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Abstract. Daytime clear-sky total column water vapour
(TCWV) is commonly retrieved from visible and shortwave
infrared reflectance (VSWIR) measurements, and modern
missions such as the upcoming Earth Surface Mineral Dust
Source Investigation (EMIT) offer unprecedented horizontal5

resolution of order 30–80 m. We provide evidence that for
convective planetary boundary layers (PBLs), spatial vari-
ability in TCWV corresponds to variability in PBL water
vapour. Using an observing system simulation experiment
(OSSE) applied to large eddy simulation (LES) output, we10

show that EMIT can retrieve horizontal variability in PBL
water vapour, provided that the domain surface is uniformly
composed of either vegetated surfaces or mineral surfaces.
Random retrieval errors are easily quantified and removed,
but biases from −7 % to +34 % remain in retrieved spa-15

tial standard deviation and are primarily related to the re-
trieval’s assumed atmospheric profiles. Future retrieval de-
velopment could greatly mitigate these errors. Finally, we
account for changing solar zenith angle (SZA) from 15 to
60◦ and show that the non-vertical solar path destroys the20

correspondence between footprint-retrieved TCWV and the
true TCWV directly above that footprint. Even at the 250 m
horizontal resolution regularly obtained by current sensors,
the derived maps correspond poorly to true TCWV at the
pixel scale, with r2 < 0.6 at SZA= 30◦. However, the de-25

rived histograms of TCWV in an area are closely related to
the true histograms of TCWV at the nominal footprint res-
olution. Upcoming VSWIR instruments, primarily targeting
surface properties, can therefore offer new information on
PBL water vapour spatial statistics to the atmospheric com-30

munity.

Copyright statement. Jet Propulsion Laboratory, California Insti-
tute of Technology. Government sponsorship acknowledged.

1 Introduction

Thermodynamic information about the planetary boundary 35

layer (PBL), including information about water vapour (qv),
is a targeted observable recommended by NASA’s Decadal
Survey (National Academies of Science, Engineering, and
Medicine, 2018TS1 ). PBL qv estimates would go beyond
the current total column water vapour (TCWV) and free- 40

tropopause products to provide new information about the
vertical moisture structure for weather and climate applica-
tions. The Decadal Survey explicitly recognised the PBL’s
importance since it “literally couples the surface of the Earth
to the atmosphere above”, and among other important fac- 45

tors, gradients of moisture between the surface and PBL and
between the PBL and free troposphere are strong controls on
vertical atmospheric heat and moisture transport. The forma-
tion of boundary layer clouds was also highlighted due to
their importance for Earth’s energy balance. A critical mea- 50

surement gap in the current observations of PBL thermody-
namics is the inability to quantify mesoscale variations in
PBL qv. Mesoscale aggregation in PBL water vapour appears
to play an important role in determining the timing of deep
convective events (Stirling and Petch, 2004; Wulfmeyer et 55

al., 2006). Furthermore, in situ observations suggest that the
majority of the variation in the TCWV prior to convective ini-
tiation can be explained by variability within the PBL (Cou-
vreux et al., 2009). The mesoscale spatial variability of qv
is not resolved by current global weather or climate models, 60

but instead it must be parameterised. Modern approaches to
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2 M. T. Richardson et al.: High-resolution vapour imaging

parameterise PBL variability include eddy-diffusivity/mass-
flux approaches (Suselj et al., 2019) and higher-order clo-
sure approaches that include prognostic equations for higher-
order moments such as the variance (Golaz et al., 2002; Lar-
son et al., 2002). However, we lack observations at a global5

scale to evaluate the small-scale variability produced by these
models. This paper will address the feasibility of address-
ing this measurement gap using upcoming observations from
very high-spatial-resolution visible and shortwave infrared
reflectance (VSWIR) observations from space.10

This study is primarily motivated by the ongoing devel-
opment of spaceborne hyperspectral VSWIR measurement
capacity at fine horizontal resolution. We focus on the EMIT
mission, planned to launch to the International Space Station
(ISS) in 2022 with an average footprint size (1x) of 60 m15

(Green and Thompson, 2020). However, similar or improved
capacity is anticipated in response to NASA’s Surface Biol-
ogy and Geology (SBG) designated observable, with the Hy-
perspectral Infrared Imager (HysPIRI, Lee et al., 2015) con-
cept offering 1x of 30–60 m, and for ESA’s Copernicus Hy-20

perspectral Imaging Mission for the Environment (CHIME),
also known as Sentinel 10, for which the prime contractor
was selected in July 2020 and whose Mission Requirements
Document refers repeatedly to1x < 30 m (Rast et al., 2019).

Of present missions, this analysis may be applicable to25

the Italian PRecursore IperSpettrale della Missione Applica-
tiva (PRISMA, Candela et al., 2016), which provides sim-
ilar spectral range and sampling to EMIT at 1x = 30 m.
Some of the conclusions will also apply to other recent in-
struments, such as Sentinel-2’s Multi-Spectral Imager (MSI,30

Drusch et al., 2012), which offers1x = 20 m, albeit with far
fewer channels, or the DLR Earth Sensing Imaging Spec-
trometer (DESIS, Krutz et al., 2019), which provides hy-
perspectral measurements over a smaller wavelength range.
These modern and upcoming instruments offer 1x that are35

substantially smaller than past VSWIR instruments that re-
trieve TCWV, such as ESA’s Medium Resolution Imaging
Spectrometer (MERIS) on Envisat, whose smallest provided
1x is approximately 0.25km× 0.30 km, which allowed the
identification of horizontal convective rolls during a high-40

pressure event over Germany (Carbajal Henken et al., 2015)
but cannot resolve the smaller scales of variability. Recently,
Thompson et al. (2021) used VSWIR measurements from the
Airborne Visible Infrared Imaging Spectrometer-Next Gen-
eration (AVIRIS-NG) to capture information about PBL qv45

variability at spatial scales < 1 km, which cannot be deter-
mined with footprint sizes similar to MERIS.

EMIT-like instruments could allow retrieval of bulk PBL
qv, which we henceforth refer to as the partial column wa-
ter vapour in the PBL (PCWVPBL) via two demonstrated50

approaches. The first approach uses VSWIR measurements
alone, and the second combines separate above-PBL wa-
ter vapour (PCWVupper) and TCWV to obtain PCWVPBL =

TCWV−PCWVupper. A third approach, which has not been
demonstrated operationally to our knowledge, is to perform55

joint retrievals using both VSWIR and vertically resolved
sounding measurements.

The direct VSWIR-only method can be seen in Trent
et al. (2018), who estimated PCWVPBL from the Green-
house Gases Observing Satellite (GOSAT, Kuze et al., 2009), 60

while the second is explored in Millán et al. (2016), who
paired TCWV from passive microwave measurements with
PCWVupper above horizontally uniform clouds from Mod-
erate Resolution Imaging Spectroradiometer (MODIS) near-
infrared retrievals. The resultant PCWVPBL values showed 65

good agreement with radiosondes and ERA-Interim reanal-
ysis, and a promising candidate approach is to use VSWIR
TCWV in place of the microwave measurements.

The physical principle of VSWIR TCWV retrievals is
differential optical absorption spectroscopy (DOAS). More 70

TCWV leads to increasing depth of H2O absorption features
relative to other wavelengths. This applies to TCWVVSWIR
from missions including MERIS (Bennartz and Fischer,
2001; Guanter et al., 2008), MODIS (Diedrich et al., 2015;
Gao and Kaufman, 2003), TROPOMI (Borger et al., 2020; 75

Schneider et al., 2020), SCIAMACHY (Noël et al., 2004),
GOME (Noël et al., 1999), GOME-2 (Grossi et al., 2015)
and OCO-2 (Nelson et al., 2016).

These instruments vary in spectral range and sampling,
but all must contend with the measured spectra responding 80

to properties other than TCWV. The retrievals only oper-
ate for daytime cloud-free scenes and commonly only over
land, since water surfaces are dark such that insufficient light
reaches the sensor to allow for a TCWV retrieval, with ex-
ceptions for sun glint as exploited in the aforementioned 85

AVIRIS-NG study (Thompson et al., 2021). Thompson et
al. selected these AVIRIS-NG flights because DOAS tech-
niques respond to the total light path absorption including the
slanted sunlight path from the top of atmosphere (TOA) to
the surface. This horizontally smears the effective footprint 90

size, with larger smearing for larger solar zenith angle (SZA).
As footprints become smaller, the proportional effect of this
smearing may become more important, and so here we apply
solar ray tracing to determine whether observations with a
nominal 1x of 20–50 m obtain useful information about the 95

spatial statistics of PCWVPBL at that spatial resolution. We
use two performance metrics: (i) the correlation between re-
trieved TCWV and true TCWV, which was used as input for
our forward simulations, and (ii) the spatial standard devia-
tion σx of retrieved TCWV within a snapshot relative to the 100

large eddy simulation (LES) output PCWVPBL σx , which we
refer to as the true σx .

We employ a new type of Observing System Simulation
Experiment framework and perform simulated VSWIR re-
trievals of TCWV from high-spatial-resolution LES output 105

to determine whether horizontal spatial variability in PBL
qv can be obtained from retrieved TCWV, and conclusions
are limited to daytime non-cloudy conditions. The purpose
of this is a detailed sensitivity study using retrieval code and
tools already developed for EMIT. We consider 1x ≥ 40 m 110
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M. T. Richardson et al.: High-resolution vapour imaging 3

since this is appropriate for EMIT and several LES cases in
our archive were run at that resolution.

Here we test the use of the iterative optimal estimation
code Imaging Spectrometer Optical Fitting (Isofit) for a
spaceborne application, specifically target TCWV and ad-5

dress the following questions.

1. In LES, how does horizontal variability in TCWV relate
to PCWVPBL?

2. What uncertainties are introduced into the retrieval by
EMIT instrumental error, non-uniform AOD and differ-10

ent surface types, and can these errors be anticipated and
quantified from observations alone?

3. What is the correlation coefficient between retrieved
and true TCWV, and can the spatial standard deviation
be estimated? How does this depend on LESs of differ-15

ent convective PBL types?

4. How does the solar path across different SZAs affect
these conclusions?

This scope excludes important factors such as topography,
inter-channel correlated errors in the instrument, imperfect20

cloud masking and cloud 3D radiative effects, and our pa-
per is structured to address these questions in turn, with each
analysis section containing its own methodology, results and
discussion. Section 2 explores the raw LES output to address
question 1, Sect. 2 describes the synthetic retrievals and anal-25

ysis methodology to address questions 2–3, Sect. 4 adds solar
path analysis to address question 4, and Sect. 5 discusses and
concludes.

2 Large eddy simulations

2.1 Model setup, scenarios and snapshot selection30

We use output from five LES simulations named RICO,
ARM, ARM_lsconv, BOMEX and DRY, which are sum-
marised with references in Table 1. They all represent con-
vective boundary layers characterised by either low-altitude
or no cloud cover. The 23 separate snapshots are identified35

by timestamp; e.g. ARM_18000s is 5 h into the ARM sim-
ulation. Simulation 1x sets the implied measurement hori-
zontal resolution and varies from 20 to 50 m.

The simulations are performed with two different mod-
els: EULAG (Prusa et al., 2008; ARM and ARM_lsconv)40

and JPL-UCONN LES (Matheou and Chung, 2014; RICO,
BOMEX, DRY). Each simulation applies periodic lateral
boundary conditions and a horizontally homogeneous ini-
tial state. For the RICO case, interactive sensible and latent
heat surface fluxes over constant-temperature ocean are used,45

while the other cases are driven by prescribed (either con-
stant for DRY and BOMEX or time-dependent for ARM and

ARM_lsconv) surface fluxes. All other setup details are ex-
plained in the Table 1 references: these references also show
how the ARM, BOMEX and RICO LES simulations, which 50

were based on detailed field campaigns, accurately repro-
duce the main features observed during those campaigns.
Each 3D LES snapshot is merged with 1D MERRA-2 re-
analysis profiles aloft to produce a full-depth atmospheric
column. Reanalysis data are chosen for the dates and loca- 55

tions of the field campaigns the LESs refer to. The DRY and
ARM_lsconv cases share the same upper-atmospheric pro-
files as ARM. In all cases except for DRY, Table 1 rows (vii)–
(ix) show that the LESs capture > 85 % of total TCWV. For
retrieval purposes we ignore the LES surface type and ap- 60

ply an assumed surface reflectance spectrum below the LES
profiles.

2.2 Profiles and PBL height

Definitions of PBL height zPBL vary widely. We found sim-
ilar results from four standard thermodynamic calculations 65

(von Engeln and Teixeira, 2013), so henceforth we define
zPBL as the altitude of max(dθ/dz), where θ is the all-sky
mean potential temperature. Mean all-sky profiles of T and
q, horizontal standard deviation in q(σq), and cloud fraction
are shown in Fig. 1. Changes in σq are the largest differ- 70

ences between time steps but are small (< 10 %) relative to
the mean, so measuring this variability will require precise
observations. Also, σq is negligible in the layers in the free
troposphere that lie above the PBL but are resolved by the
LES, implying that the LES domains capture qv variability. 75

We later support this claim using real-world airborne lidar
retrievals.

2.3 Water vapour spatial variability statistics and the
relationship between TCWV and PCWVPBL

Figure 1 displays all-sky conditions, but our retrievals only 80

target clear sky, thereby missing a moister tail to the dis-
tribution (Supplement Fig. 1). Within-cloud retrievals would
require alternative measurement approaches, such as differ-
ential absorption radar (Roy et al., 2018, 2020), and the re-
striction to clear-sky scenes is a limitation that also applies 85

to current thermal infrared and lidar retrievals.
We assess TCWV-PCWVPBL spatial variability by calcu-

lating clear-sky PCWV up to capping altitudes from 0.5 to
5 km and then correlating these with TCWV. Figure 2 con-
firms that > 90 % of horizontal variance in LES TCWV at 90

these scales is explained by PCWVPBL. It is reasonable to
ask whether this finding that the PBL variance dominates the
TCWV variance is representative of the real atmosphere. In-
deed, the LES results are supported by the same statistics
calculated from High Altitude Lidar Observatory (HALO) 95

flights over the Pacific Ocean in April 2019 (Bedka et al.,
2021), as presented in Thompson et al. (2021) and shown in
Fig. 2f. In these calculations TCWV is only calculated up
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4 M. T. Richardson et al.: High-resolution vapour imaging

Figure 1. Output all-sky profiles for the (a–d) ARM, (e–h) ARM_lsconv, (i–l) RICO, (m–p) BOMEX and (q–t) DRY LES. In each panel
the separate coloured lines represent different timesteps, the black horizontal line is the top of the LES and the dashed blue horizontal line
is the PBL height calculated from the first shown timestep, whose lines are in the same blue. The column beginning with (a) is the mean T
profile, that with (b) the mean q profile, that with (c) the profile of the spatial standard deviation in q and that with (d) the cloud fraction.
Note that due to overlap, the fraction of cloudy columns listed in Table 1 is higher than the peak mean profile cloud fraction.

Atmos. Meas. Tech., 14, 1–22, 2021 https://doi.org/10.5194/amt-14-1-2021



M. T. Richardson et al.: High-resolution vapour imaging 5

Table 1. Summary of LES properties. Where ranges are provided, these are the full range of clear-sky mean values from the snapshots used
for each case. Row (vi) is the fraction of columns whose integrated liquid water path > 1.3×10−3 mm and differs from mean cloud fraction
in Fig. 1 due to overlap. The TCWV in row (vi) is derived from the combined LES and reanalysis profile and separated into the LES and
reanalysis partial column water vapour amounts in rows (vii) and (viii).

ARM ARM_lsconv RICO BOMEX DRY

(i) Snapshots used 18000s, 21600s, 36000s, 14400s, 14400s, 7200s,
25200s, 28800s, 39600s, 16200s, 16200s, 10800s,
32400s, 36000s 43200s 18000s, 18800s 14400s,
43200s 19800s, 18000s,

21600s 21600s

(ii) Domain size (km) 20.0 20.0 20.5 12.8 14.4

(iii) 1x (m) 50 50 40 20 20

(iv) LES top (km) 5 5 4 3 2

(v) PBL top (km) 1–2.7 1–3.2 2.5–2.7 2.1 1.3

(vi) Columns flagged cloudy (%) 1–21 5–20 24–28 16–19 0.0 TS2

(vii) Clear-sky TCWV (mm) 39.6–42.2 43.3–43.8 36.9–37.0 35.6–35.7 19.8–20.2

(viii) Clear-sky PCWVLES (mm) 36.2–38.9 40–40.5 33.1 30.6–30.7 9.7–10.2

(ix) Clear-sky PCWVreanalysis (mm) 3.3 3.3 3.9 5.0 9.9

(x) Description Diurnal cycle As ARM, Shallow Shallow Dry free
of midlatitude perturbed by precipitating non-precipitating convection
shallow large-scale trade-wind trade-wind
convection convergence convection convection
over land over ocean over ocean

(xi) Citation Brown et al. CON3 case in vanZanten et Siebesma et al. Matheou and
(2002). Kurowski et al. al. (2011); (2003); Chung (2014)
REF case in (2020) Matheou and Matheou and
Kurowski et al. Chung (2014) Chung (2014)
(2020)

to 8 km due to flight altitude, but these real-world data in-
clude free-tropospheric moisture variability and furthermore
will have lower r values due to the presence of random re-
trieval error. The horizontal resolution is ∼ 3 km versus the
20–50 m of LES, and the HALO sampling is sparse and often5

separated by hundreds of kilometres due to clouds. Neverthe-
less, the HALO flights show that horizontal TCWV variabil-
ity can be well captured within 3 km altitude in real scenes
and provide evidence that the LES domains capture horizon-
tal variability in qv.10

The TCWV-PCWVPBL fit coefficients for ARM,
ARM_lsconv, BOMEX and RICO range from 0.99 to
1.04 mmmm−1; i.e. a 1 mm change in PCWVPBL means a
0.99–1.04 mm change in TCWV. This confirms that almost
all horizontal qv variability occurs within the mean PBL15

height. For the DRY case, coefficients range from 1.06 to
1.12 mmmm−1. These coefficients mean that PCWVupper
spatially correlates with PCWVPBL, which could be ex-
plained by moister plumes rising and having higher local
zPBL than the domain-mean value used in the calculation.20

In summary, we have answered question 1 from Sect. 1 and
can expect spatial variability in retrieved TCWV for these
cases to represent real variability in PCWVPBL, and so we
use TCWV and PCWVPBL interchangeably from now on.

3 Simulated EMIT retrievals of TCWV in LES 25

This experiment requires a large number of inversions over
a wide spatial field. Simulating synthetic spectra and per-
forming a retrieval for every grid point proved to be pro-
hibitively computationally expensive. Consequently, we de-
velop an emulator to statistically reproduce the result of the 30

full inversion but with dramatically better efficiency. Re-
trievals will include a range of surfaces in a subset of the
snapshots (to identify sensitivity to surface type) and then a
fixed surface type across all snapshots (to identify sensitiv-
ity to atmospheric conditions). Sensitivity tests will be per- 35

formed on individual subsets of snapshots as required, and
a correction method for identifying the random component

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–22, 2021



6 M. T. Richardson et al.: High-resolution vapour imaging

Figure 2. Correlation coefficient between clear-sky partial column water vapour (PCWV) integrated up to given capping altitudes, and
the TCWV. (a)–(e) contain the snapshots of each individual LES run and (f) reproduces the values calculated from High Altitude Lidar
Observatory flights over the Pacific (Bedka et al., 2021) as presented in Thompson et al. (2021). The LES profiles also have a horizontal
bar appended at the derived PBL top height. The flight data differ from the LES outputs in that horizontal resolution is approximately 3 km
along-track, they are dispersed over thousands of kilometres, and the TCWV is only up to 8 km due to the flight altitudes.

of retrieval error will be introduced. Section 3.1 describes
the relevant methods, Sect. 3.2 gives the results and Sect. 3.3
discusses limitations.

3.1 Retrieval methodology

3.1.1 MODTRAN6.0 forward model, EMIT5

instrument characteristics and Isofit retrievals

We use the same retrieval code as in Thompson et al. (2021),
Imaging Spectrometer Optimal Fitting (Isofit), for our syn-
thetic retrievals (https://github.com/isofit/isofit, last access:
2 June 2021TS3 ). This iterative optimal estimation code si-10

multaneously retrieves surface reflectance, aerosol optical
depth (AOD) and TCWV, differing from older techniques
that retrieve properties sequentially (e.g. Guanter et al., 2008
for MERIS). Isofit is described and shown to have a closed
error budget in Thompson et al. (2018) and has been applied15

to observations from several airborne campaigns (Thompson
et al., 2019, 2020, 2021). Conceptually it targets surface re-
flectance ρs, and the estimation of TCWV is seen as part of
an atmospheric correction.

Forward simulations use MODTRAN6.0 (Berk et al.,20

2014, 2015), which provides a plane-parallel solution to

the radiative transfer equation. Atmospheric reflectance and
transmittance vectors ρa, t and spherical sky albedo s are
calculated at wavenumber separation 1k = 0.1 cm−1 (1λ≈
0.002 nm) before being convolved with the EMIT spectral re- 25

sponse function, and the instrument is assumed to be nadir-
viewing from 100 km altitude. With no substantial atmo-
sphere above 100 km, this gives the same results as the
ISS altitude near 400 km, where EMIT will be hosted. A
correlated-k method and the HITRAN database (Rothman 30

et al., 2009) are used for gaseous absorption, while scatter-
ing is handled by DISORT (Laszlo et al., 2016; Stamnes
et al., 1988). The EMIT instrument properties are derived
from the current mission instrument model, which accounts
for all signal-independent noise terms like electronic noise, 35

and photon shot noise calculated using predicted efficiencies
of the instrument mirrors, lens, grating, and focal plane ar-
ray. The spectral range is 380–2500 nm, with 1λchannel =

10 nm and full width at half maximum averaging1λFWHM ≈

11 nm. 40

For forward simulations, merged LES-reanalysis T and q
profiles are interpolated onto a profile with eight points from
0 to 6 km, and then vertical resolution slowly degrades over
6–100 km. Interpolated TCWV differs from the LES reanal-
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M. T. Richardson et al.: High-resolution vapour imaging 7

ysis, but we assume that conclusions regarding derived sen-
sitivities and errors will not be strongly affected.

The forward radiance vector I is calculated using a stan-
dard Lambertian approximation (e.g. as in Vermote et al.,
1997):5

I =
I 0µ0

π

[
ρa+

t ◦ρs
1− s ◦ρs

]
, (1)

where I 0 is the downward TOA solar radiance, µ0 the co-
sine of the solar zenith angle, ρs is the surface reflectance
and ◦ represents channel-by-channel multiplication. The ρs
elements represent the hemispheric-directional distribution10

function (Schaepman-Strub et al., 2006). The atmospheric
coefficient vectors t , ρa and s represent the transmittance of
the solar-reflected optical path, the path reflectance, and the
spherical sky albedo, respectively. These coefficients are ob-
tained from simulations over a black surface. Using Eq. (1)15

in forward simulations results in negligible differences to re-
trieved TCWV compared with inserting the surface directly
into MODTRAN forward simulations (Supplement Fig. 2).
Use of Eq. (1) means that just one MODTRAN simulation is
needed per column rather than one for each combination of20

column and surface type. The pseudo-observation, I obs, is I
with random uncorrelated noise added, generated using the
EMIT noise model.

The I obs are input as observations to Isofit, while its
state vector x contains surface reflectance in each chan-25

nel, TCWV and aerosol optical depth at λ= 550 nm (AOD),
i.e. x = [ρs AOD TCWV]. We mask the most strongly ab-
sorbing channels due to lack of any surface information, so
the retrieval uses 176 EMIT channels, and therefore x has
176+ 2= 178 elements.30

The ρs elements are constrained via a covariance matrix
whose mean is derived from a library of real surfaces, thereby
capturing realistic spectral shapes. We retrieve absolute ρs,
rather than the normalised value discussed in Thompson et
al. (2018), and the prior is loosely constrained, however, en-35

suring that most information comes from the measurements.
Isofit uses Eq. (1) with a lookup table (LUT) for its for-

ward model, populating ρa, t , and s for selected AOD and
TCWV and then linearly interpolating in TCWV, AOD space
to estimate I obs given x. The LUT uses the default midlati-40

tude summer profile and scales its q(z) and aerosol extinction
(z)TS4 to match desired AOD (from 0.05 to 0.30) and TCWV
(from 5 to 53.5 mm). The Isofit default configuration uses the
U.S. Standard Atmosphere 1976 (Sissenwine et al., 1976),
but MODTRAN applies a relative humidity limit, and the45

U.S. Standard Atmosphere 1976 is cool enough that MOD-
TRAN automatically restricts its moisture content, such that
the TCWV cannot reach the values seen in any LES case ex-
cept for DRY. The midlatitude summer TCWV limit is just
over 53.5 mm, so that defines our LUT maximum.50

Our prior and first guess TCWV is 40 mm with a stan-
dard deviation of 7.5 mm, although observationally a heuris-
tic band ratio is commonly used to provide a first guess and

a locally appropriate prior would be selected. This choice of
prior does not change our derived spatial statistics (Supple- 55

ment Fig. 3), although it results in a small shift of mean re-
trieved TCWV and reflectance (e.g. posterior TCWV shifts
by 0.15 mm when the prior is shifted by 32.5 mm).

3.1.2 Profile subsets, emulator development and
sensitivity tests 60

All retrievals use radiances simulated at SZA= 45◦, using
the profiles associated with an individual footprint and as-
suming a plane-parallel atmosphere. We define “clear sky”
as where cloud water path < 1× 10−3 mm, approximately
τ < 0.3 in a typical sub-adiabatic cloud (e.g. Szczodrak et 65

al., 2001). Clear-sky columns are ranked by TCWV, and 101
columns equally spaced in terms of this ranking are taken
(Supplement Fig. 4 justifies N = 101).

All snapshots in a given LES case are combined and Isofit-
retrieved TCWVret is used to fit an emulator in combination 70

with the forward-model TCWV via

TCWVret = a1TCWV+ a2+ ε, (2)

where a1 and a2 are the trend and intercept parameters from
an optimised-least-squares fit and ε is random zero-centred
Gaussian noise with standard deviation from the emulator fit 75

residuals. Tests with SZA from 14 to 60◦ show no significant
differences in a1 with SZA, while the standard deviation of
ε increases by up to 25 % at SZA= 60◦ relative to SZA=
45◦ (Supplement Fig. 5, Supplement Table 1). Section 3.1.4
shows how we are able to identify and remove the effect of 80

ε on derived statistics, so given that a1 did not change with
SZA in these tests, we anticipate that our conclusions will
largely apply to SZA up to and including 60◦.

Forward-simulation AOD varied from 0.1 to 0.2, and most
footprints were assigned AOD= 0.2. Supplement Figs. 6– 85

7 show weak sensitivity of retrieved TCWV to AOD. The
analysis is separated into two parts: Sect. 3.2.1 shows results
for sensitivity of TCWVret to changes in the surface spec-
trum within selected ARM snapshots and Sect. 3.2.2 shows
changes in retrieved TCWV over a single surface type for all 90

snapshots.

3.1.3 Development and fitting of the retrieval emulator

For each emulator we use all snapshots within an LES run to
fit Eq. (2) (separate snapshot fits do not affect conclusions,
Supplement Fig. 8), and full-snapshot fields of TCWVret 95

are then emulated using Eq. (2) with LES TCWV as in-
put. The surface analysis uses the first three ARM snapshots
and seven surface spectra from the Isofit surface model clus-
ters, three of which are typical of vegetation and the oth-
ers of mineral surfaces. The database used to generate the 100

surface model includes artificial surfaces, which are largely
captured by the “mineral” spectra. An additional test was
run with ARM_18000s profiles over uniform Lambertian
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8 M. T. Richardson et al.: High-resolution vapour imaging

surfaces with ρs = 0.1–0.5 in increments of 0.1. The atmo-
spheric analysis uses the MODTRAN cropland and ocean ρs
spectra for all 23 snapshots, although poor performance over
dark surfaces means that the main emulator results are re-
ported only for the land-surface retrievals.5

Figure 3a shows typical spectra simulated over several
surfaces: notably, the MODTRAN ρs spectra have sharp
changes that are not included in the Isofit surface model and
therefore provide a challenging test of the retrieval code’s
ability to retrieve TCWV outside of the surface conditions10

for which it was developed.
With regards to the emulator parameters, non-unity

a1 represents biases in the local retrieval sensitivity
dTCWVret/dTCWV. Possible causes will be discussed in
Sect. 3.2.3, but this is the main concern for retrieval of local15

variability statistics because the retrieved standard deviation
will be scaled by a1, and this scaling will be undetectable
in the absence of independent validation data. Changes in a1
also change the derived spatial r2, since a1 > 1 increases re-
trieved σx variance and will increase r2. The parameter a2 is20

related to a combination of the mean bias and the magnitude
of a1 within a snapshot and may depend on factors such as
surface type or biases in the LUT-assumed T and q profiles as
seen for MERIS retrievals in Lindstrot et al. (2012). For our
spatial statistics, a2 has no effect since it is subtracted dur-25

ing calculation. The parameter ε represents non-systematic
errors within a scene.

Importantly, σε is not the typical error seen in validation or
inter-comparison exercises (Diedrich et al., 2015; Nelson et
al., 2016; Pérez-Ramírez et al., 2014), since in these studies30

the varying biases between products in different conditions
will add to the reported errors and make them larger than the
σε appropriate for our retrievals.

3.1.4 Estimating random error from retrieved fields

Random retrieval error ε with standard deviation σε adds35

variance and therefore reduces r2 while adding a high-bias
term to estimated σx . Knowing σε would allow removal of
its bias contribution to σx , and clearly interpretation of spa-
tial variability at a footprint level requires that σε is small
relative to σx . TCWV variability between columns separated40

by 50 m in the horizontal is far smaller than at larger separa-
tions. We will exploit this to estimate the spatially constant σε
using an approach based around the second-order structure
function S2. Here we describe the recipe and mathematical
justification; see Supplement Figs. 9–10 for a step-by-step45

illustration. For a TCWV field,

S2(1r)= E[(TCWV(x+1r)−TCWV(x))2]. (3)

This is the variance between pairwise footprints separated
by the distance 1r , and retrieved S2 includes contributions
from the spatial variance characteristic at that separation,50

σ 2
x (1r), and the observational uncertainty σ 2

ε . The subtrac-
tion removes the field mean TCWV, and each of the terms

TCWV(x) and TCWV(x+1r) will contribute σ 2
x (1r)+σ

2
ε

to the variance. We treat these as independent, so their vari-
ances add to give the retrieved S2,ret: 55

S2,ret(1r)= 2σ 2
x (1r)+ 2σ 2

ε . (4)

For ARM_18000s, σx(1r = 50 m) is 0.03 mm, compared
with the full-snapshot σx of 0.29 mm. We exploit the small-
ness of σx at small1r by smoothing the field in one direction
with no overlap between smoothed footprints and then cal- 60

culating the structure function at1r = 1 footprint (20–50 m,
depending on the LES) perpendicular to the smoothing direc-
tion. For n-footprint smoothing, the independent component
of variance shrinks by 1/n, which we attribute to σ 2

ε . The
steps are the following. 65

(i) Select a direction and evaluate S2(1r) in that direction
for 1r = 1 footprint separation.

(ii) Smooth the field in the direction perpendicular to1r by
averaging over nfoot = 2 footprints.

(iii) Recalculate S2(1r,nfoot = 2), treat the calculated value 70

(i) as S2(1r,nfoot = 1), regress S2(1r,nfoot) against
1/nfoot, and take the best-fit trend to be equivalent to
2σ 2
ε .

By smoothing in one direction and then calculating orthogo-
nally, the separation distance1r does not grow with smooth- 75

ing, and so we maintain the advantages of the small σx(1r =
20–50 m). To estimate TCWV σε with EMIT-like 1x, this
method outperforms a standard spatial smoothing filter ap-
proach (Supplement Fig. 11).

3.1.5 Calculating spatial statistics and relationship 80

with spatial smoothing

We calculate the spatial standard deviation σx of clear-sky
TCWV and TCWVret for each snapshot. The random error
σε is then estimated following Sect. 3.2.3 and subtracted in
quadrature: 85

σx,ret,corr =

√
σ 2
x,ret− σ

2
ε,ret, (5)

where the subscript “ret” means retrieved and “corr” means
corrected.

The other target statistic is r2 between TCWV and
TCWVret; we calculate this directly and also estimate it via 90

r2
est =

σ 2
x,ret− σ

2
ε,ret

σ 2
x,ret

. (6)

Where emulator trend a1 = 1, estimated error from
Sect. 3.2.3 is accurate, and there are no spatially varying er-
rors, Eq. (6) should reproduce retrieval r2. However, a1 6= 1
means each σ 2

x,ret term will be multiplied by a2
1 , resulting in 95

an erroneous r2 estimate. User requirements for r2 will de-
pend on application; we arbitrarily select r2

= 0.9 as a target
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Figure 3. Examples of (a) simulated spectra and (b) used surface reflectances in the forward model (solid lines) and those retrieved by Isofit
using EMIT instrument characteristics (dashed lines). Each colour refers to a surface type as listed in the panel (a) legend.

and compare Eq. (6) estimates with the true field values. True
r2 is unknowable without perfect knowledge of the TCWV
field, but operational estimation using Eq. (6) would allow
users to determine whether their requirements are likely to
be met.5

If r2 is too low for the desired application, then averaging
over footprints may address this; although it results in loss
of fine spatial information, it may be necessary to suppress
errors or may be enforced by effective horizontal smearing
where SZA> 0◦.10

We show the results of sequentially smoothing the TCWV
and TCWVret field on both σx and r2 and smooth in both
horizontal directions, for example going from 50m×50 m to
100m×100 m. Smoothed footprints do not overlap and so are
independent, and the smoothing is done on TCWVret rather15

than on the radiance field. This avoids the requirement for ad-
ditional forward-model runs and furthermore allows predic-
tions of how r2 changes with resolution by applying Eq. (6)
with a minor modification:

r2
est =

σ 2
x,ret−

σ 2
ε,ret
n

σ 2
x,ret

, (7)20

where n is the number of footprints over which TCWVret has
been smoothed, e.g. for the 50m× 50 m to 100m× 100 m
transition n= 4. In this case, σε,ret must be calculated at the
native resolution and therefore exploits the smaller TCWV
variance at 1r ∼ 50 m rather than the higher variance in a25

smoothed field with larger 1r .

3.2 Simulated retrieval results

3.2.1 TCWV retrievals over different surfaces

We first remind readers that “retrieval error” here only in-
cludes errors present in these synthetic retrievals and ex- 30

cludes several real-world sources, such as how the true at-
mosphere is not plane-parallel as assumed in our radiative
transfer. Retrieved surface ρs spectra and TCWVret versus
forward-model TCWV are shown in Fig. 4. Surface ρs are re-
trieved well, with mean bias magnitude equivalent to 0.2 %– 35

1.6 % of true ρs (e.g. for Lambertian ρs = 0.1, the mean bias
is 0.00021), and standard deviation across all channels is
2 %–4 % of true ρs. The largest contribution to errors is from
spikes near λ∼ 2.06 µm. Inspection found that the MOD-
TRAN CO2 concentration changes between default profiles 40

versus prescribed T and q profiles. In future an up-to-date
CO2 mixing ratio will be assigned, but the higher LUT value
(361 ppmv) versus the forward-model value (323 ppmv) re-
sults in the retrieval overly brightening the surface in the
strong CO2 band near λ∼ 2.06 µm. 45

Comparing Fig. 4d–f, TCWVret over mineral surfaces is
a mean 0.44 mm higher than over vegetation. From panel
f, some of this difference is likely related to mean sur-
face brightness: darker surfaces give higher TCWVret. The
other differences in TCWVret between surfaces must be due 50

to spectral shape, but it appears that surface-induced errors
are small when considering only mixed vegetation or mixed
mineral surfaces. Regardless of the surface, a bias of order
∼ 1 mm remains, which is similar to the largest difference in-
troduced by surface type and may be related to other retrieval 55

errors such as inappropriate atmospheric profile shapes as-
sumed in the LUT. However, the derived spatial statistics we
are interested in here are not affected by any mean bias.
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10 M. T. Richardson et al.: High-resolution vapour imaging

Figure 4. (a)–(c) Retrieved reflectance spectra for (a) vegetation, (b) mineral and (c) spectrally uniform surfaces. Lines show the mean of all
simulated retrievals and shading shows±1σ . (d)–(f) Retrieved TCWV as a function of true TCWV for the same. The vegetation and mineral
cases use three snapshots (N = 303) and the Lambertian surfaces just use ARM_18000s (N = 101).

Figure 5 shows example scenes with different surface
types. The true TCWV standard deviation σx is 0.28 mm
(panel a), while over the uniform surfaces the retrieval gives
0.33 mm (panels b and c), with the larger value due mainly
to the σε contribution. Over the striped surfaces it is 0.40 mm5

(panel d) due to the additional variance from combining sur-
face types. However, if the top or bottom half of panel d is
selected, then both return σx of 0.33 mm, i.e. the same as over
a fixed vegetation or mineral surface. Statistics should not be
taken over scenes with both vegetation and mineral surfaces,10

but the Isofit surface classification, which is output by the re-
trieval, should be used to identify areas of sufficiently similar
surface type for calculation of TCWV spatial statistics. The
rest of the analysis assumes the MODTRAN cropland default
surface.15

3.2.2 TCWV retrievals over vegetation surfaces in all
LES snapshots

Figure 6 shows TCWV retrievals over the MODTRAN
cropland and ocean surfaces. The poor performance over
ocean absent sun glint justifies our land-only investiga-20

tion. Over land the mean bias ranges from −3.0 % (DRY)
to +1.8 % (BOMEX), while the within-scene σε is from
0.52 % (ARM_lsconv) to 0.67 % (BOMEX). As discussed in
Sect. 3.1.3, VSWIR TCWV validation studies typically re-
port error metrics larger than our σε, but their values include 25

inter-product differences in bias, which are potentially far
larger. Bias is indeed sensitive to the assumed meteorological
profiles, since re-running the ARM_18000s retrievals using
a LUT developed with the MODTRAN default “tropical” at-
mospheric profile shifts the mean bias from 0.33± 0.04 mm 30

to 0.14± 0.04 mm (mean ±2σ ).
For the purpose of spatial variability in TCWV at scales

of tens of kilometres, the distinction between large-area and
small-area retrieval errors is important. Generally speaking,
the error in an individual column TCWV retrieval is of order 35

2 %–3 % since that includes the bias term, but for estimates
of sub-10 km spatial variability, the within-LES TS5 0.5 %–
0.7 % is the error of interest.
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M. T. Richardson et al.: High-resolution vapour imaging 11

Figure 5. ARM_18000s (a) true TCWV, (b) retrieved TCWV over a uniform vegetated surface, (c) retrieved TCWV over a uniform mineral
surface, (d) retrieved TCWV over stripes of uniform surface types as labelled in the figure, (e) difference induced in retrieved TCWV by
surface type relative to mixed vegetation as (d) minus (b). (f) Difference relative to a mixed mineral surface as (d) minus (c). Clouds are
masked in all cases. Panel (f) represents (d) minus (c).

3.2.3 Emulator parameters

Emulator parameters with ±2σ confidence intervals are
listed in Table 2, and significant (p < 0.05) non-unity trends
can be seen most clearly for BOMEX (green) and RICO
(purple) in Fig. 6a; the retrieved properties are more variable5

than reality, with trends of 1.34 and 1.22 mmmm−1, respec-
tively. Meanwhile, the ARM and ARM_lsconv trends are
both < 1mmmm−1. Therefore σx calculated for BOMEX
will be 34 % too high and for ARM 6 % too low.

We argue that the most likely causes of emulated trend10

bias are related to the vertical T and q profile. Firstly, dI/dq
is non-linear and varies with atmospheric conditions due to
line broadening and interaction with aerosol layers. The a1 fit
parameter may therefore be sensitive to differences between
true profiles and those assumed in the retrieval LUT. Sec-15

ondly, the LUT uniformly scales q(z) profiles, whereas the
horizontal variability in q tends to peak at specific altitudes
(Fig. 1).

Two tests provide some evidence for this. Firstly, when
using different standard atmospheres to generate lookup ta-20

bles for the DRY case, the retrieval gradient changes by 5 %,
and secondly, when re-running all BOMEX retrievals with

Table 2. Emulator parameters relating true TCWV to TCWVret. In
Eq. (2) the trend is a1, the intercept is a2, and residual σ is the
standard deviation used in generating the samples of ε. Values are
shown ±2σ .

Case Trend Intercept Residual σ
(mmmm−1) (mm) (mm)

ARM 0.94± 0.02 0.29± 0.07 0.22± 0.03
ARM_lsconv 0.97± 0.04 0.14± 0.17 0.23± 0.03
BOMEX 1.34± 0.06 −1.15± 0.22 0.20± 0.03
DRY 1.13± 0.03 −0.33± 0.07 0.10± 0.01
RICO 1.22± 0.04 −0.77± 0.15 0.21± 0.03

forward radiances generated using the same q profile shape
that has been scaled to match the original range of TCWV,
the retrieval gradient changes by 9 % (Supplement Fig. 12). 25

These results suggest that retrievals could be improved by
using more accurate meteorological profiles in the LUT de-
velopment and by using a more appropriate scaling for q as
a function of z in the LUT.
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12 M. T. Richardson et al.: High-resolution vapour imaging

3.2.4 Snapshot statistics and estimation of random
error

Figure 7a shows how σx of TCWVret is overestimated in ev-
ery snapshot (circles). Figure 7b shows that the estimated re-
trieval error σε agrees excellently with the truth, and after re-5

moving σε, the triangles in Fig. 7a show the consistent over-
estimate is removed. Random error, such as that introduced
by some instrumental uncertainties, can be precisely identi-
fied and removed from the spatial variance calculations. To
estimate σx , the largest error source we consider is due to10

emulator slope. Other potential sources would be due to sur-
face variation, which can be mitigated by selecting regions
of similar surface classification as suggested in Sect. 4.1, and
due to spatially varying errors, such as inter-pixel calibration
biases or those induced by unmodelled temperature gradi-15

ents across the sensors. Separate approaches are required to
account for these issues.

Next, we consider the r2 coefficient between TCWV
and TCWVret, with an illustration in Fig. 8, where the
RICO_14400s TCWVret fields are shown at the native res-20

olution and after smoothing down to 80 m. The random re-
trieval error is visible as speckling (Fig. 8a and b) and clearly
reduces following smoothing. The 2D histograms (Fig. 8c
and d) demonstrate the increase in r2 from 0.82 to 0.95 fol-
lowing a coarsening of the 1x resolution from 40 to 80 m.25

Figure 9 summarises the true and estimated statistical val-
ues as horizontal resolution is sequentially degraded. Com-
parison of Fig. 9a and b reveals that there is only a small
decrease in σx as resolution coarsens up to hundreds of me-
tres, and the biases between estimated and true values follow30

emulator a1 trends as expected, with ARM and ARM_lsconv
too low and DRY, RICO and BOMEX too high.

Regarding r2 in Fig. 9c and d, Eq. (7) reliably predicts
true r2, so a user could determine the spatial resolution re-
quired to achieve a desired r2. In all snapshots r2 > 0.9035

at 150 m resolution, and in 21 of 23 cases this is achieved
at 100 m. Therefore, with the errors accounted for here, the
EMIT instrument could capture 90 % of spatial variability in
PCWVPBL at 100 m resolution in the PBL conditions exam-
ined here, a factor of 7.5 improvement in the MERIS full-40

resolution retrievals. However, this conclusion does not ac-
count for the spatial smearing caused by SZA.

3.3 Discussion of retrieval results and limitations

This section has addressed questions (2) and (3) from Sect. 1
and shown that random errors introduced by EMIT’s instru-45

mental error can be accurately identified and removed. Pro-
vided that an observed domain consists of mixed vegetation
or mixed mineral surfaces, then our derived error in σx using
EMIT is from −7 % to +34 %. Isofit returns surface type,
meaning that such domains can be identified from retrievals.50

Computational limitations forced adoption of an emula-
tor approach, which provides a useful framework to assess

error sources. Firstly, this framework shows that the errors
of interest for retrieval of spatial statistics of PCWVPBL are
the gradient a1, equivalent to dTCWVret/dTCWV, and ran- 55

dom error σε. We show that σε can be estimated and removed
and that the main error is that in a1, most likely driven by
the retrieval’s atmospheric profile assumptions, which can be
addressed in future development. Our method to derive σε
also allows users to predict spatial correlation; in particular, 60

we found that an r2 > 0.9 requirement requires smoothing to
100–150 m resolution. This is a factor of 3–8 improvement
in sampling relative to MERIS full resolution.

Limitations include the use of the same radiative transfer
code for forward and inverse simulations, so spectroscopic 65

errors were ignored, as were errors in cloud and shadow
masking, those caused by topography, or errors that correlate
between footprints.

Spectroscopy errors can be estimated (Thompson et al.,
2020) and should shrink in future with developments, with 70

ongoing research in water vapour absorption spectroscopy
(Elsey et al., 2020; Lechevallier et al., 2018; Menang et
al., 2021) and a history of targeted development of spec-
troscopy to improve retrievals, such as for OCO-2 (Drouin
et al., 2016; O’Dell et al., 2018; Payne et al., 2020). The sur- 75

face remote-sensing community has tools for addressing to-
pography (Kobayashi and Sanga-Ngoie, 2008; Teillet et al.,
1982), and there are also approaches to dealing with nearby
clouds to minimise the effect of imperfect cloud edge iden-
tification, shadowing and 3D cloud-radiative effects (Massie 80

et al., 2021). Nevertheless, these are all topics that are worth
evaluating for Isofit-like TCWV retrievals.

We note that our σε is smaller than the errors reported
in product intercomparison studies, but those studies implic-
itly capture variance due to differing mean biases, i.e. the a2 85

term in our emulator, which is larger than the other terms.
An evaluation of our retrieved σx would require indepen-
dent validated sources such as passive microwave or differ-
ential absorption lidar data with 1x ≤ 50 m that are collo-
cated with VSWIR TCWVret. Reported comparisons are typ- 90

ically of bias and root-mean-squared error (RMSE) of satel-
lite VSWIR retrievals relative to surface-based or other satel-
lite products and are calculated from datasets across a range
of times and sometimes places. Furthermore, the comparison
data generally have larger1x and may not be perfectly collo- 95

cated in time and space, introducing additional variance that
contributes to reported RMSE. Typical published analyses
include within their RMSE uncertainties due to differences in
space and time of measurements and any differences between
the a2 terms between the VSWIR and validation dataset re- 100

trievals. Therefore, these reported errors cannot be compared
with our values, which are calculated within individual LES
runs. We can, however, report that our errors are similar to
Thompson et al. (2021)’s airborne Isofit retrieval statistics
against nearby AERONET surface stations, which reported 105

an RMSE of 2.8 mm. Flight C data from Fig. 9 of that paper
show a spatial standard deviation of 0.19 mm when smoothed
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Figure 6. Retrieved TCWV as a function of the truth for all snapshots in each LES case over (a) cropland and (b) ocean. Note that the TCWV
values differ from those derived from the LES due to differences in the MODTRAN layer interpolation and calculations.

Figure 7. (a) Estimated clear-sky horizontal standard deviation as a function of the true value for each snapshot for raw retrievals (circles)
and retrievals after removal of the random component of retrieval error, e.g. that induced by instrumental noise (triangles). (b) The estimate
of retrieval error as in Sect. 3.1.4 as a function of the true error in each case.

to1x = 48 m, which is within the LES-simulated range, and
σε is estimated at 0.18 mm, although that is not comparable
to our values since it uses AVIRIS-NG rather than EMIT and
is over ocean sun glint rather than land.

Reported RMSEs over land for other VSWIR instruments5

include 0.9–1.3 mm for OCO-2 (Nelson et al., 2016), 1.4–
3.7 mm for MERIS (Lindstrot et al., 2012), 0.9–2.0 mm
for MODIS (Diedrich et al., 2015), 1.3–3.3 mm for OLCI
(Preusker et al., 2021) and up to 2.4 mm for Sentinel-2
(Obregón et al., 2019). The range of TCWVret simulated in10

Fig. 4 is therefore consistent with typical errors reported for
other instruments. Interestingly, Obregón et al. (2019) re-
port a gradient of 0.9 between Sentinel-2 and AERONET
TCWVret. This is derived from data across multiple sites

and times and so cannot be compared to our gradients de- 15

rived from individual LES cases but indicates that different
retrievals may indeed have relationships between TCWV and
TCWVret which are not 1 : 1, and thus our non-unity a1 pa-
rameters, which scale derived σx , are credible.

4 Effect of SZA variation on retrieved properties 20

4.1 Calculation of TCWVret accounting for the light
path at different solar zenith angles

Along-path-integrated water vapour (IWV) for SZA ranging
from 0 to 60◦ inclusive in increments of 15◦ is calculated
using ray tracing. The sunlight’s horizontal component is in 25
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Figure 8. (a) Retrieved TCWV at 40 m resolution, (b) retrieved TCWV at 80 m resolution, (c) 2D histogram of retrieved TCWV as a function
of the truth at 40 m resolution, and (d) 2D histogram of the same at 80 m resolution. The squared Pearson correlation coefficient, r2, is written
in the upper left corner of (c, d).

the negative y direction, viewing zenith angle is 0◦, and the
ray is traced from the top of atmosphere to the centre of
each surface footprint. Each partial grid cell encountered has
its q weighted by the pressure-corrected path through that
cell before obtaining IWV. The cloud mask is extended by a5

“shadow mask” where cloud LWP> 1×10−3 mm along the
solar direct ray path. This IWV is referred to as a TCWV for
consistency with standard retrieval terminology, even though
it is not directly a measure of the column over the footprint.
The Sect. 3 analysis is then repeated using the same emu-10

lators developed using radiative transfer with SZA= 45◦, a
plane-parallel assumption and footprint column profiles. Dif-
ferent SZAs may change the sensitivities somewhat, but we
do not expect results substantially outside the range of those
considered here.15

4.2 Effect of SZA variation on retrieved properties

Figure 10a and d show apparent TCWV in
ARM_lsconv_36000s (i.e. when convection is most de-
veloped) at SZA= 15 and 60◦, and in Fig. 10c and d the
clear vertical pattern of positive followed by negative biases20

relative to true TCWV is clear, with greater magnitude and

larger regions of continuous positive or negative bias at
higher SZA.

Figure 11 shows that this spatial smearing destroys the
correspondence between footprint and path TCWV, with r2

25

around 0.1 with SZA as small as 30◦. This can be compen-
sated only somewhat by spatial smoothing, as Fig. 12 shows
that even footprints degraded to 300 m are affected by SZA.
The calculated σx at SZA= 0◦ match those from Fig. 9, with
biases from the emulator slope parameter in Table 2. Larger 30

SZA in these cases increases the magnitude of this bias, but
the difference in σx as SZA changes from 15 to 60◦ is smaller
than the RICO or BOMEX emulator-trend-induced biases.
The retrieved σx with footprint size tracks reality, suggesting
that the horizontal distribution statistics might still be cap- 35

tured even at large SZA. Furthermore, the statistical error
estimation from Sect. 3.1.4 has effectively identical perfor-
mance regardless of SZA (not shown).

However, Fig. 12b shows that a VSWIR-retrieved map
TCWVret does not accurately represent the actual spatial 40

variability in TCWV and by extension PCWVPBL even for
SZA= 15◦, and this is a fundamental limitation caused by
the solar path through the atmosphere. In fact, the TCWVret
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Figure 9. Changes in the true and retrieved statistical properties for LES as a function of spatial resolution1x. (a) The true standard deviation
calculated directly from the LES output, (b) retrieved standard deviation after removing the estimated retrieval error as in Sect. 3.1.4, (c) r2

between true TCWV and TCWVret, and (d) estimated r2 using Eq. (7).

map corresponds better to the TCWV map at the horizontal
location where the downward solar path enters the PBL, but
improvement in r2 is limited (Supplement Fig. 13).

Figure 13 shows that while the retrieved TCWV distri-
butions are biased, as previously discussed, SZA increases5

cause only minor visible changes in distribution shape. This
indicates that important statistics of the TCWV (and there-
fore PCWVPBL) field can be obtained at the native footprint
resolution, despite the poor correspondence of any individ-
ual footprint to the column located at that position. The pri-10

mary advantages of finer spatial resolution are that (i) it al-
lows better calculation of σε than at coarser resolution us-
ing Sect. 3.1.4’s method, due to the smaller 1r between
footprints and, (ii) when calculating statistics such as stan-
dard deviation on local scales, statistical errors are reduced15

by the larger number of footprints. For example, 1x = 50 m
represents approximately 25 times more measurements than

MODIS or MERIS. If standard deviation were desired for
a 1km× 1 km region, N = 16 from 250 m footprints results
in a sampling error of ±17.7 % versus ±3.5 % for N = 400 20

from 50 m footprints.

5 Discussion and conclusions

Modern and upcoming VSWIR instruments promise un-
precedented horizontal resolution for the study of surface
properties, with emphases ranging from mineral regions that 25

are the source of dust (EMIT) to routine observation of agri-
culture and biodiversity (CHIME) to the full spectrum of
study under the NASA 2017 Decadal Survey’s Surface Bi-
ology and Geology (SBG) designated observable.

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–22, 2021



16 M. T. Richardson et al.: High-resolution vapour imaging

Figure 10. ARM_lsconv_36000s-integrated water path calculated along (a) SZA= 15◦ and (b) SZA= 60◦ with the upward path directly
up at zenith angle 0◦; values labelled TCWV in colour bar for simplicity. Panel (c) shows the difference for each footprint by subtracting the
true TCWV at SZA= 0◦ from panel (a), and panel (d) shows the same for subtracting the SZA= 0◦ value from the SZA= 60◦ value. The
“cloud” mask in each case is now extended to include cloud shadows, and the illumination comes from the top of each panel; i.e. sunlight
travelling down through the atmosphere has a component in the negative y direction.

This study suggests potential synergies with the Decadal
Survey’s PBL targeted observable by showing that
PCWVPBL variability at high spatial resolution can be
inferred using the TCWVret that will be obtained from
EMIT observations. While these measurements lack the5

vertical resolution that is necessary to advance PBL science,
they provide a unique constraint on the mesoscale moisture
variability and aggregation within the convective PBL.
This analysis is restricted to daytime convective PBLs over
land surfaces, which excludes deep convection but still10

represents a large fraction of meteorological conditions
in the tropical to mid latitudes. Importantly, these are the
precise conditions in which it is suspected that PBL mois-
ture aggregation influences the timing of deep convective
events. Furthermore, given the large number of scenes in15

which we expect to be able to derive these spatial statistics,
these observations could prove useful for constraining the
manner in which small-scale variability is parameterised

in shallow convection or unified parameterisation schemes.
The Isofit development team has curated additional spectra 20

for a universal prior that includes cryosphere surfaces, but
additional work may be necessary to evaluate TCWV over
snow, since there is a snow absorption feature near λ= 1 µm
whose depth depends on snow grain size (Painter et al.,
2007) and which overlaps qv absorption. This may introduce 25

surface–atmosphere covariance that affects the retrieval.
NASA’s 2017 Decadal Survey encourages multi-

instrument applications, and the VSWIR retrievals discussed
here could be combined with radio occultation, thermal in-
frared (TIR) or passive microwave sounders, which have far 30

larger horizontal resolution but obtain vertical profiles. Early
explorations of joint VSWIR-TIR retrievals are promising,
suggesting that the sensors provide complementary informa-
tion on both atmospheric and surface properties.TS6 VSWIR
could provide a prior constraint on TCWV in a collocated 35

TIR retrieval, or the TIR-retrieved PCWVupper could be
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Figure 11. 2D histograms between clear-sky TCWV (true value integrated only in column over footprint) and the retrieved values at the
corresponding footprint with SZA of (a) 15◦, (b) 30◦, (c) 45◦, and (d) 60◦. The r2 coefficient is in each panel, and the footprint resolution
is the native output of 1x = 50 m.

subtracted from VSWIR TCWV to estimate PCWVPBL, with
VSWIR also providing the horizontal statistics of clear-sky
PCWVPBL variability within the TIR footprint. Another
opportunity is to use coincident TIR-retrieved profiles of T
and q to either build a more appropriate LUT for the VSWIR5

retrieval or to select from among pre-computed LUTs.
In Isofit, the atmospheric component contributes a bias to

dTCWVret/dTCWV and may be the largest source of our
errors in σx , which range from −7 % to +34 % of true σx .
Development allowing the use of prescribed profiles and the10

ability to assign variability in q to lower altitudes rather
than uniform scaling at all altitudes should reduce these er-
rors, as accounting for temperature reduced biases in MERIS
TCWVret (Lindstrot et al., 2012).

This study also showed how SZA as small as 15◦ signif-15

icantly degrades the accuracy of retrieved spatial patterns in
TCWV, even at coarser resolutions similar to current sen-
sors such as MERIS. However, the TCWV distribution was
far less sensitive to SZA. While our results should strongly
affect the interpretation of retrieved maps of TCWV from20

instruments like MERIS, they suggest that moments of the
PCWVPBL distribution can be obtained at unprecedented

horizontal resolution, which may be of use to developers
of modern PBL schemes that use or assume such moments.
We note that the LES TCWV distributions and their varia- 25

tion with spatial scale may not be realistic, since they tend
to be overly dissipative on scales ≤ 6 grid cells (Bryan et
al., 2003), but it is not clear that these biases affect our con-
clusion regarding the ability to obtain distributional statistics
that represent horizontal variability at scales as small as 50 m. 30

Future work could address uncertainties that are ignored
here, such as topography or cloud 3D radiative effects via
3D radiative transfer simulations which avoid several of our
assumptions, such as a plane-parallel atmosphere. A partic-
ular limitation is that this analysis did not consider vertical 35

structure or PBL height beyond using that derived from the
LES mean profiles. In reality there may be errors in locally
estimated PBL height, or that obtained from other sensors
may be inconsistent with the max(dθ/dz) value used here,
and targeted research on this topic would be worthwhile. 40

Observational evaluation of these uncertainties could be per-
formed using collocated airborne measurements of column
water vapour from VSWIR and other instruments such as
differential absorption lidar or passive microwave imagers,

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–22, 2021
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Figure 12. Clear-sky TCWV horizontal spatial statistics calculated for ARM_18000s (blue) and RICO_14400s (orange) as a function of the
horizontal footprint size. (a) Standard deviation σx as in Fig. 9 and including the random error correction from Sect. 3.1.4. (b) Correlation
coefficient between column true TCWV and that retrieved for the same footprint as SZA changes. Each line style represents a different SZA
as labelled in the legend of (a).

Figure 13. Histograms of footprint-estimated clear-sky TCWV, with the truth shown in grey shading. The retrieval estimates are all scaled
to remove the variance due to estimated random error. (a) Variation with SZA calculated at footprint size 1x = 50 m and (b) variation with
footprint size at SZA= 0◦. In both panels the blue histograms are the same.

provided they can obtain sufficiently high spatial resolution.
Finally, this work could be extended to other sensors, such
as MSI on Sentinel-2, which is not hyperspectral but pro-
vides an exceptionally fine1x of approximately 20 m. Addi-
tional high-resolution analysis may be required for this, since5

Fig. 9a and b imply increases in retrieved σx at 1x = 20 m
for the two simulations that were run at that resolution.

Despite these caveats, we have shown ways in which at-
mospheric correction outputs of surface property retrievals
for EMIT can provide unique information on fine-scale PBL10

water vapour variability and also identified specific develop-
ment tasks to improve the quality of its atmospheric outputs.
With current tools it therefore seems likely that missions such
as EMIT and CHIME, which are primarily designated as tar-
geting surface observables, can provide unique information 15

to the atmospheric science community.

Code availability. The Isofit retrieval package is available on
GitHub (https://github.com/isofit/isofit, last access: 2 June 2021)
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(https://doi.org/10.5281/zenodo.4614338, Brodrick et al., 2021TS7 )
and MODTRAN from Spectral Sciences (http://modtran.spectral.
com, licence required, last access: TS8 ).

Data availability. The surface models are either de-
fault MODTRAN or available from the Isofit GitHub5

under data/reflectance/surface_model_ucsb TS9 . The in-
strument noise model is from the Isofit GitHub under
data/sbg_noise_coeffs.txt(https://doi.org/10.5281/zenodo.4614338,
Brodrick et al., 2021 TS10 ). The LES output was generated using
published large eddy simulation models, and the cases are described10

in the references in row (xi) of Table 1.

Supplement. The supplement related to this article is available on-
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land, C. P., Rotger, M., Šimečková, M., Smith, M. A. H., Sung, 60

K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C.,
and Vander Auwera, J.: The HITRAN 2008 molecular spec-
troscopic database, J. Quant. Spectrosc. Ra., 110, 533–572,
https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.

Roy, R. J., Lebsock, M., Millán, L., Dengler, R., Rodriguez 65

Monje, R., Siles, J. V., and Cooper, K. B.: Boundary-layer
water vapor profiling using differential absorption radar, At-
mos. Meas. Tech., 11, 6511–6523, https://doi.org/10.5194/amt-
11-6511-2018, 2018.

Roy, R. J., Lebsock, M., Millán, L., and Cooper, K. B.: Validation 70

of a G-Band Differential Absorption Cloud Radar for Humid-
ity Remote Sensing, J. Atmos. Ocean. Techn., 37, 1085–1102,
https://doi.org/10.1175/JTECH-D-19-0122.1, 2020.

Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S.,
and Martonchik, J. V.: Reflectance quantities in optical remote 75

sensing–definitions and case studies, Remote Sens. Environ.,
103, 27–42, https://doi.org/10.1016/j.rse.2006.03.002, 2006.

Schneider, A., Borsdorff, T., aan de Brugh, J., Aemisegger, F., Feist,
D. G., Kivi, R., Hase, F., Schneider, M., and Landgraf, J.: First
data set of H2O/HDO columns from the Tropospheric Monitor- 80

ing Instrument (TROPOMI), Atmos. Meas. Tech., 13, 85–100,
https://doi.org/10.5194/amt-13-85-2020, 2020.

Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A.,
Cuxart, J., Duynkerke, P. G., Jiang, H., Khairoutdinov,
M., Lewellen, D., Moeng, C.-H., Sanchez, E., Stevens, 85

B., and Stevens, D. E.: A Large Eddy Simulation In-
tercomparison Study of Shallow Cumulus Convection, J.
Atmos. Sci., 60, 1201–1219, https://doi.org/10.1175/1520-
0469(2003)60<1201:ALESIS>2.0.CO;2, 2003.

Sissenwine, N., Dubin, M., and Teweles, S.: US Standard Atmo- 90

sphere, National Oceanographic and Atmospheric Administra-
tion, Washington, DC, 1976.

Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Nu-
merically stable algorithm for discrete-ordinate-method radiative
transfer in multiple scattering and emitting layered media, Appl. 95

Opt., 27, 2502, https://doi.org/10.1364/AO.27.002502, 1988.
Stirling, A. J. and Petch, J. C.: The impacts of spatial variability

on the development of convection, Q. J. Roy. Meteor. Soc., 130,
3189–3206, https://doi.org/10.1256/qj.03.137, 2004.

Suselj, K., Kurowski, M. J., and Teixeira, J.: A Unified 100

Eddy-Diffusivity/Mass-Flux Approach for Modeling At-
mospheric Convection, J. Atmos. Sci., 76, 2505–2537,
https://doi.org/10.1175/JAS-D-18-0239.1, 2019.

Szczodrak, M., Austin, P. H., and Krummel, P. B.:
Variability of Optical Depth and Effective Ra- 105

dius in Marine Stratocumulus Clouds, J. Atmos.
Sci., 58, 2912–2926, https://doi.org/10.1175/1520-
0469(2001)058<2912:VOODAE>2.0.CO;2, 2001.

Teillet, P. M., Guindon, B., and Goodenough, D. G.:
On the Slope-Aspect Correction of Multispectral 110

Scanner Data, Can. J. Remote Sens., 8, 84–106,
https://doi.org/10.1080/07038992.1982.10855028, 1982.

Thompson, D. R., Natraj, V., Green, R. O., Helmlinger, M. C.,
Gao, B.-C., and Eastwood, M. L.: Optimal estimation for imag-
ing spectrometer atmospheric correction, Remote Sens. Environ., 115

216, 355–373, https://doi.org/10.1016/j.rse.2018.07.003, 2018.
Thompson, D. R., Cawse-Nicholson, K., Erickson, Z., Fichot, C.

G., Frankenberg, C., Gao, B.-C., Gierach, M. M., Green, R.

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/amt-14-1-2021 Atmos. Meas. Tech., 14, 1–22, 2021

https://doi.org/10.5194/acp-4-111-2004
https://doi.org/10.3390/rs11141649
https://doi.org/10.5194/amt-11-6539-2018
https://doi.org/10.5194/amt-11-6539-2018
https://doi.org/10.5194/amt-11-6539-2018
https://doi.org/10.3189/172756507781833947
https://doi.org/10.1016/j.jqsrt.2020.107217
https://doi.org/10.1002/2014JD021730
https://doi.org/10.3390/rs13050932
https://doi.org/10.1016/j.compfluid.2007.12.001
https://doi.org/10.1016/j.jqsrt.2009.02.013
https://doi.org/10.5194/amt-11-6511-2018
https://doi.org/10.5194/amt-11-6511-2018
https://doi.org/10.5194/amt-11-6511-2018
https://doi.org/10.1175/JTECH-D-19-0122.1
https://doi.org/10.1016/j.rse.2006.03.002
https://doi.org/10.5194/amt-13-85-2020
https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
https://doi.org/10.1364/AO.27.002502
https://doi.org/10.1256/qj.03.137
https://doi.org/10.1175/JAS-D-18-0239.1
https://doi.org/10.1175/1520-0469(2001)058<2912:VOODAE>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<2912:VOODAE>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<2912:VOODAE>2.0.CO;2
https://doi.org/10.1080/07038992.1982.10855028
https://doi.org/10.1016/j.rse.2018.07.003


22 M. T. Richardson et al.: High-resolution vapour imaging

O., Jensen, D., Natraj, V., and Thompson, A.: A unified ap-
proach to estimate land and water reflectances with uncertainties
for coastal imaging spectroscopy, Remote Sens. Environ., 231,
111198, https://doi.org/10.1016/j.rse.2019.05.017, 2019.

Thompson, D. R., Braverman, A., Brodrick, P. G., Candela, A.,5

Carmon, N., Clark, R. N., Connelly, D., Green, R. O., Kokaly,
R. F., Li, L., Mahowald, N., Miller, R. L., Okin, G. S., Painter,
T. H., Swayze, G. A., Turmon, M., Susilouto, J., and Wetter-
green, D. S.: Quantifying uncertainty for remote spectroscopy
of surface composition, Remote Sens. Environ., 247, 111898,10

https://doi.org/10.1016/j.rse.2020.111898, 2020.
Thompson, D. R., Kahn, B. H., Brodrick, P. G., Lebsock, M. D.,

Richardson, M., and Green, R. O.: Spectroscopic imaging of sub-
kilometer spatial structure in lower-tropospheric water vapor, At-
mos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-15

14-2827-2021, 2021.
Trent, T., Boesch, H., Somkuti, P., and Scott, N.: Ob-

serving Water Vapour in the Planetary Boundary Layer
from the Short-Wave Infrared, Remote Sens., 10, 1469,
https://doi.org/10.3390/rs10091469, 2018.20

vanZanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P.,
Ackerman, A. S., Burnet, F., Cheng, A., Couvreux, F., Jiang,
H., Khairoutdinov, M., Kogan, Y., Lewellen, D. C., Mechem,
D., Nakamura, K., Noda, A., Shipway, B. J., Slawinska, J.,
Wang, S., and Wyszogrodzki, A.: Controls on precipitation25

and cloudiness in simulations of trade-wind cumulus as ob-
served during RICO, J. Adv. Model. Earth Sy., 3, M06001,
https://doi.org/10.1029/2011MS000056, 2011.

Vermote, E. F., El Saleous, N., Justice, C. O., Kaufman, Y. J.,
Privette, J. L., Remer, L., Roger, J. C., and Tanré, D.: Atmo- 30

spheric correction of visible to middle-infrared EOS-MODIS
data over land surfaces: Background, operational algorithm
and validation, J. Geophys. Res.-Atmos., 102, 17131–17141,
https://doi.org/10.1029/97JD00201, 1997.

von Engeln, A. and Teixeira, J.: A Planetary Boundary Layer 35

Height Climatology Derived from ECMWF Reanalysis Data,
J. Climate, 26, 6575–6590, https://doi.org/10.1175/JCLI-D-12-
00385.1, 2013.

Wulfmeyer, V., Bauer, H.-S., Grzeschik, M., Behrendt, A.,
Vandenberghe, F., Browell, E. V., Ismail, S., and Ferrare, 40

R. A.: Four-Dimensional Variational Assimilation of Water
Vapor Differential Absorption Lidar Data: The First Case
Study within IHOP_2002, Mon. Weather Rev., 134, 209–230,
https://doi.org/10.1175/MWR3070.1, 2006.

Atmos. Meas. Tech., 14, 1–22, 2021 https://doi.org/10.5194/amt-14-1-2021

https://doi.org/10.1016/j.rse.2019.05.017
https://doi.org/10.1016/j.rse.2020.111898
https://doi.org/10.5194/amt-14-2827-2021
https://doi.org/10.5194/amt-14-2827-2021
https://doi.org/10.5194/amt-14-2827-2021
https://doi.org/10.3390/rs10091469
https://doi.org/10.1029/2011MS000056
https://doi.org/10.1029/97JD00201
https://doi.org/10.1175/JCLI-D-12-00385.1
https://doi.org/10.1175/JCLI-D-12-00385.1
https://doi.org/10.1175/JCLI-D-12-00385.1
https://doi.org/10.1175/MWR3070.1


Remarks from the typesetter

TS1 Please confirm.
TS2 Please give an explanation of why this needs to be changed. We have to ask the handling editor for approval. Thanks.
TS3 Please confirm date.
TS4 Please give an explanation of why this needs to be changed. We have to ask the handling editor for approval. Thanks.
TS5 Please give an explanation of why this needs to be changed. We have to ask the handling editor for approval. Thanks.
TS6 Please confirm removal of the reference.
TS7 Please confirm date, added DOI and citation.
TS8 Please provide date of last access and the reference list entry.
TS9 Please confirm.
TS10 Please confirm added DOI and citation.
TS11 Please note that the funding information has been added to this paper. Please check if it is correct. Please also double-
check your acknowledgements to see whether repeated information can be removed or changed accordingly. Thanks.
TS12 Please confirm names and initials.
TS13 Please confirm added information.
TS14 Please confirm article number.
TS15 Please confirm author name.
TS16 Please confirm publisher and place of publication.


	Abstract
	Copyright statement
	Introduction
	Large eddy simulations
	Model setup, scenarios and snapshot selection
	Profiles and PBL height
	Water vapour spatial variability statistics and the relationship between TCWV and PCWVPBL

	Simulated EMIT retrievals of TCWV in LES 
	Retrieval methodology
	MODTRAN6.0 forward model, EMIT instrument characteristics and Isofit retrievals
	Profile subsets, emulator development and sensitivity tests
	Development and fitting of the retrieval emulator
	Estimating random error from retrieved fields
	Calculating spatial statistics and relationship with spatial smoothing

	Simulated retrieval results
	TCWV retrievals over different surfaces
	TCWV retrievals over vegetation surfaces in all LES snapshots
	Emulator parameters 
	Snapshot statistics and estimation of random error

	Discussion of retrieval results and limitations

	Effect of SZA variation on retrieved properties
	Calculation of TCWVret accounting for the light path at different solar zenith angles
	Effect of SZA variation on retrieved properties

	Discussion and conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

