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Abstract. Daytime clear-sky total column water vapour (TCWV) is commonly retrieved from visible and shortwave infrared
reflectance (VSWIR) measurements, and modern missions such as the upcoming Earth Surface Mineral Dust Source
Investigation (EMIT) offer unprecedented horizontal resolution of order 30—80 m. We provide evidence that for convective
planetary boundary layers (PBLs), spatial variability in TCWV corresponds to variability in PBL water vapour. Using an
observing system simulation experiment (OSSE) applied to Large Eddy Simulation (LES) output, we show that EMIT can
retrieve horizontal variability in PBL water vapour, provided that the domain surface is uniformly composed of either vegetated
surfaces or mineral surfaces. Random retrieval errors are easily quantified and removed, but biases from -7 % to +34 % remain
in retrieved spatial standard deviation and are primarily related to the retrieval’s assumed atmospheric profiles. Future retrieval
development could greatly mitigate these errors. Finally, we account for changing solar zenith angle (SZA) from 15—60° and
show that the non-vertical solar path destroys the correspondence between footprint retrieved TCWV and the true TCWV
directly above that footprint. Even at the 250 m horizontal resolution regularly obtained by current sensors, the derived maps
correspond poorly to true TCWYV at the pixel-scale, with 72<0.6 at SZA=30°. However, the derived histograms of TCWV in
an area are closely related to the true histograms of TCWV at the nominal footprint resolution. Upcoming VSWIR instruments,
primarily targeting surface properties, can therefore offer new information on PBL water vapour spatial statistics to the

atmospheric community.

1 Introduction

Thermodynamic information about the planetary boundary layer (PBL), including information about water vapour (gv), is a
targeted observable recommended by NASA’s Decadal Survey (National Academies of Sciences, Engineering, 2018). PBL ¢
estimates would go beyond the current TCWV and free-tropopause products to provide new information about the vertical
moisture structure for weather and climate applications. The Decadal Survey explicitly recognised the PBL’s importance since
it “literally couples the surface of the Earth to the atmosphere above”, and among other important factors, gradients of moisture

between the surface and PBL, and between the PBL and free troposphere are strong controls on vertical atmospheric heat and
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moisture transport. The formation of boundary layer clouds was also highlighted due to their importance for Earth’s energy
balance. A critical measurement gap in the current observations of PBL thermodynamics is the inability to quantify mesoscale
variations in PBL gv. Mesoscale aggregation in PBL water vapour appear to play an important role in determining the timing
of deep convective events (Stirling and Petch, 2004; Wulfmeyer et al., 2006). Furthermore, in-situ observations suggest that
the majority of the variation in the TCWV prior to convective initiation can be explained by variability within the PBL
(Couvreux et al., 2009). The mesoscale spatial variability of gv is not resolved by current global weather or climate models but
instead it must be parameterised. Modern approaches to parameterize PBL variability include Eddy-Diffusivity/Mass-Flux
approaches (Suselj et al., 2019) and higher order closure approaches that include prognostic equations for higher order
moments such as the variance (Golaz et al., 2002; Larson et al., 2002). However, we lack observations at a global scale to
evaluate the small-scale variability produced by these models. This paper will address the feasibility of addressing this
measurement gap using upcoming observations from very high spatial resolution VSWIR observations from space.

This study is primarily motivated by the ongoing development of spaceborne hyperspectral VSWIR measurement capacity at
fine horizontal resolution. We focus on the EMIT mission, planned to launch to the International Space Station (ISS) in 2022
with average footprint size (Ax) of 60 m (Green and Thompson, 2020). However, similar or improved capacity is anticipated
in response to NASA’s Surface Biology and Geology (SBG) designated observable, with the Hyperspectral Infrared Imager
(HysPIRI, Lee et al. (2015)) concept offering Ax of 30—60 m; and for ESA’s Copernicus Hyperspectral Imaging Mission for
the Environment (CHIME), also known as Sentinel 10, for which the prime contractor was selected in July 2020 and whose
Mission Requirements Document refers repeatedly to Ax <30 m (Rast et al., 2019).

Of present missions, this analysis may be applicable to the Italian PRecursore IperSpettrale della Missione Applicativa
(PRISMA, Candela et al. (2016)), which provides similar spectral range and sampling to EMIT at Ax=30 m. Some of the
conclusions will also apply to other recent instruments, such as Sentinel-2’s Multi-Spectral Imager (MSI, Drusch et al. (2012))
which offers Ax =20 m, albeit with far fewer channels, or the DLR Earth Sensing Imaging Spectrometer (DESIS, Krutz et al.
(2019)) which provides hyperspectral measurements over a smaller wavelength range. These modern and upcoming
instruments offer Ax that are substantially smaller than past VSWIR instruments that retrieve TCWV, such as ESA’s Medium
Resolution Imaging Spectrometer (MERIS) on Envisat, whose smallest provided Ax is approximately 0.25 km x 0.30 km,
which allowed the identification of horizontal convective rolls during a high pressure event over Germany (Carbajal Henken
et al., 2015), but cannot resolve the smaller scales of variability. Recently, Thompson et al. (2021) used VSWIR measurements
from the Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) to capture information about PBL
qv variability at spatial scales <1 km, which cannot be determined with footprint sizes similar to MERIS.

EMIT-like instruments could allow retrieval of bulk PBL ¢v, which we henceforth refer to as the partial column water vapour
in the PBL (PCW VpaL) via two demonstrated approaches. The first approach uses VSWIR measurements alone, and the second
combines separate above-PBL water vapour (PCW Vupper) and TCWV to obtain PCWVpsL = TCWV — PCW Vupper. A third
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approach, that has not been demonstrated operationally to our knowledge, is to perform joint retrievals using both VSWIR and
vertically resolved sounding measurements.
The direct VSWIR-only method can be seen in Trent et al. (2018), who estimated PCWVpsL from the Greenhouse Gases
Observing Satellite (GOSAT, Kuze et al. (2009)), while the second is explored in Millan et al. (2016), who paired TCWV
from passive microwave measurements with PCWVypper above horizontally-uniform clouds from Moderate Resolution
Imaging Spectroradiometer (MODIS) near-infrared retrievals. The resultant PCW VesL values showed good agreement with
radiosondes and ERA-Interim reanalysis and a promising candidate approach is to use VSWIR TCWYV in place of the
microwave measurements.
The physical principle of VSWIR TCWYV retrievals is differential optical absorption spectroscopy (DOAS). More TCWV
leads to increasing depth of H2O absorption features relative to other wavelengths. This applies to TCWVvswir from missions
including MERIS (Bennartz and Fischer, 2001; Guanter et al., 2008), MODIS (Diedrich et al., 2015; Gao and Kaufman, 2003),
TROPOMI (Borger et al., 2020; Schneider et al., 2020), SCTAMACHY (Noél et al., 2004), GOME (Noél et al., 1999), GOME-
2 (Grossi et al., 2015) and OCO-2 (Nelson et al., 2016).
These instruments vary in spectral range and sampling, but all must contend with the measured spectra responding to properties
other than TCWV. The retrievals only operate for daytime cloud-free scenes, and commonly only over land since water
surfaces are dark such that insufficient light reaches the sensor to allow for a TCWYV retrieval, with exceptions for sun glint as
exploited in the aforementioned AVIRIS-NG study (Thompson et al., 2021). Thompson et al. selected these AVIRIS-NG
flights because DOAS techniques respond to the total light path absorption including the slanted sunlight path from the top of
atmosphere (TOA) to the surface. This horizontally smears the effective footprint size, with larger smearing for larger solar
zenith angle (SZA). As footprints become smaller, the proportional effect of this smearing may become more important, and
so here we apply solar ray-tracing to determine whether observations with a nominal Ax of 20—50 m obtain useful information
about the spatial statistics of PCWVpaL at that spatial resolution. We use two performance metrics: (i) the correlation between
retrieved TCWV and true TCWV, which was used as input for our forward simulations, and (ii) the spatial standard deviation,
ox of retrieved TCWYV within a snapshot relative to the LES output PCW VesL Gx, which we refer to as the true ox.
We employ a new type of Observing System Simulation Experiment framework and performs simulated VSWIR retrievals of
TCWYV from high-spatial-resolution large eddy simulation (LES) output to determine whether horizontal spatial variability in
PBL g¢. can be obtained from retrieved TCWV, and conclusions are limited to daytime non-cloudy conditions. The purpose of
this is a detailed sensitivity study using retrieval code and tools already developed for EMIT. We consider Ax>40 m since this
is appropriate for EMIT and several LES cases in our archive that were run at that resolution.
Here we test the use of the iterative optimal estimation code Imaging Spectrometer Optical Fitting (Isofit) for a spaceborne
application, specifically target TCWV and address the following questions:

1) In LES, how does horizontal variability in TCWV relate to PCWVppL?

2) What uncertainties are introduced into the retrieval by EMIT instrumental error, non-uniform AOD and different

surface types, and can these errors be anticipated and quantified from observations alone?
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3) What is the correlation coefficient between retrieved and true TCWV, and can the spatial standard deviation be
estimated? How does this depend on LES of different convective PBL types?
4) How does the solar path across different SZAs affect these conclusions?
This scope excludes important factors such as topography, inter-channel correlated errors in the instrument, imperfect cloud
masking and cloud 3-D radiative effects, and our paper is structured to address these questions in turn, with each analysis
section containing its own methodology, results and discussion. Section 2 explores the raw LES output to address question 1,
Section 2 describes the synthetic retrievals and analysis methodology to address questions 2—3, Section 4 adds solar path

analysis to address question 4, and Section 5 discusses and concludes.

2 Large Eddy Simulations
2.1 Model setup, scenarios and snapshot selection

We use output from five LES simulations named RICO, ARM, ARM _lIsconv, BOMEX and DRY, which are summarised with
references in Table 1. They all represent convective boundary layers characterised by either low-altitude or no cloud cover.
The 23 separate snapshots are identified by timestamp, e.g. ARM_18000s is five hours into the ARM simulation. Simulation
Ax sets the implied measurement horizontal resolution and varies from 20-50 m.

The simulations are performed with two different models: EULAG (Prusa et al. (2008); ARM and ARM Isconv) and JPL-
UCONN LES (Matheou and Chung (2014); RICO, BOMEX, DRY). Each simulation applies periodic lateral boundary
conditions and a horizontally-homogeneous initial state. For the RICO case, interactive sensible and latent heat surface fluxes
over constant-temperature ocean are used, while the other cases are driven by prescribed (either constant for DRY and
BOMEX, or time-dependent for ARM and ARM _lIsconv) surface fluxes. All other setup details are explained in the Table 1
references, these references also show how the ARM, BOMEX and RICO LES simulations, which were based on detailed
field campaigns, accurately reproduce the main features observed during those campaigns. Each three-dimensional LES
snapshot is merged with one-dimensional MERRA-2 reanalysis profiles aloft to produce a full-depth atmospheric column.
Reanalysis data are chosen for the dates and locations of the field campaigns the LESs refer to. The DRY and ARM Isconv
cases share the same upper-atmospheric profiles as ARM. In all cases except for DRY, Table 1 rows (vii)—(ix) show that the
LES capture >85 % of total TCWV. For retrieval purposes we ignore the LES surface type and apply an assumed surface

reflectance spectrum below the LES profiles.

2.2 Profiles and PBL height

Definitions of PBL height, zrs. vary widely. We found similar results from four standard thermodynamic calculations (von
Engeln and Teixeira, 2013), so henceforth we define zpsz to be the altitude of max(d0/dz) where 6 is the all-sky mean potential

temperature. Mean all-sky profiles of 7 and ¢, horizontal standard deviation in ¢ (o), and cloud fraction are shown in Figure
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1. Changes in oy are the largest differences between timesteps, but are small (<10 %) relative to the mean, so measuring this
variability will require precise observations. Also, oy is negligible in the layers in the free-troposphere that lie above the PBL
but are resolved by the LES, implying that the LES domains capture ¢» variability. We later support this claim using real-

world airborne LIDAR retrievals.

2.3 Water vapour spatial variability statistics and the relationship between TCWYV and PCWVppL

Figure 1 displays all-sky conditions but our retrievals only target clear-sky thereby missing a moister tail to the distribution
(Supplementary Figure 1). Within-cloud retrievals would require alternative measurement approaches, such as differential
absorption radar (Roy et al., 2018, 2020), and the restriction to clear-sky scenes is a limitation that also applies to current
thermal infrared and lidar retrievals.

We assess TCWV-PCW VesL spatial variability by calculating clear-sky PCWV up to capping altitudes from 0.5—S5 km and
then correlating these with TCWV. Figure 2 confirms that >90 % of horizontal variance in LES TCWYV at these scales is
explained by PCWVesL. It is reasonable to ask whether this finding that the PBL variance dominates the TCWV variance is
representative of the real atmosphere. Indeed the LES results are supported by the same statistics calculated from High Altitude
Lidar Observatory (HALO) flights over the Pacific Ocean in April 2019 (Bedka et al., 2021), as presented in Thompson et al.
(2021) and shown in Figure 2(f). In these calculations TCWYV is only calculated up to 8 km due to flight altitude, but this real-
world data includes free-tropospheric moisture variability and furthermore will have lower r values due to the presence of
random retrieval error. The horizontal resolution is ~3 km versus the 20—50 m of LES, and the HALO sampling is sparse and
often separated by hundreds of km due to clouds. Nevertheless, the HALO flights show that horizontal TCW'V variability can
be well captured within 3 km altitude in real scenes, and provide evidence that the LES domains capture horizontal variability
in gv.

The TCWV-PCW Veae fit coefficients for ARM, ARM_Isconv, BOMEX and RICO range from 0.99—1.04 mm mm™, i.e.a 1
mm change in PCWVppL means a 0.99—1.04 mm change in TCWV. This confirms that almost all horizontal ¢, variability
occurs within the mean PBL height. For the DRY case, coefficients range from 1.06—1.12 mm mm'!. These coefficients mean
that PCW Vupper spatially correlates with PCW VesL, which could be explained by moister plumes rising and having higher local
zppr than the domain-mean value used in the calculation. In summary, we have answered question 1 from Section | and can
expect spatial variability in retrieved TCWV for these cases to represent real variability in PCW VesL, and so use TCWV and

PCWVppL interchangeably from now on.

3 Simulated EMIT retrievals of TCWYV in LES

This experiment requires a large number of inversions over a wide spatial field. Simulating synthetic spectra and performing
a retrieval for every grid point proved to be prohibitively computationally expensive. Consequently, we develop an emulator

to statistically reproduce the result of the full inversion but with dramatically better efficiency. Retrievals will include a range
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of surfaces in a subset of the snapshots (to identify sensitivity to surface type) and then a fixed surface type across all snapshots
(to identify sensitivity to atmospheric conditions). Sensitivity tests will be performed on individual subsets of snapshots as
required, and a correction method for identifying the random component of retrieval error will be introduced. Section 3.1

describes the relevant methods, Section 3.2 the results and 3.3 discusses limitations.

3.1 Retrieval methodology
3.1.1 MODTRANG6.0 forward model, EMIT instrument characteristics and Isofit retrievals

We use the same retrieval code as in Thompson et al. (2021), Imaging Spectrometer Optimal Fitting (Isofit) for our synthetic
retrievals (https://github.com/isofit/isofit). This iterative optimal estimation code simultaneously retrieves surface reflectance,
aerosol optical depth (AOD) and TCWYV, differing from older techniques that retrieve properties sequentially (e.g. Guanter et
al. (2008) for MERIS). Isofit is described and shown to have a closed error budget in Thompson et al. (2018), and has been
applied to observations from several airborne campaigns (Thompson et al., 2019, 2020, 2021). Conceptually it targets surface
reflectance ps and the estimation of TCWV is seen as part of an atmospheric correction.

Forward simulations use MODTRANG6.0 (Berk et al., 2014, 2015), which provides a plane-parallel solution to the radiative
transfer equation. Atmospheric reflectance and transmittance vectors pu, ¢ and spherical sky albedo s are calculated at
wavenumber separation Ak=0.1 cm™! (A4~0.002 nm) before being convolved with the EMIT spectral response function ), and
the instrument is assumed to be nadir viewing from 100 km altitude. With no substantial atmosphere above 100 km, this gives
the same results as the ISS altitude near 400 km, where EMIT will be hosted. A correlated-k method and the HITRAN database
(Rothman et al., 2009) are used for gaseous absorption while scattering is handled by DISORT (Laszlo et al., 2016; Stamnes
et al., 1988). The EMIT instrument properties are derived from the current mission instrument model, which accounts for all
signal-independent noise terms like electronic noise, and photon shot noise calculated using predicted efficiencies of the
instrument mirrors, lens, grating, and focal plane array. Spectral range is 380—2500 nm with AAchanne=10 nm and full-width
at half maximum averaging AArwrn~11 nm.

For forward simulations, merged LES-reanalysis T and g profiles are interpolated onto a profile with 8 points from 0—6 km
then vertical resolution slowly degrades over 6—100 km. Interpolated TCWYV differs from the LES-reanalysis but we assume
that conclusions regarding derived sensitivities and errors will not be strongly affected.

The forward radiance vector 7 is calculated using a standard Lambertian approximation (e.g. as in Vermote et al. (1997)):

R (1)

bis @ " 1—sopg
Where Iy is the downward top of atmosphere (TOA) solar radiance, o the cosine of the solar zenith angle, ps the surface
reflectance and o represents channel-by-channel multiplication. The ps elements represent the hemispheric-directional
distribution function (Schaepman-Strub et al., 2006). The atmospheric coefficient vectors #, p. and s represent the transmittance

of the solar reflected optical path, the path reflectance, and the spherical sky albedo, respectively. These coefficients are
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obtained from simulations over a black surface. Using Eq. (1) in forward simulations results in negligible differences to
retrieved TCWV compared with inserting the surface directly into MODTRAN forward simulations (Supplementary Figure
2). Use of Eq. (1) means that just one MODTRAN simulation is needed per column, rather than one for each combination of
column and surface type. The pseudo-observation, Ioss, is I with random uncorrelated noise added, generated using the EMIT
noise model.

The ILoss are input as observations to Isofit, while its state vector x contains surface reflectance in each channel, TCWV and
aerosol optical depth at A=550 nm (AOD), i.e. x = [ pg AOD TCWYV ]. We mask the most strongly-absorbing channels due
to lack of any surface information, so the retrieval uses 176 EMIT channels and therefore x has 176+2=178 elements.

The ps elements are constrained via a covariance matrix whose mean is derived from a library of real surfaces, thereby capturing
realistic spectral shapes. We retrieve absolute ps, rather than the normalised value discussed in Thompson et al. (2018), and
the prior is loosely constrained, however, ensuring that most information comes from the measurements.

Isofit uses Eq. (1) with a lookup-table (LUT) for its forward model, populating pu, t, s for selected AOD and TCWV and then
linearly interpolating in TCWV, AOD space to estimate Zoss given x. The LUT uses the default midlatitude summer profile and
scales its g(z) and aerosol extinction(z) to match desired AOD (from 0.05—0.30) and TCWYV (from 5—53.5 mm). The Isofit
default configuration uses the U.S. Standard Atmosphere 1976 (Sissenwine et al., 1976), but MODTRAN applies a relative
humidity limit and the U.S. 1976 atmosphere is cool enough that MODTRAN automatically restricts its moisture content, such
that the TCWV cannot reach the values seen in any LES case except for DRY. The midlatitude summer TCWYV limit is just
over 53.5 mm, so that defines our LUT maximum.

Our prior and first guess TCWV is 40 mm with a standard deviation of 7.5 mm although observationally a heuristic band ratio
is commonly used to provide a first guess and a locally appropriate prior would be selected. However, this choice of prior
doesn’t change our derived spatial statistics (Supplementary Figure 3), although it results in a small mean shift of mean

retrieved TCWYV and reflectance (e.g. posterior TCWYV shifts by 0.15 mm when prior is shifted by 32.5 mm).

3.1.2 Profile subsets, emulator development and sensitivity tests

All retrievals use radiances simulated at SZA=45°, using the profiles associated with an individual footprint and assuming a
plane-parallel atmosphere. We define “clear sky” as where cloud water path<lx10~ mm, approximately 7<0.3 in a typical
subadiabatic cloud (e.g. Szczodrak et al. (2001)). Clear sky columns are ranked by TCWYV and 101 columns equally spaced in
terms of this ranking are taken (Supplementary Figure 4 justifies N=101).
All snapshots in a given LES case are combined and Isofit-retrieved TCW Vet is used to fit an emulator in combination with
the forward-model TCWYV via:

TCWV,er = a,TCWV +a, + € , 2)
Where a; and a: are the trend and intercept parameters from an optimised-least-squares fit and € is random zero-centred

Gaussian noise with standard deviation from the emulator fit residuals. Tests with SZA from 14—60° show no significant
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differences in a1 with SZA, while the standard deviation of € increases by up to 25 % at SZA=60° relative to SZA=45°
(Supplementary Figure 5, Supplementary Table 1). Section 3.1.4 shows how we are able to identify and remove the effect of
€ on derived statistics, so given that a1 did not change with SZA in these tests we anticipate that our conclusions will largely
apply to SZA up to and including 60°.

Forward simulation AOD varied from 0.1—0.2 and most footprints were assigned AOD=0.2. Supplementary Figures 6—7
show weak sensitivity of retrieved TCWV to AOD. The analysis is separated into two parts: Section 3.2.1 shows results for
sensitivity of TCW Vet to changes in surface spectrum within selected ARM snapshots and Section 3.2.2 shows changes in

retrieved TCWYV over a single surface type for all snapshots.

3.1.3 Development and fitting of retrieval emulator

For each emulator we use all snapshots within an LES run to fit Eq. 2 (separate snapshots fits do not affect conclusions,
Supplementary Figure 8) and full-snapshot fields of TCW Vet are then emulated using Eq. (2) with LES TCWYV as input. The
surface analysis uses the first 3 ARM snapshots and seven surface spectra from the Isofit surface model clusters, three of which
are typical of vegetation, and the others of mineral surfaces. The database used to generate the surface model includes artificial
surfaces, which are largely captured by the “mineral” spectra. An additional test was run with ARM 18000s profiles over
uniform Lambertian surfaces with p=0.1-0.5 in increments of 0.1. The atmospheric analysis uses the MODTRAN cropland
and ocean py spectra for all 23 snapshots, although poor performance over dark surfaces means that the main emulator results
are reported only for the land-surface retrievals.

Figure 3(a) shows typical spectra simulated over several surfaces, notably the MODTRAN px spectra have sharp changes that
are not included in the Isofit surface model and therefore provide a challenging test of the retrieval code’s ability to retrieve
TCWYV outside of surface conditions for which it was developed.

With regards to the emulator parameters, non-unity a1 represents biases in the local retrieval sensitivity dTCW Vie/dTCWV.
Possible causes will be discussed in Section 3.2.3, but this is the main concern for retrieval of local variability statistics because
the retrieved standard deviation will be scaled by a1, and this scaling will be undetectable in the absence of independent
validation data. Changes in a1 also change the derived spatial 7%, since a1>1 increases retrieved ox variance and will increase
7?. The parameter a: is related to a combination of the mean bias and the magnitude of a1 within a snapshot, and may depend
on factors such as surface type or biases in the LUT-assumed 7 and ¢ profiles as seen for MERIS retrievals in Lindstrot et al.
(2012). For our spatial statistics, a2 has no effect since it is subtracted during calculation. The parameter € represents non-
systematic errors within a scene.

Importantly, o: is not the typical error seen in validation or inter-comparison exercises (Diedrich et al., 2015; Nelson et al.,
2016; Pérez-Ramirez et al., 2014), since in these studies the varying biases between products in different conditions will add

to the reported errors and make them larger than the o= appropriate for our retrievals.
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3.1.4 Estimating random error from retrieved fields

Random retrieval error € with standard deviation o adds variance and therefore reduces > while adding a high-bias term to
estimated ox. Knowing o would allow removal of its bias contribution to cx, and clearly interpretation of spatial variability
at a footprint level requires that c. is small relative to ox. TCWYV variability between columns separated by 50 m in the
horizontal is far smaller than at larger separations. We will exploit this to estimate the spatially constant or using an approach
based around the second order structure function S>. Here we describe the recipe and mathematical justification, see
Supplementary Figures 9—10 for a step-by-step illustration. For a TCWV field:
S,(AT) = E [(TCWV(x +Ar) — TCWV(x))2] 3)
This is the variance between pairwise footprints separated by the distance Ar, and retrieved S includes contributions from
the spatial variance characteristic at that separation, g2(Ar), and the observational uncertainty 62. The subtraction removes
the field mean TCWV, and each of the terms TCWV(x) and TCWV(x+Ar) will contribute 62(Ar) + 62 to the variance. We
treat these as independent so their variances add to give the retrieved S ret:
Syret () = 202(AT) + 202 @)
For ARM_18000s , 6x(Ar=50 m) is 0.03 mm, compared with the full-snapshot cx of 0.29 mm. We exploit the smallness of Gx
at small Ar by smoothing the field in one direction with no overlap between smoothed footprints, and then calculating the
structure function at Ar = 1 footprint (20—50 m, depending on the LES) perpendicular to the smoothing direction. For n-
footprint smoothing, the independent component of variance shrinks by 1/n, which we attribute to g2. The steps are:
(1) Select a direction and evaluate S2(Ar) in that direction for Ar = 1 footprint separation
(i1) Smooth the field in the direction perpendicular to Ar by averaging over nwo=2 footprints
(iii) Recalculate S2(Ar,npo=2), treat the calculated value (i) as S2(Ar,nro=1), regress S2(Ar,nfor) against 1/nsor, and
take the best-fit trend to be equivalent to 202.
By smoothing in one direction and then calculating orthogonally, the separation distance Ar does not grow with smoothing
and so we maintain the advantages of the small 6:(Ar=20—50 m). For estimating TCWYV o, with EMIT-like Ax, this method

outperforms a standard spatial smoothing filter approach (Supplementary Figure 11).

3.1.5 Calculating spatial statistics and relationship to spatial smoothing

We calculate the spatial standard deviation G of clear-sky TCWV and TCW Vet for each snapshot. The random error oz is
then estimated following Section 3.2.3 and subtracted in quadrature,
Oyx ret,corr — Gag,ret - O-ez,ret ®)

Where the subscript “ret” means retrieved and “corr” means corrected.

The other target statistic is 7> between TCWV and TCW Vi, we calculate this directly and also estimate it via:
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2 2
2 _ Oxret 9¢ret
Test = T ez . (6)
x,ret

Where emulator trend a1=1, estimated error from Section 3.2.3 is accurate, and there are no spatially-varying errors, Eq. (6)
should reproduce retrieval 7*. However, ai#1 means each 0y, term will be multiplied by af, resulting in an erroneous
estimate. User requirements for 72 will depend on application, we arbitrarily select 72=0.9 as a target and compare Eq. (6)
estimates with the true field values. True 7? is unknowable without perfect knowledge of the TCWYV field, but operational
estimation using Eq. (6) would allow users to determine whether their requirements are likely to be met.

If 7 is too low for the desired application then averaging over footprints may address this, although it results in loss of fine
spatial information, it may be necessary to suppress errors or may be enforced by effective horizontal smearing where
SZA>0°.

We show the results of sequentially smoothing the TCWV and TCW Vi« field on both ox and 7%, and smooth in both
horizontal directions, for example going from 50 m x 50 m to 100 m x 100 m. Smoothed footprints do not overlap, so are
independent, and the smoothing is done on TCW Vet rather than on the radiance field. This avoids the requirement for
additional forward model runs, and furthermore allows predictions of how #* changes with resolution by applying Eq. (6)
with a minor modification:

2
o2 t_”e,ret
2 _ 9%re n
Tl = (7)

o')%,ret
Where 7 is the number of footprints over which TCW Vet has been smoothed, e.g. for the 50 m x 50 m to 100 m x 100 m
transition n=4. In this case, o:.r must be calculated at the native resolution, and therefore exploits the smaller TCWV

variance at Ar~50 m, rather than the higher variance in a smoothed field with larger Ar.

3.2 Simulated retrieval results
3.2.1 TCWY retrievals over different surfaces

We first remind readers that “retrieval error” here only includes errors present in these synthetic retrievals, and excludes several
real-world sources, such as how the true atmosphere is not plane-parallel as assume in our radiative transfer. Retrieved surface
ps spectra and TCW Vet versus forward model TCWYV are shown in Figure 4. Surface ps are retrieved well, with mean bias
magnitude equivalent to 0.2—1.6 % of true ps (e.g. for Lambertian ps=0.1, the mean bias is 0.00021) and standard deviation
across all channels is 2—4 % of true ps. The largest contribution to errors is from spikes near A~2.06 pm. Inspection found
that the MODTRAN COz concentration changes between default profiles versus prescribed T and g profiles. In future an up-
to-date CO2 mixing ratio will be assigned, but the higher LUT value (361 ppmv) versus the forward model value (323 ppmv)
results in the retrieval overly brightening the surface in the strong COz band near A~2.06 um.

Comparing Figure 4(d—f), TCW Vit over mineral surfaces is a mean 0.44 mm higher than over vegetation. From panel (f),

some of this difference is likely related to mean surface brightness: darker surfaces give higher TCW Vet The other differences
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in TCW Vet between surfaces must be due to spectral shape, but it appears that surface-induced errors are small when
considering only mixed vegetation or mixed mineral surfaces. Regardless of the surface, a bias of order ~1 mm remains, which
is similar to the largest difference introduced by surface type and may be related to other retrieval errors such as inappropriate
atmospheric profile shapes assumed in the LUT. However, the derived spatial statistics we are interested in here are not affected
by any mean bias.

Figure 5 shows example scenes with different surface types. The true TCWV standard deviation oy is 0.28 mm (panel a), while
over the uniform surfaces the retrieval gives 0.33 mm (panels b,c), with the larger value due mainly to the o= contribution.
Over the striped surfaces it is 0.40 mm (panel d) due to the additional variance from combining surface types. However, if the
top or bottom half of panel d is selected, then both return ox of 0.33 mm, i.e. the same as over a fixed vegetation or mineral
surface. Statistics should not be taken over scenes with both vegetation and mineral surfaces but the Isofit surface classification,
which is output by the retrieval, should be used to identify areas of sufficiently similar surface type for calculation of TCWV

spatial statistics. The rest of the analysis assumes the MODTRAN cropland default surface.

3.2.2 TCWY retrievals over vegetation surfaces in all LES snapshots

Figure 6 shows TCWYV retrievals over the MODTRAN cropland and ocean surfaces. The poor performance over ocean absent
sun glint justifies our land-only investigation. Over land the mean bias ranges from -3.0 % (DRY) to +1.8 % (BOMEX) while
the within-scene o: is from 0.52 % (ARM_Isconv) to 0.67 % (BOMEX). As discussed in Section 3.1.3, VSWIR TCWV
validation studies typically report error metrics larger than our oz, but their values include inter-product differences in bias,
which are potentially far larger. Bias is indeed sensitive to the assumed meteorological profiles, since by re-running the
ARM_18000s retrievals using a LUT developed with the MODTRAN default “tropical” atmospheric profile shifts the mean
bias from 0.33+0.04 mm to 0.14+0.04 mm (mean+2c).

For the purpose of spatial variability in TCWV at scales of tens of km, the distinction between large-area and small-area
retrieval errors is important. Generally speaking, the error in an individual column TCWYV retrieval is of order 2—3 % since

that includes the bias term, but for estimates of sub-10-km spatial variability, the within-LES 0.5—0.7 % is the error of interest.

3.2.3 Emulator parameters

Emulator parameters with +2¢ confidence intervals are listed in Table 2 and significant (p<0.05) non-unity trends can be seen
most clearly for BOMEX (green) and RICO (purple) in Figure 6(a); the retrieved properties are more variable than reality,
with trends of 1.34 and 1.22 mm mm! respectively. Meanwhile, the ARM and ARM_Isconv trends are both <1 mm mm.
Therefore ox calculated for BOMEX will be 34 % too high, and for ARM 6 % too low.

We argue that the most-likely causes of emulated trend bias is related to the vertical 7" and ¢ profile. Firstly, dI/dq is nonlinear

and varies with atmospheric conditions due to line broadening and interaction with aerosol layers. The a1 fit parameter may
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therefore be sensitive to differences between true profiles and those assumed in the retrieval LUT. Secondly, the LUT
uniformly scales g(z) profiles whereas the horizontal variability in ¢ tends to peak at specific altitudes (Figure 1).

Two tests provide some evidence for this. Firstly, when using different standard atmospheres to generate lookup tables for the
DRY case, retrieval gradient changes by 5 % and secondly, when re-running all BOMEX retrievals with forward radiances
generated using the same g profile shape that has been scaled to match the original range of TCWYV, the retrieval gradient
changes by 9 % (Supplementary Figure 12). These results suggest that retrievals could be improved by using more-accurate

meteorological profiles in the LUT development, and by using a more-appropriate scaling for ¢ as a function of z in the LUT.

3.2.4 Snapshot statistics and estimation of random error

Figure 7(a) shows how ox of TCW Vi is overestimated in every snapshot (circles). Figure 7(b) shows that the estimated
retrieval error G- agrees excellently with the truth, and after removing ., the triangles in Figure 7(a) show the consistent
overestimate is removed. Random error, such as that introduced by some instrumental uncertainties, can be precisely identified
and removed from the spatial variance calculations. For estimating oy, the largest error source we consider is due to emulator
slope. Other potential sources would be due to surface variation, which can be mitigated by selecting regions of similar surface
classification as suggested in Section 4.1, and due to spatially-varying errors, such as inter-pixel calibration biases or those
induced by unmodelled temperature gradients across the sensors. Separate approaches are required to account for these issues.
Next, we consider the 7* coefficient between TCWV and TCW Vi, with an illustration in Figure 8, where the RICO_14400s
TCW Vi« fields are shown at the native resolution, and after smoothing down to 80 m. The random retrieval error is visible as
speckling Figure 8(a) and clearly reduces following smoothing. The 2d histograms Figure 8(c,d) demonstrate the increase in
#* from 0.82 to 0.95 following a coarsening of the Ax resolution from 40 m to 80 m.

Figure 9 summarises the true and estimated statistical values as horizontal resolution is sequentially degraded. Comparison of
Figure 9(a,b) reveals that there is only a small decrease in ox as resolution coarsens up to hundreds of metres, and the biases
between estimated and true values follow emulator a: trends as expected, with ARM and ARM Isconv too low and DRY,
RICO and BOMEX too high.

Regarding 7? in Figure 9(c,d), Eq. (7) reliably predicts true 7%, so a user could determine the spatial resolution required to
achieve a desired 72. In all snapshots 7>>0.90 at 150 m resolution, and in 21/23 cases this is achieved at 100 m. Therefore, with
the errors accounted for here, the EMIT instrument could capture 90 % of spatial variability in PCWVppL at 100 m resolution
in the PBL conditions examined here, a factor of 7.5 improvement on the MERIS full-resolution retrievals. However, this

conclusion does not account for the spatial smearing caused by SZA.

3.3 Discussion of retrieval results and limitations

This section has addressed questions 2) and 3) from Section 1, and shown that random errors introduced by EMIT’s

instrumental error can be accurately identified and removed. Provided that an observed domain consists of mixed vegetation
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or mixed mineral surfaces, then our derived error in cx using EMIT is from -7 % to +34 %. Isofit returns surface type,
meaning that such domains can be identified from retrievals.

Computational limitations forced adoption of an emulator approach, which provides a useful framework to assess error sources.
Firstly, this framework shows that the errors of interest for retrieval of spatial statistics of PCWVppL are the gradient ai,
equivalent to - TCWV:e/dTCWYV, and random error .. We show that o: can be estimated and removed, and that the main error
is that in a1, most likely driven by the retrieval’s atmospheric profile assumptions, which can be addressed in future
development. Our method to derive o. also allows users to predict spatial correlation, in particular we found that an 7*>0.9
requirement requires smoothing to 100—150 m resolution. This is a factor of 3—8 improvement in sampling relative to MERIS
full resolution.

Limitations include the use of the same radiative transfer code for forward and inverse simulations, so spectroscopic errors
were ignored, as were errors in cloud- and shadow masking, those caused by topography, or errors that correlate between
footprints.

Spectroscopy errors can be estimated (Thompson et al., 2020) and should shrink in future with developments, with ongoing
research in water vapour absorption spectroscopy (Elsey et al., 2020; Lechevallier et al., 2018; Menang et al., 2021) and a
history of targeted development of spectroscopy to improve retrievals, such as for OCO-2 (Drouin et al., 2016; O’Dell et al.,
2018; Payne et al., 2020). The surface remote-sensing community has tools for addressing topography (Kobayashi and Sanga-
Ngoie, 2008; Teillet et al., 1982), and there are also approaches to dealing with nearby clouds to minimise the effect of
imperfect cloud edge identification, shadowing and 3D cloud radiative effects (Massie et al., 2021). Nevertheless, these are all
topics that are worth evaluating for Isofit-like TCWV retrievals.

We note that our o is smaller than the errors reported in product intercomparison studies, but those studies implicitly capture
variance due to differing mean biases, i.e. the a2 term in our emulator, which is larger than the other terms. An evaluation of
our retrieved ox or would require independent validated sources such as passive microwave or differential absorption lidar data
with Ax<50 m that are collocated with VSWIR TCW Viet. Reported comparisons are typically of bias and root-mean-squared
error (RMSE) of satellite VSWIR retrievals relative to surface-based or other satellite products, and are calculated from
datasets across a range of times and sometimes places. Furthermore, the comparison data generally has larger Ax and may not
be perfectly collocated in time and space, introducing additional variance that contributes to reported RMSE. Therefore typical
published analyses include within their RMSE uncertainties due to differences in space and time of measurements, and any
differences between the a» terms between the VSWIR and validation dataset retrievals. Therefore, these reported errors cannot
be compared with our values which are calculated within individual LES runs. We can, however, report that our errors are
similar to Thompson et al. (2021)’s airborne Isofit retrievals statistics against nearby AERONET surface stations, which
reported RMSE of 2.8 mm. Flight C data from Figure 9 of that paper show a spatial standard deviation of 0.19 mm when
smoothed to Ax=48 m, which is within the LES simulated range, and c: is estimated at 0.18 mm, although that is not

comparable to our values since it uses AVIRIS-NG rather than EMIT and is over ocean sun-glint, rather than land.

13



10

15

20

25

30

Reported RMSE over land for other VSWIR instruments include 0.9—1.3 mm for OCO-2 (Nelson et al., 2016), 1.4—3.7 mm
for MERIS (Lindstrot et al., 2012), 0.9—2.0 mm for MODIS (Diedrich et al., 2015), 1.3—3.3 mm for OLCI (Preusker et al.,
2021) and up to 2.4 mm for Sentinel-2 (Obregén et al., 2019). The range of TCW Vit simulated in Figure 4 is therefore
consistent with typical errors reported for other instruments. Interestingly, Obregén et al. (2019) report a gradient of 0.9
between Sentinel-2 and AERONET TCW V. This is derived from data across multiple sites and times so cannot be compared
to our gradients derived from individual LES cases, but indicates that different retrievals may indeed have relationships

between TCWV and TCW Vet which are not 1:1, and thus our non-unity a1 parameters, which scale derived o, are credible.

4 Effect of SZA variation on retrieved properties
4.1 Calculation of TCWYV.. accounting for light path at different solar zenith angles

Along-path integrated water vapour (IWV) for SZA ranging from 0—60° inclusive in increments of 15° is calculated using
ray tracing. The sunlight’s horizontal component is in the negative y direction, viewing zenith angle is 0°, and the ray is traced
from the top of atmosphere to the centre of each surface footprint. Each partial grid cell encountered has its g weighted by the
pressure-corrected path through that cell, before obtaining IWV. The cloud mask is extended by a “shadow mask” where cloud
LWP>1x103 mm along the solar direct ray path. This IWV is referred to as a TCWV for consistency with standard retrieval
terminology, even though it is not directly a measure of the column over the footprint. The Section 3 analysis is then repeated,
using the same emulators developed using radiative transfer with SZA=45°, a plane-parallel assumption and footprint column
profiles. Different SZAs may change the sensitivities somewhat but we do not expect results substantially outside the range of

those considered here.

4.2 Effect of SZA variation on retrieved properties

Figure 10(a,d) shows apparent TCWV in ARM Isconv_36000s (i.e. when convection is most developed) at SZA=15 and 60°,
and in Figure 10(c,d) the clear vertical pattern of positive followed by negative biases relative to true TCWYV is clear, with
greater magnitude and larger regions of continuous positive or negative bias at higher SZA.

Figure 11 shows that this spatial smearing destroys the correspondence between footprint and path TCWV, with 72 around 0.1
with SZA as small as 30°. This can be compensated only somewhat by spatial smoothing, as shown in Figure 12 shows that
even footprints degraded to 300 m are affected by SZA. The calculated ox at SZA=0° match those from Figure 9, with biases
from the emulator slope parameter in Table 2. Larger SZA in these cases increases the magnitude of this bias, but the difference
in ox as SZA changes from 15—60° is smaller than the RICO or BOMEX emulator-trend-induced biases. The retrieved G«
with footprint size tracks reality, suggesting that the horizontal distribution statistics might still be captured even at large SZA.
Furthermore, the statistical error estimation from Section 3.1.4 has effectively identical performance regardless of SZA (not

shown).
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However, Figure 12(b) shows that a VSWIR-retrieved map TCW Vet does not accurately represent the actual spatial variability
in TCWV and by extension PCWVppL even for SZA=15°, and this is a fundamental limitation caused by the solar path through
the atmosphere. In fact, the TCW Vet map corresponds better to the TCWV map at the horizontal location where the downward
solar path enters the PBL, but improvement in 72 is limited (Supplementary Figure 13).

Figure 13 shows that while the retrieved TCWV distributions are biased, as previously discussed, SZA increases cause only
minor visible changes in distribution shape. This indicates that important statistics of the TCWV (and therefore PCWVppL)
field can be obtained at the native footprint resolution, despite the poor correspondence of any individual footprint to the
column located at that position. The primary advantages of finer spatial resolution are (i) it allows better calculation of o than
at coarser resolution using Section 3.1.4’s method, due to the smaller Ar between footprints and (ii) when calculating statistics
such as standard deviation on local scales, statistical errors are reduced by the larger number of footprints. For example, Ax=50
m represents approximately 25 times more measurements than MODIS or MERIS. If standard deviation were desired for a 1
km x 1 km region, N=16 from 250 m footprints results in a sampling error of £17.7 % versus £3.5 % for N=400 from 50 m

footprints.

5 Discussion and conclusions

Modern and upcoming VSWIR instruments promise unprecedented horizontal resolution for the study of surface properties,
with emphases ranging from mineral regions that are the source of dust (EMIT) to routine observation of agriculture and
biodiversity (CHIME) to the full spectrum of study under the NASA 2017 Decadal Survey’s Surface Biology and Geology
(SBG) designated observable.

This study suggests potential synergies with the Decadal Survey’s PBL targeted observable by showing that PCWVesL
variability at high spatial resolution can be inferred using the TCW Vet that will be obtained from EMIT observations. While
these measurements lack the vertical resolution that is necessary to advance PBL science they provide unique constraint on
the mesoscale moisture variability and aggregation within the convective PBL. This analysis is restricted to daytime convective
PBLs over land surfaces, which excludes deep convection but still represents a large fraction of meteorological conditions in
the tropical to mid latitudes. Importantly these are the precise conditions in which it is suspected that PBL moisture aggregation
influences the timing of deep convective events. Furthermore, given the large number of scenes in which we expect to be able
to derive these spatial statistics, these observations could prove useful for constraining the manner in which small scale
variability is parameterized in shallow convection or unified parameterization schemes. The Isofit development team has
curated additional spectra for a universal prior that includes Cryosphere surfaces, but additional work may be necessary to
evaluate TCWYV over snow, since there is a snow absorption feature near A=1 um whose depth depends on snow grain size
(Painter et al., 2007), and which overlaps gv absorption. This may introduce surface-atmosphere covariance that affects the

retrieval.
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NASA’s 2017 Decadal Survey encourages multi-instrument applications and the VSWIR retrievals discussed here could be
combined with radio occultation or thermal infrared (TIR) or passive microwave sounders, which have far larger horizontal
resolution but obtain vertical profiles. Early explorations of joint VSWIR-TIR retrievals are promising, suggesting that the
sensors provide complementary information on both atmospheric and surface properties (Fahlen et al., n.d.). VSWIR could
provide a prior constraint on TCWYV in a collocated TIR retrieval, or the TIR retrieved PCW Vupper could be subtracted from
VSWIR TCWYV to estimate PCW VgL, with VSWIR also providing the horizontal statistics of clear-sky PCW Ve variability
within the TIR footprint. Another opportunity is to use coincident TIR retrieved profiles of 7 and ¢ to either build a more
appropriate LUT for the VSWIR retrieval, or to select from among pre-computed LUTs.

In Isofit, the atmospheric component contributes a bias to - TCWVe/dTCWV and may be the largest source of our errors in
ox, which range from -7 % to +34 % of true ox. Development allowing the use prescribed profiles and the ability to assign
variability in ¢ to lower altitudes rather than uniform scaling at all altitudes should reduce these errors, as accounting for
temperature reduced biases in MERIS TCW Vet (Lindstrot et al., 2012).

This study also showed how SZA as small as 15° significantly degrades the accuracy of retrieved spatial patterns in TCWV,
even at coarser resolutions similar to current sensors such as MERIS. However, the TCWYV distribution was far less sensitive
to SZA. While our results should strongly affect the interpretation of retrieved maps of TCWV from instruments like MERIS,
they suggest that moments of the PCW VppL distribution can be obtained at unprecedented horizontal resolution, which may
be of use to developers of modern PBL schemes that use or assume such moments. We note that the LES TCWYV distributions
and their variation with spatial scale may not be realistic, since they tend to be overly dissipative on scales <6 grid cells (Bryan
et al., 2003), but it is not clear that these biases affect our conclusion regarding the ability to obtain distributional statistics that
represent horizontal variability at scales as small as 50 m.

Future work could address uncertainties that are ignored here, such as topography or cloud 3-D radiative effects via 3-D
radiative transfer simulations which avoid several of our assumptions, such as a plane-parallel atmosphere. A particular
limitation is that this analysis did not consider vertical structure or PBL height beyond using that derived from the LES mean
profiles. In reality there may be errors in locally estimated PBL height, or that obtained from other sensors may be inconsistent
with the max(d0/dz) value used here and targeted research on this topic would be worthwhile. Observational evaluation of
these uncertainties could be performed using collocated airborne measurements of column water vapour from VSWIR and
other instruments such as differential absorption lidar or passive microwave imagers, provided they can obtain sufficiently
high spatial resolution. Finally, this work could be extended to other sensors, such as MSI on Sentinel-2, which is not
hyperspectral but provides exceptionally fine Ax of approximately 20 m. Additional high-resolution analysis may be required
for this, since Figure 9(a,b) imply increases in retrieved cx at Ax=20 m for the two simulations that were run at that resolution.
Despite these caveats, we have shown ways in which atmospheric correction outputs of surface property retrievals for EMIT
can provide unique information on fine-scale PBL water vapour variability, and also identified specific development tasks to

improve the quality of its atmospheric outputs. With current tools it therefore seems likely that missions such as EMIT and
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CHIME, which are primarily designated as targeting surface observables, can provide unique information to the atmospheric

science community.

Code availability: The Isofit retrieval package is available on github (https://github.com
/isofit/isofit ) and MODTRAN from Spectral Sciences (http://modtran.spectral.com, licence required).

Data availability: The surface models are either default MODTRAN or available from the isofit github under
data/surface_model ucsb. The instrument noise model is from the isofit github under data/sbg noise coeffs.txt. The LES
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Figure 1. Output all-sky profiles for the (a—d) ARM, (e—h) ARM_Isconv, (i—I) RICO, (m—p) BOMEX and (q—t) DRY LES. On
each panel the separate coloured lines represent different timesteps, the black horizontal line is the top of the LES and the dashed
blue horizontal line is the PBL height calculated from the first shown timestep, whose lines are in the same blue. The column
beginning with (a) is the mean T profile, that with (b) the mean ¢ profile, that with (c) the profile of the spatial standard deviation
in ¢ and that with (d) the cloud fraction. Note that due to overlap, the fraction of cloudy columns listed in Table 1 is higher than the
peak mean profile cloud fraction.
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Figure 2. Correlation coefficient between clear-sky partial column water vapour (PCWYV) integrated up to given capping altitudes,

5 and the TCWYV. (a—e¢) contain the snapshots of each individual LES run and (f) reproduces the values calculated from High
Altitude Lidar Observatory flights over the Pacific (Bedka et al., 2021) as presented in Thompson et al. (2021). The LES profiles
also have a horizontal bar appended at the derived PBL top height. The flight data differ from the LES outputs in that horizontal
resolution is approximately 3 km along-track, they are dispersed over thousands of km, and the TCWYV is only up to 8 km due to
the flight altitudes.
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Figure 3. Examples of (a) simulated spectra and (b) used surface reflectances in the forward model (solid lines) and those retrieved
by Isofit using EMIT instrument characteristics (dashed lines). Each colour refers to a surface type as listed in the panel (a) legend.
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Figure 4. (a—c) retrieved reflectance spectra for (a) vegetation, (b) mineral and (c) spectrally uniform surfaces. Lines show the mean
of all simulated retrievals and shading shows £1c. (d—f) retrieved TCWYV as a function of true TCWYV for the same. The Vegetation
10 and Mineral cases use three snapshots (/V=303) and the Lambertian surfaces just use ARM_18000s (N=101).
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Figure S. ARM_18000s (a) true TCWYV, (b) retrieved TCWYV over a uniform vegetated surface, (c) retrieved TCWYV over a uniform
mineral surface, (d) retrieved TCWYV over stripes of uniform surface types as labelled in the figure, (e) difference induced in retrieved
TCWY by surface type relative to mixed vegetation as (d) minus (b), (f) difference. Relative to mixed mineral vegetation as (d)minus
(c). Clouds are masked in all cases.
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Figure 6. Retrieved TCWYV as a function of the truth for all snapshots in each LES case over (a) cropland and (b) ocean. Note that
the TCWYV values differ from those derived from the LES due to differences in the MODTRAN layer interpolation and calculations.
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(circles) and retrievals after removal of the random component of retrieval error, e.g. that induced by instrumental noise (triangles).
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(b) The estimate of retrieval error as in Section 3.1.4 as a function of the true error in each case.
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deviation calculated directly from the LES output, (b) retrieved standard deviation after removing the estimated retrieval error as
in Section 3.1.4, (c) * between true TCWYV and TCWYV,, (d) estimated r* using Eq. (7).
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Figure 10. ARM_Isconv_36000s integrated water path calculated along (a) SZA=15° and (b) SZA=60° with the upward path directly
up at zenith angle 0°, values labelled TCWYV in colour bar for simplicity. (c) shows the difference for each footprint by subtracting
the true TCWYV at SZA=0° from panel (a), and (d) shows the same for subtracting the SZA=0° value from the SZA=60° value. The
“cloud” mask in each case is now extended to include cloud shadows, and the illumination comes from the top of each panel, i.e.
sunlight travelling down through the atmosphere has a component in the negative-y direction.
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Figure 11. 2d histograms between clear-sky TCWYV (true value integrated only in column over footprint) and the retrieved values at
the corresponding footprint with SZA of (a) 15°, (b) 30°, (c) 45°, (d) 60°. The 1 coefficient is on each panel, and the footprint
resolution is the native output of Ax=50 m.
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5  Figure 12. Clear-sky TCWYV horizontal spatial statistics calculated for ARM_18000s (blue) and RICO_14400s (orange) as a function
of the horizontal footprint size. (a) standard deviation o, as in Figure 9 and including the random error correction from Section
3.1.4, (b) correlation coefficient between column true TCWYV and that retrieved for the same footprint as SZA changes. Each line
style represents a different SZA as labelled in the legend of (a).
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Figure 13. Histograms of footprint estimated clear-sky TCWYV, with the truth shown in grey shading. The retrieval estimates are all
scaled to remove the variance due to estimated random error. (a) variation with SZA calculated at footprint size Ax=50 m and (b)
variation with footprint size at SZA=0°. In both panels the blue histograms are the same.
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Table 1. Summary of LES properties. Where ranges are provided, these are the full range of clear-sky mean values from the
snapshots used for each case. Row (vi) is the fraction of columns whose integrated liquid water path > 1.3x10"* mm and differs from
mean cloud fraction in Figure 1 due to overlap. The TCWYV in row (vi) is derived from the combined LES and reanalysis profile,
and separated into the LES and reanalysis partial column water vapour amounts in rows (vii) and (viii).

ARM ARM_Isconv RICO BOMEX DRY

(i) Snapshots used 18000s, 21600s, 36000s, 39600s, 14400s, 14400s, 7200s,

25200s, 28800s, 43200s 16200s, 16200s, 10800s,
32400s, 36000s 18000s, 18800s 14400s,
43200s 19800s, 18000s,

21600s 21600s,

(ii) Domain size [km] 20.0 20.0 20.5 12.8 14.4

(iii)  Ax[m] 50 50 40 20 20

@iv) LES top [km] 5 5 4 3 2

) PBL top [km] 1—2.7 1—3.2 2.5—2.7 2.1 1.3

(vi) Columns  flagged 1—21 5—20 24—28 16—19 0.0

cloudy [%]
(vii) Clear-sky TCWV 39.6—42.2 43.3—43.8 36.9—37.0 35.6—35.7 19.8—20.2
[mm]

(viii)  Clear-sky PCWVLEs 36.2—38.9 40—40.5 33.1 30.6—30.7 9.7—10.2
[mm]

(ix) Clear-sky 3.3 3.3 3.9 5.0 9.9
PCWVreanalysis [mm]

x) Description Diurnal cycle of As ARM, Shallow Shallow non- Dry free
midlatitude perturbed by precipitating precipitating convection
shallow large-scale trade-wind trade-wind
convection over convergence convection convection
land over ocean over ocean

(xi) Citation Brown et al. CON3 case in vanZantern et Siebesmaetal. Matheou and
(2002). Kurowski et al. al. (2011); (2003); Chung (2014)
REF case in (2020) Matheou and Matheou and
Kurowski et al. Chung (2014)  Chung (2014)

(2020)
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Table 2. Emulator parameters relating true TCWYV to TCWV,.. In Eq. (2) the trend is a;, the intercept is a;, and residual o is the
standard deviation used in generating the samples of €. Values are shown £2c.

Case Trend [mm mm™] Intercept [mm] Residual 6 [mm]
ARM 0.94+0.02 0.29+0.07 0.22+0.03
ARM lIsconv 0.97+0.04 0.14+0.17 0.23+0.03
BOMEX 1.34+0.06 -1.15+0.22 0.20+0.03
DRY 1.13+0.03 -0.33+0.07 0.10£0.01
RICO 1.22+0.04 -0.77£0.15 0.21+0.03
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