
this promotes flight crew safety by an order of magnitude
compared to the originally envisioned 48 flight sequences.
Specifically, it frees up the flight crew from arduous nav-
igation details, thus reducing fatigue, increasing awareness
during the 100 m low-level flight maneuvers, and ultimately
reducing the margin for human error. Due to its vicinity to
the 400 m tall tower and related in-flight safety concerns the
central diagonal flight track in this study was not performed
during the actual CHEESEHEAD19 field measurement cam-
paign.

After deriving the above strategy, we detected an incon-
sistency in the vertical humidity profile that we used to ini-
tialize the LES and thus to produce the NS–ERF virtual ob-
servations. Specifically, we had erroneously added a positive
vertical humidity gradient at 350 m above ground instead of
the negative vertical humidity gradient typically observed by
radiosondes adjacent to the CHEESEHEAD19 domain (sign
reversal). As a result, we detected an ABL height of only
500 m in the LES, while field observations typically indi-
cate > 1 km during similar conditions around the CHEESE-
HEAD19 domain. In addition, during 11:00 CST we detected
a small entrainment flux of humid air from above the LES
ABL into the drier air below, which is not typical of sum-
mertime convective ABL conditions around the CHEESE-
HEAD19 domain. In the subsequent stages of NS–ERF, we
used virtual tower EC observations at 49 m (N =20 towers),
112 m (N =1 tower), and 371 m (N =1 tower) above ground,
as well as virtual airborne EC observations at 100 m above
ground. At any given time, the surface fluxes prescribed in
the LES were orders of magnitude larger compared to the
entrainment fluxes. Hence, the surface fluxes dominated all
virtual tower and airborne observations, possibly with the ex-
ception of the 371 m tower that, however, still reported an
average upward latent heat flux of 2.2± 6.6 Wm−2. While
the uncharacteristically shallow ABL height results in 2 to
3 times more pronounced vertical flux divergence, NS–ERF
accounts for this by utilizing the relative measurement height
in the ABL as an ERF driver. Furthermore, the study design
cancels possible residual impacts on the CR2 energy bal-
ance ratio by normalizing all results for the alternative OSDs
(tower and aircraft) with the results for the baseline OSD
(tower only). To summarize, the erroneous vertical humidity
gradient resulted in a modeled LES atmosphere that was less

specific to the CHEESEHEAD19 domain than originally en-
visioned. However, this should have little to no bearing on the
general findings that informed the CHEESEHEAD19 OSD
owing to ERF accounting for vertical flux divergence and
the normalized study design. If at all, surface heterogeneity
scales across the CHEESEHEAD19 domain are more real-
istically reproduced compared to the idealized LES runs in
many previous studies (e.g., Kanda et al., 2004; Sühring et
al., 2018; Xu et al., 2020).

Strictly speaking, the CHEESEHEAD19 case study is lim-
ited to 2 h of LES data for a single meteorological setting and
omission of clouds. While clouds and other variations will
certainly change the entire turbulent structure of the ABL,
this study also constituted a race against the clock to provide
numerical insights in time to support the CHEESEHEAD19
field experiment design. In front of that background, we
chose to focus on an LES run that is both typical for the
region and/or season and one that likely generates signifi-
cant heterogeneity without the added expense of dealing with
clouds. Further, considering that for safety reasons the real-
world flights were to take place on mostly cloud-free days,
we believe the selected case provides a useful case study for
how much airborne flight track choices influence our abil-
ity to address the CHEESEHEAD19 science objectives. With
more lead time and computational resources it is possible to
realize additional LES runs.

Overall, the application of the NS–ERF-derived field mea-
surement resources enabled the successful acquisition of
14 400 km airborne data by the UWKA aircraft (Paleri et al.,
2019). The 24 UWKA research flights and their on-site plan-
ning covered 480 flight tracks during 72 h of flight time and
three CHEESEHEAD19 intensive observation periods (But-
terworth et al., 2021). This further demonstrates the success-
ful application of NS–ERF and its utility for determining
concise and adaptive field measurement resources that op-
timize the effectiveness and safety of research flights. With
the potential to improve the information gain of CHEESE-
HEAD19 airborne measurements clearly evident from this
2 h case study, it will be instructional to witness the true sci-
entific return as analyses of the actual CHEESEHEAD field
campaign measurements commence.

4.2 Benefits for coordinated environmental
observations

NS–ERF extends previous approaches to designing large-
scale field campaigns such as FIFE, BOREAS, NOPEX,
LITFASS-98, LITFASS-2003, MAGIM, and ScaleX
(Sect. 1). Specifically, NS–ERF not only utilizes but also
fully contextualizes expert knowledge by conducting virtual
pre-field measurements in NSs and using evidence-driven
ERF to quantify the resulting information contents.

For decades, NS “data from knowledge” studies have in-
vestigated surface–atmosphere interactions including energy
balance processes (Deardorff, 1972; Wyngaard and Brost,
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1984; Etling and Brown, 1993; Kanda et al., 2004; Sühring
and Raasch, 2013). Indeed, NSs have become useful to con-
textualize observational phenomena with increasingly com-
plex feedbacks, including natural resources such as air qual-
ity (Khan et al., 2021; Zhang et al., 2021). However, the
resulting data are detailed to a point at which it becomes
challenging to fully utilize the provided information for ex-
tracting and describing the phenomena of interest. Xu et
al. (2020) point to a possible solution to this dilemma by
complementing detailed LES outputs with the dedicated ERF
“knowledge from data” approach. Here, we took a next step
and demonstrated the usefulness of the NS–ERF symbiosis
for designing real-world field measurements. Using NSs for
OSD has been a rare application to date (Cortina and Calaf,
2017; Gehrke et al., 2019), and to our knowledge the present
study is the first of its kind that empowers investigators to
harness the combined power of complementing NSs and data
mining for this purpose.

OSSEs are widely used in the Earth system sciences to
predict the performance of major, long-term research equip-
ment and facility investments (Hargrove and Hoffman, 2004;
Masutani et al., 2010; Zhang and Pu, 2010; Lucas et al.,
2015; Hoffman and Atlas, 2016; Park and Kim, 2020). The
NS–ERF symbiosis now provides the necessary resolution of
time, space, and processes to make the power of OSSEs also
accessible for designing field measurements at smaller and
previously inaccessible scales. Specifically, the CHEESE-
HEAD19 case study at the interface of mesoscale and mi-
croscale meteorology demonstrated a new degree of real-
ism and explicitness in maximizing the joint information
from ground-based, airborne, and spaceborne observations
for scaling and modeling.

Building on this central property, NS–ERF is modularly
extensible in multiple directions. For example, NS–ERF can
integrate new types of observations in addition to tower, air-
craft, and satellite observations, so long as their source areas
are readily quantifiable. Examples are remote sensing of the
atmosphere (Wulfmeyer et al., 2018; Helbig et al., 2020) and
soil and biometric observations (Metzger et al., 2019b). This
provides a promising avenue to maximize cross-disciplinary,
cross-project, and ultimately cross-institutional synergies,
such as through simulating the design of supersites that en-
vision synergizing diverse observational infrastructures in-
cluding from the US National Science Foundation’s National
Center for Atmospheric Research and National Ecological
Observatory Network (Metzger et al., 2019a). Then upon
completion of the planned field measurements, the real-world
data can immediately substitute the NS “data from knowl-
edge” module while the ERF “knowledge from data” module
continues to perform the intended end-to-end analyses. NS–
ERF thus provides a framework to prepare and test the quan-
tification of science objectives well ahead of the actual field
measurements, thus reducing latency from field data capture
to knowledge creation. More generally, NS–ERF can extend
to any sort of study in which spatially and/or temporally

Table 4. Labor and computing resources utilized for deriving the
CHEESEHEAD19 observing system design, separately for large
eddy simulations (LESs) and environmental response functions
(ERFs) CE4 .

Resource LES ERF

Total labor 180 h 300 h
Conceptualization 30 h 70 h
Setup 110 h 130 h
Analysis 20 h 50 h
Interpretation 20 h 50 h

Computing architecture High-performance High-throughput
CPU hours 230 000 7000
CPUs 1800 2–16
Memory 1.8 TB 16–128 GB
Data produced 210 GB 4 GB

sparse observations of a surface or atmospheric property X
need to be combined with spatially and/or temporally more
extensive observations of covariates Y to improve the spa-
tial and/or temporal continuity of X. ERF accomplishes this
scale-aware data fusion, and NS facilitates testing the sen-
sitivity of the data fusion results on different OSDs. In this
way NS–ERF makes the power of OSSEs accessible to an
entirely new range of use cases. Examples include natural cli-
mate solutions (Hemes et al., 2021), emission inventory val-
idation (Desjardins et al., 2018), urban air quality (Vaughan
et al., 2021), industry leak detection (Kohnert et al., 2017),
and multi-species applications (Vaughan et al., 2017).

4.3 Remaining challenges and future work

Notwithstanding these key benefits, an NS–ERF study such
as presented here adds labor, computing, and hence funding
requirements ahead of the actual field measurements. Con-
sidering a typical research grant cycle, one would ideally
perform the NS–ERF OSSEs prior to submitting a funding
proposal or at least request some level of design flexibility.
We conducted the present study over the course of approx-
imately 3 months and utilized the labor and computing re-
sources summarized in Table 4. Overall, we spent∼ 480 h of
labor, or 3 person-months, of which the LES and ERF anal-
yses consumed ∼ 40 % and ∼ 60 %, respectively. The main
labor drivers were study conceptualization and setup includ-
ing data acquisition for LES boundary conditions. It is pos-
sible to perform these steps well in advance, e.g., to reduce
the NS–ERF effort between grant receipt and field measure-
ments, which is also typically a period with high demand for
overall coordination. The 50 h spent on ERF interpretation
also included active dialog and iteration with the flight crew,
resulting in balanced resources for airborne operation.

Table 4 also shows how LES and ERF differed
in their computational needs. LES demanded high-
performance computing with 230 000 CPU hours and
up to 1.8 TB of memory, which we primarily per-
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formed on the US National Center for Atmospheric Re-
search Cheyenne supercomputer (https://w3id.org/smetzger/
Metzger-et-al_2021_OSSE-NS-ERF/cheyenne, last access:
29 September 2021). Conversely, ERF required a high-
throughput computing architecture, for which we pri-
marily used the US National Science Foundation’s Cy-
Verse open science workspace (https://w3id.org/smetzger/
Metzger-et-al_2021_OSSE-NS-ERF/cyverse, last access:
29 September 2021). Overall, the strong data requirements
of ERF, including use of high-frequency EC data, currently
drive NS–ERF computational needs. Investigations into re-
laxing ERF data requirements while retaining overall per-
formance are in progress. This could permit generating the
necessary virtual observations with NSs that substantially
reduce resource demand compared to LES, such as closure
modeling and Reynolds-averaged Navier–Stokes (e.g., Mey-
ers and Paw U, 1986; Sogachev et al., 2002, 2011; Santiago
et al., 2010; Xu et al., 2014). In turn, such modular adjust-
ments promise NS–ERF with reduced complexity and broad
accessibility beyond the need for supercomputing, or appli-
cation to use cases that require consideration of more exten-
sive space, time, and disciplinary domains. Conversely, when
designing a natural climate solution (or other) project, NS–
ERF could be applied at that project scale, e.g. much smaller
or less complex than CHEESEHEAD19, thus reducing over-
all computational expense. A separate consideration for in-
creasing efficiency could be to further extend the application
of value engineering principles, such as an analysis of incre-
mental benefits tapering off with increasing numbers of can-
didate OSDs. Furthermore, a unified graphical user interface
could aid accessibility and usability to better support investi-
gators from diverse backgrounds.

In Sect. 4.1 we discussed several sources of uncertainty
that emanated from the specific numerical analyses chosen
to optimize the CHEESEHEAD19 flight strategy. In addi-
tion, sources of uncertainty that surround the NS–ERF con-
cept as a whole also warrant discussion. One of the strengths
of OSSEs in general and NS–ERF in particular is to quan-
tify the efficacy of candidate OSDs for cross-disciplinary ap-
plications. However, individual disciplines themselves often
invoke very specific criteria and assumptions so their contri-
butions to the overall project are valid (Sect. 1). Also, de-
termining the OSD trade-offs for meeting these discipline-
specific requirements could complement NS–ERF with CE5

an end-to-end science traceability assessment. One direction
of future work could use the CHEESEHEAD19 field mea-
surements to derive and evaluate such an end-to-end assess-
ment in general and the presented OSD results in particular.

Furthermore, Earth system observations are highly vari-
able in their space–time extent and resolution (Fig. 1). How-
ever, data overlays such as done in ERF require a “least com-
mon denominator” space–time resolution among all consid-
ered observations. Attaining this least common denomina-
tor while retaining quasi-continuous data coverage remains
an observational challenge, even for WMO essential cli-

mate variables such as land surface temperature. Toolkits that
leverage multi-sensor data fusion to provide the necessary
resolution and coverage to support plot- to landscape-scale
research are only recently emerging (Wu et al., 2013; Pince-
bourde and Salle, 2020; Desai et al., 2021).

Earth system observations are also variable in their space–
time representations. These include gridded remote sens-
ing observations in Eulerian coordinates and EC heat flux
observations in Lagrangian coordinates (Metzger, 2018).
Data overlays among these observations leverage source area
models, which connect the two representations in space and
time (Leclerc and Foken, 2014). However, e.g., Bertoldi et
al. (2013) and Xu et al. (2020) point out a possible depen-
dency of source area attribution performance on the thermo-
dynamic properties of the quantity observed in Lagrangian
coordinates. Robust data overlays across coordinate repre-
sentations might thus depend on separate source area consid-
erations for neutral density vs. self-buoyant quantities.

5 Conclusions

Surface–atmosphere synthesis is traditionally in the van-
guard of interdisciplinary research, with efforts ranging
from empirical studies over theoretical generalizations to
NSs. More recently, data-intensive information discovery
promises to further expand our insight into momentum, en-
ergy, water, and trace gas cycling. However, “data deluge”
rather than the next interdisciplinary breakthrough can result
from poor information overlap among ground, airborne, and
satellite observations, as well as numerical models. Informa-
tion gain hinges on our ability to reliably merge information
among these perspectives, for which the pre-field stage pro-
vides a unique opportunity to optimize the study design ac-
cordingly.

We harnessed this opportunity by catalyzing recent ad-
vances in conducting virtual experiments within high-
resolution NSs (“data from knowledge”) and physics-guided
data science (“knowledge from data”) to create the NS–
ERF approach. Traditional data capture focuses on intra-
disciplinary best practices, and only in the aftermath does the
cross-discipline explanatory power become apparent. In con-
trast, NS–ERF explores tolerances (“value engineering”) in a
numerical framework ahead of the actual field deployments,
which offers a wide margin for improving cross-discipline
post-field synthesis. We used the case study of optimizing
the CHEESEHEAD19 OSD as a maiden application for NS–
ERF, which maximized the information overlap across mi-
crometeorological and mesometeorological space scales and
timescales. To date, these scales have predominantly been
dealt with in a discontinuous fashion, which we overcame
by combining cross-platform flux tower and flux aircraft re-
sponses in a single ERF for the first time. This demonstrated
that a carefully designed flight strategy has the potential to
double the CHEESEHEAD19 information gain across two
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specific design hypotheses and to improve flight operation
and crew safety by reducing the number of flight sequences
from an originally envisioned 48 to a parsimonious number
of 6.

NS–ERF thus makes the benefits of OSSEs accessible for
maximizing the information gained from cross-disciplinary
field measurements that previously had to rely on experience
and expert knowledge alone. This property transcends aca-
demic field measurements such as presented here and can
inform natural climate solutions, emission inventory valida-
tion, urban air quality, industry leak detection, and multi-
species applications, among other use cases.

Code availability. Software used in this study is available
per CHEESEHEAD code policy (https://w3id.org/smetzger/
Metzger-et-al_2021_OSSE-NS-ERF/code-policy, last access:
29 September 2021) and is either already available from or being
developed into public code repositories.TS8

Data availability. All data used in this study are available
per CHEESEHEAD data policy (https://w3id.org/smetzger/
Metzger-et-al_2021_OSSE-NS-ERF/data-policy, last access:
29 September 2021) from the FAIR-compliant CyVerse Data
Commons (https://w3id.org/smetzger/Metzger-et-al_2021_
OSSE-NS-ERF/data-commons, Metzger et al., 2021). The top-
level document “readme_Metzger-et-al_2021_OSSE-NS-ERF.md”
provides specific dataset locations for individual processing steps.
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Remarks from the language copy-editor

CE1 It would not be grammatically correct to use the infinitive verb here. An alternative would be “We thus sought an
approach that empowers users to make informed OSD choices”.

CE2 Please clarify your answer here. Should instances of “would” and “would be” be changed to the past tense (if the field
campaign was conducted in 2019)? Please specify where these changes should be made.
CE3 Please note that it is standard in American English to close these formats (i.e. not hyphenate them). There is an en dash
between west and east because these are two opposite directions (the en dash in this case is equivalent to “to”).
CE4 Please note that it is our house standard to pluralize abbreviations when they are used for a plural phrase. This is also
consistent with the rest of the paper (“ERFs” has been used before).
CE5 The preposition “to” was not appropriate here. Please confirm the change to “with”.

Remarks from the typesetter

TS1 Please note that corrections should be be limited to (a) responses to the publisher remarks as given in the manuscript
for proofreading, (b) raising Copernicus’ awareness of oversights, and (c) expressing disagreement with Copernicus’
adjustments. Stylistic changes are not possible at this stage.

TS2 According to our standards, changes like this must first be approved by the editor (especially since a number is affected),
as data have already been reviewed, discussed and approved. Please provide a detailed explanation for those changes that can
be forwarded to the editor. Please note that this entire process will be available online after publication. Upon approval, we will
make the appropriate changes. Thank you for your understanding.
TS3 Please provide a detailed explanation for these changes that can be forwarded to the editor.
TS4 Please see previous remark.
TS5 Please provide a detailed explanation for these changes that can be forwarded to the editor.
TS6 Please see previous remark.
TS7 Before this figure can replaced, the new version must be approved by the editor. Please provide a corresponding expla-
nation.
TS8 Please note that a direct link to the underlying code and a corresponding reference list entry is required as per our
standards (cf. data section).
TS9 According to the citation provided following the DOI, the year should be 2021.
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