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Abstract

Thermodynamic profiles are often retrieved from the multi-wavelength brightness
temperature observations made by microwave radiometers (MWRs) using regression methods
(linear, quadratic approaches), artificial intelligence (neural networks), or physical-iterative
methods. Regression and neural network methods are tuned to mean conditions derived from
a climatological dataset of thermodynamic profiles collected nearby. In contrast, physical-
iterative retrievals use a radiative transfer model starting from a climatologically reasonable
vatueprofile of temperature and water vapor, with the model raarunning iteratively until the
derived brightness temperatures match those observed by the MWR within a specified
uncertainty.

In this study, a physical-iterative approach is used to retrieve temperature and humidity
profiles from data collected during XPIA (eXperimental Planetary boundary layer Instrument
Assessment), a field campaign held from March to May 2015 at NOAA’s Boulder Atmospheric
Observatory (BAO) facility. During the campaign, several passive and active remote sensing
instruments as well as in-situ platforms were deployed and evaluated to determine their

suitability for the verification and validation of meteorological processes. Among the deployed
3
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remote sensing instruments waswere a multi-channel MWR, as well as two radio acoustic

sounding systems (RASS), associated with 915-MHz and 449-MHz wind profiling radars.

systems;-rln this study the physical-iterative approach is tested with different observational
inputs: first using data from surface sensors and the MWR in different configurations, and then

including data from the RASS-.into the retrieval with the MWR data. These temperature

retrievals are assessed against-58 co-located radiosonde profiles. Results show that the
combination of the MWR and RASS observations in the physical-iterative-appreachretrieval
allows for a more accurate characterization of low-level temperature inversions, and that these
retrieved temperature profiles match the radiosonde observations better than the temperature
profiles retrieved from only the MWR; in the layer between the surface and 53 km above
ground level (AGL). Specifically, in this layer of the atmosphere, both root mean square errors
and standard deviations of the difference between radiosonde and retrievals that combine
MWR and RASS are improved by ~6-5-°Cmostly 10-20% compared to the ether

methedsconfiguration that does not include RASS observations. Pearson correlation

coefficients are also improved.
Weprevide-theA comparison of the temperature physical retrievals to the manufacturer-

provided neural network retrievals is provided in Appendix A.
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Fo-meniterMonitoring the state of the atmosphere for process understanding and for
model verification and validation;seientistsrely-en requires observations from a variety of
instruments, each one having its set of advantages and disadvantages. Using several diverse
instruments allows one to monitor different aspects of the atmosphere, while combining them
in an optimized synergetic approach can improve the accuracy of the information we
haveavailable on the state of the atmosphere.

During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA)
campaign, ara U.S. Department of Energy sponsored experiment held at the Boulder
Atmospheric Observatory (BAO) in Spring 2015, several instruments were deployed (Lundquist
et al., 2017) with the goal of assessing their capability for measuring flow-within-the

atmospheric boundary layer meteorological variables. XPIA investigated novel measurement

approaches, and quantified uncertainties associated with these measurement methods. While
5
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the main interest of the XPIA campaign was on wind and turbulence, measurements of other
important atmospheric variables were also collected, including temperature and humidity.
Among the deployed instruments were two identical microwave radiometers (MWRs) and two
radio acoustic sounding systems (RASS), as well as radiosondes launches-that-were-used-for
MWRs are passive sensors, sensitive to atmospheric temperature and humidity content
that allow for a high temporal observation of the state of the atmosphere, with some
advantages and limitations. In order to estimate profiles of temperature and humidity from the
observed brightness temperatures (Tb), several methods could be applied such as regressions,
neural network retrievals, or physical retrieval methodologies which can include
mereadditional information about the atmospheric state in the retrieval process—Radiative

(e.g., Maahn et al. 2020). Microwave radiative transfer eguations{models (e.g., Rosenkranz,

1998; Clough et al. 2005) are commonly used to train statistical retrievals, or as forward models
used within physical retrieval methods. Advantages of MWRs include their compact design, the
relatively high temporal resolution of the measurements (2-3 minutes), the possibility to
observe the vertical structure of both temperature and moisture through the depthlower part
of the troposphere during both clear and cloudy conditions, and their capability to operate in a
standalone mode. Disadvantages include limited accuracy in the presence of rain because of
scattering of radiation from raindrops in the atmosphere (and because water can deposit on
the radome, although the instruments use a hydrophobic radome and force airflow over the
surface of the radome during rain to mitigate this impact), rather coarse vertical resolution, and

for retrievals the necessity to have a site-specific climatology. Other disadvantages include the
6
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challenges related to performing accurate calibrations (Kichler et al., 2016, and references
within), radio frequency interference (RFI), and the low accuracy on the retrieved liquid water

path (LWP) especially for values of LWP less than 20 g/m?* m™ (Turner 2007; Turner et al. 2007).

RASS, in comparison, are active instruments that emit a longitudinal acoustic wave
upward, causing a local compression and rarefaction of the ambient air. These density
variations are tracked by the Doppler radar associated with the RASS, and the speed of the
propagating sound wave is measured. The speed of sound is related to the virtual temperature
(Tv) (North et al., 1973), and therefore, RASS are reutinely-used to remotely measure vertical
profiles of virtual temperature in the boundary layer. Being an active instrument, the RASS is in
general more accurate than a passive instrument (Bianco et al., 2017), but they also come with
their sets-efown disadvantages. The main limitations of RASS for retrieval-purpesestemperature
measurements are itsthe low temporal resolution (typically a 5-min averaged RASS profile is
measured once or twice per hour), and-their limited altitude coverage—Reeentstudies{, and the

noise “pollution” that impacts local communities. Adachi and Hashiguchi; (2019) have shown

that-te-make-them-more-suitable-to-eperate-inurban-areas RASS could use parametric speakers

to take advantage of their high directivity and very low side lobes. Nevertheless, the maximum
height reached by the RASS is still limited, being a function of both radar frequency and
atmospheric conditions (May and Wilczak, 1993},-and). It is determined both by the attenuation
of the sound, which is a function of atmospheric temperature, humidity, and frequency of the
sound source, and the advection of the propagating sound wave out of the radar’s field-of-
view. Therefore, data availability is usually limited to the lowest several kilometers, depending

on the frequency of the radar. In addition, wintertime coverage is usually eensiderably-lower
7
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than that in summer, due to a-higherprebabilityincreased attenuation of strengerwinds

advecting-the seund-waveaway-from-theradaracoustic signal in the-wintercooler and drier
environments.

To get a better picture of the state of the temperature and moisture structure of the
atmosphere, it makes sense to try to combine the information obtained by both MWR and
RASS. Integration of different instruments has been a topic of ongoing scientific interest-fer
severalyears (Han and Westwater 1995; Stankov et al. 1996; Bianco et al., 2005; Engelbart et
al., 2009; Cimini et al., 2020; Turner and Léhnert, 262082021, to name some). In this study-we
partiewlarly, the focus is on the combination of the MWR and RASS observations in the
retrievals to improve the accuracy of the temperature profiles in the lowest 53 km compared to
physical retrieval approaches that do not include the information from RASS measurements.
Some studies have used analyses from numerical weather prediction (NWP) models as an
additional constraint in these variational retrievals (e.g., Hewison 2007; Cimini et al. 2005,
2011; Martinet et al. 2020); however, we have elected not to include model data in this study
because we wanted to evaluate the impact of the RASS profiles on the retrievals from a purely
observational perspective.

This paper is organized as follows: Section 2 summarizes the experimental dataset;
Section 3 introduces the principles of the physical retrieval approaches used to obtain vertical
profiles of the desired variables; Section 4 produces statistical analysis of the comparison
between the different retrieval approaches and radiosonde measurement; finally, conclusions

are presented in Section 5.
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2. XPIA datadataset

The data used in our analysis were collected during the XPIA experiment, held in Spring
2015 (March-May) at the-NOAA’s BeulderAtmospheric-Observatery{BAO} site, in Erie,
Colorado (Lat.: 40.0451 N, Lon.: 105.0057 W, El.: 1584 m MSL). XPIA was the last experiment
conducted at this facility, as after almost 40 years of operations the BAO 300-m tower was
demolished at the end of 2016 (Wolfe and Lataitis, 2018). XPIA was designed to assess the
capability of different remote sensing instruments for quantifying boundary layer structure, and
was a preliminary study as many of these same instruments were later deployed, among other
campaigns, for the second Wind Forecast Improvement Project WFIP2 (Shaw et al., 2019;
Wilczak et al., 2019) which investigated flows in complex terrain for wind energy applications,

andwhere they were for example used to study cold air peelpools (Adler et al., 2021) and gap

flow characteristics (AdlerNeiman et al., 26222019; Banta et al., 2020;-Neiman-etal;2019). The
list of the deployed instruments included active and passive remote-sensing devices, and in-situ
instruments mounted on the BAO tower. Data collected during XPIA are publicly available at

https://a2e.energy.gov/projects/xpia. A detailed description of the XPIA experiment can be

found in Lundquist et al. (2017), while a specific look at the accuracy of the instruments used in

this study can be found in Bianco et al. (2017).

2.1 MWR measurements
Two identical MWRs (Radiometrics MP-3000A) managed by NOAA (MWR-NOAA) and by
the University of Colorado (MWR-CU), were deployed next to each other at the visitor center

~600 m south of the BAO tower (see Lundquist et al., 2017 for a detailed map of the study
9
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area). Prior to the experiment, both MWRs were thoroughly serviced (sensor cleaning, radome

replacement, etc.) and calibrated using an external liquid nitrogen target and an internal

are passive devices which record the natural microwave emission in the water vapor and

oxygen absorption bands from the atmosphere, providing measurements of the brightness
temperatures. Both MWRs have 35-channels spanning a range of frequencies, with 21 channels
in the lower (22-30 GHz) K-band frequency band, of which 8 channels were used during XPIA:
22.234,22.5,23.034, 23.834, 25, 26.234, 28 and 30 GHz; and 14 channels in the higher (51-59
GHz) V-band frequency band, of which all were used in XPIA: 51.248, 51.76, 52.28, 52.804,
53.336, 53.848, 54.4,54.94, 55.5, 56.02, 56.66, 57.288, 57.964 and 58.8 GHz. Frequencies in the
K-band are more sensitive to water vapor and cloud liquid water, while frequencies in the V-
band are sensitive to atmospheric temperature due to the absorption of atmospheric oxygen
(Cadeddu et al., 2013). V-band frequencies or channels can also-ean be divided in two
categories: the opaque channels, 56.66 GHz and higher, that are more informative in the layer
of the atmosphere from the surface to ~1 km AGL, and the transparent channels, 51-56 GHz,
that are more informative above 1 km AGL. Both MWRs observed at the zenith and at 15- and
165-degree elevation angles in the north-south plane (referred to as oblique elevation scans

and used as their average hereafter; note zenith views have a 90-degree elevation angle).

However, when MWRs are deployed in locations with unobstructed views, oblique scans can be

performed down to 5 degrees elevation angles and may provide better temperature profile

accuracy in the lowest 0-1 or even 0-2 km AGL layers (Crewell and Lohnert, 2007).

10
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In addition, each MWR was provided with a separate surface sensor to measure
pressure, temperature, and relative humidity at the installation level that was ~2.5 m AGL.
Vertical profiles of temperature (T), water vapor density (WVD), and relative humidity (RH)
were retrieved in real-time during XPIA every 2-3 minutes using a neural network (NN)
approach provided by the manufacturer of the radiometer,-Radiometries (Solheim et al. 1998a,
and 1998b; Ware et al., 2003). Although the physical retrieval configurations used in this study
do not exactly match the MW-RNN retrieval configurations-used-for-NN-retrievals, a comparison
of both physical and neural network retrievals to the radiosonde temperature data is presented
in Appendix A.

Both MWRs nominally operated from 9 March to 7 May 2015, although the MWR-NOAA
was unavailable between 5-27 April 2015. For the overlapping dates, temperature profiles
retrieved from the two MWRs showed very good agreement with less than 0.5 °C bias and
0.994 correlation (Bianco et al., 2017). For this reason, and because the MWR-CU was available

for a longer time period, we-use-only the MWR-CU (hereafter simply called MWR}:) is used.
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2-3 WPR-RASS measurements

Two NOAA wind profiling radars (WPRs), operating at frequencies of 915-MHz and 449-
MHz, were deployed at the visitor center (same location as the MWR) during XPIA. These
systems are primarily designed to measure the vertical profile of the horizontal wind vector, but

co-located RASS also ebserveenable the observation of profiles of virtual temperature in the

lower atmosphere, with different resolutions and height coverages depending on the WPR.
Thus, the RASS associated with the 915-MHz WPR (hereafter referred to as RASS 915) measured
virtual temperature from 120 to 1618 m with a vertical resolution of 62 m, and the 449 MHz
RASS (hereafter referred to as RASS 449) sampled the boundary layer from 217 to 2001 m with
a vertical resolution of 105 m. The maximum height reached by the RASS is a function of both
radar frequency and atmospheric conditions (May and Wilczak, 1993), and is usually lower for
RASS 915 data, as will be shown later in the analysis.

The RASS data were processed using a radio frequency interference (RFI)-removal
algorithm (performed on the RASS spectra), a consensus algorithm (Strauch et al. 1984)
performed on the moment data using a 60% consensus threshold, a Weber-Wuertz outlier

removal algorithm (Weber et al., 1993) performed on the consensus averages, and a RASS
12
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range-correction algorithm (Gorsdorf and Lehmann, 2000) using an average relative humidity

setting of 50% determined from the available observations.

2.43 BAO data
The BAO 300-m tower was built in 1977 to study the planetary boundary layer (Kaimal
and Gaynor 1983). During XPIA, measurements were collected at the surface (2 m) and at six
higher levels (50, 100, 150, 200, 250 and 300 m AGL). Each tower level was equipped with 2
sonic anemometers on orthogonal booms, and one sensor based on a Sensiron SHT75 solid-
state sensor to measure temperature and relative humidity with a time resolution of 1 s, and

averaged over five minutes. The more accurate temperature and water vapor observations

(Horst et al., 2016) at the BAO tower 2 m AGL level are used in the physical retrieval in place of

the less accurate MWR inline surface sensor.

A

2.4 Radiosonde measurements

Between 9 March and 7 May 2015, while the MWR was operational, radiosondes were

launched by the National Center for Atmospheric Research (NCAR) assisted by several students

from the University of Colorado over three selected periods, one each in March, April, and May.

13
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All radiosondes were Vaisala model RS92. There was a total of 59 launches, mostly four times

per day, around 1400, 1800, 2200, and 0200 UTC (0800, 1200, 1600 and 2000 local standard

time, LST). The first 35 launches, between 9-19 March, were done from the visitor center, while

11 launches between 15-22 April, and 13 launches between 1-4 May, were done from the

water tank site, 1000 meters away from the visitor center (see Lundquist et al., 2017 for a
detailed map of the study area). The radiosonde measurements included temperature, dew

point temperature, and relative humidity to altitudes usually higher than 10 km AGL, with

measurements every few seconds. As a first step, for additional verification, the radiosonde

data from the 59 launches taken between 9 March and 4 May 2015 were compared to the BAO

tower measurements, up to 300 m AGL. These observed data sets match very well, with a

correlation coefficient of 0.99 and a standard deviation of ~0.7 °C. However, one radiosonde

profile showed a large bias (> 5 °C) against all seven levels of BAO temperature measurements

and all available Tv measurements from the RASS 915 (eight measurements up to 600 m AGL)

and from the RASS 449 (nine measurements up to 1100 m AGL), therefore this particular

radiosonde profile was excluded from the statistical analysis. Moreover, while accurate RASS

data can be collected during rain, MWR data could be potentially deteriorated due to water

deposition on the radome. Therefore, six profiles (three for March 13, and one each on May 1,

3 and 4) were eliminated from the statistical evaluation. These restrictions lowered the number

of total radiosonde launches used in this study to 52.

3. Physical retrievals

14



B06

B07

B08

B09

B10

B11

B12

B13

B14

B15

B16

317

B18

B19

320

321

B22

B23

B24

B25

B26

One way to combine the active and passive instruments would be to use the RASS

observations up to their maximum available height, and stitch them with the profiles obtained

from a physical-iterative method using MWR data. To do this, the moisture contribution to the

RASS virtual temperatures could be removed by using either the relative humidity measured by

the MWR or by a climatology of the moisture term. However, merging these different profiles

could result in artificial jumps at the connecting heights.

Alternatively, a physical retrieval (PR) iterative approach can be used to retrieve vertical

profiles of thermodynamic properties from the MWR and RASS observations {in a synergistic

manner (e.g., Maahn et al 2020):; Turner and Lohnert 2021). In this case, usinga-radiative

transfermodeltheproecess-startsan optimal estimation-based physical retrieval is initialized

with a climatologically reasonable vatueprofile of temperature and water vapor, and is
iteratively repeated until the computed brightness temperatures match those observed by the

MWR within the uncertainty of the observed brightness temperatures and the RASS virtual

temperatures within their uncertainties (Rodgers, 2000; Turner and Lohnert, 2014; Maahn et al.

2020).

3.1 Iterative retrieval technique

For this study, the PR uses athe TROPoe retrieval algorithm (formerly AERIoe, Turner

and Léhnert 2014; Turner and Blumberg 2019; Turner and Léhnert 2021). This algorithm is able

to use radiance data from microwave radiometers, infrared spectrometers, and other

observations as input. The microwave radiative transfer model, MonoRTM (Clough et al., 2005),

15
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serves as the forward model, which is fully functional for the microwave region and was

intensively evaluated previously on MWR measurements (Payne et al. 2008; 2011).
We start with the state vector Xa = [T, Q, LWP]", where superscript T denotes transpose:,

and vectors and matrices are shown in bold. T (K) and Q (g/ kg) are temperature and water

vapor mixing ratio profiles at 55 vertical levels from the surface up to 17 km, with the distance
between the levels increasing expenentiaty-tikegeometrically with height. LWP is the liquid
water path in (g£%? m2) that measures the integrated content of liquid water in the entire
vertical column above the MWR, and is a scalar. For this study-we-have, X, withhas dimensions
equal to111 x 1 (two vectors T and Q with 55 levels each, and LWP). We-are-using-the The
retrieval framework of Turner and Blumberg (2019);) is used, but only using MWR data (no

spectral infrared}-and-willaugment). Here, we demonstrate the augmentation of the retrieval

to include RASS profiles of Tv, and the resulting impact this has on the retrieved temperature - {Formatted: Font: Bold

profiles and information content.

The observation vector Y frem-the-beginninrg-includes temperature and water vapor

mixing ratio measured at the surface in-situ, and spectral Tb measured by the MWR. The

MonoRTM model F is used as the forward model from the current state vector X, Eg—1};-and is
then compared to the observation vector Y, iterating until the difference between F(X) and Y is

small within a specified uncertainty- (Eq 1).

Xpy1 = X + (S 4+ KTS7'K)'KTS7YY — F(X,) 4+ K(X, — X,)] (1)

with

16
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. The superscripts T and -1 in (1) indicate the transpose erand inverse matrix, respectively. Alse;

veetersThe observation vector Y, and matrices-the covariance matrix of the observed data, Se, j_- {Formatted: Font: Bold
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depending on the configuration used, are shewn-in-beld—equal to:
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Note that-we-are-including the 2-m surface-level observations of temperature and water

vapor mixing ratio (Tsc and Qstc, respectively) are included as part of the observation vectorY, - - {Formatted: Subscript

h { Formatted: Subscript

and thus the uncertainties (0.5 K for temperature and less than 0.4 g kg™ for mixing ratio) in

these observations are included in Se.

The first guessof the state vector ¥ X. inEg{4); is-setto-beeguatto the The mean state

vector of the climatological estimates, or a “prior” vector X,, whichis a key component in the

optimal estimation framework and it is the first guess of the state vector X, X1 in Eq. (1). It

provides a constraint on the ill-posed inversion problem. The prior is calculated independently

for each month of the year from climatological sounding profiles (using 10 years of data) in the
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399

Denver area. Ssis-theThe covariance matrix, Sa, of the “prior” vector-that includes not only
temperature or water vapor variances but also the covariances between them. Using around
3,000 radiosondes launched by the NWS in Denver, we-rterpotated-each radiosonde profile is
interpolated to the vertical levels used in the retrieval, after which we-cemputed-the covariance

of temperature and temperature, temperature and humidity, and humidity and humidity is

computed for different levels. K-is-theJacobian-matrixcomputed-using finite-differencesby

We-start-with-feurFour configurations are chosen for the observational vector Y (Y3, Y2,

Y3, and Ya). In each of these, the surface observations are obtained by the 2-m BAO in-situ

measurements of temperature and humidity. The MWR provides Th measurements from 22

channels from the zenith scan for the zenith only configuration (Yi,which-alse-includesthe 2-m

in-situ-observations-of-temperature-and-humidity), while when using the zenith plus oblique Tb

inputs (Y2, Y3, and Ya;

the same 22 channels were used from the zenith scans together with only the four opaque
channels (56.66, 57.288, 57.964 and 58.8 GHz) from the oblique scans. Using additional
measurements from the co-located radar systems with RASS, we-may-furtherexpand-the

observational vector is further expanded with either RASS 915 (Y3) or RASS 449 (Y4) virtual

chosen Y; as itis-highlighted-by-thered-rumbersseen in the matrix deseriptionS (with i = 1:4)

Y3 or Y4 through the multi-level measurements of the RASS (Turner and Blumberg, 2019). Table
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400 1 summarizes the observational information included in these four different configurations of

401 the PR.
402
Tboblique;
Tste Qsse Tbzenith TVrassozs | TVrassass "~ | Formatted: Space Before: O pt, After: 0 pt, Line spacing:
vrg N Double
{ Formatted Table
Y: = MWRz X X X < — ~ 7| Formatted: Space Before: 0 pt, After: 0 pt, Line spacing:
Double
Y,=MWRzo X X X X < — ~ 7| Formatted: Space Before: 0 pt, After: 0 pt, Line spacing:
Double
Y; = MWRz0915 | X X X X X < — ~ 7| Formatted: Space Before: 0 pt, After: 0 pt, Line spacing:
Double
Ys= MWRz0449 | X X X X X <= =~ 7| Formatted: Space Before: 0 pt, After: 0 pt, Line spacing:
Double
W03  Table 1. Four PR configurations corresponding to the four observational Y; vectors in Eq. (1). e {Formatted: Space Before: 0 pt
404
405 The uncertainty in the MWR Tb observations was set to the standard deviation from a

06  detrended time-series analysis for each channel during cloud-free periods,whiek. The method

07  to detect those cloud-free periods is described in detail in Section 3.2. The derived uncertainties

08 ranged from 0.3 Kto 0.4 K in the 22 to 30 GHz channels, and 0.4 to 0.78 K in the 52 to 60 GHz
409 channels. We assumed that there was no correlated error between the different MWR
410 channels.
‘411 For the RASS, eellecatedco-located RASS and radiosonde profiles were compared and

412  the standard deviation of the differences in Tv were determined as a function of the radar’s
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#33

134

signal-to-noise ratio (SNR). This relationship resulted in uncertainties that ranged from 0.8 K at
high SNR values to 1.5 K at low SNR values. Again, we assumed that there was no correlated
error between different RASS heights. Following-aH these assumptions, the covariance matrix Se
is diagonal.

The Jacobian matrix, K, is computed using finite differences by perturbing the elements

of X and rerunning the forward model. It has dimensions m x 111, where m is the length of the

vector Y;, therefore its dimension increases correspondingly with the inclusion of more
observational data. K makes the “connection” between the state vector and the observational

data and should be calculated at every iteration.

3.2 Physicalretrieval-biasBias-correction and-temperature-profilesof MWR observations <+ - - {Formatted: Indent: Left: 0.25", First line: 0"

using radiosondes or climatology

Observational errors propagate through-the retrieval into the derived profiles (i.e. the
bias of the observed data will contribute to a bias in the retrievalss}). For that, retrieval
uncertainties in Eq. (1) from Y = Y or Y2 derive only from uncertainties in surface and MWR
data, while retrieval uncertainties from Y = Y3 or Y4 are-cemingcome from uncertainties in the
surface, MWR, and RASS measurements.

While-theThe bias of the retrieval depends on both the sensitivityabsolute accuracy of
the forward model and theon any observational systematic offset, we-ean-try-to-eliminateorat
leasttereduee;-of which the systematic error in the MWR observations—Fe-thisaim-we- could

potentially be reduced through application of a MWR Tb bias-correction procedure. In this

study, two different approaches were used for the bias-correction: the first loeked-foreclearsky
21
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#49

#50

¥51

h52

#53

#54

#55

#56

eaysis based on a comparison to the radiosondes, while the second uses climatological profiles.

The first method could be used for a field campaign where occasional co-located radiosonde

launches are taken, while the second would be used for deployments without any supporting

radiosonde observations.

For both approaches, the first step is to identify clear-sky periods during which the bias

can be estimated (to reduce the degrees of freedom associated with clouds) duringand

subsequently the peried-efbias can be removed from the measurementsobserved MWR Tbs.

One method to identify clear-sky times is to use a time-series of Th observations in the 30 GHz
liquid water sensitive channel—-of the MWR.

The randem-uncertaintystandard deviation of the MWR Tb in Fothe 30 GHz channel is

calculated as-over a time frame of one hour centered at the radiosonde launch time. The data

from the zenith scan and the averaged oblique scans are reviewed separately. Liguid-cloud free

periods were identified by cases where the temporal standard deviation was small (< 0.4 K),

and more than 35 radiosonde profiles were classified as being launched in clear skies. The

usage of the standard deviation from the time-series from the oblique scans, with the same 0.4

K restriction, reduces the number of the clear-sky radiosonde profiles to 18. For those chosen

18 radiosonde profiles, the Tb is calculated from radiosonde temperature profiles through

MonoRTM at each of the MWR channels. The mean difference between these calculated

radiosonde Tbs and measured MWR Thbs forms the Tb bias with which the MWR Tb data can be

corrected. This bias-correction method will be referred to as ‘radiosonde BC'.

While this radiosonde BC method can be employed for the XPIA dataset, for other

campaigns this approach would not be possible if co-located radiosonde observations were not
22
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available. For this situation, an alternative method for correcting the MWR Tb biases is

presented. In this method, to choose clear-sky periods, the 30 GHz channel MWR Tb data are

used on a daily basis. The standard deviation of the MWR Tb is calculated as the average of the

TFb-standard deviatiendeviations in a one-hour sliding window through all data points of a day.

smoothed Thto-eliminate daily temperature variability--Four clear-sky days have-beenchosen
were identified using a eriterienthreshold of 0.34 K uneertainty-iron the 30-GHz

ehannelstandard deviation: March 10 and 30, and April 13 and 29, 2015. Buringperiods-with

The Tb bias wasis then computed for each of the 22 channels as the averaged difference

between the observed Tb from the MWR zenith observations; and the forward model

caleulationapplied-to-the prioroverthesecalculated Tbs at zenith using the TROPoe-retrieved

profiles (Y1) of those selected clear-sky days,-and-then-subsequently-remevedfrom-at-ofthe.
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This method identified spectral calibration errors in the MWR observations _that could not be

explained by physically realistic atmospheric profiles. This bias-correction technigue will be

referred to as ‘TROPoe BC'.

Fig. —We-ecompute-the-biasinthe-1 shows the Tb biases found for all 22 MWR channels

from both bias-correction precedure-enly-from-thezenith-approaches. The biases calculated

with the radiosonde BC scheme are shown for all channels used in our analysis: 22 channels of

the zenith scan, in red, and four V-band opaque channels of the oblique scans, in blue. The

black and green triangles represent the biases calculated using the TROPoe BC approach for

zenith and for zenith+obligue scans, respectively. All biases are presented with associated

uncertainties (error bars representing the standard deviation over all radiosondes for

24
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radiosonde BC, and mean observation Tb vector uncertainties for chosen four clear-sky days for

TROPoe BC).
BIAS, Tb_OBS - Tb_CALCULATED

2F L =
S s
< 4E =
2} E 2
< E E
m = 3
a 25 =
L = E
3E TROPoe BIAS Zenith =
ab Radiosonde BIAS Zenith E
Radiosonde BIAS Oblique

-5E ! . ! . . E

20 30 40 50 60
FREQUENCY (GHz)

Fig.assuming-thatthesame 1. Tb biases derived from the radiosonde BC method (and

TROPoe BC method) in all 22 MWR channels of the zenith scan in red (and in black), and in the

four opaque channels of the oblique scans in blue (and in green).

The biases from the two bias-is-suitable-fer-correction schemes are within the

uncertainties of each other seanrs—Alsewe-assumefor most of the channels except at the higher

frequencies in the V-band. Biases in the most opaque channels are significantly affected by the

accuracy of the boundary layer temperature profiles. When TROPoe BC is used, a monthly

average prior temperature profile is used in the PR, and thus differences between this prior

25
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b13

profile and the actual temperature profile can result in a spectral bias in the more opaque MWR

channels. On the contrary, the radiosonde BC uses a direct measurement of the temperature

profile (from the radiosonde), and thus is more accurate. It is also important to note that, in

both approaches, the biases in the opaque channels for zenith and for oblique scans (for

radiosonde BC these are red and blue, respectively; and for the TROPoe BC these are black and

green, respectively) are very similar to each other. This supports the assumption that the true

bias is an-effset-thatis-nearly independent of the scene, seor that the sensitivity to the scene
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515 The bias-correction methods were applied by removing the corresponding calculated

16  biases from the MWR Th observations before the retrievals were performed. Later in Section 4,

17  differences in the retrieved temperature profiles will be shown when using the two bias-

18  correction approaches. These differences will be more evident in the temperature profiles

519  exhibiting near-ground temperature inversions.

520 However, the final goal of this study is not to assess the sensitivity to different bias-

21  correction approaches but to verify that the inclusion of RASS observations does improve

22  retrieved temperature profiles, independently of the bias-correction method used.

b23

524 3.3 Analysis of physical retrieval characteristics
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The retrieved profiles of the four different PR configurations presented in Table 1

(MWRz, MWRzo, MWRz0915, MWRz0449) were compared to the radiosonde profiles. BAG

To compare radiosonde observations against the PR profiles, all theseradiosonde <= =~ = 7 Formatted: Space Before: 0 pt, Border: Top: (No border),
Bottom: (No border), Left: (No border), Right: (No border),

profiles were interpolated vertically to the same PR heights, and PR profiles were averaged in Between : (No border)

the time window between 15 minutes before and 15 minutes after each radiosonde launch.
Since the radiosonde ascends quite quickly in the lowest kilometers of the atmosphere (~15-20
min to reach 5 km), we-estimated-thatthe 30-minute temporal window is estimated to be
representative of the same volume of the atmosphere measured by the radiosonde. BAO tower

temperature and mixing ratio data at the seven available levels were used as an additional

validation dataset, without any vertical interpolation, averaged in the time window between 15

minutes before and 15 minutes after each radiosonde launch.

AnrAs an example of the different temperature retrievals and their relative performance,« - - ‘{Formatted: Space Before: 0 pt

data obtained on 17 March 2015 at 2200 UTC isare presented in Fig. 2. Temperature profiles up

to 2 km AGL retrieved from the four PR configurations (MWRz, MWRzo, MWRz0915,
28
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555

556

557

MWRz0449, using the radiosonde BC) are compared to the radiosonde data in red and to the

BAO measurements in blue squares._Note that all four of the PRs match the BAO observations

reasonably well near the ground. The MWRz and MWRzo profiles are very smooth and depart

quite substantially from the radiosonde measurements, being unable to reproduce the more
detailed structure of the atmospheric temperature profile measured by the radiosonde, while
the MWRz0449 profile (in light-blue) demonstrates a better agreement with both the
radiosonde and BAO measurements (blue squares). Nete-thatal-fourefthePRswatch-the BAO
ebservationsreasonably-well-The MWRz0915 profile (in magentapurple) also tries to follow
the elevated temperature inversion observed by the radiosonde, successfully only in the lower
part of the atmosphere (below 1 km AGL) where RASS 915 measurements are available. This
behavior will be also addressed in the following section and in the statistical analysis presented

later in the manuscript.
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Fig. 2. Temperature profiles obtained by the four PR configurations, after applying the

radiosonde BC on the MWR Tbs: MWRz in gray, MWRzo in black, MWRz0915 in meagentapurple,

and MWRzo0449 in light-blue. These retrievals are compared to radiosonde measurements, in
red, and BAO tower observations, in blue squares. The heights with available RASS virtual
temperature measurements (RASS 915 in magentapurple and RASS 449 in light-blue};) are

marked by the asterisks on the right Y-axis.

3.3-Averaging kernel

FheAn asset of TROPoe is that several characteristics of the PRs can be obtained from

two matrices, the averaging kernel, Akernel, and the posterior covariance matrix, Sop (Masiello

et al., 2012;; Turner and Lohnert, 2014)}frem-Eg—{1)can-be-, Turner and Bloomberg, 2019),

calculated as:

Akernel=B' KT S, K (2

Q
=}

Sop = B! (3)

where:
-B =Sa_l + KTSg-IK
Both

All matrices, Akernel, Sop, and B, have dimensions 111 x 111 in our configuration. While

the top left corner of the Akernel matrix (1:55, 1:55) is devoted to temperature, called further
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in the text ATkernel, the next (56:110, 56:110) elements are devoted to the water vapor mixing

ratio, called AQkernel.

The Akernel provides useful information about the calculated retrievals, such as vertical
resolution and degrees of freedom for signal at each level. FhustheThe rows of the Akernel
provide the smoothing functions (Rodgers, 2000) that have-tecould be applied to the retrievals

{Redgers;2000)-te-helpradiosonde profiles (Eq. 4) to minimize the vertical representativeness

error in the comparison between the various retrievals and the radiosonde profiles due to very

different vertical resolutions of these profiles- (Turner and Lohnert, 2014).

Using-theaveragingkerneb-thesmoethedSmoothed radiosonde observed profiles

willcan be therefere-computed using the averaging kernel, as:

X. thed_sonderadiosond, = Akernel (XsendeXradi()S(mde_Xa) +Xll

8 @

The Akernel in Eq. (2) depends on the retrieval parameters (e.g., which datasets are
used in the Y vector, the values assumed in the observation covariance matrix Se, and the
sensitivity of the forward model4i-e-tstacebian)ete);), so for our four PR configurations it is

possible to calculate four different kernels:-A—MWRz-A_MWRze, A_MWRz0915-and

ke R e bdraratie—andwit-becalled ACMUUR- from Eq. (2).
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radiosonde profile using Eq. (34). In the presence of temperature inversions or other particular
structures in the atmosphere, these smoothed profiles can be quite different from each other

and also from the original unsmoothed radiosonde profile.

] {Formatted: Font: Not Bold

Thereforeinthestatistical-analysispresentedlaterinthe manuseript{in-Consequently, « - ‘{Formatted: Space After: 0 pt

while comparison of the retrievals to the relative Akernel-smoothed radiosonde profiles can be

used to minimize the vertical representativeness effects due to the different vertical resolutions

of these profiles, we note that a statistical comparison between the four configurations of the

observational vector would not be fair if each of their retrieved profiles is compared to a

different Akernel-smoothed radiosonde profile. Therefore, in the statistical analysis presented

later in the manuscript (section 4.2), mean bias, root mean square error (RMSE), and Pearson

correlation coefficients will be computed between the MWR sretrievals-and-both-the

data-various TROPoe retrieval configurations and the unsmoothed radiosonde profiles, just

interpolated to the same vertical levels of the retrieved profiles.,

The imprevementATkernel can help understand the differences in the retrieved

temperature profiles presented-inFig—2-obtained by the configurations using additional RASS

data-ean-be-explained-and-clearly, shown byin the ATkernelitselfexample of Fig. 2. Figure 33a
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includes the temperature profiles of the radiosonde (unsmoothed and ATkernel’s smoothed)

and PRs of MWRzo and MWRz0449 {panela}and-the-ATkernels-correspondingte-these PRsin

Fhefor the same example as in Fig. 2. Due to the inclusion of RASS measurements, the <+ -~ 7| Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border), Between :

ATkernel-smoothed radiosonde profile of the MWRz0449 configuration (dashed light-blue line) (No border)

is closer to the original radiosonde data (in red) compared to the black dashed profile of the

MWRzo’s ATkernel-smoothed radiosonde profile. Additionally, the rows of the ATkernel, j_ - {Formatted: Font: Not Bold

provide a measure of the retrieval smoothing as a function of altitude, so the full-width half

maximum (FWHM) of each ATkernel row estimates the vertical resolution of the retrieved - {Formatted: Font: Not Bold

solution at each vertical level (Maddy and Barnet, 2008; Merrelli and Turner, 2012). Fhese

pletsPlots of temperaturethis vertical resolution versus-as a function of the height for the

MWRzo PR and for the MWRz0449 PR are included in Figure3,-paneldforthesamecase
presented-in-Fig.

vs-MWRze4493b. This plot shows that the additional observations from the RASS 449

significantl

the vertical resolution of the retrievals{as-clearly-visible-inpaneld})-.
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The posterior covariance matrix, Sop, provides a measure of the uncertainty of the

retrievals while the square root of the diagonal of this matrix is used to specify the 1-g errors in

the profiles of temperature or mixing ratio. Also, Sop shows the level-to-level dependency of

the retrievals, and in an ideal case should have all non-diagonal elements equal to zero.

Converted to a correlation matrix, it is possible to visualize these dependencies, as presented in

Fig. 3¢, d. The use of additional RASS data (MWRz0449 Sop, Fig. 3d) reduces the off-diagonal
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b50 covariances, therefore substantially decreasing the correlations in those areas compared to the

b51 MWRzo Sop (Fig. 3c).

652

653  Fig. 3. Panel-a:) observed temperature profiles from radiosonde, in red, from ATkernels - {Formatted: Font: Bold

654  smoothed radiosonde, AT_MWRzo in dashed black, and AT_MWRz0449 in dashed light-blue;

655  PRs from MWRzo PR in solid black, and from MWRz0449 PR in solid light-blue. Midédie-colored

656  panels: 373 evels {surfaceto-3-km)of the Akernelmeatrixfortemperature b)) ATMWRzo and
657 ¢} AT-MWRz0449 Rightpanel-d: vertical resolution (VRES) as a function of the height for the

658  MWRzo PR (black), and for the MWRz0449 PR (light-blue). c) and d) 3 x 3 km (37 x 37 levels) Sop

b59  matrices, converted to correlation matrices, for the MWRzo PR (c), and for the MWRz0449 PR

660 (d). Dashed lines on plots b)-d) mark 2 km AGL. Hatched area on panel ed marks the RASS

661 measurement heights.
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retrieval configurations efin Table 1, in-the same-way-as-shewn-in-Sop matrices were averaged

over all radiosonde events, and converted to correlation matrices (Fig. 3,6-&:4). A clearly visible

gradualnarrowing of the spread around the main diagonal is-ebtainedand correlation reduction

in the off-diagonal elements result by the-usage-eftheadding additional observations, from

MWR zenith only (paretaFig. 4a), to MWR zenith-oblique (paretbFig. 4b), to the larger impact

obtained by the usage of RASS-915-{panel-c}-and-RASS449-{panetd)-datathe RASS 915 (Fig. 4c),

concluding with the RASS 449 (Fig. 4d) data. The mean retrieval uncertainty profile for each of

the PR configurations is presented in Fig. 4e. The uncertainty of the MWRz0449 retrieval up to

1 km AGL is around 0.5 °C while the other retrievals have higher uncertainties of up to 1 °C. The

higher accuracy of the MWRz0449 retrievals is because that configuration has more

observational information compared to the other retrieval configurations. - {Formatted: Highlight

Other statistically important features to analyze in the PRs, besides their uncertainty, <« -~ {Formatted: Space Before: 0 pt

are the vertical resolution;are already introduced in the retrieval-uneertaintyexample of Fig. 3b,

and the degree of freedom for signal (DFS). These threetwo features-are-alse-shown-in-Fig4;

panels-e-g-at, derived from the Akernels of each efthe-heights-eftheretrieved-solution,up-te

3-km-AGL-and-PR configuration, averaged over all radiosonde events—Athile-the, are shown in

Fig 4f and 4g. The vertical resolution (paneleFig. 4f) shows the width of the atmosphere layer
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694  used for each retrieval height{the-verticalreselutiondis, computed as the full-width half-
95  maximum FWHM--Maddy-and-Barnet2008)-value of the averaging kernel)-the-uneertainty
696

697

698  cumulative DFS profile (Fig. 4g) is a measure of the number of independent pieces of

699 information usee-in the retrieved-selution-observations below the specified height. For

700  example, at the 1 km AGL level the vertical resolution of MWRz0449 egualsis 0.5 km;- (i.e.

701  information_s from +/- 0.5 km around the retrieval height areis considered in the retrieval;),
702  while all other retrievals use the information from +/—2-km-Alsethe-uncertainty-ofthe

703 LR RzedOpetrevebus e Ul AC s arennd 0. E S Conkile the atherratreunls hove higher

704  uncertaintiesofupto-1-°C-The higheraccuracy-of the MWRz0449 retrievalsisbecause they use
more than +/-

Vo5

706 1.5 km. Also, the DFS, as a cumulative measure, shows an increase in pieces of information

707  from MWRz to MWRzo for the whole profile and from MWRzo to MWRz0915 and to

708 MWRz0449 above ~0.2 km where RASS data are available. The DFS of MWRz0915 is higher

709  compared to the DFS of MWRz0449 in the 0.2-0.5 km AGL layer because RASS 915 data have

710 denser measurements there. It is also important to note that there is no additional information

711  added to any of the retrievals above 2km AGL, i.e. the slope of the cumulative DFS profiles are

712  equal. Despite that, the statistical analysis of the PRs up to 3 km AGL, shown in Section 4, will

713  prove that the retrieval improvements obtained by including the RASS are found even above

714  the height of the RASS measurements availability, - {Formatted: Highlight
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Fig. 4. Top fewr-colerimages:-ATkernelsrow: The mean Sops, displayed as correlation matrices,

for (a) MWRz{panela), (b) MWRzo{panelb);, (c) MWRz0915-{panele}, and (d) MWRzo449

{paneld), averaged over all radiosonde events. Hatched area on panels c) and d) marks the

RASS maximum measurement heights. Bottom three-panelsfromteftto-right—verticalreselution

{MRES})-in-km-{panele},panels: (e) one-sigma uncertainty derived from the posterior covariance

matrix in °C{penelfi-and, (f) vertical resolution (VRES) in km, and (g) cumulative Degree of

Freedom (DFS;-peanretg) as a function of height for temperature, averaged over all radiosonde

events (MWRz is in gray, MWRZzo is in black, MWRz0915 is in magentapurple, and MWRzo449 is

in light-blue). Dashed lines mark 2 km AGL on all panels.
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The improvements from MWRz (in gray) to MWRzo (in black), thea-to MWRz0915 (in  « - - {Farmatted: Space Before: 0 pt

rragentapurple), and finally to MWRz0449 (in light-blue) are visible in all three panels (Fig 4

ede-g), whereas MWRz0449 has the best-statistical-measureslowest 1-0 uncertainty and

highest DFS compared to the other PRs, particularly below 2 km AGL, where RASS 449

measurements are available. Finally, it is interesting that below 200 m AGL the MWRz0915 has

slightly betterstatisticscomparedsmaller lowest 1-0_uncertainty and vertical resolution relative

to the MWRz0449, as could be expected due to the first available height of the RASS 915 being
lower (120 m AGL) than the first available height for the RASS 449 (217 m AGL) and due to the
finer vertical resolution of the 915-MHz RASS. This suggests that if additional observations were
available in the lowest several 100 m of the atmosphere where RASS measurements are not
available, improvements might be even better closer to the surface, where temperature

inversions, if present, are sometimes difficult to retrieve correctly.
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4. Results “= =~ 7 7| Formatted: Indent: Left: 0", Outline numbered + Level: 1
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Several cases were found severaleases-during XPIA when the temperature profile ~_ \{F tted: Font- Bold
N ormatted: Font: bo

exhibitsexhibited inversions, with the lowest happening in the surface layer. Figure 5a5 shows {F"""“md" Space Before: 0 pt

one of the most complex cases, with several temperature inversions visible in the temperature
profile from the radiosonde (red line), in the temperature measurements from the BAO tower
(blue squares), and in the virtual temperature measured by the RASS 449 (light blue triangles).

We-neteNote that the virtual temperature profile is in close agreement with the temperature

measured by radiosonde. Generally-the-meisturecontributionto-the virtualtemperature-isless
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obtained after applying the radiosonde BC, and b) shows the PRs obtained after applying the

a) shows the PRs

TROPoe BC on the MWR Tbs.,
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Figure 5 also illustrates the difference in the temperature profiles, especially between 0-

300m AGL, for the two different bias-correction schemes, which show noticeable differences in

the biases of the opaque channels (especially important for the near-ground retrievals)

presented in Fig. 1. As expected, the radiosonde BC method yielded a retrieved profile closer to

the radiosonde temperature profile than when using TROPoe BC, for which the inversion in the
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temperature profile close to the surface is too accentuated (particularly the black, purple, and

cyan lines, all of which used obligue scan data).

The relative statistical behavior (Pearson correlation, RMSE, and bias) of the PRs for

both temperature and mixing ratio against radiosondes is shown in Figure 6, using both bias-

correction approaches. PRs obtained after applying the radiosonde BC (Fig. 6a) present overall

smaller RMSE and bias (the latter almost equal to zero up to 3 km AGL) and slightly higher

correlations compared to the statistics of the PRs obtained after applying the TROPoe BC (Fig.

6b). This could be expected since for the comparison in Fig. 6a a subset of the radiosondes were

already used for the Tb bias correction. Also, the different retrievals show a narrower

distribution for the panels in Fig. 6a. Nevertheless, the results obtained when applying either
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bias-correction methods (in Fig. 6a, b) consistently show the improvement obtained when the

RASS observations are used, with relatively smaller bias and RMSE in the 3 km layer AGL. The

correlation is mainly improved above 1 km, when RASS observations are included.

Fig. 6. Pearson correlation, RMSE, and mean bias for temperature profiles of MWRz in gray,

MWRzo in black, MWRz0915 in meagente;purple, and MWRzo4439 in light-blue;
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Besides temperature profiles, the PR+etrievalsPRs also provide water vapor mixing ratio + - - {Formatted: Space After: 0 pt

profiles. It is understandable that the different configurations of PRs are not noticeably
different from each other in relation to moisture, because the Tv observations from the RASS
are dominated by the ambient temperature (not moisture), and thus have little impact on the

water vapor retrievals.

anrd-MWRz0449 inpanelsaand-bwhichWe found that the AQKernels are averaged-overall

radiosende-eventsand-appearto-be-almost identical-Mere-detailed for all four PR

configurations (not shown). Detailed statistical estimatiensevaluation of the PRs mixing ratio

profiles are presented in Fig, 7-e-e, also averaged threughover all radiosonde events, and show

very similar correlations, RMSEs, and biases for all PRs-included-inthefigure,meaning, implying

that the impact of including RASS observations in the retrieval is minimal on this variable.

Finally, it is noted that Fig. 7 shows the mixing ratio of the data from TROPoe BC. The

radiosonde BC mixing ratio results are almost identical.
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Fig. 7. Same as the panels in Fig. 6b, but for mixing ratio, when using the TROPoe BC method on

the MWR Tbs.

4.32 Statistics for cases-farfrom-the-climatological-meanthe profiles least close to the - {Formatted: Indent: Left: 0.25", First line: 0"

climatology
Physical retrievals use climatological data as a constraint erferbuildingthe statistical
relationships-used-in the retrieval. Statistically, the averaged profiles of both temperature and
moisture variables are very close to the climatological averages. However, the most interesting
and difficult profiles to retrieve are the cases furthest from the-climatology (Lohnert and Maier,

2012). To check the behavior of the retrieved data in such eventswe“extreme” cases, the

RMSE was first calculated the-RMSE-for each radiosonde profile relative to the prior profiles for

4237 vertical levels from the surface up to 53 km AGL, and then we-seleeted-the 15 cases with

the largest 0-5km3 km layer averaged RMSEs compared to the prior-Al-comparisons-are-done
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B91  Fig. 8. From top to bottom: biases (retrievals minus A+kerrelradiosonde), RMSEs, standard

B892  deviations of the difference between retrievals and AFkernel-radiosonde, and Pearson

B93  correlations for the sixfour PR configurations-sefaerintreduced, averaged from the surface to 53
B94  km AGL, everagedand over all radiosonde data (solid boxes), and everaged-over the 15 events

B95  furthestfrom-thepriorsextreme cases (hatched boxes). The data in panels a) use radiosonde BC,

B96 andin b) TROPoe BC on the MWR Tbs.

897
898 Figure 8 shows the temperature statistical analysis for the entire radiosonde data set

B99  (solid boxes) and te-justfor the fifteen ehesen-events far from the climatological mean (hatched
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boxes) for bias, RMSE, standard deviation of retrievalthe differences te-thebetween retrievals

and radiosonde data, and Pearson correlation, calculated as the weighted averaged over the

4237 vertical heights up to 53 km AGL—Fhe-verticalresolution-of-the-Physical-Retrievalsisnot

Differences in the statistics when using the entire radiosonde data set or the fifteen

extreme profiles furthestfrom-the-priorare noticeablerespecialy-forbiasand-RMSE butalse

for the-standard-deviation—AHall statistical estimators. The PRs that include RASS observations

show better performance compared to the strictly MWR-only PR profiles (i.e., MWRz and

MWRzo) for almost all statistical comparisons. Alse,the-statistical-behaviorofthe

active RASS measurements-the TROPoe BC (Fig. 8b) compared to the PRs using the radiosonde

BC (Fig. 8a). Three statistical estimators, RMSE, standard deviation, and Pearson correlation

1 The vertical grid used in the PRs is not uniform, with more frequent levels closer to the surface. If a
simple average of the data from all levels is used, the near-surface layer will be weighted more
compared to the upper levels of the retrievals. To avoid this, a vertical average over the lowest 3 km AGL
is performed using weights at each vertical level determined by the distance between the levels.
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919  show overall better values for the 15 extreme cases compared to the whole radiosonde

920  dataset, for all PR configurations and both BC approaches. This is due to the fact that for this

921  dataset the monthly averaged radiosonde profiles (for March and May particularly) depart

922  quite substantially from the monthly prior profiles. For example, the averaged radiosonde

923  profile in March is warmer by ~7 °C compared to the March prior (and in May by ~5 °C) in the

924  first 3 km AGL. Consequently, the extreme cases (mostly found in March) have the warmest

925 radiosonde temperature profiles, but are overall closer to the monthly averaged radiosonde

926  profiles.
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028 Fig—9—The Table 2 includes the same data as Fig—6in Figure 8 but ferthe-temperature
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P57

P58

P59

RADIOSONDE BIAS-CORRECTION

MWRz MWRzo | MWRzo | MWRzo MWRz MWRzo | MWRzo | MWRzo
RASS915 | RASS449 RASS915 | RASS449
RMSE | 0% 5% 1% | 13% 0% 7% 10% 3%
STID | 0% 4% 10% | 12% 0% 8% 4% | 17%
CORR | 0% 01% |03% |03% 0% 01% |02% |0.3%

TROPoe BIAS-CORRECTION

RMSE | 0% 10% | 25% | 32% 0% 15% | 15% | 21%
sttD | 0% 9% 18% | 16% 0% 14% | 16% | 20%
CORR | 0% |04% [09% |o0.7% 0% |03% |04% |04%

Table 2. Retrieval improvements for different RASS/MWR confiqurations as a percentage

compared to MWRz.

The results presented in Table 2 show improvements in all statistical estimations when

including RASS observations, with improvements in RMSE between 10 and 20 %, demonstrating

the positive impact derived by the inclusion of the active measurements, regardless of the bias-

correction method used, but larger for the TROPoe BC data because there is more room for

improvement when this dataset-=BC method is used. Improvements in the Pearson correlation

coefficients are small because correlation, determined during XPIA by the overall temperature

structure with height and diurnal cycle, is already good, leaving little room for improvement.
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960 4.3 Virtual temperature profile statistics

961 Using the physical retrieval outputs, “retrieved virtual temperature profiles” can also be + - - {Formatted: Space After: 0 pt

962  calculated. In this section we-shew-the direct comparison of theretrieved-prefilesto-the
963
64

P65

966  rangefereasyand RASS virtual temperature profiles to the original radiosonde is shown. With

967  this comparison—we want to show how the biases of the retrieved profiles relate to the original

968  RASS Tv biases.
969 Figure 309 shows Tv retrieved profile biases compared to the original radiosonde data

970 assolid lines, and RASS 915 and RASS 449 Tv bias as asterisks. RASS data are interpolated on a

971  regular vertical grid, going from 200 m to 1.6 km with a 100 m range, for easy comparison.

p72 A zero bias is denoted by the red line. On the left side of the figure weshewthe bar

973  charts of the RASS measurement availability are shown as a function of height. The widest part

974  of these charts corresponds to 100% data availability. Heights with RASS availability greater

975  than 50% are marked with additional circles over the asterisks.
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Fig. 489. Bias of virtual temperature for all-six PR configurations compared to the original
radiosonde measurements. RASS data are marked by asterisks and by additional circles for the
RASS data with more than 50% availability, according to the availability bar charts on the left.

All PRs profiles are derived after applying the radiosonde BC method.

While RASS 449 data are available at almost all heights up to 1.6 km, the RASS 915 data
availability decreases considerably with height, lowering to 50% availability around 800 m AGL.

AlThe PRs with-irputfremthat include RASS data, MWRz0915 and MWRz0449,anrd
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MWRz2siema915and MWRz2sigmad49, are also marked with additional black lines at the

heights with at least 50% of relative RASS data availability. Fhisln agreement with Fig. 6a, this

figure clearly shows the superiority of MWRz2sigmad449-the MWRz0449 and MWRz2sigmadis
MWRz0915 (in the layer with > 50% RASS 945-data availability) compared to the MWRz and

MWRzo configurations, which do not include RASS data,as-wellas-te-MWRze915-and

a-. For MWRz0449-and
MWRz2sigmadd9-prefiles, RASS 449 data were almost always available, therefore it is easy to
identify similarfeaturesa similarity between the Tv bias profiles of the RASS 449 and the PRs
including it. Thus, for the MWRz0449-and-MWRz2sigma449 the Tv bias is more uniform through
the heights compared to all other PRs that do not include RASS data. Moreover, beeause-it is

noted a roughly constant offset between the MWRz0449 Tv and MWRz2sigmad49RASS 449 Tv

biasbiases profiles-felow-tightlythe-trend-of the RASS449-, with heightthe-their averaged

difference betweenMWRze449equal to ~0.08 °C (when the radiosonde BC is used), and RASS

449 biases-egualsto ~0.32 °Ca

biases-eguals~0-14-°C(when the TROPoe BC is used, not shown), over the ~1.3 km (0.3-1.6 km)

atmospheric layer where sestmore than 50% of the RASS 449 measurements are available,

uniformly distributed through the heights. Finalythe-average-differencesbetweenthese

oebservationsup-te-The inclusion of the RASS into the PRs does reduce the values of the biases

in the maximum-heightreached-byretrievals even below the RASS,and-thenusevalues of the PR
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5. Conclusions -

In this study-we-used-the, data collected during the XPIA field campaign were used to <+~ _

test different configurations of a physical-iterative retrieval (PR) approach in the determination
of temperature and humidity profiles from data collected by microwave radiometers, surface
sensors, and RASS measurements. We-tested-theThe accuracy of several PR configurations; was
tested: two thatconfigurations made use only of surface observations and MWR observed
brightness temperature (zenith only, MWRz;; and zenith plus oblique, MWRzo},-ar€); while two

others thatincluded the active virtual temperature profile observations available from twse-co-

located RASS (one, RASS 915, associated with a 915-MHz;; and the other, RASS 449, associated
with a 449-MHz wind profiling radar). Radiosonde launches were used for verification of the

retrieved profiles. In Appendix A, the performance of MWRz and MWRzo retrieved profiles and

Neural Network retrieved profiles werealso-used-forcomparison{see-AppendixA)against the

radiosondes was evaluated.

InelusionTo remove any observational systematic error in the MWR Tb observations, -

two bias-correction procedures were tested. The first one takes advantage of the many

radiosondes launched during XPIA, and the second one uses climatological profiles. As

expected, the radiosonde bias-correction method gives retrieved profiles closer to the

radiosonde temperature profiles than when using the climatological based method.
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Nevertheless, our results show that regardless of the bias-correction method used, the

inclusion of the observations from the active RASS instruments in the PR approach improves

the accuracy of the temperature profiles,-partieutarly-when by around 10-20% compared to the

PR configuration using only surface observations and MWR observed brightness temperature

inversions-are-present:from the zenith scan. Of the PRs configurations tested, we-findgenerally

better statistical agreement_is found with the radiosonde observations when the RASS 449 is

used together with the surface observations and brightness temperature from erly-the-zenith

{Cimini-et-ak2018).the zenith and averaged obligue MWR observations.

We-also-selectedThe AKernel and the posterior covariance matrices for temperature are

used to derive the one-sigma uncertainty, vertical resolution, and cumulative degree of

freedom as a function of height for the different PRs, and the level-to-level correlated

uncertainty of the retrievals. Results show that the inclusion of the active instruments improves

all of the above-mentioned variables in the 0-3km layer, including at heights between 2-3km

that are above the maximum RASS height. Thus, the positive impact of the RASS observations

extends into the atmosphere above the height of measurements themselves.
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Furthermore, 15 cases when temperature profiles from the radiosonde observations — « - - {Formatted: Line spacing: Double

were the furthest away from the mean climatological average were selected, and reproduced
the statistical comparison was reproduced over this subset of cases. These are the cases usually
the most difficult to retrieve and the most important to forecast; therefore, it is essential to

improve the retrievals in these situations. Even for this subset of selected cases we-find-that

lowest0-1-oreven0-2-km-AGLlayers{Crewel-and-Léhnert 2007 the inclusion of active sensor

observations in the PRs is found to be beneficial.

Finally, we-alse-considered-the impact of the inclusion of RASS measurements on the
retrieved humidity profiles was considered, but-n-this-ease the inclusion of RASS observations
did not produce significantly better results, compared to the configurations that do not include
them. This was not a surprise as RASS measures virtual temperature, effectively adding very
little extra information to the water vapor retrievalsretrieval. In this case a better option would
be to consider adding other active remote sensors such as water vapor differential absorption
lidars (DIALs) to the PRs. Turner and Léhnert (26262021) showed that including the partial

profile of water vapor observed by the DIAL substantially increases the information content in
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the combined water vapor retrievals. Consequently, to improve both temperature and humidity

retrievals a synergy between MWR, RASS, and DIAL systems would likely be necessary.

Appendix A +~ {Formatted: Indent: Left: 0", Hanging: 0.25"

The XPHA-neural network (NN) retrievals developed by the vendor explicitly for XPIA use « - - {Formatted: Line spacing: Double

a training dataset based on a 5-year climatology of profiles from radiosondes launched at the
Denver International Airport, 35 miles south-east from the XPIA site. NN-based MWR vertical
retrieval profiles were obtained using the zenith or an average of two oblique elevation scans,

15- and 165-degrees; (not including the zenith), all with 58 levels extending from the surface up

to 10 km, with nominal vertical tevelsgrid depending on the height (every 50 m from the surface
to 500 m, every 100 m from 500 m to 2 km, and every 250 m from 2 to 10 km, AGL).
Fig. 1A shows composite NN vertical profiles of temperature (separately for the zenith

and averaged obliques) calculated for radiosonde launch times, and the corresponding PR

profiles already introduced in Fig. 6-As-expected theaveraged-obligue-NN-profile-hastower

mproved-abeve-thistevekba, b. For a proper comparison, only MWRz and MWRzo profiles are

used, without including RASS measurements. It has to be noted that since the “NN oblique”

retrieval provided by the manufacturer of the radiometer does not include the zenith, this

configuration cannot be considered exactly equivalent to the MWRzo PR.
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Fig. 1A. The-same-asFig—6-but-with-additional-NN-Pearson correlation, RMSE, and mean bias for+

o ‘{Formatted: Space Before: 0 pt, After: 0 pt

temperature profiles for MWRz in grey (and purple) and MWRzo in black (and maroon) when

the radiosonde BC (and the TROPoe BC) method is applied. Included in this figure are the NN

temperature profiles, from the zenith scan (in beige), and from the averaged oblique —scans (in

green:).

+ {Formatted: Font: Not Italic
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——We-nete-Another difference to point out is that-r-this-comparisen, while the After: 0 pt

MWR Tb data have been bias-corrected before being used in the Rhysical-RetrievalPR
configurations, as discussed in Section 3.2, while-the NN retrievals use the uncorrected Tb,
since it was non-trivial ferus-to reprocess those retrievals. Zerith-NN-prefilesMartinet et al.

(2015) showed that when it is possible to bias-correct the MWR Tb before applying the NN

retrieval technigue, the NN retrievals are not impacted below 1 km AGL, but a clear

improvement of NN retrievals in terms of RMSE and bias are observed between 1 and 3 km
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altitude. As is visible in Fig. 1A, this is the layer of the atmosphere where the NN profiles (beige

and green lines) have larger bias and RMSE-and-smaller, compared to the PR profiles.

When the radiosonde BC method is used, the MWRz and MWRzo PRs (gray and black

lines) present better statistics through the entire profiles shown in Fig. 1A, with larger values of

the correlation coefficient-a

the Th-biasin-the transparentchannelsof the V-band-frequeneies—, and smaller values of RMSE

and bias. The oblique only NN profiles (in green) show comparable statistics to the PRs

employing the radiosonde BC method up to 1 km AGL, with degraded performances above this

height. Above 1 km AGL, the zenith NN profiles (in beige) do better than the obligue NN in

terms of RMSE and bias. When the TROPoe BC method is used, the MWRz and MWRzo PRs

(purple and maroon lines) perform better than the NN profiles only in terms of RMSE and bias,

and above around 1.5 km AGL.
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The better performance obtained by the MWRz and MWRzo PRs that use the

radiosonde BC approach demonstrate the importance of having an accurate and reliable

method for bias correcting the MWR.
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