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Abstract. Daytime clear-sky total column water vapour (TCWV) is commonly retrieved from visible and shortwave infrared 

reflectance (VSWIR) measurements, and modern missions such as the upcoming Earth Surface Mineral Dust Source 

Investigation (EMIT) offer unprecedented horizontal resolution of order 30—80 m. We provide evidence that for convective 10 

planetary boundary layers (PBLs), spatial variability in TCWV corresponds to variability in PBL water vapour. Using an 

observing system simulation experiment (OSSE) applied to Large Eddy Simulation (LES) output, we show that EMIT can 

retrieve horizontal variability in PBL water vapour, provided that the domain surface is uniformly composed of either vegetated 

surfaces or mineral surfaces. Random retrieval errors are easily quantified and removed, but biases from -7 % to +34 % remain 

in retrieved spatial standard deviation and are primarily related to the retrieval’s assumed atmospheric profiles. Future retrieval 15 

development could greatly mitigate these errors.  Finally, we account for changing solar zenith angle (SZA) from 15—60° and 

show that the non-vertical solar path destroys the correspondence between footprint retrieved TCWV and the true TCWV 

directly above that footprint. Even at the 250 m horizontal resolution regularly obtained by current sensors, the derived maps 

correspond poorly to true TCWV at the pixel-scale, with r2<0.6 at SZA=30°. However, the derived histograms of TCWV in 

an area are closely related to the true histograms of TCWV at the nominal footprint resolution. Upcoming VSWIR instruments, 20 

primarily targeting surface properties, can therefore offer new information on PBL water vapour spatial statistics to the 

atmospheric community. 

1 Introduction 

Thermodynamic information about the planetary boundary layer (PBL), including information about water vapour (qv), is a 

targeted observable recommended by NASA’s Decadal Survey (National Academies of Sciences, Engineering, 2018). PBL qv 25 

estimates would go beyond the current TCWV and free-tropopause products to provide new information about the vertical 

moisture structure for weather and climate applications. The Decadal Survey explicitly recognised the PBL’s importance since 

it “literally couples the surface of the Earth to the atmosphere above”, and among other important factors, gradients of moisture 

between the surface and PBL, and between the PBL and free troposphere are strong controls on vertical atmospheric heat and 
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moisture transport. The formation of boundary layer clouds was also highlighted due to their importance for Earth’s energy 

balance. A critical measurement gap in the current observations of PBL thermodynamics is the inability to quantify mesoscale 

variations in PBL qv. Mesoscale aggregation in PBL water vapour appear to play an important role in determining the timing 

of deep convective events (Stirling and Petch, 2004; Wulfmeyer et al., 2006). Furthermore, in-situ observations suggest that 

the majority of the variation in the TCWV prior to convective initiation can be explained by variability within the PBL 5 

(Couvreux et al., 2009). The mesoscale spatial variability of qv is not resolved by current global weather or climate models but 

instead it must be parameterised. Modern approaches to parameterize PBL variability include Eddy-Diffusivity/Mass-Flux 

approaches (Suselj et al., 2019) and higher order closure approaches that include prognostic equations for higher order 

moments such as the variance (Golaz et al., 2002; Larson et al., 2002). However, we lack observations at a global scale to 

evaluate the small-scale variability produced by these models. This paper will address the feasibility of addressing this 10 

measurement gap using upcoming observations from very high spatial resolution VSWIR observations from space. 

This study is primarily motivated by the ongoing development of spaceborne hyperspectral VSWIR measurement capacity at 

fine horizontal resolution. We focus on the EMIT mission, planned to launch to the International Space Station (ISS) in 2022 

with average footprint size (Dx) of 60 m (Green and Thompson, 2020). However, similar or improved capacity is anticipated 

in response to NASA’s Surface Biology and Geology (SBG) designated observable, with the Hyperspectral Infrared Imager 15 

(HysPIRI, Lee et al. (2015)) concept offering Dx of 30—60 m; and for ESA’s Copernicus Hyperspectral Imaging Mission for 

the Environment (CHIME), also known as Sentinel 10,  for which the prime contractor was selected in July 2020 and whose 

Mission Requirements Document refers repeatedly to Dx <30 m (Rast et al., 2019). 

Of present missions, this analysis may be applicable to the Italian PRecursore IperSpettrale della Missione Applicativa 

(PRISMA, Candela et al. (2016)), which provides similar spectral range and sampling to EMIT at Dx=30 m. Some of the 20 

conclusions will also apply to other recent instruments, such as Sentinel-2’s Multi-Spectral Imager (MSI, Drusch et al. (2012)) 

which offers Dx =20 m, albeit with far fewer channels, or the DLR Earth Sensing Imaging Spectrometer (DESIS, Krutz et al. 

(2019)) which provides hyperspectral measurements over a smaller wavelength range. These modern and upcoming 

instruments offer Dx that are substantially smaller than past VSWIR instruments that retrieve TCWV, such as ESA’s Medium 

Resolution Imaging Spectrometer (MERIS) on Envisat, whose smallest provided Dx is approximately 0.25 km ´ 0.30 km, 25 

which allowed the identification of horizontal convective rolls during a high pressure event over Germany (Carbajal Henken 

et al., 2015), but cannot resolve the smaller scales of variability. Recently, Thompson et al. (2021) used VSWIR measurements 

from the Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) to capture information about PBL 

qv variability at spatial scales <1 km, which cannot be determined with footprint sizes similar to MERIS. 

EMIT-like instruments could allow retrieval of bulk PBL qv, which we henceforth refer to as the partial column water vapour 30 

in the PBL (PCWVPBL) via two demonstrated approaches. The first approach uses VSWIR measurements alone, and the second 

combines separate above-PBL water vapour (PCWVupper) and TCWV to obtain PCWVPBL = TCWV – PCWVupper. A third 
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approach, that has not been demonstrated operationally to our knowledge, is to perform joint retrievals using both VSWIR and 

vertically resolved sounding measurements. 

The direct VSWIR-only method can be seen in Trent et al. (2018), who estimated PCWVPBL from the Greenhouse Gases 

Observing Satellite (GOSAT, Kuze et al. (2009)),  while the second is explored in Millán et al. (2016), who paired TCWV 

from passive microwave measurements with PCWVupper above horizontally-uniform clouds from Moderate Resolution 5 

Imaging Spectroradiometer (MODIS) near-infrared retrievals. The resultant PCWVPBL values showed good agreement with 

radiosondes and ERA-Interim reanalysis and a promising candidate approach is to use VSWIR TCWV in place of the 

microwave measurements. 

The physical principle of VSWIR TCWV retrievals is differential optical absorption spectroscopy (DOAS). More TCWV 

leads to increasing depth of H2O absorption features relative to other wavelengths. This applies to TCWVVSWIR from missions 10 

including MERIS (Bennartz and Fischer, 2001; Guanter et al., 2008), MODIS (Diedrich et al., 2015; Gao and Kaufman, 2003), 

TROPOMI (Borger et al., 2020; Schneider et al., 2020), SCIAMACHY (Noël et al., 2004), GOME (Noël et al., 1999), GOME-

2 (Grossi et al., 2015) and OCO-2 (Nelson et al., 2016). 

These instruments vary in spectral range and sampling, but all must contend with the measured spectra responding to properties 

other than TCWV. The retrievals only operate for daytime cloud-free scenes, and commonly only over land since water 15 

surfaces are dark such that insufficient light reaches the sensor to allow for a TCWV retrieval, with exceptions for sun glint as 

exploited in the aforementioned AVIRIS-NG study (Thompson et al., 2021). Thompson et al. selected these AVIRIS-NG 

flights because DOAS techniques respond to the total light path absorption including the slanted sunlight path from the top of 

atmosphere (TOA) to the surface. This horizontally smears the effective footprint size, with larger smearing for larger solar 

zenith angle (SZA). As footprints become smaller, the proportional effect of this smearing may become more important, and 20 

so here we apply solar ray-tracing to determine whether observations with a nominal Dx of 20—50 m obtain useful information 

about the spatial statistics of PCWVPBL at that spatial resolution. We use two performance metrics: (i) the correlation between 

retrieved TCWV and true TCWV, which was used as input for our forward simulations, and (ii) the spatial standard deviation, 

sx of retrieved TCWV within a snapshot relative to the LES output PCWVPBL sx, which we refer to as the true sx. 

We employ a new type of Observing System Simulation Experiment framework and performs simulated VSWIR retrievals of 25 

TCWV from high-spatial-resolution large eddy simulation (LES) output to determine whether horizontal spatial variability in 

PBL qv can be obtained from retrieved TCWV, and conclusions are limited to daytime non-cloudy conditions. The purpose of 

this is a detailed sensitivity study using retrieval code and tools already developed for EMIT. We consider Dx≥40 m since this 

is appropriate for EMIT and several LES cases in our archive that were run at that resolution.  

Here we test the use of the iterative optimal estimation code Imaging Spectrometer Optical Fitting (Isofit) for a spaceborne 30 

application, specifically target TCWV and address the following questions: 

1) In LES, how does horizontal variability in TCWV relate to PCWVPBL? 

2) What uncertainties are introduced into the retrieval by EMIT instrumental error, non-uniform AOD and different 

surface types, and can these errors be anticipated and quantified from observations alone? 
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3) What is the correlation coefficient between retrieved and true TCWV, and can the spatial standard deviation be 

estimated? How does this depend on LES of different convective PBL types? 

4) How does the solar path across different SZAs affect these conclusions? 

This scope excludes important factors such as topography, inter-channel correlated errors in the instrument, imperfect cloud 

masking and cloud 3-D radiative effects, and our paper is structured to address these questions in turn, with each analysis 5 

section containing its own methodology, results and discussion. Section 2 explores the raw LES output to address question 1, 

Section 2 describes the synthetic retrievals and analysis methodology to address questions 2—3, Section 4 adds solar path 

analysis to address question 4, and Section 5 discusses and concludes.  

2 Large Eddy Simulations 

2.1 Model setup, scenarios and snapshot selection 10 

We use output from five LES simulations named RICO, ARM, ARM_lsconv, BOMEX and DRY, which are summarised with 

references in Table 1. They all represent convective boundary layers characterised by either low-altitude or no cloud cover. 

The 23 separate snapshots are identified by timestamp, e.g. ARM_18000s is five hours into the ARM simulation. Simulation 

Dx sets the implied measurement horizontal resolution and varies from 20–50 m. 

The simulations are performed with two different models: EULAG (Prusa et al. (2008); ARM and ARM_lsconv) and JPL-15 

UCONN LES (Matheou and Chung (2014); RICO, BOMEX, DRY). Each simulation applies periodic lateral boundary 

conditions and a horizontally-homogeneous initial state. For the RICO case, interactive sensible and latent heat surface fluxes 

over constant-temperature ocean are used, while the other cases are driven by prescribed (either constant for DRY and 

BOMEX, or time-dependent for ARM and ARM_lsconv) surface fluxes. All other setup details are explained in the Table 1 

references, these references also show how the ARM, BOMEX and RICO LES simulations, which were based on detailed 20 

field campaigns, accurately reproduce the main features observed during those campaigns. Each three-dimensional LES 

snapshot is merged with one-dimensional MERRA-2 reanalysis profiles aloft to produce a full-depth atmospheric column. 

Reanalysis data are chosen for the dates and locations of the field campaigns the LESs refer to. The DRY and ARM_lsconv 

cases share the same upper-atmospheric profiles as ARM. In all cases except for DRY, Table 1 rows (vii)—(ix) show that the 

LES capture >85 % of total TCWV. For retrieval purposes we ignore the LES surface type and apply an assumed surface 25 

reflectance spectrum below the LES profiles.  

2.2 Profiles and PBL height 

Definitions of PBL height, zPBL vary widely. We found similar results from four standard thermodynamic calculations (von 

Engeln and Teixeira, 2013), so henceforth we define zPBL to be the altitude of max(dq/dz) where q is the all-sky mean potential 

temperature. Mean all-sky profiles of T and q, horizontal standard deviation in q (sq), and cloud fraction are shown in Figure 30 
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1. Changes in sq are the largest differences between timesteps, but are small (<10 %) relative to the mean, so measuring this 

variability will require precise observations. Also, sq is negligible in the layers in the free-troposphere that lie above the PBL 

but are resolved by the LES, implying that the LES domains capture qv variability.  We later support this claim using real-

world airborne LIDAR retrievals. 

2.3 Water vapour spatial variability statistics and the relationship between TCWV and PCWVPBL 5 

Figure 1 displays all-sky conditions but our retrievals only target clear-sky thereby missing a moister tail to the distribution 

(Supplementary Figure 1). Within-cloud retrievals would require alternative measurement approaches, such as differential 

absorption radar (Roy et al., 2018, 2020), and the restriction to clear-sky scenes is a limitation that also applies to current 

thermal infrared and lidar retrievals. 

We assess TCWV-PCWVPBL spatial variability by calculating clear-sky PCWV up to capping altitudes from 0.5—5 km and 10 

then correlating these with TCWV. Figure 2 confirms that >90 % of horizontal variance in LES TCWV at these scales is 

explained by PCWVPBL. It is reasonable to ask whether this finding that the PBL variance dominates the TCWV variance is 

representative of the real atmosphere. Indeed the LES results are supported by the same statistics calculated from High Altitude 

Lidar Observatory (HALO) flights over the Pacific Ocean in April 2019 (Bedka et al., 2021), as presented in Thompson et al. 

(2021) and shown in Figure 2(f). In these calculations TCWV is only calculated up to 8 km due to flight altitude, but this real-15 

world data includes free-tropospheric moisture variability and furthermore will have lower r values due to the presence of 

random retrieval error. The horizontal resolution is ~3 km versus the 20—50 m of LES, and the HALO sampling is sparse and 

often separated by hundreds of km due to clouds. Nevertheless, the HALO flights show that horizontal TCWV variability can 

be well captured within 3 km altitude in real scenes, and provide evidence that the LES domains capture horizontal variability 

in qv.  20 

The TCWV-PCWVPBL fit coefficients for ARM, ARM_lsconv, BOMEX and RICO range from 0.99—1.04 mm mm-1, i.e. a 1 

mm change in PCWVPBL means a 0.99—1.04 mm change in TCWV. This confirms that almost all horizontal qv variability 

occurs within the mean PBL height. For the DRY case, coefficients range from 1.06—1.12 mm mm-1. These coefficients mean 

that PCWVupper spatially correlates with PCWVPBL, which could be explained by moister plumes rising and having higher local 

zPBL than the domain-mean value used in the calculation. In summary, we have answered question 1 from Section 1 and can 25 

expect spatial variability in retrieved TCWV for these cases to represent real variability in PCWVPBL, and so use TCWV and 

PCWVPBL interchangeably from now on. 

3 Simulated EMIT retrievals of TCWV in LES  

This experiment requires a large number of inversions over a wide spatial field.  Simulating synthetic spectra and performing 

a retrieval for every grid point proved to be prohibitively computationally expensive. Consequently, we develop an emulator 30 

to statistically reproduce the result of the full inversion but with dramatically better efficiency. Retrievals will include a range 
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of surfaces in a subset of the snapshots (to identify sensitivity to surface type) and then a fixed surface type across all snapshots 

(to identify sensitivity to atmospheric conditions). Sensitivity tests will be performed on individual subsets of snapshots as 

required, and a correction method for identifying the random component of retrieval error will be introduced. Section 3.1 

describes the relevant methods, Section 3.2 the results and 3.3 discusses limitations. 

3.1 Retrieval methodology 5 

3.1.1 MODTRAN6.0 forward model, EMIT instrument characteristics and Isofit retrievals 

We use the same retrieval code as in Thompson et al. (2021), Imaging Spectrometer Optimal Fitting (Isofit) for our synthetic 

retrievals (https://github.com/isofit/isofit). This iterative optimal estimation code simultaneously retrieves surface reflectance, 

aerosol optical depth (AOD) and TCWV, differing from older techniques that retrieve properties sequentially (e.g. Guanter et 

al. (2008) for MERIS). Isofit is described and shown to have a closed error budget in Thompson et al. (2018), and has been 10 

applied to observations from several airborne campaigns (Thompson et al., 2019, 2020, 2021). Conceptually it targets surface 

reflectance rs and the estimation of TCWV is seen as part of an atmospheric correction. 

Forward simulations use MODTRAN6.0 (Berk et al., 2014, 2015), which provides a plane-parallel solution to the radiative 

transfer equation. Atmospheric reflectance and transmittance vectors ra, t and spherical sky albedo s are calculated at 

wavenumber separation Dk=0.1 cm-1 (Dl»0.002 nm) before being convolved with the EMIT spectral response function ), and 15 

the instrument is assumed to be nadir viewing from 100 km altitude. With no substantial atmosphere above 100 km, this gives 

the same results as the ISS altitude near 400 km, where EMIT will be hosted. A correlated-k method and the HITRAN database 

(Rothman et al., 2009) are used for gaseous absorption while scattering is handled by DISORT (Laszlo et al., 2016; Stamnes 

et al., 1988). The EMIT instrument properties are derived from the current mission instrument model, which accounts for all 

signal-independent noise terms like electronic noise, and photon shot noise calculated using predicted efficiencies of the 20 

instrument mirrors, lens, grating, and focal plane array. Spectral range is 380—2500 nm with Dlchannel=10 nm and full-width 

at half maximum averaging DlFWHM»11 nm.  

For forward simulations, merged LES-reanalysis T and q profiles are interpolated onto a profile with 8 points from 0—6 km 

then vertical resolution slowly degrades over 6—100 km. Interpolated TCWV differs from the LES-reanalysis but we assume 

that conclusions regarding derived sensitivities and errors will not be strongly affected. 25 

The forward radiance vector I is calculated using a standard Lambertian approximation (e.g. as in Vermote et al. (1997)): 

𝑰 = 𝑰𝟎""
#
#𝝆𝒂 +

𝒕∘𝝆𝒔
𝟏)𝒔∘𝝆𝒔

&       (1) 

Where I0 is the downward top of atmosphere (TOA) solar radiance, µ0 the cosine of the solar zenith angle, rs the surface 

reflectance and ∘  represents channel-by-channel multiplication. The rs elements represent the hemispheric-directional 

distribution function (Schaepman-Strub et al., 2006). The atmospheric coefficient vectors t, ra and s represent the transmittance 30 

of the solar reflected optical path, the path reflectance, and the spherical sky albedo, respectively.  These coefficients are 
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obtained from simulations over a black surface. Using Eq. (1) in forward simulations results in negligible differences to 

retrieved TCWV compared with inserting the surface directly into MODTRAN forward simulations (Supplementary Figure 

2). Use of Eq. (1) means that just one MODTRAN simulation is needed per column, rather than one for each combination of 

column and surface type. The pseudo-observation, Iobs, is I with random uncorrelated noise added, generated using the EMIT 

noise model. 5 

The Iobs are input as observations to Isofit, while its state vector x contains surface reflectance in each channel, TCWV and 

aerosol optical depth at l=550 nm (AOD), i.e. 𝒙 = [	𝝆𝒔		𝐴𝑂𝐷		𝑇𝐶𝑊𝑉	]. We mask the most strongly-absorbing channels due 

to lack of any surface information, so the retrieval uses 176 EMIT channels and therefore x has 176+2=178 elements. 

The rs elements are constrained via a covariance matrix whose mean is derived from a library of real surfaces, thereby capturing 

realistic spectral shapes. We retrieve absolute rs, rather than the normalised value discussed in Thompson et al. (2018), and 10 

the prior is loosely constrained, however, ensuring that most information comes from the measurements. 

Isofit uses Eq. (1) with a lookup-table (LUT) for its forward model, populating ra, t, s for selected AOD and TCWV and then 

linearly interpolating in TCWV, AOD space to estimate Iobs given x. The LUT uses the default midlatitude summer profile and 

scales its q(z) and aerosol extinction(z) to match desired AOD (from 0.05—0.30) and TCWV (from 5—53.5 mm). The Isofit 

default configuration uses the U.S. Standard Atmosphere 1976 (Sissenwine et al., 1976), but MODTRAN applies a relative 15 

humidity limit and the U.S. 1976 atmosphere is cool enough that MODTRAN automatically restricts its moisture content, such 

that the TCWV cannot reach the values seen in any LES case except for DRY. The midlatitude summer TCWV limit is just 

over 53.5 mm, so that defines our LUT maximum.  

Our prior and first guess TCWV is 40 mm with a standard deviation of 7.5 mm although observationally a heuristic band ratio 

is commonly used to provide a first guess and a locally appropriate prior would be selected. However, this choice of prior 20 

doesn’t change our derived spatial statistics (Supplementary Figure 3), although it results in a small mean shift of mean 

retrieved TCWV and reflectance (e.g. posterior TCWV shifts by 0.15 mm when prior is shifted by 32.5 mm).  

3.1.2 Profile subsets, emulator development and sensitivity tests 

All retrievals use radiances simulated at SZA=45°, using the profiles associated with an individual footprint and assuming a 

plane-parallel atmosphere. We define “clear sky” as where cloud water path<1´10-3 mm, approximately t<0.3 in a typical 25 

subadiabatic cloud (e.g. Szczodrak et al. (2001)). Clear sky columns are ranked by TCWV and 101 columns equally spaced in 

terms of this ranking are taken (Supplementary Figure 4 justifies N=101).  

All snapshots in a given LES case are combined and Isofit-retrieved TCWVret is used to fit an emulator in combination with 

the forward-model TCWV via: 

𝑇𝐶𝑊𝑉+,- = 𝑎.𝑇𝐶𝑊𝑉 + 𝑎/ + 𝜖  ,    (2) 30 

Where a1 and a2 are the trend and intercept parameters from an optimised-least-squares fit and 𝜖 is random zero-centred 

Gaussian noise with standard deviation from the emulator fit residuals. Tests with SZA from 14—60° show no significant 
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differences in a1 with SZA, while the standard deviation of 𝜖 increases by up to 25 % at SZA=60° relative to SZA=45° 

(Supplementary Figure 5, Supplementary Table 1). Section 3.1.4 shows how we are able to identify and remove the effect of 

𝜖 on derived statistics, so given that a1 did not change with SZA in these tests we anticipate that our conclusions will largely 

apply to SZA up to and including 60°. 

Forward simulation AOD varied from 0.1—0.2 and most footprints were assigned AOD=0.2. Supplementary Figures 6—7 5 

show weak sensitivity of retrieved TCWV to AOD. The analysis is separated into two parts: Section 3.2.1 shows results for 

sensitivity of TCWVret to changes in surface spectrum within selected ARM snapshots and Section 3.2.2 shows changes in 

retrieved TCWV over a single surface type for all snapshots.  

3.1.3 Development and fitting of retrieval emulator 

For each emulator we use all snapshots within an LES run to fit Eq. 2 (separate snapshots fits do not affect conclusions, 10 

Supplementary Figure 8) and full-snapshot fields of TCWVret are then emulated using Eq. (2) with LES TCWV as input. The 

surface analysis uses the first 3 ARM snapshots and seven surface spectra from the Isofit surface model clusters, three of which 

are typical of vegetation, and the others of mineral surfaces. The database used to generate the surface model includes artificial 

surfaces, which are largely captured by the “mineral” spectra. An additional test was run with ARM_18000s profiles over 

uniform Lambertian surfaces with rs=0.1–0.5 in increments of 0.1. The atmospheric analysis uses the MODTRAN cropland 15 

and ocean rs spectra for all 23 snapshots, although poor performance over dark surfaces means that the main emulator results 

are reported only for the land-surface retrievals. 

Figure 3(a) shows typical spectra simulated over several surfaces, notably the MODTRAN rs spectra have sharp changes that 

are not included in the Isofit surface model and therefore provide a challenging test of the retrieval code’s ability to retrieve 

TCWV outside of surface conditions for which it was developed. 20 

With regards to the emulator parameters, non-unity a1 represents biases in the local retrieval sensitivity dTCWVret/dTCWV. 

Possible causes will be discussed in Section 3.2.3, but this is the main concern for retrieval of local variability statistics because 

the retrieved standard deviation will be scaled by a1, and this scaling will be undetectable in the absence of independent 

validation data. Changes in a1 also change the derived spatial r2, since a1>1 increases retrieved sx variance and will increase 

r2. The parameter a2 is related to a combination of the mean bias and the magnitude of a1 within a snapshot, and may depend 25 

on factors such as surface type or biases in the LUT-assumed T and q profiles as seen for MERIS retrievals in Lindstrot et al. 

(2012). For our spatial statistics, a2 has no effect since it is subtracted during calculation. The parameter e represents non-

systematic errors within a scene.  

Importantly, se is not the typical error seen in validation or inter-comparison exercises (Diedrich et al., 2015; Nelson et al., 

2016; Pérez-Ramírez et al., 2014), since in these studies the varying biases between products in different conditions will add 30 

to the reported errors and make them larger than the se appropriate for our retrievals.  
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3.1.4 Estimating random error from retrieved fields 

Random retrieval error e with standard deviation se adds variance and therefore reduces r2 while adding a high-bias term to 

estimated sx. Knowing se  would allow removal of its bias contribution to sx, and clearly interpretation of spatial variability 

at a footprint level requires that se is small relative to sx. TCWV variability between columns separated by 50 m in the 

horizontal is far smaller than at larger separations. We will exploit this to estimate the spatially constant se using an approach 5 

based around the second order structure function S2.  Here we describe the recipe and mathematical justification, see 

Supplementary Figures 9—10 for a step-by-step illustration. For a TCWV field: 

𝑆/(Δ𝑟) = 𝐸 #;𝑇𝐶𝑊𝑉(𝑥 + Δ𝑟) − 𝑇𝐶𝑊𝑉(𝑥)>/&     (3) 

This is the variance between pairwise footprints separated by the distance Dr, and retrieved S2 includes contributions from 

the spatial variance characteristic at that separation, 𝜎0/(Δ𝑟), and the observational uncertainty 𝜎1/. The subtraction removes 10 

the field mean 𝑇𝐶𝑊𝑉, and each of the terms TCWV(x) and TCWV(x+Dr) will contribute 𝜎0/(Δ𝑟) + 𝜎1/ to the variance. We 

treat these as independent so their variances add to give the retrieved S2,ret: 

𝑆/,+,-(Δ𝑟) = 2𝜎0/(Δ𝑟) + 2𝜎1/      (4) 

For ARM_18000s , sx(Dr=50 m) is 0.03 mm, compared with the full-snapshot sx of 0.29 mm. We exploit the smallness of sx 

at small Dr by smoothing the field in one direction with no overlap between smoothed footprints, and then calculating the 15 

structure function at Dr = 1 footprint (20—50 m, depending on the LES) perpendicular to the smoothing direction. For n-

footprint smoothing, the independent component of variance shrinks by 1/n, which we attribute to 𝜎1/. The steps are: 

(i) Select a direction and evaluate S2(Dr) in that direction for Dr = 1 footprint separation 

(ii) Smooth the field in the direction perpendicular to Dr by averaging over nfoot=2 footprints 

(iii) Recalculate S2(Dr,nfoot=2), treat the calculated value (i) as S2(Dr,nfoot=1), regress S2(Dr,nfoot) against 1/nfoot, and 20 

take the best-fit trend to be equivalent to 2𝜎1/. 

By smoothing in one direction and then calculating orthogonally, the separation distance Dr does not grow with smoothing 

and so we maintain the advantages of the small sx(Dr=20—50 m). For estimating TCWV se with EMIT-like Dx, this method 

outperforms a standard spatial smoothing filter approach (Supplementary Figure 11). 

3.1.5 Calculating spatial statistics and relationship to spatial smoothing 25 

We calculate the spatial standard deviation sx of clear-sky TCWV and TCWVret for each snapshot. The random error se is 

then estimated following Section 3.2.3 and subtracted in quadrature,  

𝜎0,+,-,34++ = A𝜎0,+,-/ − 𝜎1,+,-/       (5) 

Where the subscript “ret” means retrieved and “corr” means corrected.  

The other target statistic is r2 between TCWV and TCWVret, we calculate this directly and also estimate it via: 30 
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𝑟,5-/ = 6$,&'(
) )6*,&'(

)

6$,&'(
)        (6) 

Where emulator trend a1=1, estimated error from Section 3.2.3 is accurate, and there are no spatially-varying errors, Eq. (6) 

should reproduce retrieval r2. However, a1¹1 means each 𝜎0,+,-/  term will be multiplied by 𝑎./, resulting in an erroneous r2 

estimate. User requirements for r2 will depend on application, we arbitrarily select r2=0.9 as a target and compare Eq. (6) 

estimates with the true field values. True r2 is unknowable without perfect knowledge of the TCWV field, but operational 5 

estimation using Eq. (6) would allow users to determine whether their requirements are likely to be met. 

If r2 is too low for the desired application then averaging over footprints may address this, although it results in loss of fine 

spatial information, it may be necessary to suppress errors or may be enforced by effective horizontal smearing where 

SZA>0°. 

We show the results of sequentially smoothing the TCWV and TCWVret field on both sx and r2, and smooth in both 10 

horizontal directions, for example going from 50 m ´ 50 m to 100 m ´ 100 m. Smoothed footprints do not overlap, so are 

independent, and the smoothing is done on TCWVret rather than on the radiance field. This avoids the requirement for 

additional forward model runs, and furthermore allows predictions of how r2 changes with resolution by applying Eq. (6) 

with a minor modification: 

𝑟,5-/ =
6$,&'(
) )

+*,&'(
)

,
6$,&'(
)        (7) 15 

Where n is the number of footprints over which TCWVret has been smoothed, e.g. for the 50 m ´ 50 m to 100 m ´ 100 m 

transition n=4. In this case, se,ret must be calculated at the native resolution, and therefore exploits the smaller TCWV 

variance at Dr~50 m, rather than the higher variance in a smoothed field with larger Dr. 

3.2 Simulated retrieval results 

3.2.1 TCWV retrievals over different surfaces 20 

We first remind readers that “retrieval error” here only includes errors present in these synthetic retrievals, and excludes several 

real-world sources, such as how the true atmosphere is not plane-parallel as assume in our radiative transfer. Retrieved surface 

rs spectra and TCWVret versus forward model TCWV are shown in Figure 4. Surface rs are retrieved well, with mean bias 

magnitude equivalent to 0.2—1.6 % of true rs (e.g. for Lambertian rs=0.1, the mean bias is 0.00021) and standard deviation 

across all channels is 2—4 % of true rs. The largest contribution to errors is from spikes near l~2.06 µm. Inspection found 25 

that the MODTRAN CO2 concentration changes between default profiles versus prescribed T and q profiles. In future an up-

to-date CO2 mixing ratio will be assigned, but the higher LUT value (361 ppmv) versus the forward model value (323 ppmv) 

results in the retrieval overly brightening the surface in the strong CO2 band near l~2.06 µm. 

Comparing Figure 4(d—f), TCWVret over mineral surfaces is a mean 0.44 mm higher than over vegetation. From panel (f), 

some of this difference is likely related to mean surface brightness: darker surfaces give higher TCWVret. The other differences 30 
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in TCWVret between surfaces must be due to spectral shape, but it appears that surface-induced errors are small when 

considering only mixed vegetation or mixed mineral surfaces. Regardless of the surface, a bias of order ~1 mm remains, which 

is similar to the largest difference introduced by surface type and may be related to other retrieval errors such as inappropriate 

atmospheric profile shapes assumed in the LUT. However, the derived spatial statistics we are interested in here are not affected 

by any mean bias.  5 

Figure 5 shows example scenes with different surface types. The true TCWV standard deviation sx is 0.28 mm (panel a), while 

over the uniform surfaces the retrieval gives 0.33 mm (panels b,c), with the larger value due mainly to the se contribution. 

Over the striped surfaces it is 0.40 mm (panel d) due to the additional variance from combining surface types. However, if the 

top or bottom half of panel d is selected, then both return sx of 0.33 mm, i.e. the same as over a fixed vegetation or mineral 

surface. Statistics should not be taken over scenes with both vegetation and mineral surfaces but the Isofit surface classification, 10 

which is output by the retrieval, should be used to identify areas of sufficiently similar surface type for calculation of TCWV 

spatial statistics. The rest of the analysis assumes the MODTRAN cropland default surface. 

3.2.2 TCWV retrievals over vegetation surfaces in all LES snapshots 

Figure 6 shows TCWV retrievals over the MODTRAN cropland and ocean surfaces. The poor performance over ocean absent 

sun glint justifies our land-only investigation. Over land the mean bias ranges from -3.0 % (DRY) to +1.8 % (BOMEX) while 15 

the within-scene se is from 0.52 % (ARM_lsconv) to 0.67 % (BOMEX). As discussed in Section 3.1.3, VSWIR TCWV 

validation studies typically report error metrics larger than our se, but their values include inter-product differences in bias, 

which are potentially far larger. Bias is indeed sensitive to the assumed meteorological profiles, since by re-running the 

ARM_18000s retrievals using a LUT developed with the MODTRAN default “tropical” atmospheric profile shifts the mean 

bias from 0.33±0.04 mm to 0.14±0.04 mm (mean±2s). 20 

For the purpose of spatial variability in TCWV at scales of tens of km, the distinction between large-area and small-area 

retrieval errors is important. Generally speaking, the error in an individual column TCWV retrieval is of order 2—3 % since 

that includes the bias term, but for estimates of sub-10-km spatial variability, the within-LES 0.5—0.7 % is the error of interest. 

3.2.3 Emulator parameters  

Emulator parameters with ±2s confidence intervals are listed in Table 2 and significant (p<0.05) non-unity trends can be seen 25 

most clearly for BOMEX (green) and RICO (purple) in Figure 6(a); the retrieved properties are more variable than reality, 

with trends of 1.34 and 1.22 mm mm-1 respectively. Meanwhile, the ARM and ARM_lsconv trends are both <1 mm mm-1. 

Therefore sx calculated for BOMEX will be 34 % too high, and for ARM 6 % too low. 

We argue that the most-likely causes of emulated trend bias is related to the vertical T and q profile. Firstly, dI/dq is nonlinear 

and varies with atmospheric conditions due to line broadening and interaction with aerosol layers. The a1 fit parameter may 30 
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therefore be sensitive to differences between true profiles and those assumed in the retrieval LUT. Secondly, the LUT 

uniformly scales q(z) profiles whereas the horizontal variability in q tends to peak at specific altitudes (Figure 1).  

Two tests provide some evidence for this. Firstly, when using different standard atmospheres to generate lookup tables for the 

DRY case, retrieval gradient changes by 5 % and secondly, when re-running all BOMEX retrievals with forward radiances 

generated using the same q profile shape that has been scaled to match the original range of TCWV, the retrieval gradient 5 

changes by 9 % (Supplementary Figure 12). These results suggest that retrievals could be improved by using more-accurate 

meteorological profiles in the LUT development, and by using a more-appropriate scaling for q as a function of z in the LUT. 

3.2.4 Snapshot statistics and estimation of random error  

Figure 7(a) shows how sx of TCWVret is overestimated in every snapshot (circles). Figure 7(b) shows that the estimated 

retrieval error se agrees excellently with the truth, and after removing se, the triangles in Figure 7(a) show the consistent 10 

overestimate is removed. Random error, such as that introduced by some instrumental uncertainties, can be precisely identified 

and removed from the spatial variance calculations. For estimating sx, the largest error source we consider is due to emulator 

slope. Other potential sources would be due to surface variation, which can be mitigated by selecting regions of similar surface 

classification as suggested in Section 4.1, and due to spatially-varying errors, such as inter-pixel calibration biases or those 

induced by unmodelled temperature gradients across the sensors. Separate approaches are required to account for these issues. 15 

Next, we consider the r2 coefficient between TCWV and TCWVret, with an illustration in Figure 8, where the RICO_14400s 

TCWVret fields are shown at the native resolution, and after smoothing down to 80 m. The random retrieval error is visible as 

speckling Figure 8(a) and clearly reduces following smoothing. The 2d histograms Figure 8(c,d) demonstrate the increase in 

r2 from 0.82 to 0.95 following a coarsening of the Dx resolution from 40 m to 80 m. 

Figure 9 summarises the true and estimated statistical values as horizontal resolution is sequentially degraded. Comparison of 20 

Figure 9(a,b) reveals that there is only a small decrease in sx as resolution coarsens up to hundreds of metres, and the biases 

between estimated and true values follow emulator a1 trends as expected, with ARM and ARM_lsconv too low and DRY, 

RICO and BOMEX too high. 

Regarding r2 in Figure 9(c,d), Eq. (7) reliably predicts true r2, so a user could determine the spatial resolution required to 

achieve a desired r2. In all snapshots r2>0.90 at 150 m resolution, and in 21/23 cases this is achieved at 100 m. Therefore, with 25 

the errors accounted for here, the EMIT instrument could capture 90 % of spatial variability in PCWVPBL at 100 m resolution 

in the PBL conditions examined here, a factor of 7.5 improvement on the MERIS full-resolution retrievals. However, this 

conclusion does not account for the spatial smearing caused by SZA. 

3.3 Discussion of retrieval results and limitations 

This section has addressed questions 2) and 3) from Section 1, and shown that random errors introduced by EMIT’s 30 

instrumental error can be accurately identified and removed. Provided that an observed domain consists of mixed vegetation 
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or mixed mineral surfaces, then our derived error in sx using EMIT is from -7 % to +34 %. Isofit returns surface type, 

meaning that such domains can be identified from retrievals.  

Computational limitations forced adoption of an emulator approach, which provides a useful framework to assess error sources. 

Firstly, this framework shows that the errors of interest for retrieval of spatial statistics of PCWVPBL are the gradient a1, 

equivalent to dTCWVret/dTCWV, and random error se. We show that se can be estimated and removed, and that the main error 5 

is that in a1, most likely driven by the retrieval’s atmospheric profile assumptions, which can be addressed in future 

development. Our method to derive se also allows users to predict spatial correlation, in particular we found that an r2>0.9 

requirement requires smoothing to 100—150 m resolution. This is a factor of 3—8 improvement in sampling relative to MERIS 

full resolution.  

Limitations include the use of the same radiative transfer code for forward and inverse simulations, so spectroscopic errors 10 

were ignored, as were errors in cloud- and shadow masking, those caused by topography, or errors that correlate between 

footprints. 

Spectroscopy errors can be estimated (Thompson et al., 2020) and should shrink in future with developments, with ongoing 

research in water vapour absorption spectroscopy (Elsey et al., 2020; Lechevallier et al., 2018; Menang et al., 2021) and a 

history of targeted development of spectroscopy to improve retrievals, such as for OCO-2 (Drouin et al., 2016; O’Dell et al., 15 

2018; Payne et al., 2020). The surface remote-sensing community has tools for addressing topography (Kobayashi and Sanga‐

Ngoie, 2008; Teillet et al., 1982), and there are also approaches to dealing with nearby clouds to minimise the effect of 

imperfect cloud edge identification, shadowing and 3D cloud radiative effects (Massie et al., 2021). Nevertheless, these are all 

topics that are worth evaluating for Isofit-like TCWV retrievals. 

We note that our se is smaller than the errors reported in product intercomparison studies, but those studies implicitly capture 20 

variance due to differing mean biases, i.e. the a2 term in our emulator, which is larger than the other terms. An evaluation of 

our retrieved sx or would require independent validated sources such as passive microwave or differential absorption lidar data 

with Dx≤50 m that are collocated with VSWIR TCWVret. Reported comparisons are typically of bias and root-mean-squared 

error (RMSE) of satellite VSWIR retrievals relative to surface-based or other satellite products, and are calculated from 

datasets across a range of times and sometimes places. Furthermore, the comparison data generally has larger Dx and may not 25 

be perfectly collocated in time and space, introducing additional variance that contributes to reported RMSE. Therefore typical 

published analyses include within their RMSE uncertainties due to differences in space and time of measurements, and any 

differences between the a2 terms between the VSWIR and validation dataset retrievals. Therefore, these reported errors cannot 

be compared with our values which are calculated within individual LES runs. We can, however, report that our errors are 

similar to Thompson et al. (2021)’s airborne Isofit retrievals statistics against nearby AERONET surface stations, which 30 

reported RMSE of 2.8 mm. Flight C data from Figure 9 of that paper show a spatial standard deviation of 0.19 mm when 

smoothed to Dx=48 m, which is within the LES simulated range, and se is estimated at 0.18 mm, although that is not 

comparable to our values since it uses AVIRIS-NG rather than EMIT and is over ocean sun-glint, rather than land. 
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Reported RMSE over land for other VSWIR instruments include 0.9—1.3 mm for OCO-2 (Nelson et al., 2016), 1.4—3.7 mm 

for MERIS (Lindstrot et al., 2012), 0.9—2.0 mm for MODIS (Diedrich et al., 2015), 1.3—3.3 mm for OLCI (Preusker et al., 

2021) and up to 2.4 mm for Sentinel-2 (Obregón et al., 2019). The range of TCWVret simulated in Figure 4 is therefore 

consistent with typical errors reported for other instruments. Interestingly, Obregón et al. (2019) report a gradient of 0.9 

between Sentinel-2 and AERONET TCWVret. This is derived from data across multiple sites and times so cannot be compared 5 

to our gradients derived from individual LES cases, but indicates that different retrievals may indeed have relationships 

between TCWV and TCWVret which are not 1:1, and thus our non-unity a1 parameters, which scale derived sx, are credible. 

4 Effect of SZA variation on retrieved properties 

4.1 Calculation of TCWVret accounting for light path at different solar zenith angles 

Along-path integrated water vapour (IWV) for SZA ranging from 0—60° inclusive in increments of 15° is calculated using 10 

ray tracing. The sunlight’s horizontal component is in the negative y direction, viewing zenith angle is 0°, and the ray is traced 

from the top of atmosphere to the centre of each surface footprint. Each partial grid cell encountered has its q weighted by the 

pressure-corrected path through that cell, before obtaining IWV. The cloud mask is extended by a “shadow mask” where cloud 

LWP>1´10-3 mm along the solar direct ray path. This IWV is referred to as a TCWV for consistency with standard retrieval 

terminology, even though it is not directly a measure of the column over the footprint. The Section 3 analysis is then repeated, 15 

using the same emulators developed using radiative transfer with SZA=45°, a plane-parallel assumption and footprint column 

profiles. Different SZAs may change the sensitivities somewhat but we do not expect results substantially outside the range of 

those considered here. 

4.2 Effect of SZA variation on retrieved properties 

Figure 10(a,d) shows apparent TCWV in ARM_lsconv_36000s (i.e. when convection is most developed) at SZA=15 and 60°, 20 

and in Figure 10(c,d) the clear vertical pattern of positive followed by negative biases relative to true TCWV is clear, with 

greater magnitude and larger regions of continuous positive or negative bias at higher SZA. 

Figure 11 shows that this spatial smearing destroys the correspondence between footprint and path TCWV, with r2 around 0.1 

with SZA as small as 30°. This can be compensated only somewhat by spatial smoothing, as shown in Figure 12 shows that 

even footprints degraded to 300 m are affected by SZA. The calculated sx at SZA=0° match those from Figure 9, with biases 25 

from the emulator slope parameter in Table 2. Larger SZA in these cases increases the magnitude of this bias, but the difference 

in sx as SZA changes from 15—60° is smaller than the RICO or BOMEX emulator-trend-induced biases. The retrieved sx 

with footprint size tracks reality, suggesting that the horizontal distribution statistics might still be captured even at large SZA. 

Furthermore, the statistical error estimation from Section 3.1.4 has effectively identical performance regardless of SZA (not 

shown). 30 
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However, Figure 12(b) shows that a VSWIR-retrieved map TCWVret does not accurately represent the actual spatial variability 

in TCWV and by extension PCWVPBL even for SZA=15°, and this is a fundamental limitation caused by the solar path through 

the atmosphere. In fact, the TCWVret map corresponds better to the TCWV map at the horizontal location where the downward 

solar path enters the PBL, but improvement in r2 is limited (Supplementary Figure 13). 

Figure 13 shows that while the retrieved TCWV distributions are biased, as previously discussed, SZA increases cause only 5 

minor visible changes in distribution shape. This indicates that important statistics of the TCWV (and therefore PCWVPBL) 

field can be obtained at the native footprint resolution, despite the poor correspondence of any individual footprint to the 

column located at that position. The primary advantages of finer spatial resolution are (i) it allows better calculation of se than 

at coarser resolution using Section 3.1.4’s method, due to the smaller Dr between footprints and (ii) when calculating statistics 

such as standard deviation on local scales, statistical errors are reduced by the larger number of footprints. For example, Dx=50 10 

m represents approximately 25 times more measurements than MODIS or MERIS. If standard deviation were desired for a 1 

km ´ 1 km region, N=16 from 250 m footprints results in a sampling error of ±17.7 % versus ±3.5 % for N=400 from 50 m 

footprints.  

5 Discussion and conclusions 

Modern and upcoming VSWIR instruments promise unprecedented horizontal resolution for the study of surface properties, 15 

with emphases ranging from mineral regions that are the source of dust (EMIT) to routine observation of agriculture and 

biodiversity (CHIME) to the full spectrum of study under the NASA 2017 Decadal Survey’s Surface Biology and Geology 

(SBG) designated observable.  

This study suggests potential synergies with the Decadal Survey’s PBL targeted observable by showing that PCWVPBL 

variability at high spatial resolution can be inferred using the TCWVret that will be obtained from EMIT observations. While 20 

these measurements lack the vertical resolution that is necessary to advance PBL science they provide unique constraint on 

the mesoscale moisture variability and aggregation within the convective PBL. This analysis is restricted to daytime convective 

PBLs over land surfaces, which excludes deep convection but still represents a large fraction of meteorological conditions in 

the tropical to mid latitudes. Importantly these are the precise conditions in which it is suspected that PBL moisture aggregation 

influences the timing of deep convective events. Furthermore, given the large number of scenes in which we expect to be able 25 

to derive these spatial statistics, these observations could prove useful for constraining the manner in which small scale 

variability is parameterized in shallow convection or unified parameterization schemes. The Isofit development team has 

curated additional spectra for a universal prior that includes Cryosphere surfaces, but additional work may be necessary to 

evaluate TCWV over snow, since there is a snow absorption feature near l=1 µm whose depth depends on snow grain size 

(Painter et al., 2007), and which overlaps qv absorption. This may introduce surface-atmosphere covariance that affects the 30 

retrieval. 
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NASA’s 2017 Decadal Survey encourages multi-instrument applications and the VSWIR retrievals discussed here could be 

combined with radio occultation or thermal infrared (TIR) or passive microwave sounders, which have far larger horizontal 

resolution but obtain vertical profiles. Early explorations of joint VSWIR-TIR retrievals are promising, suggesting that the 

sensors provide complementary information on both atmospheric and surface properties (Fahlen et al., n.d.). VSWIR could 

provide a prior constraint on TCWV in a collocated TIR retrieval, or the TIR retrieved PCWVupper could be subtracted from 5 

VSWIR TCWV to estimate PCWVPBL, with VSWIR also providing the horizontal statistics of clear-sky PCWVPBL variability 

within the TIR footprint. Another opportunity is to use coincident TIR retrieved profiles of T and q to either build a more 

appropriate LUT for the VSWIR retrieval, or to select from among pre-computed LUTs.  

In Isofit, the atmospheric component contributes a bias to dTCWVret/dTCWV and may be the largest source of our errors in 

sx, which range from -7 % to +34 % of true sx. Development allowing the use prescribed profiles and the ability to assign 10 

variability in q to lower altitudes rather than uniform scaling at all altitudes should reduce these errors, as accounting for 

temperature reduced biases in MERIS TCWVret (Lindstrot et al., 2012). 

This study also showed how SZA as small as 15° significantly degrades the accuracy of retrieved spatial patterns in TCWV, 

even at coarser resolutions similar to current sensors such as MERIS. However, the TCWV distribution was far less sensitive 

to SZA. While our results should strongly affect the interpretation of retrieved maps of TCWV from instruments like MERIS, 15 

they suggest that moments of the PCWVPBL distribution can be obtained at unprecedented horizontal resolution, which may 

be of use to developers of modern PBL schemes that use or assume such moments. We note that the LES TCWV distributions 

and their variation with spatial scale may not be realistic, since they tend to be overly dissipative on scales ≤6 grid cells (Bryan 

et al., 2003), but it is not clear that these biases affect our conclusion regarding the ability to obtain distributional statistics that 

represent horizontal variability at scales as small as 50 m.  20 

Future work could address uncertainties that are ignored here, such as topography or cloud 3-D radiative effects via 3-D 

radiative transfer simulations which avoid several of our assumptions, such as a plane-parallel atmosphere.  A particular 

limitation is that this analysis did not consider vertical structure or PBL height beyond using that derived from the LES mean 

profiles. In reality there may be errors in locally estimated PBL height, or that obtained from other sensors may be inconsistent 

with the max(dq/dz) value used here and targeted research on this topic would be worthwhile. Observational evaluation of 25 

these uncertainties could be performed using collocated airborne measurements of column water vapour from VSWIR and 

other instruments such as differential absorption lidar or passive microwave imagers, provided they can obtain sufficiently 

high spatial resolution. Finally, this work could be extended to other sensors, such as MSI on Sentinel-2, which is not 

hyperspectral but provides exceptionally fine Dx of approximately 20 m. Additional high-resolution analysis may be required 

for this, since Figure 9(a,b) imply increases in retrieved sx at Dx=20 m for the two simulations that were run at that resolution. 30 

Despite these caveats, we have shown ways in which atmospheric correction outputs of surface property retrievals for EMIT 

can provide unique information on fine-scale PBL water vapour variability, and also identified specific development tasks to 

improve the quality of its atmospheric outputs. With current tools it therefore seems likely that missions such as EMIT and 



17 
 

CHIME, which are primarily designated as targeting surface observables, can provide unique information to the atmospheric 

science community.  
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Figure 1. Output all-sky profiles for the (a—d) ARM, (e—h) ARM_lsconv, (i—l) RICO, (m—p) BOMEX and (q—t) DRY LES. On 
each panel the separate coloured lines represent different timesteps, the black horizontal line is the top of the LES and the dashed 
blue horizontal line is the PBL height calculated from the first shown timestep, whose lines are in the same blue. The column 
beginning with (a) is the mean T profile, that with (b) the mean q profile, that with (c) the profile of the spatial standard deviation 5 
in q and that with (d) the cloud fraction. Note that due to overlap, the fraction of cloudy columns listed in Table 1 is higher than the 
peak mean profile cloud fraction. 

 

 

 10 



25 
 

 

 

 
Figure 2. Correlation coefficient between clear-sky partial column water vapour (PCWV) integrated up to given capping altitudes, 
and the TCWV. (a—e) contain the snapshots of each individual LES run and (f) reproduces the values calculated from High 5 
Altitude Lidar Observatory flights over the Pacific (Bedka et al., 2021) as presented in Thompson et al. (2021). The LES profiles 
also have a horizontal bar appended at the derived PBL top height. The flight data differ from the LES outputs in that horizontal 
resolution is approximately 3 km along-track, they are dispersed over thousands of km, and the TCWV is only up to 8 km due to 
the flight altitudes. 
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Figure 3. Examples of (a) simulated spectra and (b) used surface reflectances in the forward model (solid lines) and those retrieved 
by Isofit using EMIT instrument characteristics (dashed lines). Each colour refers to a surface type as listed in the panel (a) legend. 
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Figure 4. (a—c) retrieved reflectance spectra for (a) vegetation, (b) mineral and (c) spectrally uniform surfaces. Lines show the mean 
of all simulated retrievals and shading shows ±1s. (d—f) retrieved TCWV as a function of true TCWV for the same. The Vegetation 
and Mineral cases use three snapshots (N=303) and the Lambertian surfaces just use ARM_18000s (N=101). 10 
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Figure 5.   ARM_18000s (a) true TCWV, (b) retrieved TCWV over a uniform vegetated surface, (c) retrieved TCWV over a uniform 
mineral surface, (d) retrieved TCWV over stripes of uniform surface types as labelled in the figure, (e) difference induced in retrieved 
TCWV by surface type relative to mixed vegetation as (d) minus (b), (f) difference. Relative to mixed mineral vegetation as (d)minus 
(c). Clouds are masked in all cases. 5 
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Figure 6. Retrieved TCWV as a function of the truth for all snapshots in each LES case over (a) cropland and (b) ocean. Note that 
the TCWV values differ from those derived from the LES due to differences in the MODTRAN layer interpolation and calculations. 
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Figure 7. (a) Estimated clear-sky horizontal standard deviation as a function of the true value for each snapshot for raw retrievals 
(circles) and retrievals after removal of the random component of retrieval error, e.g. that induced by instrumental noise (triangles). 
(b) The estimate of retrieval error as in Section 3.1.4 as a function of the true error in each case. 10 
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Figure 8. (a) retrieved TCWV at 40 m resolution, (b) retrieved TCWV at 80 m resolution, (c) 2d histogram of retrieved TCWV as 
a function of the truth at 40 m resolution, (d) 2d histogram of the same at 80 m resolution. The squared Pearson correlation 
coefficient, r2, is written in the upper left corner of (c,d). 
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Figure 9. Changes in the true and retrieved statistical properties for LES as a function of spatial resolution Dx. (a) the true standard 
deviation calculated directly from the LES output, (b) retrieved standard deviation after removing the estimated retrieval error as 
in Section 3.1.4, (c) r2 between true TCWV and TCWVret, (d) estimated r2 using Eq. (7). 

 5 

 

 

 

 



31 
 

 
Figure 10. ARM_lsconv_36000s integrated water path calculated along (a) SZA=15° and (b) SZA=60° with the upward path directly 
up at zenith angle 0°, values labelled TCWV in colour bar for simplicity. (c) shows the difference for each footprint by subtracting 
the true TCWV at SZA=0° from panel (a), and (d) shows the same for subtracting the SZA=0° value from the SZA=60° value. The 
“cloud” mask in each case is now extended to include cloud shadows, and the illumination comes from the top of each panel, i.e. 5 
sunlight travelling down through the atmosphere has a component in the negative-y direction. 
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Figure 11. 2d histograms between clear-sky TCWV (true value integrated only in column over footprint) and the retrieved values at 
the corresponding footprint with SZA of (a) 15°, (b) 30°, (c) 45°, (d) 60°. The r2 coefficient is on each panel, and the footprint 
resolution is the native output of Dx=50 m. 
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Figure 12. Clear-sky TCWV horizontal spatial statistics calculated for ARM_18000s (blue) and RICO_14400s (orange) as a function 5 
of the horizontal footprint size. (a) standard deviation sx as in Figure 9 and including the random error correction from Section 
3.1.4, (b) correlation coefficient between column true TCWV and that retrieved for the same footprint as SZA changes. Each line 
style represents a different SZA as labelled in the legend of (a). 
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Figure 13. Histograms of footprint estimated clear-sky TCWV, with the truth shown in grey shading. The retrieval estimates are all 
scaled to remove the variance due to estimated random error. (a) variation with SZA calculated at footprint size Dx=50 m and (b) 
variation with footprint size at SZA=0°. In both panels the blue histograms are the same.  
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Table 1. Summary of LES properties. Where ranges are provided, these are the full range of clear-sky mean values from the 
snapshots used for each case. Row (vi) is the fraction of columns whose integrated liquid water path > 1.3´10-3 mm and differs from 
mean cloud fraction in Figure 1 due to overlap. The TCWV in row (vi) is derived from the combined LES and reanalysis profile, 
and separated into the LES and reanalysis partial column water vapour amounts in rows (vii) and (viii). 

  ARM ARM_lsconv RICO BOMEX DRY 

(i) Snapshots used 18000s, 21600s,  
25200s, 28800s,  
32400s, 36000s 

43200s 

36000s, 39600s, 
43200s 

14400s, 
16200s, 
18000s, 
19800s, 
21600s 

14400s, 
16200s, 
18800s 

7200s, 
10800s, 
14400s, 
18000s, 
21600s,  

(ii) Domain size [km] 20.0 20.0 20.5 12.8 14.4 

(iii) Dx [m] 50 50 40 20 20 

(iv) LES top [km] 5 5 4 3 2 

(v) PBL top [km] 1—2.7 1—3.2 2.5—2.7 2.1 1.3 

(vi) Columns flagged 

cloudy [%] 

1—21 5—20 24—28 16—19 0.0 

(vii) Clear-sky TCWV 

[mm] 

39.6—42.2 43.3—43.8 36.9—37.0 35.6—35.7 19.8—20.2 

(viii) Clear-sky PCWVLES 

[mm] 

36.2—38.9 40—40.5 33.1 30.6—30.7 9.7—10.2 

(ix) Clear-sky 

PCWVreanalysis [mm] 

3.3 3.3 3.9 5.0 9.9 

(x) Description Diurnal cycle of 
midlatitude 
shallow 
convection over 
land 

As ARM, 
perturbed by 
large-scale 
convergence 

Shallow 
precipitating 
trade-wind 
convection 
over ocean 

Shallow non-
precipitating 
trade-wind 
convection 
over ocean 

Dry free 
convection 

(xi) Citation Brown et al. 

(2002). 

REF case in 

Kurowski et al. 

(2020) 

CON3 case in 

Kurowski et al. 

(2020) 

vanZantern et 

al. (2011); 

Matheou and 

Chung (2014) 

Siebesma et al. 

(2003); 

Matheou and 

Chung (2014) 

Matheou and 

Chung (2014) 
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Table 2. Emulator parameters relating true TCWV to TCWVret. In Eq. (2) the trend is a1, the intercept is a2, and residual s is the 
standard deviation used in generating the samples of 𝝐. Values are shown ±2s. 

Case Trend [mm mm-1] Intercept [mm] Residual s [mm] 

ARM 0.94±0.02 0.29±0.07 0.22±0.03 
ARM_lsconv 0.97±0.04 0.14±0.17 0.23±0.03 
BOMEX 1.34±0.06 -1.15±0.22 0.20±0.03 
DRY 1.13±0.03 -0.33±0.07 0.10±0.01 
RICO 1.22±0.04 -0.77±0.15 0.21±0.03 

 


